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Abstract. In this paper, we describe improvements to the function field sieve (FFS) for the discrete
logarithm problem in Fpn , when p is small. Our main contribution is a new way to build the algebraic
function fields needed in the algorithm. With this new construction, the heuristic complexity is as
good as the complexity of the construction proposed by Adleman and Huang [2], i.e Lpn [1/3, c] =

exp((c + o(1)) log(pn)
1
3 log(log(pn))

2
3 ) where c = (32/9)

1
3 . With either of these constructions the

FFS becomes an equivalent of the special number field sieve used to factor integers of the form
AN±B. From an asymptotic point of view, this is faster than older algorithm such as Coppersmith’s
algorithm and Adleman’s original FFS. From a practical viewpoint, we argue that our construction
has better properties than the construction of Adleman and Huang. We demonstrate the efficiency
of the algorithm by successfully computing discrete logarithms in a large finite field of characteristic
two, namely F2521 .

1 Introduction

Due to their cryptographic significances, the integer factorization problem and the discrete logarithm
problem in finite fields have been extensively studied in the last decades. The best methods currently
known to solve these problems are index calculus techniques. In the field of integer factorization, the
number field sieve (NFS) [15] having surpassed its ancestor, the quadratic sieve [24], is now the faster
of the known factoring algorithm. It exists in two flavors, the general number field sieve which can
factor any integer and the special number field sieve which is useful for numbers of a special form: many
integers of the form AN ± B were factored using the special number field sieve. The latest example is
the factorization of 2773 + 1 at CWI [21].

For the computation of discrete logarithms in prime fields, the situation is similar. The quadratic sieve
has an analog called the gaussian integer method [6, 13]. Similarly a variant of the number field sieve [23]
can be used for computing discrete logarithms. Furthermore, as for factorization, we can distinguish
between the general number field sieve and the special number field sieve. For example a computation
of discrete logarithms modulo p = (739 · 7149 − 736)/3 can be found in [27].

In this paper, we address the case of discrete logarithm computations in Fpn , when p is small. The
best known practical method for the typical case p = 2 is due to Coppersmith [5]. It was used in 1992
by Gordon and McCurley [11] to compute discrete logarithms in F2401 . In the same paper, the sieving
part of the discrete logarithm computation for F2503 was also reported. More recently, the sieving part
of a discrete logarithm computation in F2607 using Coppersmith’s method has been performed [25]. The
linear algebra step of this computation has been finished very recently [26]. From a more theoretical
viewpoint, there exists an analog of the general number field sieve called the function field sieve (FFS),
which is not restricted to p = 2 [1, 2]. From a practical viewpoint, only Coppersmith’s algorithm was
considered by now in the characteristic two case [7].

Adleman and Huang [2] showed that the asymptotics of the function field sieve can be largely im-
proved. In fact, with these improvements the function field sieve becomes an equivalent of the special
number field sieve. In this paper, we propose a different method that achieves the same complexity.
Moreover, in most cases, our method is faster. As a consequence, both the asymptotic complexity and
the practical implementation turn out to be better than in older works. We finally illustrate this result
by a computation in F2521 .
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2 Algorithmic considerations

The function field sieve was introduced in [1] for computing discrete logarithms in Fpn with small values
of p. It is quite similar to the number field sieve and it has a complexity of the same order Lpn [1/3].
However, there are some crucial differences that allow large improvements. Most notably, a field such
as Fpn can be represented in many different ways. In Coppersmith’s algorithm [5], as in the work of
Adleman and Huang [2], the key idea was to select a “small representation” of the finite field, more
precisely, this is done by selecting a polynomial λ(t) of degree as low as possible, such that tn − λ(t) is
irreducible. Once λ(t) is chosen, it is possible to find two good polynomials having a common root in this
field. Clearly, these two constructions focus on a small subset of the possible representations of Fpn . In
this paper, we propose a construction that allows a much larger varieties of possible representations. This
extra degree of freedom reduces the task of choosing good polynomials at the beginning of the function
field sieve algorithm. It turns out that this method keeps the good complexity proved by Adleman and
Huang (cf. section 3). Moreover, the selected polynomials are somewhat better. In term of the asymptotic
complexity, this is hidden in the o(1), however this yields a significant decrease of the practical run times.
In this section, we mostly focus on our new polynomial selection phase.

