
Fault Attack on Elliptic Curve with Montgomery Ladder Implementation. FDTC ’08.
5th Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 92–98, August
2008. IEEE-CS Press.
Errata 2008-09-10.

Fault Attack on Elliptic Curve with Montgomery Ladder Implementation∗

Pierre-Alain Fouque
École normale supérieure - CNRS - INRIA
45 rue d’Ulm, 75230 Paris cedex 05, France

Pierre-Alain.Fouque@ens.fr

Reynald Lercier
DGA/CÉLAR - IRMAR, Université de Rennes

La Roche Marguerite, 35174 Bruz, France
Reynald.Lercier@m4x.org

Denis Réal
DGA/CÉLAR - INSA-IETR, Université de Rennes

La Roche Marguerite, 35174 Bruz, France
Denis.Real@dga.defense.gouv.fr

Frédéric Valette
DGA/CÉLAR

La Roche Marguerite, 35174 Bruz, France
Frederic.Valette@m4x.org

Abstract

In this paper, we present a new fault attack on elliptic
curve scalar product algorithms. This attack is tailored to
work on the classical Montgomery ladder method when the
y-coordinate is not used. No weakness has been reported
so far on such implementations, which are very efficient and
were promoted by several authors. But taking into account
the twist of the elliptic curves, we show how, with few faults
(around one or two faults), we can retrieve the full secret
exponent even if classical countermeasures are employed to
prevent fault attacks. It turns out that this attack has not
been anticipated as the security of the elliptic curve param-
eters in most standards can be strongly reduced. Especially,
the attack is meaningful on some NIST or SECG parame-
ters.

Keywords: EC Cryptosystem, Montgomery Ladder,
Fault Attack.

1. Introduction

Fault attack is a very powerful side-channel technique to
break cryptographic schemes. The idea is to inject a fault
during the computations of an implementation and to use
the faulty outputs to deduce information on the secret key
stored in the secure component. Boneh et al. first intro-
duced this model in 1997 [?] and show how to recover secret
keys of RSA and DLog-based cryptosystems. Since these
attacks and other side-channel attacks, many countermea-
sures have been proposed so far and some implementations
are believed to be more secure than others.

∗January 10, 2015

Elliptic curve cryptosystems are very important in smart
card products since the computational cost is strongly re-
duced. Indeed such schemes allow to use smaller keys since
algorithms to compute discrete logarithms are less efficient
in such groups than in the multiplicative group of a finite
field. Elliptic curves can be used in signature schemes as
in the standard ECDSA or in encryption schemes as in the
El Gamal cryptosystem. Consequently, it is useful to have
secure implementations of the scalar product algorithm. In
1999, Coron developed three countermeasures to withstand
SPA and DPA attacks on elliptic curve scalar binary expo-
nentiations [?]. However, the first two were shown to be
inefficient by Fouque and Valette in [?] and the third one by
Goubin in [?]. All these attacks are SPA or DPA attacks.
However, other implementations of the scalar product al-
gorithm, for instance, Montgomery algorithm when the y-
coordinate is not used, are still believed to be secure.

1.1. Previous Work

Fault attacks on elliptic curve cryptosystems appeared
since 2000 by Biehl et al. at Crypto’00 [?]. The idea
is to change the input points or the curve parameters or
also the base field so that the computations is performed
on a different and weakly secure cryptographic curve. On
such curves, the discrete logarithms can be easy to com-
pute using Pohlig-Hellman and Rho-Pollard algorithm for
instance. Then, Ciet and Joye in [?] extended this attack
by reducing the power of the attacker so that random and
unknown errors can be used instead of controlled ones.

