
In S. Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006: 24th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques, St.
Petersburg, Russia, May 28 - June 1, 2006. Proceedings, volume 4004 of Lecture Notes
in Computer Science, pages 254–270. Springer Berlin / Heidelberg, May 2006.

The Function Field Sieve
in the Medium Prime Case

Antoine Joux1,3 and Reynald Lercier1,2

1 DGA
2 CELAR

Route de Laillé
35170 Bruz, France

Reynald.Lercier@m4x.org
3 Université de Versailles St-Quentin-en-Yvelines

PRISM
45, avenue des Etats-Unis

78035 Versailles Cedex, France
Antoine.Joux@m4x.org

Abstract. In this paper, we study the application of the function field sieve algorithm for comput-
ing discrete logarithms over finite fields of the form Fqn when q is a medium-sized prime power. This
approach is an alternative to a recent paper of Granger and Vercauteren for computing discrete
logarithms in tori, using efficient torus representations. We show that when q is not too large, a very
efficient L(1/3) variation of the function field sieve can be used. Surprisingly, using this algorithm,
discrete logarithms computations over some of these fields are even easier than computations in the
prime field and characteristic two field cases. We also show that this new algorithm has security
implications on some existing cryptosystems, such as torus based cryptography in T30, short sig-
nature schemes in characteristic 3 and cryptosystems based on supersingular abelian varieties. On
the other hand, cryptosystems involving larger basefields and smaller extension degrees, typically
of degree at most 6, such as LUC, XTR or T6 torus cryptography, are not affected.

1 Introduction

Computing discrete logarithms is, with integer factorization, one of the two number-theoretical hard
problems upon which public-key cryptography is usually based. Two kind of groups are often considered,
elliptic curves and multiplicative groups of finite fields. The latter case is further partitioned into several
sub-cases, prime fields Fp, characteristic two fields F2n , where n is usually prime and extensions of
medium-sized fields Fqn , where q is a medium-sized prime power4 pk. Until recently, the last case was
rarely considered in cryptography. However, two recent developments make use of such fields, pairing-
based cryptography [13, 5, 6, 7] and torus-based cryptography [19, 8, 21, 27]. For this reason, practical
evaluation of the hardness of discrete logarithms in such fields is becoming an important issue. Recently,
an approach based on rational torus representation was proposed by Granger and Vercauteren [12], it was
applied in [22]. In this paper, we revisit a much older approach, the function field sieve. This algorithm
was originally introduced by Adleman [3] as an extension of Coppersmith’s algorithm [9]. Its complexity
was subsequently improved by Adleman and Huang in [4]. This algorithm is known to be efficient when
the base field is fixed and the extension degree grows. Moreover, it was shown to be practical and applied
to characteristic 2 in [14]. Later on, it was also used in characteristic 3 in [11]. However, when both p and
the total extension degree nk grow, the reference is the approach of Adleman and Demarrais in [2, 1],
which makes use of a variation of Coppersmith’s algorithm, involving function fields, when p ≤ nk. As
soon as this bound is exceeded they use a different algorithm based on number fields. This approach
gives an L(1/2) complexity for medium-sized base fields. In this paper, we describe a new variation of
the function field sieve which is dedicated to medium-sized values of q and allows for fast computation of

4 Remark that we use the notation Fqn to emphasize the fact that for composite extension degrees, viewing the
field as Fpkn is not necessarily optimal.

1



2

discrete logarithms in Fqn , even when q is much larger than n. For such fields, we show that our approach
is faster, both from a theoretical complexity viewpoint with an L(1/3) complexity and as a practical tool.
More precisely, this variation of the function field sieve is applicable with L(1/3) complexity whenever
log q remains smaller than O(

√
n log n).

The paper is organized as follows, in section 2 we describe the function field sieve variation we
are considering, in section 3 we show that the asymptotic complexity is the same as the complexity
of the function field sieve with small base fields, in section 4 we describe real sized experimentations
with this algorithm, finally in section 5 we discuss the impact of our algorithm on the security of some
cryptosystems.

2 A medium sized variation on the function field sieve

The function field sieve algorithm for computing discrete logarithms over Fpn is quite similar to the
number field sieve for computing discrete logarithms over Fp (see [10, 28]). Both algorithms consider
multiplicative identities using smooth objects over well-chosen smoothness bases. With the number field
sieve, the objects are numbers in number fields and the smoothness bases contain ideals of small norm.
With the function field sieve, the objects are polynomials in function fields and the smoothness bases
contain ideals whose norms are polynomials of small degree. The complexity of such algorithms, is usually
expressed using a notation, initially introduced for fast integer factorization algorithms [20]. This now
classical notation is defined as follows:

LQ(α, c) = exp((c + o(1))(log Q)α(log log Q)1−α).

For the two extreme cases, prime fields Fp and extension fields Fpn with fixed characteristic p, the
number field sieve and the function field sieve respectively yield L(1/3, (64/9)1/3) and L(1/3, (32/9)1/3)
algorithms. In the intermediate cases, the best available complexity is L(1/2) as described by Adleman
and Demarrais in [1, 2]. We would like to further remark, that using the function field sieve with fixed
p, we have a smaller constant in the L(1/3) expression than with the number field sieve. This is due to
the fact that Fpn has a large number of different representations, one for each irreducible polynomial of
degree n over Fp. This was discovered in [4] and a practical variant was presented in [14]. Surprisingly,
even with medium-sized base fields, a similar construction that makes use of well chosen representations
is possible, as shown below. The most important question is how to choose a good smoothness basis.
With a medium sized base field Fqn , when q has just the right size, this is in fact very simple. It suffices
to choose as the smoothness bases the sets of ideals whose norms are degree one polynomials, no more,
no less. When log q and

√
n log n are correctly balanced, this choice yields a very efficient algorithm with

complexity L(1/3, 31/3). In section 2.2, we discuss different choices of smoothness bases that should be
used instead of this simple choice, when the balance between q and n varies.