As a foreword, let us recall that the method we use to compute discrete logarithms in a field Fpn is
derived from the well known Pollig–Hellman method. The first step is to factor pn − 1. For any small
factor ` of pn − 1, discrete logarithms modulo ` can be found using the Pollard Rho method. For the
remaining prime factors ` of pn−1, we use the index-calculus method described here. Finally, we combine
the results thanks to the Chinese Remainder Theorem in order to get a result modulo pn − 1.

Therefore, in the sequel, we will assume that we are computing discrete logarithms modulo a large
prime factor ` of pn − 1. This is not an issue since computing the prime factors of pn − 1 can be done
with the special number field sieve with a complexity of the same order Lpn [1/3].

2.1 Representation of Fpn

One classical way to work with Fpn consists in handling equivalence classes in the quotient of the com-
mutative ring Fp[t] by one of its proper maximal ideals f(t)Fp[t] where f(t) is an irreducible element of
Fp[t] of degree n. Each equivalence class is then uniquely determined by a polynomial of Fp[t] of degree
strictly smaller than n. Consequently, any element of Fpn can be seen as a polynomial of degree smaller
than n. With such a representation, adding two elements of Fpn is the same as adding two elements of
Fp[t]. Multiplying two elements of Fpn is the same as multiplying two elements of Fp[t] and reducing the
result modulo f(t).

Since there are numerous irreducible elements of degree n in Fp[t], there are numerous ways to
represent Fpn . The computation of the map between two representations consists in computing the
roots over one representation of Fpn of a polynomial of degree n whose coefficients are in Fp. From an
algorithmic viewpoint, this is known as the “equal degree factorization” problem. This can be done quite
efficiently since there exists algorithms for this task whose complexity is polynomial in log pn (a good
survey can be found in [16]). As a consequence, if some particular representation of Fpn is well suited to
discrete logarithm computations, it is a simple matter to switch from a given representation to the more
adapted one. In the sequel, we take that step for granted and forget about the given initial representation.

2.2 General principle of the FFS

The Function Field Sieve algorithm is an “index-calculus” method. So it can be seen at a high level of
abstraction as a two steps algorithm.

Step 1: One fixes a subset S = {γ1, . . . , γ|S|} of Fpn ' Fp[t] called the factor base and tries to collect relations
between products of elements of S. So, we have equations of the form∑

(ε,γ)∈Z×S

ε logx γ = 0 (1)
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where x is a generator of the multiplicative subgroup of order ` in Fpn . When enough such relations
are collected, one obtains the quantities logx γ via the inversion modulo ` of the corresponding linear
system.

Step 2: To find the discrete logarithm of an element y which is not in S, one tries random integers ν until
xνy is a product of elements of S. Then

logx y =

−ν +
∑

(ε,γ)∈Z×S

ε logx γ

 mod `. (2)

The way how the factor base S is chosen is specific to each variation. In the original Function Field Sieve
as described by Adleman, the factor base is the image by a morphism φ in Fpn of the generators of two
sets Sα and Sβ . The set Sα is a set of Fp-rational principal places in the rational function field Fp(t).
The set Sβ is a set of Fp-rational principal places defined in an algebraic function field.

Once a random polynomial µ(t) ∈ Fp[t] has been chosen, this function field is defined by an absolutely
irreducible bivariate polynomial H(t, X) =

∑d
i=0

∑d′

j=0 hi,jX
itj such that H(t, µ(t)) = 0 mod f(t). The

mapping φ from this algebraic function field to Fpn is then easily defined by X −→ µ(t).
The algorithm consists in finding couples (r(t), s(t)) ∈ Fp[t]2, where r(t) and s(t) are relatively prime,

such that the polynomial r(t)µ(t) + s(t) can be written as a product of irreducible polynomials in Sα

and such that the divisor associated to the function r(t)X + s(t) can be written as a sum of places in
Sβ . Following Adleman, such a pair (r(t), s(t)) is called “doubly smooth” since r(t)µ(t) + s(t) is smooth
and r(t)X + s(t) is smooth in the sense that the norm over Fp[t] of r(t)X + s(t) is smooth.

