
“Chinese & Match”, an alternative to Atkin’s “Match and Sort”
method used in the SEA algorithm. Mathematics of Computa-
tion, 70(234):827–836, April 2001.

“Chinese & Match”, an alternative
to Atkin’s “Match and Sort” method

used in the SEA algorithm?

Antoine Joux1 and Reynald Lercier2

1 DCSSI, 18 rue du Dr. Zamenhoff, F-92131 Issy-les-Moulineaux, France
Antoine.Joux@m4x.org

2 CELAR, Route de Laillé, F-35998 Rennes Armées, France
lercier@celar.fr

Abstract. A classical way to compute the number of points of elliptic curves defined over finite
fields from partial data obtained in SEA (Schoof Elkies Atkin) algorithm is a so-called “Match
and Sort” method due to Atkin. This method is a “baby step/giant step” way to find the number
of points among C candidates with O(

√
C) elliptic curve additions. Observing that the partial

information modulo Atkin’s primes is redundant, we propose to take advantage of this redundancy
to eliminate the usual elliptic curve algebra in this phase of the SEA computation. This yields
an algorithm of similar complexity, but the space needed is smaller than what Atkin’s method
requires. In practice, our technique amounts to an acceleration of Atkin’s method, allowing us to
count the number of points of an elliptic curve defined over F21663 . As far as we know, this is the
largest point-counting computation to date. Furthermore, the algorithm is easily parallelized.

1 Introduction

As outlined by Elkies at the very beginning of [?], “the problem of calculating the trace of an elliptic
curve over a finite field has attracted considerable interest in recent years”. Thanks to the work of many
people in this field of research, we now have adequate tools to perform this task.

From a theoretical point of view, Schoof’s deterministic polynomial time algorithm [?, ?] which enables
us to perform this task in O(log8 q) elementary operations was first largely improved by Atkin [?, ?] and
Elkies [?, ?] to yield a probabilistic algorithm whose complexity is O(log6 q) for finite fields Fq of large
characteristic (using usual finite field arithmetic). In finite fields of small characteristic, we are indebted
to Couveignes [?] for filling the remaining gaps and obtaining an algorithm of the same complexity. In
this paper we will refer to these contributions as the SEA algorithm (Schoof, Elkies, Atkin).

The aim of this paper is to explain how one can speed up the last phase of the computation from a
practical point of view. It is known that implementations [?, ?, ?, ?, ?] already were enough to compute
the number of points of an elliptic curve defined over F10499+153 [?]. But, thanks to some new ideas
described in this paper, we were able to improve this point-count record by performing a computation
over F21663 (cf. Section 4).

More precisely, it is well known that the number of points of an elliptic curve E defined over Fq is
equal to q + 1 − c, where the trace c must satisfy |c| ≤ 2√q. The aim of the SEA algorithm is to get a
minimal number of candidates for c modulo coprime small integers ` such that∏

coprime
integers `

` > 4√q. (1)

It would be nice to have a unique candidate for each `, since a straightforward application of the Chinese
Remainder Theorem would yield the number of points.

Unfortunately, one has a unique candidate for c mod ` for approximately half of the integers `, in
general for so called “Elkies primes” and their powers. For the other primes, called “Atkin primes”, we
? January 10, 2015

1

2

have an even number of candidates. One obvious solution is to keep only Elkies primes. Even if this
causes us to use a larger integer `, the asymptotic complexity of the algorithm remains the same. But
in practice, it is much better to decrease the size of these integers ` by replacing some Elkies primes by
Atkin primes ` such that the number of candidates for c mod ` is as small as possible compared with the
size of `. Of course, we have in this case a number C of candidates for the cardinality we seek.