More precisely, let q be the cardinality of the base field and n the degree of the extension. In order
to define Fqn , we proceed as follows. First, choose a minimal pair (d1, d2), with d2 = d1 or d1 + 1, and
with d1d2 ≥ n. Then, find two polynomials f1 and f2, in two unknowns, X and t, of the form:

f1(X, t) = X − g1(t), f2(X, t) = g2(X) + t,

where g1 and g2 are univariate polynomials of degree d1 and d2, such that, g2(g1(t))+t has an irreducible
factor F (t) of degree n over Fq. We claim that such polynomials are easy to find (see section 4 for
examples). We use F (t) as our definition polynomial for Fqn . Clearly, f1 and f2 have a common root
X = g1(t) in Fqn . As a consequence, f1 and f2 define good function fields for the function field sieve
algorithm. Using standard vocabulary, we say that f1 defines the linear side of the sieve.

The next step of the algorithm is to send objects of the form a(t)X−b(t) in the two function fields. At
this point, we slightly differ from standard practice and consider only a subset of such objects, by fixing
a(t) = wt + 1 and choosing b(t) = ut + v, where u, v and w are elements of the base field Fq. As usual,
we then compute the norm of a(t)X − b(t) in the two function fields. This restriction on a(t) comes from
the fact that, since we are working with polynomials, all factorizations are defined up to a constant in
the base field. This choice of a(t) avoids multiple sieving of the same objects. Note that from a practical



3

point of view, when q is large enough, it is even better to reduce the sieving space and fix a(t) = 1 only.
Then, on the linear side, we find b(t)−g1(t) a degree d1 polynomial. On the other side, we find g2(b(t))+t
a degree d2 polynomial. This contrasts with the general case, where the respective degrees are d1 +1 and
d2 + 1. It is a well-known fact that among polynomials of degree d over Fq, the proportion of degree d
polynomials having d roots quickly tends towards 1/d! as q grows. We say that b(t) generates a relation
when both sides completely split into degree 1 factors. Using the traditional heuristic and assuming that
the sieving process generates random looking polynomials, this occurs with a probability which is very
close to either 1/(d1! ·d2!) or 1/((d1+1)! ·(d2+1)!). It remains to see whether we obtain enough relations.
On the linear side, our chosen smoothness basis contains the q possible unitary polynomials of degree
1, namely the polynomials t + u, with u in Fq. On the other side, due to our particular choice of f2,
the smoothness basis also contains q elements, which are ideals of norm t + g2(u), with u in Fq. As a
consequence, we need 2q equations. Since we are sieving over either q2 or q3 elements, this particular
choice works when either q ≥ 2 d1! · d2! with reduced sieving space or q2 ≥ 2 (d1 + 1)! · (d2 + 1)! with full
sieving space.

After generating the multiplicative identities as above, we transform them into linear equations in-
volving logarithms of polynomials on the linear side and “logarithms of ideals” on the other side5. The
resulting system of equations is then solved using a sparse linear algebra algorithm such as Lanczos or
Wiedeman [18, 23, 30, 17]. This linear algebra step is performed modulo (qn − 1)/(q − 1). Indeed, the
multiplicative identities are defined up to a multiplicative constant in Fq and the logarithms are com-
puted in the quotient group of F∗qn by F∗q . It is interesting to note that due to the very specific form of
the equations we use, with exactly d1 (or d1 + 1) unknowns (potentially counting multiplicities) on the
left-hand side and d2 (or d2 + 1) unknowns on the right-hand side, our system does not have full rank
over the rationals. There is a “parasitic” solution with all the left-hand side unknowns set to d2 and
all right-hand side unknowns set to d1. This means that after the linear algebra, the resulting solution
does not contain pure discrete logarithms, the result is masked by some additive constant. However, by
considering fractions such as (t+u)/(t+v), the contribution of this constant can be cancelled. Moreover,
if we can find even a single equation with a different structure, the masking constant can easily be found.
The simplest way to proceed is to find a linear polynomial which completely splits in the function field
defined by f2. This yields a specific kind of equation6 which nicely breaks the above symmetry and allows
us to find and remove the unwanted constant. An example of this technique is given in section 4.

2.1 Individual discrete logarithms

Once the two steps described above, sieving and linear algebra, have been performed, we obtained the
logarithms of the elements of the smoothness bases. This is well and good, but does not fully solve the
discrete logarithm problem. An additional step is required to compute the logarithms of large elements
in the finite field. We propose a classical approach based on “special-q” descent, which is similar to the
approach proposed in [9, 14] for the case of logarithms over an extension of a small base field. The idea
is the following. Given an element y in the finite field, whose logarithm is wanted, we first build many
elements of the form yi · tj . Each of these elements can be represented as a polynomial in t of degree
n. Alternatively, using continued fractions, we can also find representations by rational fractions, whose
numerators and denominators have degrees near n/2. From an asymptotic viewpoint, both approaches
are equivalent. However, in practice, the latter is more efficient. Once we obtain such a representation,
we test whether it can be factored in polynomials of degree µ

√
n for a constant µ to be determined in

the sequel. After testing sufficiently many representations, we find an adequate one and are left with
the problem of computing logarithms of polynomials of degree at most µ

√
n. Let q be such a low degree

polynomial. We can now find its logarithm by sieving again on elements of the form a(t)X − b(t), where
a(t) and b(t) are polynomials of degree at most µ

√
n chosen to ensure that q divides the linear side (in

the function field defined by f1) of the resulting equations. After finding an element a(t)X − b(t) that

5 This notion of logarithms of ideals is described and used in [15, 14]. With the specific choice of f2 we have
given, there is a simpler description, because the function field is principal and all ideals can be represented
by a single element in the finite field.