Recently at FDTC’06, Blömer et al. [?] mounted an-
other side-channel attack by changing the sign of the y-
coordinate. They also claimed that the attacks of Biehl et
al. and of Ciet and Joye can be easily avoided since it is
sufficient to verify at the end of the computation whether

the resulting point is on the curve or not. Moreover, they
proposed an attack on the Montgomery algorithm when the
y-coordinate is used. Furthermore, they reported the follow-
ing claim of Joye and Yen in [?], that the “Montgomery lad-
der may be a first-class substitute of the celebrated square-
and-multiply algorithm” and put as an open problem to at-
tack Montgomery Ladder algorithm when the y-coordinate
is not used.

1.2. Our Results

In this paper, we show that Montgomery method when
the y-coordinate is not used can be attacked with only one
or two faults during the computation. More generally, we
show that a special fault attack that changes the point on the
original curve to a point on a cryptographically weak curve
can be not detected, while the resulting output, a point of
the original strong elliptic curve, can still be used to recover
the secret key. The probability of success of the attack is
very high as the probability to obtain the right effect is of
one half.

The basic idea is to use the twist of the elliptic curve.
This curve is associated to the original curve so that a given
abscissa corresponds either to a point on the curve or to a
point on the twist with probability approximately one half.
Consequently, by performing an error at random on some
small size register of the abscissa, we can go from a point
on the original elliptic curve to a point on its twist and back-
ward. Moreover, Montgomery implementation when the y-
coordinate is not used, does not care of whether the com-
putation is performed on the original curve or on its twist.
Furthermore, the attack can still be mounted even though
classical countermeasures are used(such as exponent mask-
ing for example).

Finally, we discover that the elliptic curve parameters
recommended in most standards do not take into account
such an attack since the order of the twist is often smooth,
almost never a prime number.

2. Elliptic Curve Scalar Product and Twist

An elliptic curve E defined over a field k is a (smooth,
geometrically irreducible and projective) curve of genus one
with a based point O [?]. For k a finite field Fp of char-
acteristic p > 3, application of the Riemann Roch The-
orem yields a Weierstrass projective model for E of the
form Y 2Z = X3 + AXZ2 + BZ3 where A,B ∈ Fp,
4A3 + 27B2 6= 0 and where O = (0 : 1 : 0). Such a
curve admits a group structure with neutral element O and
efficient formulas to add points. Extensive use of the group
law is done in cryptography due to the fact that numerous
Diffie-Hellman problems are believed to be hard in these
groups.

Most of the cryptographic schemes imply the scalar
product of a point P by a secret exponent d. The classi-
cal way to perform it is the use of a binary exponentiation
algorithm (cf. Fig. 1) but it turns out that these algorithms
have unpleasant drawbacks in view of side channel attacks.

Input: P ∈ E, d = (d0, . . . , dn−1) ∈ {0, 1}n
Output: R = dP
R = O
for j = n− 1 downto 0 do

R = 2R.
if dj = 1 then R = R+ P

return R

Figure 1. Left to right binary algorithm

2.1 Montgomery’s Algorithm

In this context, Joye et al [?] emphasize that an alter-
native (but less general) model due to P. Montgomery [?]
could be a valuable countermeasure since no operation de-
pends on the bit of the secret exponent. The so called
Montgomery ladder 2 , was extended to all kind of ellip-
tic curves. One attractive advantage of the latter (cf. [?])
is that there exists efficient formulas to obtain the x and z-
coordinates of the sum of two points P = (xP : . : zP)
and Q = (xQ : . : zQ) with the help of the extra point
P −Q = (xP−Q : . : zP−Q). The detail of the computa-
tion can be seen in [?]. It needs only 13 multiplications, 4
squarings and 18 additions. It does not not require the use
of the y coordinates. The main idea of the algorithm is to
compute two values in parallel which have a difference of
P . The algorithm only double points or add points with a
difference of P .

(cf. Fig 2).