A naïve approach to find the number of points among these C candidates consists in multiplying
a point P of the curve by each candidate until we get the neutral element of the elliptic curve. Of
course, such an approach is clearly inefficient, that is why one uses instead a “baby step/giant step”
algorithm due to Atkin [?], called “Match and Sort”. We will not describe this algorithm in this paper,
but one important fact is that it decreases the complexity to O(C 1

2) additions in E(Fq) (see [?] for some
further insights); that is to say, a complexity of O(C 1

2 log2 q) elementary operations. The storage needed
is O(C 1

2 log q) bits.
The method we call “Chinese & Match” follows a different approach, since we get rid of elliptic curve

additions. It takes advantage of the fact that we have, in records like F21663 , much more information
about c than what is actually used by Atkin’s approach, since the number of Atkin primes used is
generally small (to have a reasonable number C) compared to the number of Atkin primes available.
Instead of looking for an equality of points, the basic idea behind this new approach is to eliminate
bad candidates, checking that these candidates yield wrong results modulo the remaining Atkin primes
(Section 2). We explain in this paper how we are able to do such a thing thanks to an algorithm with
satisfactory complexities (Section 3). Then, we show how we applied this algorithm for computing the
number of points of an elliptic curve defined over F21663 (Section 4).

2 “Chinese & Match” method

For the sake of clarity, we describe the algorithm at intermediate levels of detail (Section 2.1 and Sec-
tion 2.2) before giving the final algorithm (Section 2.3).

Let L be a set of coprime integers ` such that
∏
`∈L ` > 4√q and such that for each ` ∈ L, we have a set

T` of C` candidates for c mod `. The aim of the algorithm is to return the set of integers c ∈ [−2√q, 2√q]
which satisfy c mod ` ∈ T`. The basic idea consists, in a first phase thanks to an algorithm due to Nicolas
(given in [?]), in constructing a set TM of C candidates for c thanks to a “minimal subset” of L, that is
to say, using moduli ` of a subset M. More precisely, the two sets M and TM are given by

M =
{
` ∈ L | MM =

∏
` > 4√q and

∏
#T` minimal

}
,

TM = {c ∈ [−MM/2,MM/2] | ∀` ∈M, c mod ` ∈ T`} .

Then, in a last phase, we remove candidates which do not satisfy congruences T` given by integers ` of
the set C = L \M.

2.1 An overview of the algorithm

To implement these ideas while avoiding an exhaustive enumeration, we first have to partition M into
two subsets,

M = B ∪G.

For S either B or G, we define

MS =
∏
`∈S

`,

CS =
∏
`∈S

#T` =
∏
`∈S

C`.

Until the analysis (Section 3), we do not assume anything about these subsets, but the reader should
keep in mind that these subsets are chosen with CB ' CG ' C

1
2 .

3

Then, in a precomputation step, we compute using the Chinese Remainder Theorem two sets TB/G
and TG/B which contain what we call “partial candidates” associated to B and G. Precisely, we have

TB/G = {c ∈ [−MM/2,MM/2] | ∀` ∈ B, c mod ` ∈ T` and ∀` ∈ G, c mod ` = 0} ,
TG/B = {c ∈ [−MM/2,MM/2] | ∀` ∈ B, c mod ` = 0 and ∀` ∈ G, c mod ` ∈ T`} .

It is not difficult to see that

TM ⊆ {α+ β + λMM | (α, β) ∈ TB/G × TG/B and λ ∈ {−1, 0, 1}
}
.

So, using a “baby-giant” step way, a first version of the algorithm consists of two steps :

Baby step For α ∈ TB/G and for ` ∈ C, store the set of integers

Hα,` = {θ − α mod ` | θ ∈ T`} .

Giant step For λ ∈ {−1, 0, 1} and for β ∈ TG/B, if there exists one integer α ∈ TB/G such that for
every ` ∈ C, the integer β + λMM mod ` is in Hα,`, then c = α+ β + λMM is one of the integers we
seek—that is to say, an integer such that

∀` ∈ L, c mod ` ∈ T`.