6 These equations are often used in function field sieve algorithms and are called systematic equations.



4

factor in both function fields into polynomials of degree smaller than the degree of q, we iterate the
descent down to degree one, where all logarithms are known. This descent alternates between special-q
on the linear and the high degree function fields. Once the descent reaches degree one, we backtrack and
compute the logarithms of each special-q and finally the logarithms of yi · tj and y. If the special-q values
occurring at the first level are small enough, then the total degree of the objects to be factored in the
next levels are strictly smaller and the bottleneck of this step is the search for a good representation of
yi · tj . In fact, this can be ensured by choosing µ such that µ

√
n · (d2 + 1) + d1 < n. We show that in the

complexity analysis of section 3 and prove that choosing a value of µ between 1/2 and 1 ensures a good
behavior of the individual logarithm phase.

2.2 Extension to smaller base fields

From a practical point of view, the above case is probably the most interesting. However, it is nice to
know whether the approach can be extended to different choices of q and n. We now briefly describe
a family of algorithm which neatly cover all the cases where q is smaller than above. Each algorithm
depends on a main parameter D, which bounds the degree of norms of elements in the smoothness bases.
The previous algorithm corresponds to D = 1. The general case of D is very similar to the restricted case
D = 1. We construct the function fields in the same manner as above, only changing the choices of d1

and d2. More precisely, we take d1 ≈
√

Dn and d2 ≈
√

n/D. We sieve over a(t)X − b(t), where a(t) and
b(t) are also degree D polynomials and a(t) is unitary. The total size of the sieving space is q2D+1. On
the linear side, we need to factor a polynomial of degree at most d1 + D over the smoothness basis. On
the other side, we need to factor a polynomial of degree at most d2D + 1. Dismissing constants and low
order terms, both degrees are near

√
nD. In this context, we need to know the asymptotic smoothness

probability of a degree n polynomial into factors of degree at most m. This problem has been widely
studied and very precise estimates are given in [24]. However, results are usually given for fixed q, when
both n and m grow. Here, m is fixed and both q and n grow. Yet, the logarithm of the probability of
smoothness is still equivalent to n/m log(m/n). Moreover, in order to prove our complexity result, a
lower bound on the probability is sufficient. For the sake of completeness, we prove this lower bound in
appendix A. For simplicity of exposition, in the rest of this section, we work with equivalent expressions,
however, the argument can easily be rewritten to accommodate a lower bound only.

From these estimates, we deduce that the logarithm of the probability of smoothness on each side is
approximately −

√
n/D log

√
n/D. Adding the two, we obtain a total logarithm of heuristic probability

of −
√

n/D log(n/D). Moreover, the total size of the two smoothness bases is about 2qD. As with the
case D = 1, we should make sure that we obtain enough equations, this approximately requires:

(D + 1) log(q) ≥
√

n/D log(n/D).

With this algorithm, the individual logarithms phase remains almost identical. The only needed change
is to use polynomials of degree µ

√
Dn to represent the element under consideration. We analyze the

heuristic complexity of this extension in section 3 and show that, as in the case D = 1, the right choice
is to take µ between 1/2 and 1.

2.3 Practical improvements

Large primes variation In the asymptotic analysis below (section 3), we observe that when q decreases
below some point, we need to increase the parameter D to successfully compute discrete logarithms.
However, this change of algorithm greatly increases the overall complexity. This happens when the
sieving space is not large enough to get enough equations. However, right at the boundary, the number
of missing equations is quite small. In that case, it is a good idea to use a large prime variation by
allowing a small number of higher degree polynomials in each decomposition when splitting polynomials
over the smoothness bases. This does not improve the asymptotic complexity, however, in practice, it
can make the difference between a feasible and an infeasible computation. We do not further discuss this
idea, which is classical in implementations of number field and function field sieves.



5

Use of Galois action In some specific cases, it is possible to use additional structure of the field Fqn to
improve the practicality of our algorithm. The basic idea is to use the Galois group in order to reduce the
size of the smoothness bases. Assume that there exists an element φ of the Galois group which acts on
both smoothness bases by sending any element to a conjugate also belonging to the smoothness basis. If
we further express φ as a Frobenius power, we can reduce the number of unknowns in the linear algebra
by a factor which is equal to the order of the action of φ on Fqn . We can also speed up the sieving process
by the same factor, since less equations are needed. However, we should take care and avoid sieving on
values for a(t)X − b(t) yielding conjugate equations.

To make this idea more precise, let us discuss the specific case of F2nk , where q = 2k and n and k are
coprime. In that case, we can view F2nk as a tower of extensions or alternatively as a compositum. With
the latter representation, we independently define F2n and F2k and put the two representations together
to get Fqn . This means that f1 and f2 can both have their coefficients in F2. In that case, we take for
φ the n-th Frobenius power, i.e., the mapping which sends x to x2n

in Fqn . Clearly, if t is a root of the
irreducible polynomial F (t) defined by f1 and f2, it is an element of F2n and thus fixed by φ. However,
the action of φ on a(t) and b(t) is not trivial. Indeed, assume that we work with parameter D = 1, then
b(t) = ut + v with u and v in F2k . Unless u and v are both in F2 the image of b(t) by φ is a different
polynomial. Repeating the application of φ, we find yet another polynomial, and so on . . . Since k and
n are coprime, the order of the action of φ on F2k is k. As a consequence, the sieving process can be
sped up by a factor7 of k. Moreover, choose t + u an element of the smoothness basis on the linear side.
Clearly, (t + u)2

n

= t + φ(u) is another element of the same smoothness basis and the logarithms of the
two elements say lu and lφ(u) are related by lφ(u) = 2nlu. This implies that the number of unknowns on
the linear side can be divided by k. A similar argument also applies on the other side. As a consequence,
we gain a speed-up by k on the sieving process and a speed-up by k2 on the linear algebra.