Thanks to eight technical conditions given on H(t, X) by Adleman, these equalities in terms of divisors
can be seen as equalities in terms of functions, once raised to the order h of the jacobian power. One can
apply the morphism φ to get a relation in Fpn . Applying also this morphism on the rational side in the
same manner finally yields a relation of the form (1).

2.3 Choice of the polynomials

In full generality, as explained in [8] for the NFS case, the function field sieve requires two polynomials
fα(X) and fβ(X) with a common root µ in Fpn . For the algorithm to be efficient, these polynomials
should have small coefficients.

The method suggested in [1] is an adaptation of the base m technique used in NFS [3] to the function
field case. The method works as follows: choose a polynomial m(t) and write the definition polynomial
f(t) of Fpn in base m(t) as

∑
hi(t)µ(t)i. Then X − µ(t) and H(t, X) =

∑
hi(t)Xi clearly have the

common root µ(t) in Fpn . Thus, we get a rational side (corresponding to the degree one polynomial) and
an algebraic side. For the number field sieve, several techniques for the polynomial construction lead to
two polynomials of degree greater than one. In this case, we no longer have a rational side, which leads
to technical difficulties in the later phases of the number field sieve [23].

The version of FFS suggested by Adleman and Huang in [2] is asymptotically much faster. It works by
selecting f(t), the polynomial describing the field representation, to be of the form f(t) = tn +λ(t) where
λ(t) is of degree as low as possible. Then, they choose a parameter d, let e = dn/de and construct two
polynomials H(t, X) = Xd + ted−nλ(t) and X − te, with common root µ(t) = te. In fact, Coppersmith’s
algorithm [5] can be seen as a subcase of the algorithm of Adleman and Huang, when p = 2 and d is a
power of two.

We present here a new technique to build good polynomials in the function field case. As the version
of Adleman and Huang, this technique is specific to Fpn and in general cannot be applied in the number
field sieve.

The basic idea is simple, we do the construction backward. Instead of choosing a definition polynomial
f(t) beforehand, we only fix pn. Then we choose a polynomial H(t, X) =

∑
hi(t)Xi of degree d in X

(the exact value of d will be determined during the complexity analysis) whose coefficients hi(t) are
polynomials in Fp[t] with very small degrees in t. Afterward, we choose random polynomials µ1(t) and
µ2(t) of degree at most bn/dc in t and check whether f(t) = µ2(t)dH(t,−µ1(t)/µ2(t)) is an irreducible
polynomial of degree n over Fp. If the test is successful, we are done, otherwise, we choose another pair
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(µ1(t), µ2(t)) and restart. Of course, it is essential to correctly choose the coefficients of H to guarantee
that f can be of degree n. This implies that the degree of at least one coefficient in H should be the
remainder of the division of n by d. Thus the coefficients of H cannot be of arbitrary small degree,
however their degrees can be smaller than d in all cases. Moreover, some care should be taken when
choosing H. We discuss this point in the next section.

To compare our construction with that of Adleman and Huang, we need to compare the size (degree
in t) of the coefficients involved in the two polynomials H(t, X) and µ2(t)X + µ1(t) (resp. X − µ(t)). A
simple way to perform this comparison is to compute the resultant of the two polynomials and compare
the respective degrees. With our method, the degree is exactly n as explained above. With the method of
Adleman and Huang, the degree is ed and varies from n to n+d−1. Unless d divides n, our construction
leads to smaller polynomials and thus to a faster algorithm.