2.2 A first variant

One can slightly improve the previous algorithm by dividing the previous baby and giant steps into
numerous smaller such steps. The idea is to consider candidates α + β which already satisfy conditions
given by a subset C1 of C. Then, one partitions TB/G and TG/B into MC1 subsets,

TB/G =
MC1−1⋃
h=0

T (h)
B/G and TG/B =

MC1−1⋃
h=0

T (h)
G/B,

where the subsets T (h)
B/G and T (h)

G/B are given by

∀h ∈ {0, . . . ,MC1 − 1}
{
T (h)
B/G = {α ∈ TB/G| α = h mod MC1},
T (h)
G/B = {β ∈ TG/B| β = h mod MC1}.

Then, the previous algorithm can be rewritten as follows (where C2 = C \ C1 and TC1 is defined as
TM).

Loop For h ∈ {0, . . . ,MC1 − 1},

Small baby step For Θ ∈ TC1 , for α ∈ T
((Θ−h) mod MC1)
B/G and for ` ∈ C2, store the set of integers

HΘ,α,` = {θ − α mod ` | θ ∈ T`} .

Small giant step For λ ∈ {−1, 0, 1} and for β ∈ T ((h−λMM) mod MC1)
G/B , if there exist an integer Θ

in TC1 and an integer α in T ((Θ−h) mod MC1)
B/G such that for every integer ` in C2 the integer

β+λMM mod ` is in HΘ,α,`, then c = α+β+λMM is an integer such that ∀` ∈ L, c mod ` ∈ T`.

4

2.3 The final version

One of our main considerations while designing this algorithm was to reduce the space needed. In the
previous schemes, most of the space is used for TB. To reduce this, one again partitions B and G into
two subsets,

B = B1 ∪B2 and G = G1 ∪G2.

Then, in a precomputation step, we compute four sets3 TB1 , TB2 , TG1 and TG2 which contain partial
candidates associated to B1, B2, G1 and G2. Precisely, we have

TB1 =
{
c ∈ [−MM/2,MM/2] | ∀` ∈ B2 ∪G1 ∪G2, c mod ` = 0

and ∀` ∈ B1, c mod ` ∈ T`

}
,

TB2 =
{
c ∈ [−MM/2,MM/2] | ∀` ∈ B1 ∪G1 ∪G2, c mod ` = 0

and ∀` ∈ B2, c mod ` ∈ T`

}
,

TG1 =
{
c ∈ [−MM/2,MM/2] | ∀` ∈ B1 ∪B2 ∪G2, c mod ` = 0

and ∀` ∈ G1, c mod ` ∈ T`

}
,

TG2 =
{
c ∈ [−MM/2,MM/2] | ∀` ∈ B1 ∪B2 ∪G1, c mod ` = 0

and ∀` ∈ G2, c mod ` ∈ T`

}
.

and, once again, it is not difficult to see that

TM ⊆ {α+ β + γ + δ + λMM |
(α, β, γ, δ) ∈ TB1 × TB2 × TG1 × TG2 and λ ∈ {−3,−2,−1, 0, 1, 2, 3}} .

Then, we partition TB2 and TG2 into MC1 subsets,

TB2 =
MC1−1⋃
h=0

T (h)
B2

and TG2 =
MC1−1⋃
h=0

T (h)
G2

,

where the subsets T (h)
B2

and T (h)
G2

are given by ∀h ∈ {0, . . . ,MC1 − 1},

T (h)
B2

= {β ∈ TB2 | β = h mod MC1},

T (h)
G2

= {δ ∈ TG2 | δ = h mod MC1}.

With these notations, the algorithm is as follows.

Loop For h ∈ {0, . . . ,MC1 − 1},
Small baby step For Θ ∈ TC1 , for α ∈ TB1 , for β ∈ T

(Θ−h−α) mod MC1)
B2

and for ` ∈ C2, store the
set of integers

HΘ,α,β,` = {θ − α− β mod ` | θ ∈ T`} .