Clearly, the same construction works for any small characteristic. Use of Galois action to speed-up
the computation is also possible in other cases. In particular, for all fields of the form Fq2 , it is possible
to gain a constant speed-up of two. In some cases, it is also possible to have a larger speed-up. However,
the details are much more technical and in particular may require to construct f1 and f2 in a different
manner than the construction given at the beginning of the present section. We only illustrate this by
giving an example in section 4.

3 Asymptotic heuristic complexity

In this section, given the respective values of q and n, we give the asymptotic complexity of our algorithm
both for D = 1, for other fixed values of D and, finally, in the general case. It is convenient to let Q
denote qn and to assume, when the parameter D is fixed, that there exists a parameter α such that:

n =
1
α
·
(

log Q

log log Q

)2/3

, q = exp
(

α · 3
√

log Q · log2 log Q

)
.

Using this notation, we can analyze the complexity of each algorithm in the family, determined by the
parameter D. Since there are two main phases, sieving and linear algebra, the total complexity expressed
by L(1/3, c) is determined by the maximum of the complexities of each phase. Let L(1/3, c1) be the
complexity of the sieving and L(1/3, c2) be the complexity of linear algebra. Then, recalling from the
analysis of section 2 that the smoothness basis has O(qD) elements and that the logarithm of the heuristic
probability of finding a relation is −

√
n/D log(n/D), we find:

c1 =
2

3
√

αD
+ αD and c2 = 2αD.

Moreover, we need to check that we obtain enough equations. We recall that this approximately requires:

(D + 1) log(q) ≥
√

n/D log(n/D) or (D + 1)α ≥ 2
3
√

αD
.

7 Disregarding the rare cases where both a(t) and b(t) have all their coefficients in F2



6

Whenever this condition is satisfied, we say that the algorithm with parameter D is applicable.
Putting all these conditions together, we find that for each value of α we should use the lowest possible
parameter D yielding an applicable algorithm. Moreover, in the range of applicability the complexity of
each algorithm decreases with α. The optimal case for each algorithm happens when:

(D + 1)α =
2

3
√

αD
.

Just below this threshold, we need to use the next algorithm in the family and the complexity jumps
up to L(1/3, c2(D + 1)) = L(1/3, 2α(D + 1)). Thus at each threshold, a discontinuity occurs in the
complexity . The largest such gap is between D = 1 and D = 2, at α = 3−2/3. On both sides of the gap,
the respective complexities are L(1/3, 3

√
3) for D = 1 and L(1/3, 3

√
64/9) for D = 2. All the other gaps

are smaller and the gap size decreases with D and tends to 0 as D grows. Moreover, the complexity tends
to L(1/3, 3

√
32/9). Thus, up to a single exception, the complexity of our family of algorithms is at worst

the complexity of the number field sieve, is at best even better than the complexity of the function field
sieve with fixed prime and tends to this latter complexity when D grows. The exception happens when α
becomes too large even for D = 1, more precisely when α > 3

√
8/9. Indeed, in that case, the complexity

L(1/3, 2α) is larger than the complexity of the number field sieve. We summarize this complexity analysis
in figure 1. The three horizontal lines on this graph represents the constants 3

√
3, 3

√
32/9 and 3

√
64/9.

1.4

1.5

1.6

1.7

1.8

1.9

2

0 0.2 0.4 0.6 0.8 1

c

α

Fig. 1. Complexity LQ(1/3, c) as a function of q = LQ(1/3, α)

General values of q. Another interesting question is to study the complexity of the algorithm when q
grows more slowly than LQ(1/3, ε) for all ε. In that case, we no longer use a fixed parameter D, but we
let it grow slowly with Q. More precisely, we choose for D the nearest integer to the solution d of the
following equation:

qd = LQ(1/3, 3
√

4/9).

This choice yields complexity L(1/3, 3
√

32/9) in all the considered cases. Note that this includes the usual
function field sieve, for fixed q, as a special case. We also remark, that as announced in introduction the
L(1/3) boundary on q corresponds to the range where log q remains smaller than O(

√
n log n).



7

Individual logarithms. Concerning individual logarithms, we should choose a constant µ, both small
enough to guarantee that the degrees of polynomials occurring during the descent are strictly decreasing
and large enough to ensure that the initial good representation is found efficiently. Let m = µ

√
Dn be

the maximal degree of the polynomials appearing in a good representation. Once again, we need to use
the fact that the logarithm of the probability of smoothness is still equivalent to n/m log(m/n), even
when m, n and q all grow. Moreover, as before, the argument could be rewritten using only the lower
bound given in A.

Replacing n by its expression in term of Q we find that the probability is equivalent to

1/LQ

(
1/3,

1
3µ
√

αD

)
.

We would like to ensure that the constant in this expression is smaller than the constant in the complexity
of the main phase of the algorithm. This implies:

1
3µ
√

αD
< max(c1, c2), with c1 =

2
3
√

αD
+ αD and c2 = 2αD.