In practice, Coppersmith’s algorithm is the only one which has been considered for computing discrete
logarithms in large finite fields of small characteristic. When writing its complexity as

Lpn [1/3, c] = exp((c + o(1)) log(pn)
1
3 log(log(pn))

2
3 ),

we get a value of c between (32/9)
1
3 and c = 4

1
3 . More precisely, with Coppersmith’s algorithm the value

of c is not a constant, since there are good cases and bad cases. At best, we have c = (32/9)
1
3 and at

worst c = 4
1
3 , this is always better than Adleman’s FFS where c = (64/9)

1
3 . With our construction or

that of Adleman and Huang, we have c = (32/9)
1
3 in all cases. Thus, from a theoretical viewpoint, our

algorithm has a larger scope and is faster than Coppersmith’s. Indeed, it can be used with a characteristic
different from 2. In practice, our algorithm is faster in characteristic two than Coppersmith’s whenever
the optimal choice of degree for H does not turn out to be a power of 2.

2.4 Number theoretical conditions on the chosen polynomial

When writing down the equation associated to a smooth pair, we must be careful and be sure that these
equations really make sense. This involves two technical difficulties.

The first difficulty is that we should not forget any valuation on the algebraic side of the equation.
However, when factoring the norm of an ideal, we miss the valuations at infinity. Thus, we need to add
these valuations when writing down the equation. In [1], this was done by choosing an algebraic field
with several valuations at infinity and by using dehomogenization techniques to compute these valuations.
However, this approach is quite cumbersome, specially when writing down the equation. Ideally, we would
like to ignore the valuations at infinity. This is possible with the use of so-called “Ca,b curves”.
Theorem: [18] Let K be a perfect field, K the algebraic closure of K, Ca,b ⊂ K be a possibly reducible
affine algebraic set defined over K, t, X be the coordinates of the affine space, and a, b relatively prime
positive integers. Then the following conditions are equivalent.

– Ca,b is an absolutely irreducible affine algebraic curve with exactly one K-rational place P∞ at infinity
and the pole divisor of t and X are aP∞ and bP∞ respectively.

– Ca,b is defined by a bivariate polynomial of the form

H(t, X) = ha,0X
a + h0,bt

b +
∑

ib+ja<ab

hi,jX
itj (3)

where hi,j ∈ K for all i, j and h0,b, ha,0 are nonzero.

As outlined in [18], any bivariate polynomial H(t, X) of the form (3) is absolutely irreducible. So,
only two conditions on H among the eight conditions initially given by Adleman must be satisfied.

1. f(t) divides µ2(t)dH(t,−µ1(t)/µ2(t)).
2. The order of the jacobian of the curve defined by H(t, X) is relatively prime to (pn − 1)/(p− 1).

The second technical difficulty is the existence of an obstruction group that voids the validity of
the equations in certain cases. In the case of the number field sieve, the obstruction group is discussed
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in [23] and [12]. This obstruction group has two components. The first one comes from the group of
units and the second one from the class group of this field. Dealing with the first component is quite
difficult and relies on certain maps introduced by Schirokauer. However, dealing with the class group is
extremely easy as long as its order is relatively prime with ` (the cardinality of the subgroup in which
we are computing discrete logarithms). Indeed, in that case, we can simply forget the existence of the
class group and everything falls out correctly. For a detailed explanation see [12].

With the FFS, units are handled by Adleman by the valuations at infinity. With Ca,b curves, we only
have one valuation at infinity, and so, the only units are the elements of Fp. Thus the only obstruction
stems from the class group. Since H has a small degree and small coefficients, the class number h is
always small. As recalled in [22], h ≤ (

√
p + 1)2g where g is the genus of the function field defined by

H(t, X). Since in our construction, the polynomial H(t, X) has very small degrees in X and t, g is always
small and it is feasible to compute the order of the jacobian to check condition 2. So, since ` is supposed
to be a large prime because part of the logarithm in small multiplicative subgroup can be determined
by other techniques, ` and the class number are always relatively prime. Thus, the obstruction group
when using this variation of the FFS completely vanishes and the conditions given above can always be
considered as satisfied.

2.5 Linear algebra

The linear algebra consists of two sub-steps, the structured gaussian elimination and an iterative solver
based on Lanczos’ algorithm.

The way we implement the structured gaussian elimination is completely described in [12]. Lanczos’
algorithm is described in [14].

2.6 Computing individual logarithms

When computing discrete logarithm with the number field sieve or the function field sieve, finding
logarithms of individual numbers is not a negligible task. Indeed, in the theoretical studies of these
algorithms, both O. Schirokauer for the number field sieve [23] and L. Adleman for the function field
sieve [1] suggest methods where the whole computation essentially needs to be redone for each new
logarithm. From a computational viewpoint, this is not acceptable.

