
Improvements to the general number field sieve for discrete
logarithms in prime fields. Mathematics of Computation,
72(242):953–967, April 2003.

Improvements to the general number field sieve for discrete
logarithms in prime fields.

A comparison with the gaussian integer method ?

Antoine Joux1 and Reynald Lercier2

1 DCSSI, 18 rue du Dr. Zamenhoff, F-92131 Issy-les-Moulineaux, France
Antoine.Joux@m4x.org

2 CELAR, Route de Laillé, F-35998 Rennes Armées, France
lercier@celar.fr

Abstract. In this paper, we describe many improvements to the number field sieve. Our main
contribution consists of a new way to compute individual logarithms with the number field sieve
without solving a very large linear system for each logarithm. We show that, with these improve-
ments, the number field sieve outperforms the gaussian integer method in the hundred digit range.
We also illustrate our results by successfully computing discrete logarithms with GNFS in a large
prime field.

1 Introduction

Since their introduction, index calculus techniques have become the methods of choice for fac-
toring large integers and for computing discrete logarithms in finite fields. In the field of integer
factorization, the progress have been steady and in recent years the number field sieve (see [26])
has became the leading technique, surpassing its ancestor, the quadratic sieve (see [38]).

For the computation of discrete logarithm in prime fields, where the analog of the quadratic
sieve is the gaussian integer method (see [10, 24]), the situation is less clear. Indeed, the number
field sieve has already been well studied (see [19, 35, 36, 40]), and thanks to the major theoretical
breakthrough of O. Schirokauer, it seems promising. However a comparison of two methods on
a 85–digit number by D. Weber in 1998 [41] concluded that the gaussian integer method was
still leading the way. Several explanations were given for the failure of the number field sieve
method, sieving and linear algebra took longer and, worst of all, it was not possible to efficiently
compute individual logarithms. Our work in 1998 on the gaussian integer method, which allowed
us to compute discrete logarithms in a prime field defined by a 90–digit number (see [23] or
section 4.1)), seemed to corroborate this result.

In this paper, we show how to overcome all these difficulties, and demonstrate that in the
hundred digit range, the number field sieve becomes more efficient than the gaussian integer
method.

2 Number theoretical considerations

Even though the number field sieve is now a well known algorithm (for details, see [28, 29, 5, 3,
41, 19, 35, 4]), some freedom is still possible. Using the degrees of freedom that were available,
we found that some innovations that were especially suited to discrete logarithm computations.
In this section, we describe two theoretical improvements, concerning the choice of polynomials
? January 10, 2015

1

2

and the final computation of discrete logarithms through linear algebra that are essential to the
success of the computation described in section 4.2.

As a foreword, let us recall that in order to compute discrete logarithms in a prime field Fp
the first step is to factor p − 1. For any small factor ` of p − 1, the discrete logarithm modulo
` can be found using the Pollig–Hellman and Rho methods. Therefore, in the sequel, we will
assume that we are computing the discrete logarithm modulo a large factor q of p− 1.

2.1 Choice of the polynomials

As explained in [16], the number field sieve requires two polynomials fα and fβ with a common
root µ. For the algorithm to be efficient, these polynomials should have small coefficients. Several
techniques are known to choose them. For numbers having a special form, very good polynomials
can be constructed by playing with the special form (for example, see [42, 33, 28, 15]). For
general numbers, choosing good polynomials is a difficult and important step. For example, in
the recent factorization record [8] of a 140–digit number from the RSA challenge [37], special
care was given to the selection of polynomials.

The most commonly known method for building polynomials for the number field sieve is the
base m technique [5], where one simply chooses a number m and writes the modulus (n when
factoring, p when computing discrete logarithms) in base m as

∑
aim

i. Then X−m and
∑
aiX

i

clearly have a common root µ = m. In that case, we get a rational side (corresponding to the
degree 1 polynomial) and an algebraic side. Another approach was suggested by Montgomery for
factorization (see [16] for a detailed description). His idea was to use lattice reduction to build
two quadratic polynomials with a common root. For discrete logarithm, the gaussian integer
method [10] uses continued fractions (which can be seen as a special case of lattice reduction),
and gives one linear and one quadratic polynomial with a common root. When gaussian integer
method was compared with the number field sieve in [41], the polynomials use in the latter sieve
were constructed according to Montgomery’s technique.

We present here a new technique to build good polynomials in the discrete logarithm case.
This technique which does not seem to apply to factoring, produces two polynomials of degree d
and d+ 1. It is in fact a generalization of the gaussian integer method. We choose a polynomial
of degree d+1 with extremely small coefficients and try to find a root of this polynomial modulo
p. If no root exists, we discard the polynomial and pick another. Otherwise, we let µ denotes this
root, and we search a polynomial of degree d also having µ as a root. This can be done easily by
reducing the following lattice (the basis vectors are in columns and K is some arbitrarily large
constant):

K K(µ mod p) K(µ2 mod p) · · · K(µd mod p) Kp
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
0 0 0 · · · 1 0

.

Note that this lattice can be somewhat reduced by subtracting multiples of the first columns
from the other and by removing the first line and column. Once this is done, we can move the

3

last column in first position and we are left with:
p −µ −µ2 · · · −µd
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

0 0 0 · · · 1

 .

The lattice reduction can then be done using the LLL algorithm (see [27] or [21, 22] for a
tutorial). The first vector of the reduced lattice is of the form:

a0
a1
...
ad

 .