Input: P = (xP : . : zP) ∈ E,
d = (d0, . . . , dn−1) ∈ {0, 1}n

Output: R = (xR : . : zR) = dP
R0 = O, R1 = P
for j = n− 1 downto 0 do

R1−dj
= R1−dj

+Rdj
, Rdj

= 2Rdj

return R0

Figure 2. Montgomery Powering Ladder

2.2. The Twist of an Elliptic Curve

One interesting feature of this algorithm for our purposes
is that the y-coordinates of the points is not needed. As a
consequence, this algorithm is also valid for points (x :

y : z) ∈ E with y ∈ Fp2 , instead of simply y ∈ Fp. This
remark yields thus some interest on the subset of points with
x and z-coordinates defined in Fp on an elliptic curve with
model in Fp, but defined over Fp2 . Let us denote S, this set
of points, that is

S = {(0 : 1 : 0)}
∪ {(x : y : 1) ∈ E(Fp2) with x ∈ Fp, y ∈ Fp2}.

Obviously, S = {O} ∪ S0 ∪ S1 ∪ S2 with S0 = {(x : 0 :
1) ∈ E(Fp2) with x ∈ Fp} (points of order 2), S1 = {(x :
y : 1) ∈ E(Fp2) with x ∈ Fp, y ∈ F∗p} and S2 = {(x :
y : 1) ∈ E(Fp2) with x ∈ Fp, y ∈ Fp2 \ Fp}. Let α be the
number of points of order two, that is the number of roots of
x3+ax+ b , then S contains 2p+1−α distinct points. Let
us furthermore assume thatE(Fp) (that is,O∪S0∪S1) has
got p + 1 − c points, the cardinality of S2 is thus equal to
p+c−α, and therefore the cardinality ofO∪S0∪S2 is equal
to p + 1 + c. The attentive reader will notice immediately
that this number is exactly equal to the cardinality of the
quadratic twist of E, Ẽ. In truth, it is not very surprising
since the equation for Ẽ is equal to (ε)y2z = x3 + axz2 +
bz3, where ε is a quadratic non-residue in Fp, it is then clear
that if x is not the abscissa of a point of E, it is a point on
Ẽ. Points in O ∪ S0 ∪ S2 can therefore be easily mapped
to points on the twist. Finally, we can thus deduce that if
we have on input of the Montgomery’s ladder algorithm an
exponent d and coordinates x and z in Fp which are not
coordinates of points of E, the result of the algorithm is
equal to d times (x : . : z) on the twist of E (since this
algorithm makes no use of the coefficient ε for the twist).

In a constructive approach, this observation suggests an
elegant way to implement cryptographic protocols which
makes a simultaneous use of an elliptic curve and its twist,
especially to get with uniform distribution elements in Fp

from points on elliptic curves. Such a scheme was for in-
stance proposed by Kaliski in 1991 for getting a random
permutation from a random function [?]. More recently,
Boyd et al. applies this idea to the field of password-
authenticated exchange [?] to avoid partition attack, Möller
to the field of public key encryption [?] and Chevassut et al.
to the field of randomness extraction for the Internet Key
Exchange protocol [?]. Of course, real implementations of
these protocols must resist to side-channel attacks and in
this context, one especially must take care how the switch
between a curve and its quadratic twist is implemented.
With the Montgomery’s ladder powering algorithm, there is
no need of the switch and thus this difficulty can be easily
erased.

According to [?], it is the more efficient implementation
secure against simple power analysis. Various implementa-
tions of the Montgomery ladder are available but the most
interesting is when y-coordinate is not used. Moreover, ac-
cording to [?], this implementation seems very efficient as

well to defeat fault attacks thanks to a single verification
that the point is on the curve (a verification that x3+ax+ b
is a square is enough). We will see in the following that this
might not be the case.

2.3. Generic Algorithms for Discrete Loga-
rithms

In [?], Pollard describes a heuristic method, called the ρ-
method, to compute discrete logarithms in a generic cyclic
group with constant memory and in probabilistic time ap-
proximately equal to 3

√
2nπ/2 group operations, where n

is the size of the group cardinal. In particular, this algo-
rithm can be applied on a prime order group. Then, using
the Pohlig-Hellman algorithm [?], it is possible to recover
the entire discrete logarithm in time at most O(2n/2), even
though the order is not prime.