However, in [5] a different method was suggested by Coppersmith. A similar method also exists in the
large characteristic case [12]. From a theoretical point of view, the complexity of computing an individual
logarithm is once again Lpn [1/3], thus it is comparable to Schirokauer’s and Adleman’s methods. A first
attempt at analyzing this approach can be found in [22] (some insights about the complexities are given).
In practice, it turns out to be quite efficient.

We now describe Coppersmith’s method and adapt it to our construction. The method consists in
two steps. In the first step, the individual logarithm computation is split into the logarithm computation
of several smaller polynomials, dubbed medium-sized [5]. More precisely, starting from a polynomial
y(t), we randomize it by computing z(t) = x(t)νy(t), where x(t) is an element of the factor base. We
further write z(t) = z1(t)/z2(t), where z1(t) and z2(t) have degrees around n/2, using the extended
Euclidean algorithm. Then we check whether z1(t) and z2(t) are smooth with respect to a smoothness
bound Lpn [2/3]. We now need to compute the logarithm of many polynomials of degree Lpn [2/3]. In the
second step, each of these logarithms is further splitted into the logarithm of even smaller polynomials.
We stop when all polynomials are below the smoothness bound used in the preprocessing stage.

3 Heuristic complexity analysis for small, fixed p

In order to give an heuristic analysis of the complexity of an index calculus method, the traditional
approach is to assume that the objects we are trying to factor over the chosen factor base in order to find
equations behave like random objects. Under such an heuristic assumption, it is quite easy to quantify the
probability of smoothness. This leads in turn to a precise evaluation of the number of couples (r(t), s(t))
we need to try before getting sufficiently many equations. With our variant of the function field sieve,
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candidate equations have two sides which need to be factored. In order to simplify the analysis, the
classical approach [3, 1] that we now follow is to assume that the factor bases on the left and the right
hand sides contain the same irreducible polynomials. In that case, we can group the two sides in a single
polynomial by multiplying together the polynomials coming from the left and the right hand sides3.

In order to evaluate the probability of smoothness, we use the following result, which can be found
in [19, 17]. Let P(k, m) denotes the probability for a random polynomial of degree k to factor into
irreducible polynomials of degree lower than or equal to m. Then, when k1/100 ≤ m ≤ k99/100, i.e. in all
the range of interest in our case, we have:

P(k, m) = exp
(

(1 + o(1))
k

m
log

m

k

)
.

Assuming that r(t) and s(t) are polynomials of degree lower or equal than l, we find that the degree
of the linear side of a candidate equation is at most l + bn/dc. Similarly, on the other side, testing
the function r(t)X + s(t) for smoothness yields polynomials r(t)dH(t, s(t)/r(t)) the degrees of which
are bounded by dl + d. Indeed, as seen in section 2.3, H(t, X) is polynomial of degree d in X whose
coefficients have degree lower than d in t. When multiplying the two sides together, we get a polynomial
of degree dl + d+ l + bn/dc. Going through all the possible pairs (r(t), s(t)) such that gcd(r(t), s(t)) = 1,
we need to find enough smooth pairs. In fact, the number of pairs (r(t), s(t)) such that gcd(r(t), s(t)) = 1
is a constant fraction of all pairs. In the sequel, we estimate this number by p2l. We need as many smooth
pairs as the number of elements in the factor base. Each factor base contains about pm+1/m elements,
since this number counts all the unitary polynomials of degree up to m. Thus, counting both factor
bases, we can give an upper bound of 4pm+1/m smooth pairs needed. This can be approximated to pm

in an asymptotic approach. Assuming that m and l are already fixed, we can find the optimal value of d
by minimizing the total degree dl + d + l + bn/dc. Asymptotically, we can forget about rounding to the
nearest integer and minimize dl + d + l + n/d = n/d + (d + 1)(l + 1)− 1. Of course, d should be rounded
to the nearest integer, which leads to

d =
⌈√

n

l + 1

⌋
.