It clearly suffices to have: 1
3µ

√
αD

< 2
3
√

αD
, where the right hand side is the first summand in c1. This is

true whenever µ > 1/2.
Moreover, we need to make sure the special-q descent involves polynomials of decreasing degree. Since

the degrees of a(t) and b(t) during the descent are at most the degree of the special-q itself, substituting
in f1 and f2, we require: (d2µ

√
Dn + 1) + (d1 + µ

√
Dn) < n. Replacing d1 and d2 by their values and

disregarding low order terms, we get: µn < n. This can be ensured by choosing µ < 1. As a consequence,
we can choose any value of µ in the range ]1/2; 1[.

Finally, we need to check that at each step of the special-q descent, there are sufficiently many pairs
(a(t), b(t)) to obtain at least one relation. Potentially, we might expect to encounter problems for a
special-q of degree two, when trying to relate it to polynomials of degree one. In that case, the natural
choice would be to select linear polynomials for a(t) and b(t). Since a(t) has the restricted form wt + 1,
there are only q3/q2 = q possible pairs involving the special-q value. As a consequence, with such a choice
for a(t) and b(t), we cannot guarantee that a relation can be found for this special-q value. Thus, we
need to use polynomials of degree two for a(t) and b(t). Of course, this lowers the smoothness probability
which becomes:

1
((d1 + 2)! · (2d2 + 1)!)

instead of 1/((d1+1)! ·(d2+1)!) in the main phase. However, since a single relation is needed, we keep the
good asymptotic complexity. Indeed, in the least favorable case with respect to this issue, which happens
to be the extreme case of the basic (D = 1) algorithm, the main phase probability is almost equal to 1/q2

and the main sieving costs q3. Using the same parameters, the smoothness probability of the individual
logarithm phase is asymptocally equivalent to 1/q3. Thus, in this worst case, the individual logarithm
phase has the same asymptotic cost as the main phase. In all other cases, the main phase dominates the
complexity.

4 Numerical examples

4.1 Basic example

Our first example is the computation of discrete logarithms over F6553725 . The cardinality Q of this field
is a number of about 400 bits or 120 decimal digits. It can be factored as:

Q = 65536 · 3571 · 37693451 · 137055701 · 10853705894563968937051 · P247

Since the largest prime factor has 247 bits, Pollard’s rho [25] is not practical for this example. As far as
we know, this sets a new record for the computation over medium characteristic fields.



8

We first choose our function fields, fixing the two definition polynomials f1 and f2 as follows:

f1(X, t) = X − t5 − t− 3, f2(X, t) = X5 + X + 1 + t.

Taking the resultant of f1 and f2, thus eliminating X, we find an irreducible polynomial F (t) over
F65537. We let α denote a root of F (t) in the extension field. We also let β denote α5 + α + 3.

Once this is done, we start the sieving process, using the reduced sieving space X − (a t + b), with
a and b in F65537. When we find a good pair (a, b) we obtain an equality between smooth objects.
Indeed, the two function fields we are using are principal, thus whenever both norms are smooth, we can
write an explicit identity between generators. For example, replacing X by −2 t + 20496 in f1 and f2

yields smooth polynomials. Writing down explicit generators for the corresponding ideals, this yields the
following equality:

(α + 2445) · (α + 9593) · (α + 31166) · (α + 39260) · (α + 48610) =
λ(β + 43449) · (β + 18727) · (β + 17129) · (β + 1946) · (β + 49823),

where λ = −2 is an element of F65537.
The sieving process itself is extremely fast, we give in appendix B the source C code of the program

we used. This program finds all good (a, b) pairs in two minutes on a Pentium laptop at 1.6 GHz. Once
the sieving is complete, each good pair yields a linear equation between 5 logarithms of elements α + u
and 5 logarithms of β + v. We converted the output of the C program into linear equations using a short
interpreted PARI/GP script. This conversion took an additional two minutes. It was as long as the sieve
itself, however, it did not seem necessary to write a faster program for this task.

Solving the linear algebra system was the bottleneck of the algorithm. After some structured gaussian
elimination, we had to solve a sparse system of 79 466 equations in 78 465 unknowns and 3.8 million
entries. This was done using the Lanczos algorithm. In order to avoid divisions by non-invertible elements,
we worked modulo q0 = Q/(65536 ·3571). This took a little more than two days on the same laptop. The
resulting solution gave logarithms, up to an additive constant. As explained in section 2, we determined
the constant using the following systematic equation:

β · (β + 16) · (β − 16) · (β + 4096) · (β − 4096) = −(α + 1).

After removing this additive constant and renormalizing the result, we had all the logarithms of elements
α + u and β + v modulo q0. For example,

l = 9580541088009323484229889821453339382943430459454536234824
840375483524017353229706334323184929723853320944439485,

m = 4649571275692520918560124050338108397005057301288170051718
556686238431642289730613529631676496393555258546887691

are the respective logarithms modulo q0 of α + 1 and β in base α. This can be checked by testing that
(α + 1)3571·l/α3571 belongs to F65537, and similarly for β3571·m/α3571.

The final step was to choose a random looking element of F6553725 and to compute its complete
logarithm. Since, α itself does not generate the full multiplicative group, we decided to express the
logarithm in basis 3α, which is a generator. We took as challenge the element:

λ =
24∑

i=0

(bπ · 65537i+1c mod 65537)αi = 41667α24 + · · ·+ 9279.

After finding a good representation of λ using polynomials of degree at most 3 and completing the
special-q descent, we added the contribution of the logarithm modulo the powers of 2 and modulo 3571.
Finally, we concluded that the logarithm of λ in basis 3α is:

4053736945052440744587988507271545773377910517074639935754736
348185260902857777282008537164926838353644893694741284146999.