In the sequel, we use the following facts:

• The group order of the original elliptic curve and of its
twist is roughly of the same size;

• With probability approximatively one half a random
abscissa corresponds to a point on the original curve
or to a point on its twist;

• Montgomery algorithm when the y-coordinate is not
used works without difference either on the original
curve or on its twist;

• Even though the order of the group on the elliptic curve
is a prime, there is no reason that the order of its twist
is also a prime, and consequently generic algorithms
to compute discrete logarithms in time the square-root
of the largest factor can always be used.

3. Fault Attack

First, we present the fault attack on a non-secure imple-
mentation. In this case, the public point P can be chosen by
the adversary and we will see that with a well chosen point,
the result of the computation d.P is enough to recover the
secret exponent d. Note that this first attack may not ap-
ply in real applications but it helps to understand the more
sophisticated one. Finally, if a countermeasure is imple-
mented during the computation, we will see that there are
two ways of recovering the value d with very few faults.

3.1. Basic attack without Countermeasure

If the computation is not protected against fault attacks
(it is still possible as Montgomery ladder was said to be se-
cure against fault attack), the attacker can choose a point P

which is not on the curve but on its twist. This can be eas-
ily done as half of the possible values of x correspond to a
point on the curve and the other values of x give points on
the twist. We have seen in section 2 that a Montgomery ex-
ponentiation works either on the curve or on its twist. This
can be an advantage in some case but usually, no property
is required on the twist as this appears in section 4. So with
usual constraints, the twist of an elliptic curve is weak, i.e.
the number of points on the twist is smooth. So the attacker
can choose a point P which is on the twist. In this case,
the computation gives the value d.P . With this value, the
attacker is able with classical algorithms, such as ρ-method
and Pohlig-Hellman, to compute the value d mod ord(Ẽ)
with a time complexity which is given by the square root
of the largest factor of the twist order. If we assume that
the number of points on the twist is random, then according
to [?] fact 3.7, the size of the largest factor is smaller than
ord(Ẽ)2/3 with probability at least 1/2 and the complexity
of the attack is about ord(Ẽ)1/3, which is feasible for typi-
cal sizes of elliptic curves used in crypto-applications. Once
the value is computed, there is only one or two possibilities
for d as the order of the curve and the order of its twist are
roughly of the same size. So with only one message, an
attacker is able to retrieve easily the secret scalar d.

3.2. The Classical Countermeasure

To avoid the previous attack, countermeasures can be im-
plemented. According to [?], a verification that the point
belongs to the curve is sufficient and may prevent fault at-
tacks. So in the following, we assume that the scalar product
checks if the point d.P is on the curve. The verification can
be done at the beginning or at the end of the computation
or at both but this changes nothing to our attack. So we can
decide that the protected algorithm is described in Fig. 3.

Input: a point P with abscissa x, a scalar d
Output: d.P
Compute d.P
if d.P is on the curve, i.e. x3 + ax+ b is a square, then

return d.P
else return Error

Figure 3. Secure implementation

Note that verifying whether a point is on a curve is equiv-
alent to check whether x3+ax+b is a square. Respectively,
if x3 + ax+ b is not a square than the point is on the twist.
We see in the sequel the impact of a fault during each step
of the algorithm.