Replacing d by its value, we find that the total degree is approximately 2
√

n(l + 1). Moreover, in
order to balance the complexity of the sieving phase, which is quadratic in pl, and of the linear algebra
phase, which is quadratic in pm when using sparse techniques, we need to choose l = m. In order to get
enough smooth pairs, the smoothness probability should be of the order of p−m. Taking logarithm, we
need to satisfy the following equation:

logP(2
√

n(l + 1),m) ≈ −m log p, i.e,

2
√

n(m + 1)
m

log

(
2
√

n(m + 1)
m

)
≈ m log p.

Expressing pm as Lpn [1/3, c] = exp((c + o(1)) log(pn)
1
3 log(log(pn))

2
3 ), we can write m = (c +

o(1))n
1
3 logp(n)

2
3 and get the following equation on c,

2
3
√

c
= c.

Thus, we find c = (4/9)
1
3 . Since the complexity of the algorithm is quadratic pm, it can be written as

Lpn [1/3, 2c] = Lpn [1/3, (32/9)
1
3 ].

We conclude that the complexity of discrete logarithm computations in Fpn , when p is small and
fixed, is in fact the same as the complexity of factoring special integers with the special number field
sieve.
3 Because of this approximation, the complexity stated at the end of this section is clearly an upper bound of

the heuristic complexity of the algorithm. However, as far as we known, a more precise analysis would not
yield a better complexity.
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4 Implementation choices

4.1 Sieving

Sieving is done in Fpn in a similar way as this is done in Fp following a now traditional “sieving by vectors”
with special–q technique as introduced by Odlyzko for Coppersmith’s algorithm [19] or by Pollard for
factorizing integers [20]. In fact, we have not implemented any efficient line sieving as proposed in [5] or
as generalized in [9].

Using special–q means here that in order to get sufficiently many relations, we sieve many independent
sets of values for (r(t), s(t)). Each set is defined by an irreducible polynomial q(t) called the special–q,
and contains pairs (r(t), s(t)) such that q(t) divides r(t)µ1(t) + s(t)µ2(t). If u and v form a basis of the
corresponding lattice, then (r(t), s(t)) can be written as ku(t)u+kv(t)v. Then we can with simple linear
algebra send the lattice corresponding to any small prime ideal from the (r(t), s(t)) representation to
the (ku(t), kv(t)) representation. Sieving is then done in a big rectangle in the (ku(t), kv(t)) space by
successively marking the points on each of the small prime lattices. A basis for these small prime ideals
can be easily obtained from the factorization of H(t, X) modulo the norm of the ideal but the resulting
coordinates have size close to the norm of the ideal. We improve this by combining the vectors of this basis
in order to get a new basis with coordinates of degree approximately twice as small. This is done in full
generality in our implementation by using an adaptation to the ring F2[t] of the well-known algorithm
of Gauss for reducing lattices in dimension two. We give pseudo-code for this reduction algorithm in
figure 1.

– Input: A basis of the lattice (u, v) with u = (u1, u2) and v = (v1, v2).
– Output: A reduced basis.
– Step 1: Let du = max(deg(u1), deg(u2)) and dv = max(deg(v1), deg(v2)). If du > dv, exchange u and v.
– Main loop: Do

• Let δ1 = deg(v1)− deg(u1), δ2 = deg(v2)− deg(u2).
• Let w(1) = v − tδ

1 · u.
• Let w(2) = v − tδ

2 · u.
• If max(deg(w

(1)
1 ), deg(w

(1)
2 )) < max(deg(w

(2)
1 ), deg(w

(2)
2 )), let w = w(1) else let w = w(2).

• If max(deg(v1), deg(v2)) > max(deg(w1), deg(w2)), let v = w and declare the loop as active.
• If max(deg(u1), deg(u2)) ≥ max(deg(v1), deg(v2)), exchange u and v.

– Until the loop is not declared active for two consecutive executions.
– Output (u, v).

Fig. 1. Algorithm for reducing lattices in dimension 2 over F2[t].