It gives us a second polynomial,
∑d
i=0 aiX

i, with coefficients of the order of p1/(d+1). When
d = 1, this is equivalent to the gaussian integer method. In our example, we choose d = 2 and
thus obtained two polynomials of degree 2 and 3 respectively. In particular, this means that
there is no rational side in our computation. In the sequel, some technicalities will arise due to
this lack (see sections 3.3 and 3.5).

Remark 1. In an information theoretic sense, this choice is optimal since we code p (a log p bits
number) with d + 1 numbers of size log p/(d + 1) plus a couple of extremely small numbers.
This can for example be compared with the base m method which requires d + 2 numbers of
size log p/(d+ 1), or with Mongomery’s method which requires 6 numbers of size log p/4.

2.2 Completing the equations and finding a logarithm

With the number field sieve, the relations collected while sieving cannot be used as simply as
with the gaussian integer method. When factoring, one needs to add what is called characters in
order to ensure the feasibility of the square root computation step [11]. In the discrete logarithm,
completing the equations is trickier, however, in [35], O. Schirokauer defined easily computed
“linear maps” which can efficiently replace characters.

As far as we know, the method applied until now [40, 41, 42] is as follows: after completing
the relations coming from the sieving phase on both sides with Schirokauers’ maps, we get a
linear system whose elements of the kernel modulo q correspond to q-th powers on both sides.
Then, one adds in the system an equation related to x, and another to y. At the end of the
linear algebra, one can find a relation of the form xex = yey mod p, thus giving logx(y) mod q.
Combining this with the results of the Pollig–Hellman and Rho methods, we find the complete
value of logx(y).

This algorithm has a major drawback outlined in [41]: whenever we want to recompute the
logarithm of a new number, we need to restart the linear algebra step from scratch. For this
reason, it is still believed that the gaussian integer method is much better suited to discrete
logarithm computation since it is possible to take advantage of a major precomputation in order
to compute individual logarithm in a relatively short time.

4

We claim here that such an efficient computation of individual logarithms is also possible
with the number field sieve, even if the number fields involved in the computation have struc-
tures much more complicated than the quadratic number fields involved in the gaussian integer
method.

This algorithm has classically two main phases. In a first phase, we precompute logarithms of
numerous specific elements of Fp (cf section 2.2). In a second phase, we use these precomputation
to compute the logarithm of any element of Fp (cf section 2.2).

Linear algebra In order to clarify the description, we now recall (maybe in a non classical
manner) some theoretical basic facts about the Number Field Sieve.

Sieving algorithms enable to find a set L of “small integers” couples (a, b) such that the
principal ideals generated by the algebraic integers (a+bα) and (a+bβ) are respectively smooth
in the ring of integers Oα et Oβ of two number fields Q(α) and Q(β). Of course, as explained at
the top of section 2.1, their definition polynomials fα(X) and fβ(X) have a common root µ in
Fp. In other words, we have at the end of the sieving process a number |Sα|+ |Sβ|+O(1) couples
(a, b) such that a+ bα (resp. a+ bβ) is completely factorized over a set Sα (resp. Sβ) of prime
ideals in Oα (resp. Oβ) whose norms are smaller than a bound fixed by advance. Moreover,
for the sake of simplicity, we assume that q does not divide the class numbers of Q(α) and
Q(β). This is not really a restriction since the contrary is extremely improbable. Moreover, this
condition can be tested very early during the polynomial selection process and thus it can be
easily avoided.

At first, from the set of 2|Sα|+ 2|Sβ|+O(1) equations (a+ bα) =
∏

p∈Sα p
ep , and (a+ bβ) =∏

p∈Sβ p
ep , we are able to express, thanks to a classical linear algebra step done modulo q on

the indexes ep, each prime ideal p as a function of the principal ideals (a + bα) and (a + bβ).
This gives,

∀p ∈ Sα, p = Iqp
∏

(a,b)∈L
(a+ bα)e

(p)
a,b and ∀p ∈ Sβ, p = Iqp

∏
(a,b)∈L

(a+ bβ)e
(p)
a,b (1)

where the notation Ip (or later the notation I) means uncomputed ideals of Oα or Oβ.
Then, there remain |Sβ|+O(1) and |Sα|+O(1) equations given by

Iqi =
∏

(a,b)∈L
(a+ bα)e

(i)
a,b and Iqj =

∏
(a,b)∈L

(a+ bβ)e
(j)
a,b , (2)

from which we are going to explain how it is possible to compute the discrete logarithm of
elements a+ bµ in Fp.

Classical ideas For the sake of comprehension, we start with the analysis of an easy case.
Let’s remark that this case is interesting for its own sake, since it happens in the right hand side
number field used in the gaussian integer method and in our 100–digit example (cf. section 4).

Let’s assume that the number field Q(β) has a class group of cardinality h equal to 1 and
that the structure of the unit group U of Q(β) is known (i.e a set of fundamental units can be
computed). Following [33], it appears that we have no need of Schirokauer’s ideas. Since h = 1,
any ideal is principal, that is to say that for any ideal I in Oβ there exists some algebraic integer
δI which generates I (i.e I = (δI)). Thus, the |Sα|+ O(1) right hand side equations of (2) can
be rewritten in terms of ideals as (δIi)q =

∏
(a,b)∈L(a + bβ)e

(i)
a,b . Then, one has the following

5

algebraic integers equality,

δqIi =
∏
u∈U

ue
(i)
u

∏
(a,b)∈L

(a+ bβ)e
(i)
a,b . (3)

Schirokauer’s ideas The number field Q(α) does not usually satisfy the previous conditions.
One can apply instead Schirokauer’s ideas. In our case, Schirokauer’s ideas consist in computing
a T = O(1) linear maps Λ defined from Q(α) to Z/qZ for any equations given by the left hand
side part of the expression (2).