3.3. Fault attack with chosen points.

If the verification process is implemented in order to re-
sist to the previous attack, the attacker can try to modify
the result of the computation before the verification. In this
case, the abscissa x of the result d.P can be changed by the
attacker to a points Q with abscissa x⊕ ε, denoted d.P ⊕ ε,
which belongs to the curve with a probability 1/2. So with
a very high probability, the attacker obtains such a result,
his main problem is that the value ε is unknown. According
to [?], the attacker can assume that the fault only modifies
a register of small size s, 8 or 16 bits, with respect to n, the
bitsize of the order. The attacker can guess the value of ε
and for each guess, try to find the associated d value. Un-
fortunately, this attack makes his computation effort larger
with a factor 2s · n/s that makes the attack unfeasible for
large registers. In fact, this basic attack can be improved
easily to have the same complexity as in the previous sec-
tion. For this purpose, the attacker just needs to collect two
faulty results associated to the same message with different
values for ε. With those results, he can see which registers
have been modified. For example, the two results look like
x⊕ε and x⊕ε′, that is written in basis 2s: x1, x2, . . ., xi⊕ε,
. . ., xn/s and x1, x2, . . ., xj ⊕ ε′, . . ., xn/s. Consequently,
he has only two possibilities for the result, x1, x2, . . ., xi,
. . ., xj , . . ., xn/s or x1, x2, . . ., xi ⊕ ε, . . ., xj ⊕ ε′, . . .,
xn/s, and he can retrieve the value of d easily.

So with only two faulty results (a faulty result happens
with probability one half), the attacker is able to retrieve the
secret key by solving one discrete logarithm on the twist of
the initial curve.

3.4. Fault attack with a fixed point

In the previous attacks, the adversary is able to choose
the value of the point P . In some specific applications,
this may not be the case. For example, the point can be
stored in the card as described in [?]. In that case, the at-
tack still works but it needs more faults to retrieve the secret
exponent. Precisely, the attacker injects a fault at the be-
ginning of the computation (he modifies the point P) and
at the end of the computation to bypass the final verifi-
cation. In this way, he can collect equations of the form
d · (P ⊕ εi) = Qi ⊕ ε′i for i = 1, 2, . . . , f . In a first ap-
proximation, we can assume that the attacker is lucky, so the
effect of the fault on P always gives a point on the twist.

Once the faulty results collected, the attacker must find
the values for εi and ε′i. Of course he can try all the possi-
ble values and solve the discrete logarithm on the twist and
check if the result is true on the curve but this not very effi-
cient. So the main idea is to use multiple results to eliminate
the wrong values for εi and ε′i. Once a unique possibility re-
mains for each value, the attacker is in the same condition

than in the previous attack and he can solve the discrete log-
arithm with one point on the twist.

In order to find the solution, the attacker works in a
small subgroup of the twist which order is t. For each
possible value of d mod t, the attacker verifies whether the
pair (εi, ε′i) is a solution of the previous equation. For the
right value of d mod t, a solution exists (linked with the
effect of the fault). For a wrong value, the probability to
find a solution is roughly |C|.|D|/t where C and D re-
spectively denote the set of all possible values for ε and ε′.
To find only one solution for d mod t, the method should
be applied a sufficient number of time, depending on the
value t. After f faults, the number of possible solutions
is t.(|C|.|D|/t)f . So if the attacker chooses f and t such
that t.(|C|.|D|/t)f < 1, he is able to find a unique solution
d mod t with the associated values (εi, ε′i) for all the faulty
results collected. With all of this information, he can solve
the DLog problem d ·P ′ = Q′ in the twist of the curve. The
complexity of the first step of the attack is f.t.|C|.|D| =
f · t · 22s · n2/s2 with (22fs · n2f)/(s2f · tf−1) < 1. The
attack can be optimized if t is smooth e.g. t =

∏
tk. In this

case, the computation can be done in all the small subgroups
and the complexity is then

f ·
∑
k

tk · 22s · (n2/s2).

Numerical examples for these complexities are given in the
next section.

If the attacker is not lucky, he has to collect more faulty
results in order to have f equations with P ⊕ εi on the twist
(roughly 2f faulty results which need 4f experiments to be
obtained). If the attacker is not able to distinguish inter-
esting faulty results from others, he can run the previous
algorithms on all the experiments and keep only the value
d mod t which is valid for the highest number of experi-
ments. The remaining candidates can be eliminated by en-
larging the value t.