In order to consider pairs (r(t), s(t)) such that gcd(r(t), s(t)) = 1, a necessary condition is that
gcd(ku(t), kv(t)) = 1. So, in the rectangle we allocate for the sieving, positions corresponding to a pair
(ku(t), kv(t)) with two coordinates divisible by t can be omitted [10]. This is a quick shortcut to avoid
25% of the gcd computations. Similarly, we avoid the positions where both coordinates are divisible by
t + 1.

Depending on the problem we have to handle, it can be computationally interesting to perform such
a sieve on the algebraic side too. In this case, each point on the rectangle are marked if they are points
of the small prime ideals on the linear side or on the algebraic side. This was for instance the case for
the computation described in section 5. This is done by representing the prime ideals on the algebraic
side as lattices and handling them as on the linear side.

After selecting good (ku(t), kv(t)) candidates in this way, we can check efficiently that the correspond-
ing values r(t)µ1(t) + s(t)µ2(t) are indeed smooth using Berlekamp’s algorithm. Then, if for some of the
remaining couples (r(t), s(t)), the divisor of the function r(t)X + s(t) is smooth too, this produces an
algebraic relation between elements of the factor bases.
Remark: Berlekamp’s algorithm has got roughly two phases; the construction of a set of “f-reducing
polynomials” thanks to the kernel computation of the Berlekamp’s matrix and the separation step itself
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involving the computation of gcds between the list of factors and the reducible polynomials [16]. Let us
note that the last phase can be speeded up using the fact that the polynomials that we want to factor
have their potential factors stored in the factor bases. Thanks to this table of irreducible polynomials,
one can test early in the process whether the partial factors are irreducible. When they are, we remove
them from the list of factors. Thus we can spare many of the gcd computations that are necessary when
no table of irreducible polynomials is available.

4.2 Linear algebra

As explained in section 2.5, it is straightforward to apply to the case Fpn , p small, the ideas developed
for Fp, p large. Simply, this step is done modulo each large prime factor ` of (pn − 1)/(p− 1).

The only small improvement we are aware of concerns the characteristic 2 case. When 2n − 1 is a
prime, the arithmetic involved in Lanczos’ algorithm can be slightly speeded up. This consists in using
the classical fact that the reductions modulo 2n − 1 can be done by a single subtraction on the binary
representation of the integers involved. When 2n − 1 is not a prime, it is usually better to perform
Lanczos’ algorithm modulo each large prime factor ` of 2n − 1, instead of modulo 2n − 1.

5 Example

Let σ be the mapping defined from the set of integers to F2[t] which sends an integer ν (written in
an hexadecimal way) to a polynomial σ(ν) such that substituting t by 2 in σ(ν) yields ν (for instance,
σ(b) = t3 + t + 1), we now describe a discrete logarithm computation in F2521 .

Precisely, we were able to compute the discrete logarithm of e(t), π(t) and e(t) + π(t) where

e(t) = σ(b2519ec) = t520 + t518 + . . . + t6 + t3,
π(t) = σ(b2519πc) = t520 + t519 + . . . + t6 + t3 + 1.

At first, we fixed a representation of F2521 by choosing a C1,5 algebraic curve over F2 given by

H(t, X) = X5 + X + t + 1,

and checking that the resultant of H(t, X) with the bivariate polynomial

µ2(t)X + µ1(t) = σ(1b92c17dec4c4cf4f5ab9c1e86f)X + σ(d0e134790925d9e08)

yields an irreducible polynomial f(t) of degree 521.
Of course, there exists many Ca,b curves which could have been used here. However, following an

idea developed for factoring integers, we select a polynomial H(t, X) whose number of roots, modulo
irreducible polynomials of small degree over F2, is slightly larger than usual.

The factor base contains the 300 000-th first irreducible polynomials over F2 once ordered by their
σ values and contains the places with norms of degree smaller than 22 in the function field defined
by H(t, X). After a three weeks computation on a quadri-processors alpha server 8400 computer, we
obtained 472 121 equations in 450 940 unknowns with 9 235 383 nonzero entries.