9

4.2 Galois action example

We consider here a discrete logarithm challenge that is defined in Fp30 where p = 370801: such a finite
field has got a 556-bit cardinality and it contains a 114-bit multiplicative subgroup. A smaller extension
Fp18 has been recently performed by Vercauteren and Lercier [22] at the expense of one week over a
network of 10 AMD’s Athlon(TM) XP 2000+ for the sieving step and 12 hours for the linear algebra
step, using the algorithm of [12]. To solve our T30(Fp) challenge, we first experimented with the algorithm
defined in section 2. It turns out that, with f1(X, t) = X − (t6 + t + 30) and f2(X, t) = X5 + X + 1 + t,
a three hours computation for the sieving step and a two days computation for the linear step8 would
have been necessary on a 1.15 GHz 16-processors HP AlphaServer GS1280.

Thus, it was preferable to make use of the Galois action idea and define

f1(X, t) = X − t5 and f2(X, t) = X6 + X − 17− t5.

This yields a definition polynomial for Fp30 equal to F (t) = t30 − 17, the Galois group of which is
generated by φ : t 7→ tp = 172960 × t. With such a choice, f1 and f2 have a common root X = t5,
which is fixed by φ6 and thus lies in the subfield Fp6 . As a result, the conjugates by φ6 of places (in both
algebraic function fields) in the smoothness basis reduced modulo p are still elements of the smoothness
basis. Since discrete logarithms of conjugates differ from each other by a power of p6, we clearly divide
by five the size of the smoothness basis: only 74161 places in the linear side9 and only 74114 places in
the other side.

With a sieving program similar to the one given in appendix B, we found 329082 useful divisors of
functions X − (at + b) with a and b in Fp, in 45 minutes. The supports of these divisors contain only
degree one places and we restricted the values of a to avoid conjugate equations. Since, the reduction
modulo p of these degree one places is equal to a suitable power of p6 of one element of the smoothness
basis, we clearly have enough equations.

We skipped the structured Gaussian elimination step, since at this time our code is not able to handle
matrices with so many large coefficients. Of course, we had to modify our implementation of the Lanczos
algorithm to handle this case. Finally, we were able to solve this sparse system of 150270 equations in
148270 variables (with 11 entries by row equal to powers p6i, i = 0, . . . 4) at the cost of a 10 hours
computation on 8 processors of a 1.15 GHz HP AlphaServer GS1280. We worked modulo

q0 = 129717983265199170691× 3780896193379818021601×
27084969683231313608318791573698901.

Let us note that the kernel of this matrix has got only one vector (its coefficients are not all equal
to one and thus, we do not have any “parasitic” solution). After this step, using the Galois action of φ6,
we have the logarithms, modulo q0, of elements t + u ∈ Fp30 for any u ∈ Fp.

In the final step, we took as challenge the element

λ =
29∑

i=0

(bπ × pi+1c mod p)ti = 162147t29 + · · ·+ 52502.

We first write this element as a product of elements of degree at most four and using a special-q descent,
we finally found that the logarithm of λ in basis t− 6 is:

83493475831866903958473832166988064644596198972030791927
23664325744787878765540875000760439341325398846364432518
4051550980392237533812685076653542562214928407573371226.

8 This matrix is twice as big as the one used by Vercauteren and Lercier in Fp18 . It is also twice as heavy.
9 In truth, only 12361 places in the linear side are really necessary because conjugates by φ itself are again

elements of the smoothness basis. Due to the additional coding work that would have been required, we did
not take advantage of this speed-up in our experiment.



10

5 Security implications

In this section, we discuss the applicability of our variation of the function field sieve to cryptosystems
that make use of extension fields. First of all, we remark that for some systems, our approach is slower
than generic algorithms and does not improve upon known attacks. Let us start by giving examples of such
cryptosystems which are immune to our attack. The relevant property is that the systems make use of
extensions of quite small degree over prime fields. Typically, the security of systems which use extension
degree 6 over prime fields are not affected by this algorithm. In particular, this includes LUC [19],
XTR [8, 21], CEILIDH [27], some pairing-based schemes as the complex multiplication variation of the
short signature scheme of [6, 7] and also torus-based cryptography in T6. When the extension degree is
larger than that, it is important to reassess the security on a case by case basis. In the rest of this section,
we do so for torus-based cryptography in T30, the short signature scheme of [6, 7] in characteristic three
and some of the supersingular abelian varieties proposed in [26].

For the case T30, the base field is quite large and the bottleneck of the algorithm is the linear algebra
whose complexity is (d1 + d2)p2 additions modulo some factor of p30 − 1. In typical instantiation the
relevant factor is a prime q0 between 160 and 256 bits, according to the expected security level. We
should compare our algorithm to a generic algorithm such as Pollard’s rho [25], whose complexity is √q0

operations in the finite field. Since additions modulo q0 are less expensive than operations in the finite
field and since d1 + d2 is small, it seems fair to proceed by comparing p2 with √q0. We conclude that for
80-bit security, it is necessary to choose for p a prime of 40 bits or more. For 32-bit primes and 160-bit
subgroup, as proposed in [29], the expected security level is not reached and the effective security level
is around 264. On the other hand, the security of the 64-bit primes examples with 200-bit subgroups
proposed in the same paper is unaffected.

The short signature scheme of [6, 7] can be instantiated in two different ways. Either by using complex
multiplication technique to build elliptic curves over Fp with a pairing that outputs numbers in Fp6 . Or
by using special supersingular curves over F3` with a pairing having values in F36` . Note that since the
journal version [7], the characteristic three instantiation is no longer recommended. As said above, our
algorithm does not change the security of the first case. In the second case, we can restate the problem as
discrete logarithm in Fq` , where q = 36 = 729. From a practical point of view, this opens the possibility
to use our algorithm with a parameter D equal to 2 or 3. With luck, and depending on the exact value
of `, we may fall in a zone where our algorithm is more efficient than the regular function field sieve
in characteristic 3. Let us consider some of the usual possibilities. The easiest case is ` = 121, since
the extension field can even be viewed as a degree 33 extension of F322 , which can be adressed with
parameter D = 1, yielding a complexity near 270, which might be improved using Galois action. The
expected Pollard rho complexity is 278. Similarly for ` = 97 using D = 2, we find a complexity around
271 instead of the expected 276 and for ` = 149, using D = 3 we find a complexity around 2105 instead
of 2110.