4. Concrete Example with Standardized Pa-
rameters of Elliptic Curves

In this section, we compute for the different curve pa-
rameters, proposed by the NIST in [?] and by the consor-
tium SECG [?], the security of the curve according to our at-
tack. We evaluate the security as half of the size of the larger
factor of the group order of the twist. The order of the twist
can be deduced from the order of the original elliptic curve
thanks to the following equation: ord(Ẽ) = p+1−ord(E)
where p is the number of field elements in the finite field
where the curve is defined.

Values P1363 X9.62 NIST Strength Security
secp IPSEC X9.63
112r1 c/c/r 56 27
112r2 c/c/c 56 31

128r1 c/c/c 64 37
128r2 c/c/c 64 59

160k1 c/r/c c/r 80 59
160r1 c/c/r c/c 80 59
160r2 c/c/c c/r 80 62

192k1 c/c/r c/r 96 69
192r1 c/c/c r/r r 96 48

224k1 c/c/c c/r 112 56
224r1 c/c/c c/r r 112 59

256k1 c/c/c c/r 128 50
256r1 c/c/c r/r r 128 121

384r1 c/c/c c/r r 192 193∗
521r1 c/c/c c/r r 256 231

We put in bold font, all the securities below 260 since
such a computation can be performed. Only one parameter
leads to a prime number of the order of the twist where we
put a ’*’. The mention ’r’ denotes parameters explicitly rec-
ommended in the standard, while the mention ’c’ denotes
parameters in conformance with the standard. The column
“Strength” refers to the standard [?].

With the curve secp256k1, the order of the twist is

3× 197× 1559× 96769× 146849× 2587814237219×
375925338294461779×

101009178936527559588563023359.

So on implementations without protections, the attacker can
compute the discrete logarithm in the twist with a cost of
250 and retrieve the secret scalar for n = 256. The details
of all the attacks described previously with this curve, im-
plemented first on 8 bits registers where the fault produces
all possible values on 8 bits, secondly implemented on 16
bits registers where the fault produces all possible values on
16 bits and finally implemented on 32 bits registers where
the fault moves a register to zero:

Register |C| or |D| f t preprocess
8-bit 213 4 3 · 197 · 1559 · 96769 247

> 235 = (226)4/3

16-bit 220 6 3 · 197 · 1559 · 96769· 261

146849 > (240)6/5

32-bit 23 2 3 · 197 > 26 215

In this example we can see that in the two cases, with less
than 6 faulty results (which can be obtained with less than

24 experiments) and an overall complexity smaller than 250

(except the middle one), the attacker can retrieve the secret
scalar.

5. Conclusion

In this paper, we have presented a very powerful fault
attack on the Montgomery ladder implementation when the
y-coordinates is not used. The attack needs only few faults
in a very classical and realistic fault model. The major prob-
lem of the implementation we studied is that the probability
to belong to the curve for a random point is very high (due
to the use of the abscissa only). In that case, the verifica-
tion that the point is on the curve is not efficient. A basic
countermeasure can be to repeat the verification a sufficient
number of time during the computation to lower the prob-
ability of success of the attacker. For example, if n = 160
the verification of the intermediate point can be done every
five steps of the Montgomery ladder, that gives a probabil-
ity of success for the attacker of 2−

160
5 = 2−32. It is not

clear whether this countermeasure can be defeated but it is
a challenge to find a more efficient countermeasure to avoid
this attack. It is still possible to choose elliptic curves such
that the order of the twist is prime [?] but despite it is less
efficient and harder to realize, faults on the parameters of
the curve as described in [?] might be still valid.

5.1. References

Errata 2008-09-10. It is fair to add that it was conven-
tial wisdom in the cryptographic community, prior to this
work, to beware of elliptic curves with weak twists. For
instance, we refer to D.J. Bernstein’s article, Curve25519:
new Diffie-Hellman speed records, published in the pro-
ceedings of PKC’06.