Small giant step For λ ∈ {−3,−2,−1, 0, 1, 2, 3}, for γ ∈ TG1 and for δ ∈ T ((h−γ−λMM) mod MC1)
G2

,
if there exist an integer Θ in TC1 , an integer α ∈ TB1 and an integer β in T ((Θ−h−α) mod MC1)

B2
such that for every integer ` in C2, the integer γ + δ + λMM mod ` is in HΘ,α,β,`, then c =
α+ β + γ + δ + λMM is one of the integers we seek.

2.4 Practical improvements

We describe in this section some improvements which do not change the complexity of the algorithm but
which greatly improve times in practice.
3 Following previous notations, TB1 should be written as TB1/B2∪G1∪G2 , however it would be too cumbersome.
The same remark applies to TB2 , TG1 and TG2 .

5

Precomputations Instead of using TB1 , TB2 , TG1 and TG2 , one prefers to compute these sets modulo
each prime of C2. That is to say, we substitute in the algorithm the sets TB1 , TB2 , TG1 and TG2 with the
sets TB1,`, TB2,`, TG1,` and TG2,` defined for ` ∈ C2 by

TB1,` = {α mod ` | α ∈ TB1} , TB2,` = {β mod ` | β ∈ TB2} ,
TG1,` = {γ mod ` | γ ∈ TG1} , TG2,` = {δ mod ` | δ ∈ TG2} .

Of course, we also have sets T (h)
B2,`

and T (h)
G2,`

instead of T (h)
B2

and T (h)
G2

. Let us note that to construct T (h)
B2,`

and T (h)
G2,`

, we also have to compute TB2,` and TG2,` for ` ∈ C1.

Small baby steps In practice, the sets HΘ,α,β,` can be stored very efficiently, as an array of bits. This
array has

∑
`∈C2

` lines and one column for each pair (α, β). Each line of the array can also be seen
to have a bit string S`,τ where ` ∈ C2 and τ ∈ {0, . . . , `− 1}. We store a 1 in S`,τ , for each position
(α, β) such that τ = θ − α − β mod ` ∈ HΘ,α,β,`, and a 0 otherwise. All strings S`,τ have the same
length; however, it may change from one round of the main loop to the next. On average, this length is
CC1CB1CB2/MC1 .

Small giant steps To detect if an integer τ = γ+δ+λMM mod ` is stored in HΘ,α,β,` for every integer
` ∈ C2, we simply perform a “logical &” between the #C2 strings S`,τ (this explains the symbol & in the
name of this method). If the resulting string is non-nil, we have won: any bit equal to 1 corresponds to
a pair (α, β) such that c = α+ β + γ + δ + λMM is in T` for any integer ` in L.

3 Analysis of the algorithm

The aim of this section is an attempt to explain the good behavior of this algorithm that we observed
in practice. That is why we perform a small analysis of the “Chinese & Match” method, both in space
(Section 3.1) and in time (Section 3.2), before comparing them to Atkin’s method (Sections 3.3 and 3.4).

3.1 Storage complexity

Clearly, there are two phases which need some storage, the “precomputation” and the “small baby step”
phases.

Precomputations The main cost of this phase is the memory needed to store TB1,`, TB2,` and TG1,`,
TG2,`. It is at most the size of integers ` ∈ C times the cardinality of TB1 , TB2 , TG1 and TG2 , that is to
say,

O

(
(CB1 + CB2 + CG1 + CG2)

∑
`∈C

log `
)

.

Small baby steps Since there are
∑
`∈C2

` strings of CC1×CB1×
CB2

MC1

bits in average, the storage needed

is given by

O

(
CC1

CB1CB2

MC1

∑
`∈C2

`

)
.

6

3.2 Time complexity

Precomputations In this phase, we have, first of all, to compute TB1,`, TB2,`, TG1,` and TG2,` via the
Chinese Remainder Theorem, and then to sort TB2,` and TG2,` to obtain the sets T (h)

B2,`
and T (h)

G2,`
for

h ∈ {0, . . . ,MC1 − 1}.
Therefore, the asymptotic complexity of this phase is given by

max

O((CB1 + CB2+CG1 + CG2)

∑
`∈C

log2 `),

O((CB2 logCB2 + CG2 logCG2)
∑
`∈C2

log `)

 .