Precisely, the |Sβ|+O(1) equations Iqj =
∏

(a,b)∈L(a+bα)e(j)a,b yield |Sβ|+T vectors (λ1, . . . , λT)
defined over Z/qZ. With a small linear arithmetic done modulo q, it is easy to compute some
suitable combinations of the last T equations with any of the first |Sβ| equations to obtain
|Sβ| equations such that their “map vectors” are equal to (0, . . . , 0). Then, Schirokauer’s results
state that, if Leopoldt’s conjecture is true, these equations also hold for algebraic integers, thus
leading to combined equations of the form:

∆q
k =

∏
(a,b)∈L

(a+ bβ)E
(k)
a,b . (4)

Linear inversion At this step, it is now licit to classically apply the maps φα (resp. φβ) defined
from Qα (resp. Qβ) to Fp by α −→ µ (resp. β −→ µ), to obtain from equations (3) and (4),
|Sα|+ |Sβ|+O(1) equations given by

0 =
∑
u∈U

e(i)
u logx φα(u) +

∑
(a,b)∈L

e
(i)
a,b logx(a+ bµ) mod q,

0 =
∑

(a,b)∈L
E

(k)
a,b logx(a+ bµ) mod q.

A classical (but huge) linear inversion enables finally to compute logx(a+ bµ) for any (a, b) ∈ L.

Finding a logarithm To compute discrete logarithm of any integer y, it is classical with
the gaussian integer method to search two sets N and D of “small” integers such that y =∏
`∈N `

e`/
∏
`∈D `

e` mod p. In our case, we slightly restricted the choice for N and D because we
only admit primes ` which completely splits in Qα or Qβ. We explain how we can find efficiently
such an equality in section 3.5.

Let’s assume without loss of generality that ` splits in Qα. One can substitute the ideals p
which divide (p) as an expression in (a+ bα) thanks to equation (1). This yields

(`) =
∏
p|(`)

Iqp
∏

(a,b)∈L
(a+ bα)ea,b .

As what was previously done, it is still possible to compute a map vector associated to this
equation from which one can combine O(1) equations written on the left hand side of (2) in
order to finally obtain ` =

∏
(a,b)∈L(a + bµ)ea,b . Finding logx ` from the precomputed values

logx(a+ bµ) for any (a, b) ∈ L is now obvious.

6

3 Algorithmic and Implementation choices

3.1 Choice and precomputation of the factor bases

In many recent papers on the number field sieve, the double large prime and even the quadruple
large prime (see [14, 41, 42, 8, 6, 7]) variations are used. Here we chose a contrary approach
and did not use large primes at all. Instead we preferred to use large factor bases. According to
previous articles, this leads to longer sieving times, however this choice has several advantages.
Firstly, with this variation, the bookkeeping required to count the number of usable relations
and predict the remaining runtime is much easier. Secondly, since all relations are full, the initial
linear system is less dense and structured gaussian elimination can be applied more efficiently.
The anonymous referee did remark that in certain cases using large primes leads to a smaller
linear system after these primes have been removed. However, for our choice of parameters, we
did not encounter this phenomenom. Thirdly, computing individual logarithms is easier when
the factor bases are large.

In truth, choosing the optimal sizes of the factor bases and the right number of large primes
is very difficult, and our choice is certainly not optimal. Many more experiments will be needed
for the discrete logarithm case before finding a rule giving the optimal choices.

For both polynomials fα and fβ we choose a smoothness bound, respectively Bα and Bβ.
Then for each prime under the smoothness bound Bα, we factor it into prime ideals in the ring
of integers of Q(α) where α is a complex root of fα. We keep the prime ideals of degree 1 and
discard the rest. Likewise we factor the primes under Bβ in Q(β) where β is a complex root of
fβ. Finally, we store the representation of each ideal as a reduced basis of the two-dimensional
lattice containing pairs (a, b) such that the prime ideal divides either (a + bα) (for ideals in
Q(α)) or (a+ bβ).

3.2 Sieving

Sieving is done here following a now traditional “sieving by vectors” with special–q technique[34].
Using special–q means that in order to get sufficiently many relations, we sieve many indepen-
dent sets of values for (a, b). Each set is defined by a prime ideal q called the special–q, and
contains pairs (a, b) such that q divides (a + bα) (assuming that q is on the fα side). If u and
v form a basis of the lattice corresponding to q, then (a, b) can be written as kuu + kvv. Then
we can with simple linear algebra send the lattice corresponding to any small prime ideal from
the (a, b) representation to the (ku, kv) representation. Sieving is then done in a big rectangle in
the (ku, kv) space by successively marking the points on each of the small prime lattices. In this
rectangle positions corresponding to a pair (ku, kv) with two even coordinates can be omited
(see [18]).

After selecting good (ku, kv) candidates, we can check efficiently that the corresponding
values (a+ bα) and (a+ bβ) are indeed smooth by combining trial division and a second sieving
step (see [18]). This produces an algebraic relation between our prime ideals.