In fact, when looking at fields of characteristic three, our attack applies even better with the proposal
of [26] which is to work with supersingular abelian varieties. Indeed, in the most extreme case, this
proposal relies on the security of discrete logarithms in 330`, which due to large choice of possible subfields
is extremely likely to fall in a good case of our algorithm. In the same paper, the use of fields of the form
212` is also considered. Our algorithm can again be used here, especially when ` is composite (the cases
` = 121 and ` = 87 for example).

6 Conclusion

In this paper, we have presented a new variation of the function field sieve algorithm, which unexpectedly
applies to finite field of the form Fqn when both q and n are of medium sized. This allows us to compute
discrete logarithms in Fqn faster than for discrete logarithms problems in field of a comparable size of
the form Fp (with p prime) or even F2n (with n prime). This shows that despite former belief, discrete
logarithms in some fields Fqn are easier than in Fp or F2n . As a consequence, we show that the security of
some recent cryptosystems needs to be reassessed to account for this fact. We leave as an open question
the problem of finding an efficient L(1/3) algorithm for solving discrete logarithms in Fqn when q is larger



11

than Lqn(1/3). Up to q of the form L(1/2), our algorithm with parameter D = 1 is the fastest known
technique and has complexity q2, beyond that one should turn to the number field based algorithm
described in [1, 2] with complexity L(1/2).

Last minute news. A recent preprint [16] describes a generalization of the number field sieve that is
applicable to finite finite fields of size Q = qn, whenever q grows faster than LQ(1/3). Put together with
the present paper, this gives asymptotic complexity LQ(1/3) for discrete logarithms in all finite fields.

References

[1] L. Adleman and J. DeMarrais. A subexponential algorithm for discrete logarithms over all finite fields. In
D. Stinson, editor, Proceedings of CRYPTO’93, volume 773 of Lecture Notes in Comput. Sci., pages 147–158.
Springer, 1993.

[2] L. Adleman and J. DeMarrais. A subexponential algorithm for discrete logarithms over all finite fields.
Math. Comp., 61(203):1–15, 2003.

[3] L. M. Adleman. The function field sieve. In Algorithmic Number Theory, Proceedings of the ANTS-I
conference, volume 877 of Lecture Notes in Comput. Sci., pages 108–121, 1994.

[4] L. M. Adleman and M. A. Huang. Function field sieve method for discrete logarithms over finite fields. In
Information and Computation, volume 151, pages 5–16. Academic Press, 1999.

[5] D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. In Crypto ’2001, volume 2139
of Lecture Notes in Computer Science, pages 213–229, 2001.

[6] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd, editor, Proceedings
of ASIACRYPT’2001, volume 2248 of Lecture Notes in Comput. Sci., pages 514–532. Springer, 2001.

[7] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J. of Cryptology, 17(4):297–319,
2004.

[8] A.E. Brouwer, R. Pellikaan, and E.R. Verheul. Doing More with Fewer Bits. In Advances in Cryptology —
ASIACRYPT ’99, volume 1716 of Lecture Notes in Computer Science, pages 321–332. Springer, 1999.

[9] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE transactions on infor-
mation theory, IT-30(4):587–594, July 1984.

[10] D. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM J. Discrete Math, 6:124–138,
1993.

[11] R. Granger, A. Holt, D. Page, N. Smart, and F. Vercauteren. Function field sieve in characteristic three.
In D. Buell, editor, Algorithmic Number Theory, Proceedings of the ANTS-VI conference, volume 3076 of
Lecture Notes in Comput. Sci., pages 223–234. Springer, 2004.

[12] R. Granger and F. Vercauteren. On the discrete logarithm problem on algebraic tori. In V. Shoup, editor,
Proceedings of CRYPTO’2005, volume 3621 of Lecture Notes in Comput. Sci., pages 66–85. Springer, 2005.

[13] A. Joux. A one round protocol for tripartite diffie-hellman. In Fourth Algorithmic Number Theory Sympo-
sium, volume 1838 of Lecture Notes in Computer Science, pages 385–394, 2000.

[14] A. Joux and R. Lercier. The function field sieve is quite special. In C. Fieker and D. Kohel, editors, Algo-
rithmic Number Theory, Proceedings of the ANTS-V conference, volume 2369 of Lecture Notes in Comput.
Sci., pages 431–445. Springer, 2002.

[15] A. Joux and R. Lercier. Improvements to the general number field sieve for discrete logarithms in prime
fields. A comparison with the gaussian integer method. Math. Comp., 72:953–967, 2003.

[16] A. Joux, R. Lercier, N. Smart, and F. Vercauteren. The number field sieve in the medium prime case.
Preprint.

[17] B.A. LaMacchia and A.M. Odlyzko. Solving Large Sparse Linear Systems Over Finite Fields. In Advances
in Cryptology — CRYPTO ’90, volume 537 of Lecture Notes in Computer Science, pages 109–133. Springer-
Verlag, 1991.

[18] C. Lanczos. Solutions of systems of linear equations by minimized iterations. In J. Res. Nat., volume 49,
pages 33–53. Bureau of Standards, 1952.