Small baby steps Since this complexity is conditioned by the number of loops, it is equal to

O

(
CC1CB1

(
1 + CB2

MC1

∑
`∈C2

`

))
.

We have to perform this phase MC1 times; therefore the total complexity is

O

(
CC1CB1 max

(
MC1 , CB2

∑
`∈C2

`

))
.

Small giant steps The complexity of this phase is the number of loops times the average size of a
string, that is to say,

O

(
CG1

(
1 + CG2

MC1

#C2 × CC1

CB1CB2

MC1

))
.

Since, again, we have to perform this phase MC1 times, the total complexity is equal to

O

(
CB1 max

(
MC1 , CC1#C2

CB2CG1CG2

MC1

))
.

3.3 Which parameters?

For computing the number of points, it is advantageous to express complexities as functions of log q and
C. With this in mind, we can now choose the values of the many parameters seen in the previous section.
The rationales for these choices are explained in Section 3.4.

First of all, we select C1 such that
MC1 ' O(C 3

8).

For counting points on elliptic curves, it turns out that the corresponding constant CC1 is very small; let
us say that in the worst cases we have CC1 ' O(C 1

8).
Then we classically build sets B1, B2, G1 and G2 such that

CB1 ' CB2 ' CG1 ' CG2 ' O(C 1
4).

With these assumptions completed by the assumption that we have nearly log q integers ` of size
nearly log q, the complexities in space and time of the algorithm are given in Table 1.

7

Table 1. Asymptotic complexities.

Precomputations Baby steps Giant steps
Space O

(
C

1
4 log q log log q

)
O
(

C
1
4 log2 q

)
O(1)

Time O

(
C

1
4 log q log log q×

max(log log q, log C)

)
O
(

C
5
8 max(C

1
8 , log2 q)

)
O(C

3
4 log q)

3.4 Comparison with Atkin’s method

First of all, the storage needed for this algorithm is much smaller than required in Atkin’s algorithm,
namely O

(
C

1
4 log2 q

)
instead of O

(
C

1
2 log q

)
.

The situation is not as clear for our time analysis. In particular, it seems at first glance that what
we announced in [?] was, at least, enthusiastic, since the largest asymptotic cost of the “Chinese &
Match” method is O(C 3

4 log q) instead of O
(
C

1
2 log2 q

)
for Atkin’s one. But, in order to compare these

algorithms, the point is that it is necessary not only to bind C 1
4 and log q, but also to take into account

that the the constant C can be larger in our case since our memory requirements are much smaller.
Classically, a good choice for C would be to have a similar time for the SEA algorithm and this last

step. For Atkin’s method, this gives

C
1
2 log2 q ' log6 q, i.e., C ' log8 q.

The problem with such an optimum is that we simply cannot, in practice, handle the corresponding
storage (O(log5 q)). So, we decreased the size of C computing c modulo larger Elkies primes ` until we
could handle the needed storage. But such a computation is so prohibitive that one is often tempted to
decrease the number of points stored in the first phase of Atkin’s Method instead. Let us assume with
C ' log8 q that we can only accept a storage in O(log4 q); this yields a corresponding time complexity
equal to O(log7 q).

With the “Chinese & Match” method, such an optimum yields

C
3
4 log q ' log6 q, i.e., C ' log

20
3 q ' log6.63 q,

and the corresponding memory is quite reasonable since it is only equal to

O(log
11
3 q) ' O(log3.63 q).

Conclusion From a theoretical point of view, it appears that with Atkin’s method, one must use
the SEA algorithm for larger ` than required in our method. And, we think our approach and Atkin’s
approach eventually have similar asymptotic complexities in time.

From a practical point of view, we observe that this new algorithm has much better performance in
practice, in particular because it substitutes elliptic curve additions with logical & in such a way that
these operations are much more easily handled by computers. Moreover, it is obvious how to parallelize
it among a network of workstations, and the storage needed is much smaller.