3.3 Adding Schirokauer’s maps

As explained in section 2.2, we cannot directly use the relations found in section 3.2. The
reason for this is that the ring of integer of Q(α) may have uncomputable units or a class
number different from one. Assuming the truth of Leopoldt’s conjecture, the maps described
in [35] can remove these obstructions. For a degree d polynomial, d such maps are required. With

7

two polynomials of respective degree d and d + 1, 2d + 1 such maps are needed. However, the
polynomial of degree d+ 1 has extremely small coefficients and the resulting number field may
have a much simpler structure. In particular, in the example of section 4.2, we have fβ(X) =
X3 + 2 which leads to a number field Q(β) with a simple unit group generated by u = β+ 1. In
that case, it is preferable to work with integers in Q(β) generating the prime ideals and to split
a+ bβ into a product of such numbers time a power of u. This approach was first proposed by
Pollard in [33] (cf section 2.2).

In section 2.2 for theoretical clarity purposes, we first compute any prime ideal p defined in
Q(α) or in Q(β) as a function of principal ideals (a+ bα) or (a+ bβ) (cf. equations (1)) before
solving a huge system whose unknowns are logarithms of elements a + bµ in Fp. In practice,
one can bypass most of this stuff by defining “virtual” logarithms of prime ideals p denoted
logx p. Such quantities logx p can be seen as the logarithm of the algebraic integer part in the
right hand sides of equations (2). With this rough definition, it turns out that to solve the
linear systems defined in section 2.2, it is enough to solve the system composed of the following
|Sα|+ |Sβ|+O(1) equations,∑

p∈Sα
ep logx p +

∑
O(1) maps λ

λ logx Λ =
∑
p∈Sβ

ep logx p +
∑

units u
eu logx u. (5)

Remark : In equation (5), the coefficients ep and eu are very small since, most of the time, they
are equal to ±1. The coefficients λ are of size p. Fortunately, the number of maps is small.

3.4 Linear algebra

The linear algebra consists of two sub-steps3, the structured gaussian elimination and an it-
erative solver based on the Lanczos algorithm. The original linear system we need to solve is
very sparse and contains mostly small entries (many of which are 1 and −1), it also contains
a couple of columns of big numbers corresponding to Schirokauer maps. We first reduce it us-
ing the structured gaussian elimination and then use the Lanczos algorithm. Note that, when
factoring large integer, the linear algebra is done modulo 2 and block Lanczos algorithms are
so efficient [31], that gaussian elimination is no longer used (e.g see [8]). Moreover, since the
block Lanczos algorithm returns several vectors in the kernel of the linear system, it is even
possible to omit the smallest primes and the characters from the matrix to reduce its weight.
For example, after deleting about 50 rows, Block Lanczos yields almost 64 vectors on a 64–bit
machine. Then the missing primes and the characters are added back and can be taken care of
by gaussian elimination on a small matrix (see [7]).

However, for the computation of discrete logarithm, the linear algebra is done modulo q
and a reduction of the linear system is absolutely needed. Moreover, the additional columns
corresponding to Schirokauer’s maps contribute a lot to the running time of the Lanczos al-
gorithm. This is due to the simple fact that during the Lanczos algorithm we perform many
matrix/vectors multiplications modulo q. In these multiplications, columns of large numbers
require us to multiply large numbers modulo q, instead of simply adding large numbers or
multiplying a large number by a small one. These multiplications between large numbers add
themselves to other multiplications of large numbers already present in the Lanczos computa-
tion (in scalar products and scalar/vector multiplications) which where already non-negligible.
For this reason, when using the number field sieve, it is more important to decrease the size

3 In previous work there often was a preliminary step to remove large primes from the equations using cycles
(see [13]). However, since we do not use large primes, we can remove this step.

8

of the linear system than when working with the gaussian integer method, even if the system
becomes less sparse.

Thus, structured gaussian elimination, which first introduced by B. Lamacchia and A. Odlyzko
in 1991 [25] is very important. Its goal is to reduce a large and sparse linear system with many
more equations than unknown to a smaller and still quite sparse system. We won’t recall here
the original method of gaussian elimination, but we will now describe a new technique that leads
to an even better reduction in the case of very large systems. This new technique combined with
our choice of having no large prime (and thus a sparser initial system), accounts for the extreme
size reduction of our system during the gaussian elimination step.

Description of the gaussian elimination The basic idea of our method consists for every
potential pivoting number (any 1 or −1 entry in the linear system) in estimating the weight
change in the matrix if this pivoting is done. We then select the best possible way of pivoting
(according to this estimate) and apply it. Afterward, we greedily repeat the operation again
and again. If at some point our allocated memory is full, we remove some of the extra equations
starting with the heaviest ones. When there are only a few extra equations left, we terminate
the algorithm.

The difficult point in this algorithm is to estimate the weight changes and to quickly select
the best pivot. For any 1 or −1 entry in the system, we denote by l the weight of the line it
is in and c the weight of the column. Then the weight change when pivoting this entry can be
estimated as (l− 2)(c− 2)− 2. This estimate is computed under the assumption that when the
pivoting line is combined with another one, they have no common variable apart from the pivot.
Thus l − 1 variables are added to each line and of course 1 is removed. Moreover, the pivoting
line can be deleted once used, thus removing l entries. The total change is thus :

(c− 1)(l − 2)− l = (l − 2)(c− 2)− 2.

The assumption we made is very inaccurate at all, but it gives a sufficiently good estimate
for our purpose. We are now faced with the problem of efficiently finding the entry with the
smallest possible value of (l − 2)(c − 2). Of course, recomputing the estimate from scratch for
each entry after every pivoting operation is not an efficient solution. It would be better to
proceed incrementally. Luckily, during any pivoting, only a few variables and a few equations
are modified, and we can hope to devise a technique for recomputing only the few values in
need of an update.