So we had 300 000 special-q. For each special-q, we marked points in a rectangle (ku(t), kv(t)) of size
214 × 214 such that the corresponding pairs (r(t), s(t)) are candidates for smoothness (cf. section 4.1).
This yielded around 2 000 candidates. Testing them with Berlekamp’s algorithm, both in the linear and
the algebraic side, gave in average 2 equations.

We then applied a structured Gaussian elimination to reduce our system to 197 039 equations in
196 939 unknowns with 12 220 108 nonzero entries [13, 12] (249277 entries were different from ±1, the
largest was 29). Time needed for this on only one processor was about one hour.

Then, our parallelized version of Lanczos’ algorithm took 10 days over 4 processors to finish the linear
inversion modulo 2521− 1. At the end, we had “logarithms for ideals” of small norms. As a consequence,
we had logarithms for small irreducible polynomials:

logt(t + 1) = 9468157715212229407617517359865032460621

8888522019052639108014879989858843458649522013207549688251

3361552641792316365389142863458255063795516109214621940159,
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logt(t
2 + t + 1) = 4099453203357757668284443933632134015543

7560387960711214880627918982361730130023913248564073810794

90528189430781422062155331435951419903283877277822018761891,

...

Afterwards, we found in few hours, two polynomials,

z1(t) = σ(17acf35dc9215)× σ(33cab5311)× σ(83b6db37)× σ(88af29f)× σ(4c99eb3)

× σ(1a22cdd)× σ(debb79)× σ(6358f)× σ(304f)× σ(6b5)× σ(41b)× σ(75)× σ(2)4

and

z2(t) = σ(41edc78c5127)× σ(75a6c0fe253)× σ(b66ac13d5)× σ(d422507)× σ(b0b0e11)

× σ(d2c45)× σ(81869)× σ(54e1)× σ(a85)× σ(409)× σ(25f)× σ(fd)× σ(3b)× σ(7)× σ(3)

such that
σ(3fffcd)43 × e(t) = z1(t)/z2(t) mod f(t).

Then, using at most 6 levels of special–q descents, computing discrete “logarithms for the ideals” of
norms larger than σ(5df401) in the left algebraic field was (thanks to a one hour computation for each
ideal, on a unique processor) equivalent to compute discrete “logarithms for ideals” of norms larger than
those of the factor base in the algebraic function field. Time needed for computing the corresponding
discrete logarithms was at most one hour for each on a unique processor. At the end, we obtained

logt e(t) = 26324776219383412988499470242853836

0289317407093273177190025600958418025325465481707648375864292

8456502454746890820252043876734626779920800953806109457874358.

Similarly, we found

logt π(t) = 54752914801211335857888400194404883

4396041695431692261837322543793760717339868611259553398016090

4708790051138588209091739455561530487613513767198209433496844,

and

logt(e(t) + π(t)) = 41592014011202531792054377504019307

6439975376714991661072042543367168030386736581168078966485150

6272465239307862846898957189950632165222399100568185398518167.

So, as a conclusion, time that we need for computing discrete logarithms in F2521 on a 525 MHz
quadri-processor alpha server 8400 computer is approximatively 12 hours for each, once the sieving step
(21 days) and the linear algebra step (10 days) is performed.

The software we used is an adaptation to the characteristic two of a Fp implementation [12] taking
advantage of a generic software based on a finite field C library called ZEN [4].
Remark: Since the current record in this field of research is a computation in F2607 obtained with
Coppersmith’s algorithm after one year over 100 PCs [26], it is natural to estimate on the basis of our
computation over F2521 what would be the time needed by this FFS implementation to handle F2607 .
This can be easily done by computing L2607 [1/3, (32/9)

1
3 ] / L2521 [1/3, (32/9)

1
3 ]. This yields a factor of 12

and means a one year computation on a single 525 MHz quadri-processor alpha server 8400 computer.
We have performed some experiment in this range, they corroborate this rough estimate.
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6 Conclusion

In this paper, we described improvements to the function field sieve for the discrete logarithm problem.
With these improvements, we computed discrete logarithms in F2521 and showed that the function field
sieve can be considered as an equivalent of the special number field sieve, giving the confirmation that it
is faster, both from an asymptotic and from a computational viewpoint, than Coppersmith’s algorithm
and Adleman’s original FFS.
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