4 Application to F21663

The “Chinese & Match” method was initially designed to complete in

F21663 = F2[t]/(t1663 + t9 + t8 + t6 + t4 + t3 + 1),

the computation of the number of points 21663 + 1− c of the curve E given by

E : Y 2 +XY = X3 + a6

8

where
a6 = t16 + t14 + t13 + t9 + t8 + t7 + t6 + t5 + t4 + t3.

At the end of the SEA algorithm, we had, first, C` = 1 for ` ∈ U, where

U = {212, 37, 52, 72, 113, 13, 172, 19, 232, 29, 31, 372, 41, 432, 472, 532, 59, 672, 73,
79, 892, 101, 103, 109, 127, 131, 151, 157, 163, 167, 179, 223, 227, 229, 233,
2512, 257, 263, 271, 293, 337, 347, 373, 383, 401, 431, 433, 439, 449, 461, 463,
467, 491, 503, 509, 523, 547, 563, 569, 571, 577, 587, 599, 613, 619, 631, 643,
647, 677, 701, 709, 719, 727, 797, 811, 853, 857, 911, 929, 937, 947, 983, 991}.

On the other hand, Atkin primes yield the following results.

` C`
61 30
71 12
83 24
97 42

107 4
113 18
137 44
139 12
149 40
173 56
181 72
191 32
193 96
197 10
199 20
211 104

` C`
239 8
241 110
269 72
277 138
281 46
283 140
307 20
311 24
313 156
317 52
331 164
349 120
353 58
359 4
367 88
379 8

` C`
389 48
397 198
409 4
419 24
421 210
443 72
457 228
479 64
487 60
499 8
521 56
541 270
557 60
593 180
601 252
607 72

` C`
617 102
641 212
653 108
659 160
661 330
673 336
683 216
691 344
751 92
757 378
761 252
773 84
787 392
809 216
821 272
823 204

` C`
827 264
829 328
839 48
859 336
863 36
877 438
881 252
883 384
887 144
907 452
919 22
941 312
953 312
967 220
971 324

First of all, we chose

M = {107, 113, 139, 197, 199, 307, 311, 359, 379, 409, 419, 499, 863, 919} ∪ U.

So, we have CM = 1.6 1015. Then, we fix

B1 = {199, 307, 919} ∪ U, B2 = {113, 197, 419},
G1 = {107, 359, 379, 409, 863}, G2 = {139, 311, 499},
C1 = {239, 839}.

Thus,

CB1 = 8800, CB2 = 4320, CG1 = 18432, CG2 = 2304,
CC1 = 384 and MC1 = 200521.

In our particular case, we have ∀` ∈ L \ U, ∀θ ∈ T`, −θ mod ` ∈ T`. Therefore, it is enough to take
λ ∈ {0, 1, 2, 3} in the algorithm; that’s why CG2 ' CG1/4.

After a single night on a network of four PII 300 MHz based PC’s, where the PC number i was in
charge of the iterations h ∈ {50131(i− 1), . . . , 50131i− 1}, we were able to find

c = −3805068377240724240560419948872646673663242814390586530165014569
62916781408677934096482497519457837637874855654232311763302675255
23746599175801006570912836055290240895389634433448280940885630125
648226190181753105401361328308884068025195620144202704383.

Each PC used a storage of at most 12 megabytes.

9

5 Conclusion

We presented an alternative to Atkin’s “Match and Sort” algorithm designed for completing the compu-
tation of the number of points of an elliptic curve defined over a finite field with the SEA algorithm. It
turns out that this algorithm has good complexities, in both space and time.

These complexities corroborate what we initially observed in practice. We were able to compute the
number of points of an elliptic curve defined over F21663 in a single night (real time) on a network of four
PII 300 MHz based PC’s using only 12 megabytes of memory.

Moreover, since the goal of this algorithm is to extract one integer from sets of congruences modulo
integers, we have the feeling that applications in other fields of research could take advantage of such an
algorithm.