Algorithmic details The algorithm we came up with works by operating on two copies of
the linear system. The first one is a sparse representation by line and the second a sparse
representation by column. Having these two representations, we can quickly get l and c for any
given entry in the matrix. We also keep for each unknown a pointer to the best occurrence of
the unknown, i.e. the number of the smallest equation containing this unknown (with a 1 or −1
coefficient), together with the corresponding value of (l − 2)(c − 2). A balanced binary tree is
then built to keep the unknowns sorted according to these values.

Thus, selecting the best candidate for pivoting is done by extracting the first element in the
binary tree, the pivoting itself and the bookkeeping needed to update the values is straightfor-
ward. However, when updating the value associated with a given unknown, we should carefully
remove it from the binary tree, update the value and put it back in the tree (usually in a different
position). To improve the efficiency of the implementation we don’t keep variables appearing

9

too often (say more than 1000 times), neither in the tree, nor in the column representation of
the matrix. This reduces both the time needed for the bookkeeping and the memory needed for
storing the matrix.

In order to be able to quickly remove the heaviest equations when the memory is almost
full, we built a second balanced binary tree to keep the equations sorted by weight.

Without this new structured gaussian elimination technique, we would not have been able to
solve the linear systems in the discrete logarithm computations presented in section 4. Moreover,
using careful heuristic it is possible to further improve this new gaussian elimination technique
(see [39]).

Remark 2. For ease of implementation, it might be feasible to replace the balanced trees by two
families of linked lists respectively indexed by the values of (l − 2)(c− 2) and by the weight of
the equations. However, we have not tested this alternative data structures.

3.5 Computing individual logarithms

We claimed in section 2.2 that it is possible with the number field sieve to compute individual
logarithms in a final step after the rest of the computation is performed. We now explain
precisely how this can be done. We proceed in two parts. In a first part, we describe our original
idea since this method was used for the computations given in section 4 (cf section 3.5). Then,
in a second part, we show how this can be slightly improved following valuable ideas due to an
anonymous referee (cf section 3.5).

A first attempt In this section, the main idea is to search for a representation of the number
whose logarithm is required, involving only small and medium primes whose logarithms are
known or can be found. Clearly the logarithm of a small prime is known if and and only if this
prime splits into a product of prime ideals of degree one in either of our number fields. About
half of the small primes split in our quadratic field, thus when taking in account the degree 3
polynomial, slightly more than half of the small primes can be used in our representation. A
classical technique to find a good representation of a number x (see [24]) was to write x ≡ A/B
(mod p) with A and B of size √p, to trial divide A and B by small primes and then to check
if the representation was good enough. In our case, this approach is completely impractical
because bad small primes will appear most of the time and the number of trials needed will be
much too large.

To avoid this pitfall, we propose a new, faster, technique to find good representations. The
main idea, is that since we are searching for a smooth representation (involving good primes
only), it seems natural to try a sieving algorithm. Thus, we use some kind of sieving to write
x (the number whose logarithm is wanted) as A/B where both A and B are smooth. Since not
all values of x admit a good representation, we also use the now classical trick (also in [24]) of
replacing x by z = six, where s is the largest small prime whose logarithms can be computed
from the factor bases, and where i is incremented whenever we need a new value for z. Since the
logarithm of s is known at this step, computing the logarithm of z clearly gives the logarithm
of x.

Before sieving, we start by reducing the following lattice:(
z p
1 0

)
.

10

After the lattice reduction, we have a new basis :(
A1 A2
B1 B2

)
,

where A1, B1, A2 and B2 are usually all of size √p. Sometimes A2 and B2 can be too large, this
occurs when A1 and B1 are extremely small. In that case, we simply change to the next value
of z (e.g. si+1x). It is easy to check that :

z ≡ A1
B1
≡ A2
B2

(mod p).

Thus for any integers k1 and k2, we have :

z ≡ k1A1 + k2A2
k1B1 + k2B2

(mod p).

Finding pairs (k1, k2) with both k1A1 + k2A2 and k1B1 + k2B2 smooth (using good primes
only) can now be done by sieving. In fact, we can use the same “sieving by vectors” method as
described in section 3.2, and sieve both on k1A1 +k2A2 and k1B1 +k2B2. We use the factor base
made of good primes and allow two large primes on each side. Moreover, the large primes must
also be good primes. For practical reasons, we limited ourselves to large primes which split on
the quadratic side. Then the large primes can be splited in prime ideals which can be treated
as special–q as described in section 3.2. This leads to a relation giving the “logarithm” of this
prime ideal. Collecting all these values we can then compute the logarithm of z and x.

Of course, the larger the factor base, the higher our probability of finding a good relation.
However, we do not known how to make a precise theoretical analysis of this individual logarithm
computation. In order to enhance the probability of success and speed up the computation, we
simply took a large factor base while sieving.

An improvement One drawback of the method described in section 3.5 is that we can only
use primes which split completely in an at least one factor base.

Since the way how primes split in a number field mainly depends on the Galois group of the
defining polynomial, a first attempt to improve things is to deliberately set fβ(X) such that its
Galois group is cyclic. Then, the only thing that we can expect about fα(X) is that its Galois
group is symmetric. So, for d = 1, any prime split; for d = 2, a prime splits with probability 1/3
in Qα and probability 1/2 in Qβ, the combined probability is 2/3; for d = 3, a prime splits with
probability 1/6 in Qα and probability 1/4 in Qβ, the combined probability is 3/8; . . . Clearly,
as d grows, the combined probability of splitting decreases.