[19] M.J.J. Lennon and P.J. Smith. LUC: A New Public Key System. In IFIP TC11 Ninth International
Conference on Information Security IFIP/Sec, pages 103–117, 1993.

[20] A. K. Lenstra and H. W. Lenstra, Jr., editors. The development of the number field sieve, volume 1554 of
Lecture Notes in Mathematics. Springer–Verlag, 1993.

[21] A.K. Lenstra and E.R. Verheul. The XTR Public Key System. In Advances in Cryptology — CRYPTO
2000, volume 1880 of Lecture Notes in Computer Science, pages 1–19. Springer, 2000.



12

[22] R. Lercier and F. Vercauteren. Discrete logarithms in Fp18 - 101 digits. NMBRTHRY mailing list, June
2005.

[23] A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic significance. In T. Beth, N. Cot,
and I. Ingemarsson, editors, Advances in Cryptology — EUROCRYPT ’84, volume 209 of Lecture Notes in
Computer Science, pages 224–314. Springer–Verlag, 1985.

[24] D. Panario, X. Gourdon, and P. Flajolet. An analytic approach to smooth polynomials over finite fields. In
J. Buhler, editor, Algorithmic Number Theory, Proceedings of the ANTS-III conference, volume 1423, pages
226–236. Springer, 1998.

[25] J. M. Pollard. Monte Carlo methods for index computation (mod p). Math. Comp., 32:918–924, 1978.
[26] K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology. In M. Yung, editor, Proceedings

of CRYPTO’2002, volume 2442 of Lecture Notes in Comput. Sci., pages 336–353. Springer, 2002.
[27] K. Rubin and A. Silverberg. Torus-Based Cryptography. In Advances in Cryptology — CRYPTO 2003,

volume 2442 of Lecture Notes in Computer Science, pages 349–365. Springer, 2003.
[28] O. Schirokauer. Discrete logarithms and local units. Phil. Trans. R. Soc. Lond. A 345, pages 409–423, 1993.
[29] M. van Dĳk, R. Granger, D. Page, K. Rubin, A. Silverberg, M. Stam, and D. Woodruff. Practical cryptog-

raphy in high dimensional tori. In R. Cramer, editor, Proceedings of EUROCRYPT’2005, volume 3494 of
Lecture Notes in Comput. Sci., pages 234–250. Springer, 2005.

[30] D.H. Wiedemann. Solving Sparse Linear Equations Over Finite Fields. IEEE Trans. Information Theory,
32:54–62, 1986.

A Lower bound on the smoothness probability

In this appendix, we prove the lower bound of the probability of smoothness of polynomials of degree
n over the basis of monic irreducible polynomials of degree at most m. As usual, it suffices to work
with unitary polynomials of degree n and we denote by Nq(n, m) the number of m-smooth unitary
polynomials. Before giving our lower bound on Nq(n, m), we recall that the number of monic irreducible
polynomials of degree t is:

Iq(t) =
1
t

∑
d|t

µ(t/d)qt ≥ 1
t

(
qt − dlog2 teqt/2

)
,

where µ denotes the Möbius function. We first show the expected lower bound when n is a multiple
of m, n = `m. In that case, the number of smooth polynomials is greater than the number of possible
products of ` distinct polynomials of degree m. This number is: 1

`!

∏`−1
i=0 Iq(m) − i. Replacing Iq by its

values, letting ` and q grow and dividing by qn to get a probability, we obtain a lower bound of: 1
`!(m+ε)`

for any value of ε > 0. Taking the logarithm we find `(log ` + m + ε) which is asymptotically equivalent
to ` log ` as expected.

In the general case, we write n = `m + r with r < m and proceed similarly with a product of one
irreducible of degree r and ` distinct irreducibles of degree m. The lower bounds immediately follows.



13

B Listing of sieving C code for 6553725

#include <stdio.h>
#include <stdlib.h>
#define PRIME 65537
int RootTab[2*PRIME]; int AlphaTab[2*PRIME]; char Count[PRIME];
AddSieveElement(int root, int alpha) { static int count=0;

RootTab[count]=root; AlphaTab[count]=alpha; count++;
}
InitLinearSide() { /* Polynomial X-(t^5+t+3) */

int alpha,root; long long tmp;
for (alpha=0;alpha<PRIME;alpha++) {

tmp=alpha; tmp*=tmp; tmp%=PRIME; tmp*=tmp; tmp%=PRIME;
tmp*=alpha; tmp%=PRIME; tmp+=alpha+3; tmp%=PRIME;
root=tmp; AddSieveElement(root,alpha);

}}
InitOtherSide() { /* Polynomial X^5+X+1+t */

int alpha,root; long long tmp;
for (root=0;root<PRIME;root++) {

tmp=root; tmp*=tmp; tmp%=PRIME; tmp*=tmp; tmp%=PRIME;
tmp*=root; tmp%=PRIME; tmp+=root+1; tmp%=PRIME;
alpha=tmp; if (alpha) alpha=PRIME-alpha;
AddSieveElement(root,alpha);

}}
FindMultiCollisions(int line) { int i,root;

for (i=0;i<PRIME;i++) Count[i]=0;
for (i=0;i<2*PRIME;i++) {root=RootTab[i]; Count[root]++;}
for (i=0;i<PRIME;i++)

if (Count[i]>=9) printf("b(t)=%d*t+%d;\n",-line,i);
}
UpdateTables() { int i,root;

for (i=0;i<2*PRIME;i++) { root=RootTab[i]+AlphaTab[i];
if (root>=PRIME) root-=PRIME;
RootTab[i]=root;

}}
main() { int line; InitLinearSide(); InitOtherSide();

for(line=0;line<PRIME;line++) {
FindMultiCollisions(line); UpdateTables();

}}