Nevertheless, one can slightly improve this construction as follows, when d+ 1 is prime. Let
fβ(X) be a polynomial with small coefficients and with a root modulo p such that its Galois
group is of order d + 1 (i.e Qβ is a normal extension of Q). Looking for such a polynomial
fβ(X) shouldn’t be hard. For instance, fβ(X) = X3 + 2X2−5X+ 1 works. More generally, any
degree-3 polynomial with a discriminant equal to a square might be a candidate.

Given z as in section 3.5, one may try to find a quotient

z = a0 + a1µ+ · · ·+ adµ
d

b0 + b1µ+ · · ·+ bdµd
mod p,

where, using lattice basis reduction, a0, a1, . . ., ad and b0, b1, . . . , bd are integers of size
O(p1/(2d+2)). In this case, it is not difficult to show that the principal ideals (a0+a1β+· · ·+adβd)

11

and (b0 + b1β + · · · + bdβ
d) split into first-degree ideals in Qβ, possibly including ideals whose

norm divides the discriminant of fβ(X), except for rational integers dividing gcd(a0, a1, . . . , ad)
or gcd(b0, b1, . . . , bd).

The benefit to sieving over this rather than as described in section 3.5, is that all factors
dividing a norm, except those dividing gcd(a0, a1, . . . , ad) or gcd(b0, b1, . . . , bd), will be in the
factor base of Qβ.

4 Examples

We now describe two discrete logarithm computations, one with the number field sieve on a 100–
digit number, the other with the gaussian integer method on a 90–digit number. Extrapolating
this second computation to 100–digit, we show that for numbers of this size, the number field
sieve becomes the most efficient method known.

We chose our example primes by considering numbers of the form p = b10D−1πc+O, where
D is the number of digits we want and O is the smallest offset such that p and q = (p − 1)/2
are both primes. For D = 90 we have O = 156137 and for D = 100, O = 3932. When then let
y = b10D−1ec and try to compute the logarithms of y, y + 1, y + 2 and y + 3. The basis of the
logarithm is chosen among the small primes. We thus had:

p90 = b1089πc+ 156137, p100 = b1099πc+ 3932,
y90 = b1089ec, and y100 = b1099ec.

4.1 Logarithms in Fp90

In this case, we chose the two following polynomials with the gaussian integer method:

fβ(X) = X2 + 2 and
fα(X) = 248748997517243504330966956058992943413697827X

+436356663553236108573801834571320046705446681.

The smoothness bounds were Bα = 1299709 and Bβ = 350377, and one large prime was
permitted on each size. The large prime limit was B = 109. According to the presence of large
primes, the equations are divided in four classes, FF, FP, PF and PP, where F stands for Full
and P for Partial.

After a total CPU time of 4 months on one Pentium Pro 180MHz (we had a network of 4
such PCs running for one month) or roughly 60 MIPS·year, we had the following numbers of
equations :

FF FP PF PP Total
83519 235921 1377187 4966470 6663097

In order to solve this linear system produced by the sieving phase, we first removed all
useless equations, i.e. equations involving a variable not seen in another equation. This step
was applied repeatedly until each variable was seen at least twice. After that, 976062 equations
involving 674564 unknowns remained. Then, we did not try to combine partial equations into
full or to make any other preprocessing, but directly started the structured gaussian elimination

12

phase. In this case, it reduced the linear system to 61136 equations in 61036 unknowns with
5683954 non null entries (i.e. an average weight per equation of 93).

Finally, we solved the remaining system using Lanczos’ algorithm. It took three weeks on a
single 180MHz machine, and yielded the logarithms of our factor bases elements, for instance :

log2(3) = 19748300961167147793248409109777288916563744188
3405533161063698387711654453959032453019844,

log2(5) = 14911991564240187116623990082296104898497606799
3569475849547058535625211933991916749097892,

log2(7) = 20534713616438695604297290160284536202786764235
9069620025634227501709422532443486030114180.

The final step of the computation was to find the logarithm of our chosen integers. For
instance, for y we found that :

129970992y ≡ A

B
(mod p) where

A = 7 · 167 · 347 · 421 · 1049 · 3067 · 3079 · 3319 · 174077 ·
293263 · 38174761 · 82044163,

B = 52 · 17 · 1187 · 1877 · 2039 · 3019 · 110863 · 207589 ·
2903639 · 5397737 · 1064068253.

Most of the primes involved in A and B are in the rational factor base, thus their logarithms
are known. For the few factors outside of the factor base, we applied the lattice sieve using these
factors as special-q. After a few additions and subtractions we find :

log2(y) = 17671380721142169627320482340716202723020579
52449914157493844716677918658538374188101093.

For the remaining numbers we had:

log2(y + 1) = 3116041987058269748820788091978682382044912
0001421617617058468654271221802926927230033421,

log2(y + 2) = 3089883293350445253338277649145014072371680
34577534227927033783999866774252739278678837301,

log2(y + 3) = 6580688800278838010371298688366325318718350
5405451188935055113209887949364255134815297846.

4.2 Logarithms in Fp100

In this case, we chose the two following polynomials as in section 2.1:

fβ(X) = X3 + 2 and
fα(X) = 289054697525386277139299623663612X2 +

347505963979820999503620050239250X +
1325706851630023730078724403330583.

13

The smoothness bounds were Bβ = 2750161 and Bα = 8960467.
After a estimated CPU time of 8 months on one Pentium II 450MHz (we had a mixed

network of PCs) or roughly 300 MIPS·year, we had obtained 2900000 equations. Some trial
sieving showed that with the gaussian integer method, sieving would have take at least 12
months.

We added two Schirokauer’s maps on the fα side and completed the fβ side taking the unit
1 + β in account. After removing the useless equations, we had 2592659 equations in 816761
unknowns. The gaussian elimination resulted in a 172049 equations in 171061 unknowns with
21747682 non null entries (about 126 entries per line) in less than a day.

Finding a solution of this linear system with Lanczos took 20 days with a parallelized
implementation on a quadri-processor DEC alpha 500MHz. With this we had logarithms for
good small primes :

log67(2) = 15231699951693893676192894808039900459829546515301
17535489480512018192128533920122634532977309738960,

log67(5) = 19377553728171823105413539921382679272133888091020
12017702986213046313481150182975740143065448645802

log67(11) = 5992829699536965027860245797180613267248544297257
60682869489773252521889486038350714114278971866216.

Finding the logarithm of y was done by writing 896045348y ≡ −A/B (mod p) with :

A = 24 · 3361 · 27107 · 3182657 ·
4467119 · 11770463 · 32918983 · 6211385489629777

B = 613 · 11317 · 16427 · 257473 ·
1188587 · 95157851 · 124086068723 · 293844018211.

This allowed us to compute:

log67(y) = 12067222770482298529755135197701403621450790321155
79252791899015195684040750444570690623611190553071.

Similarly, we found:

log67(y + 1) = 13668896526425908269754660718655208207513197302740
77643314745334860483809586311739213019685404555432,

log67(y + 2) = 64208948866172239171801490564368810607474232613210
9138842932332557858509054461341184976767489934161,

log67(y + 3) = 21151393143412908847405305480189192355314404184028
59877706713640788528101895760590714258670606466323.

On average this final step took about a day on a single machine.

5 Conclusion

In this paper, we described improvements to the number field sieve for the discrete logarithm
problem. With these improvements, we computed discrete logarithms in a prime field defined

14

by a 100–digit number with no special form, and showed that GNFS now beats the gaussian
integer method for discrete logarithms. We believe that some of the improvements described
here could also be used for factoring integer or computing discrete logarithms in F2n [20].

References

[1] L.M. Adleman. Factoring numbers using singular integers. In Proceedings 23rd Annual ACM Symposium
on Theory of Computing (STOC), pages 64–71, 1991.

[2] D. Atkins, M. Graff, A. K. Lenstra, and P. C. Leyland. The magic words are squeamish ossifrage. In
Advances in Cryptology — ASIACRYPT’94, volume 917 of Lecture Notes in Computer Science, pages 265–
277. Springer-Verlag, 1995.

[3] D. J. Bernstein and A.K. Lenstra. A general number field sieve implementation. In [26], pages 103–126.
Springer–Verlag, 1993.

[4] J. Buchmann, J. Loho, and J. Zayer. An implementation of the general number field sieve. In Advances in
Cryptology — CRYPTO’93, volume 773 of Lecture Notes in Computer Science, pages 159–165, 1994.

[5] J.P. Buhler, Jr. H.W. Lenstra, and Carl Pomerance. Factoring integer with the number field sieve. In [26],
pages 50–94. Springer–Verlag, 1993.

[6] S. Cavallar. Strategies in filtering in the number field sieve. In W. Bosma, editor, Proceedings of the
ANTS-IV conference, volume 1838 of Lecture Notes in Computer Science, pages 209–231. Springer–Verlag,
2000.

[7] S. Cavallar, B. Dodson, A.K. Lenstra, W. Lioen, , P.L. Montgomery, B. Murphy, H. te Riele, K. Aardal,
J. Gilchrist, G. Guillerm, P. Leyland, J. Marchand, F. Morain, A. Muffet, C. Putman, C. Putman, and
P. Zimmerman. Factorization of a 512–bit RSA modulus. In B. Preneel, editor, Advances in Cryptology
— EUROCRYPT’2000, volume 1807 of Lecture Notes in Computer Science, pages 1–18. Springer–Verlag,
2000.

[8] Stefania Cavallar, Bruce Dodson, Arjen Lenstra, Paul Leyland, Walter Lioen, Peter Mon-
gomery, Brian Murphy, Herman te Riele, and Paul Zimmerman. Factorization of RSA–140.
http://listserv.nodak.edu/archives/nmbrthry.html — February, 1999.

[9] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE transactions on infor-
mation theory, IT-30(4):587–594, July 1984.

[10] D. Coppersmith, A. Odlyzko, and R. Schroppel. Discrete logarithms in Fp. Algorithmica, 1:1–15, 1986.
[11] J.-M. Couveignes. Computing a square root for the number field sieve. In [26], pages 95–102. Springer–

Verlag, 1993.
[12] J. Cowie, B. Dodson, R. M. Elkenbracht-Huizing, A. K. Lenstra, P. L. Montgomery, and J. Zayer. A world

wide number field sieve factoring record: On to 512 bits. In K. Kim and T. Matsumoto, editors, Advances
in Cryptology — ASIACRYPT’96, volume 1163 of Lecture Notes in Computer Science, pages 382–394.
Springer–Verlag, 1996.

[13] Th. Denny and V. Müller. On the reduction of composed relations from the number field sieve. In H. Cohen,
editor, Proceedings of the ANTS-II conference, volume 1122 of Lecture Notes in Computer Science, pages
75–90. Springer-Verlag, 1996.

[14] B. Dodson and A. K. Lenstra. NFS with four large primes: an explosive experiment. In Advances in
Cryptology — CRYPTO’95, volume 963 of Lecture Notes in Computer Science, pages 372–385. Springer-
Verlag, 1995.

[15] R. M. Elkenbracht-Huizing, P. Montgomery, R. Silverman, R. K. Wackerbarth, and Jr. S. S. Wagstaff. The
number field sieve on many computers. In Fifth Conference of the Canadian Number Theory Association,
number 19 in CRM Proc. Lecture Notes, Providence RI, 1999. Amer. Math. Soc.

[16] R.M. Elkenbracht-Huizing. An implementation of the number field sieve. Technical Report NM-R9511,
CWI, 1995.

[17] R.M. Elkenbracht-Huizing. A multiple polynomial general number field sieve. In H. Cohen, editor, Pro-
ceedings of the ANTS-II conference, volume 1122 of Lecture Notes in Computer Science. Springer-Verlag,
1996.

[18] R. Golliver, A. K. Lenstra, and K. McCurley. Lattice sieving and trial division. In Proceedings of the
ANTS-I conference, volume 877 of Lecture Notes in Computer Science, pages 18–27. Springer-Verlag, 1994.

[19] D. Gordon. Discrete logarithms in Fp using the number field sieve. SIAM J. Discrete Math, 6:124–138,
1993.

[20] D. Gordon and K. McCurley. Massively parallel computation of discrete logarithms. In Advances in
Cryptology — CRYPTO’92, volume 740 of Lecture Notes in Computer Science, pages 312–323. Springer-
Verlag, 1993.

15

[21] A. Joux. La Réduction de Réseaux en Cryptographie. PhD thesis, Ecole Polytechnique, Palaiseau, France,
1993.

[22] A. Joux and J. Stern. Lattice reduction: A toolbox for the cryptanalyst. J. Cryptology, 11:161–185, 1998.
[23] Antoine Joux and Reynald Lercier. Discrete logarithms in gf(p).

http://listserv.nodak.edu/archives/nmbrthry.html — May, 1998.
[24] B. A. LaMacchia and A. M. Odlyzko. Computation of discrete logarithms in prime fields. Designs, Codes

and Cryptography, 1:47–62, 1991.
[25] B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems over finite fields. In Advances in

Cryptology — CRYPTO’90, volume 537 of Lecture Notes in Computer Science, pages 109–133. Springer-
Verlag, 1991.

[26] A. K. Lenstra and H. W. Lenstra, Jr., editors. The development of the number field sieve, volume 1554 of
Lecture Notes in Mathematics. Springer–Verlag, 1993.

[27] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathe-
matische Ann., 261:513–534, 1982.

[28] A.K. Lenstra, Jr. H.W. Lenstra, M.S. Manasse, and J.M. Pollard. The factorization of the ninth fermat
number. Math. Comp., 61, 1993.

[29] A.K. Lenstra, Jr. H.W. Lenstra, M.S. Manasse, and J.M. Pollard. The number field sieve. In [26], pages
11–42. Springer–Verlag, 1993.

[30] K. McCurley. The discrete logarithm problem. In Proc. Symp. in Applied Mathematics, number 42 in
Cryptology and Computational Number Theory, pages 49–74, 1990.

[31] P. L. Montgomery. A block lanczos algorithm for finding dependencies over F2. In Advances in Cryptology
— EUROCRYP’95, volume 921 of Lecture Notes in Computer Science, pages 106–120. Springer-Verlag,
1995.

[32] A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic significance. In T. Beth, N. Cot,
and I. Ingemarsson, editors, Advances in Cryptology — EUROCRYP’84, volume 209 of Lecture Notes in
Computer Science, pages 224–314. Springer–Verlag, 1985.

[33] J.M. Pollard. Factoring with cubic integer. In [26], pages 4–10. Springer–Verlag, 1993.
[34] J.M. Pollard. The lattice sieve. In [26], pages 43–49. Springer–Verlag, 1993.
[35] O. Schirokauer. Discrete logarithms and local units. Phil. Trans. R. Soc. Lond. A 345, pages 409–423,

1993.
[36] O. Schirokauer, D. Weber, and Th. Denny. Discrete logarithms: the effectiveness of the index calculus

method. In H. Cohen, editor, Proceedings of the ANTS-II conference, volume 1122 of Lecture Notes in
Computer Science. Springer-Verlag, 1996.

[37] RSA Data Security. The RSA factoring challenge. http://www.rsa.com/rsalabs/html/factoring.html.
[38] R. Silverman. The multiple polynomial quadratic sieve. Math. Comp., 48:329–340, 1987.
[39] F. Valette. Algèbre linéaire pour le logarithme discret. Master’s thesis, ENSTA, 1999. Stage de fin d’étude

et de DEA.
[40] D. Weber. Computing discrete logarithms with the number field sieve. In Proceedings of the ANTS-II

conference, volume 1122 of Lecture Notes in Computer Science. Springer–Verlag, 1996.
[41] D. Weber. Computing discrete logarithms with quadratic number rings. In K. Nyberg, editor, Advances

in Cryptology — EUROCRYP’98, volume 1403 of Lecture Notes in Computer Science, pages 171–183.
Springer–Verlag, 1998.

[42] D. Weber and Th. Denny. The solution of mccurley’s discrete log challenge. In H. Krawczyk, editor,
Advances in Cryptology — CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 458–
471. Springer–Verlag, 1998.

