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ELLIPTIC PERIODS AND PRIMALITY PROVING

TONY EZOME AND REYNALD LERCIER

Abstract. We construct extension rings with fast arithmetic using isogenies between elliptic
curves. As an application, we give an elliptic version of the AKS primality criterion.

1. Introduction

Classical Kummer theory considers binomials of the form xd −α where d > 2 is an integer
and α is a unit in a (commutative and unitary) ring containing a primitive d-th root of unity
ζ. The associated R-algebra S = R[x]/(xd − α) has shown to be extremely useful, including
in very recent algorithmic applications such as integer factoring and discrete logarithm com-
putation [12], primality proving [1, 6], fast polynomial factorization and composition [14], low
complexity normal basis [20, 11, 2] of field extensions and ring extensions [17].

Part of this computational relevance is due to the purely algebraic properties of S: a finite
free étale R-algebra of rank d, endowed with an R-automorphism σ : x 7→ ζx such that R is the
ring of invariants by σ in S (see Section 3.1). However, there are more geometric properties
involved. For example, we can define the degree of a non-zero class in R[x]/(xd−α) to be the
smallest degree of non-zero polynomials in this class. This degree is subadditive and invariant
by the automorphism σ. To understand this, it is sensible to introduce the multiplicative
group Gm = Spec(R[x, 1/x]) over R and the multiplication by d isogeny [d] : Gm → Gm.
Then x = α defines a section A of Gm → Spec(R) and S can be seen as the residue ring at
FA = [d]−1(A). The kernel of [d] is the disjoint union of d sections in Gm(R). Let T be the
one defined by x = ζ. Translation by T defines an automorphism of Gm that stabilizes FA.
One can then view elements in S as congruence classes of functions on Gm modulo FA.

The main restriction of classical Kummer theory is that not every ring R has a primitive
d-th root of unity. One may look for an auxiliary extension R′ ⊃ R that contains such
a primitive root, but this may result in many complications and a great loss of efficiency.
Another approach, already experimented in the context of normal bases [9] for finite fields
extensions, consists in replacing the multiplicative group Gm by some well chosen elliptic
curve E over R. We then look for a section T ∈ E(R) of exact order d. Because elliptic
curves are many, we increase our chances to find such a section. We call the resulting algebra
S a ring of elliptic periods because of the strong analogy with classical Gauss periods.

The first half of the present work is devoted to the explicit study of Kummer theory of
elliptic curves and, more specifically, to the algebraic and algorithmic description of the residue
algebras constructed as sketched above. The resulting elliptic functions and equations are not
quite as simple as binomials. Still they can be described very explicitly and quickly, e.g. in
quasi-linear time in the degree d. The geometric situation is summarized by Theorem 1 and
the R-algebra S of elliptic periods is described by Theorem 2. The second half of the paper
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proposes an elliptic version of the AKS primality criterion. A general, context free, primality
criterion in the style of Berrizbeitia is first given in Theorem 3. This criterion involves an
R-algebra S where R = Z/nZ and n is the integer to be tested for primality. If we take S to
be R[x]/(xd − α), we recover results by Berrizbeitia and his followers. If we take S to be a
ring of elliptic periods, we obtain the elliptic primality criterion of Corollary 2.

Similarly to the ecpp algorithm [15, 19], this algorithm is Las Vegas probabilistic. The
behavior of a Las Vegas algorithm depends on the input of course, but also on the result of
some random choices. It either stops with the correct result or informs that it failed. The
running time is bounded from above by the same asymptotic bound as ecpp, i.e. (log n)3+o(1)

multiplications in Z/nZ. Nevertheless, the space requirement of our elliptic version of the

AKS primality criterion is larger, (log n)3+o(1) bits instead of (log n)2+o(1) bits. This makes
it at the time of writing less suitable than ecpp for proving the primality of large integers n.

While the proof of Corollary 2 uses the results in Section 2, much of Section 3 is independent
of Section 2. Readers only interested in primality proving may skim through Section 2 and
read Section 3, then come back to Section 2 for technical details.
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guidance. Among many other things, he explained to us how elliptic periods could yield a
fast variant of the AKS primality criterion and without him, this work would genuinely not
have been completed. We are heavily indebted to him.

2. Isogenies between elliptic curves

In this section, we use isogenies between elliptic curves to construct ring extensions. To
this end, we extend the methods introduced by Couveignes and Lercier [9] in two different
directions. Firstly, we provide efficient explicit expressions for the constants that appear in
the multiplication tensor of the ring of elliptic periods. Thanks to these formulae, one can
construct the ring of elliptic periods in quasi-linear time. Secondly, we explain how these
methods, originally introduced in the context of finite fields, can be adapted to the more
general context of rings.

We recall in Section 2.1 more or less classical formulae about elliptic curves and isogenies
over fields. In Section 2.2, these formulae are proved to hold true over almost any base ring.
In Section 2.3, we use isogenies to construct extension rings and we finally give a numerical
example in Section 2.4.

Notation: If −→α = (αi)i∈Z/dZ and
−→
β = (βi)i∈Z/dZ are two vectors of length d, we denote

by −→α ?j
−→
β =

∑
i αiβj−i the j-th component of the convolution product. We denote by

σ(−→α ) = (αi−1)i the cyclic shift of −→α , by −→α �
−→
β = (αiβi)i the component-wise product and

by −→α ?
−→
β = (−→α ?i

−→
β )i the convolution product.

2.1. Elliptic curves over fields. In this section, K is a field with characteristic p and E/K
is an elliptic curve given by a Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 .
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We set

b2 = a2
1 + 4a2 , b4 = a1a3 + 2a4 , b6 = a2

3 + 4a6 ,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4 .

We denote by O = [0 : 1 : 0] the origin.
Following Vélu [25, 24] and Couveignes and Lercier [9], we state a few identities related

to a degree d separable isogeny with cyclic kernel I : E → E′. We exhibit in Section 2.1.3 a
normal basis for the field extension K(E)/K(E′) consisting of degree 2 functions. We study
in Section 2.1.4 the matrix of the trace form in this normal basis.

2.1.1. Some simple elliptic functions. If A is a point in E(K), we denote by τA : E → E the
translation by A. Following [9, Section 2], we set xA = x ◦ τ−A and yA = y ◦ τ−A.

We check that

xA × (x− x(A))2 = (a3 + 2y(A) + a1x(A)) y + x(A)x2 +

+
(
a4 + a2

1x(A) + a1a3 + 2a2x(A) + a1y(A) + x(A)2
)
x

+ a2
3 + a1a3x(A) + a3y(A) + a4x(A) + 2a6 . (1)

We do not give an explicit expression for yA but we check that yA×(x−x(A))3 can be written
as a polynomial in Z[a1, a2, a3, a4, a6, x(A), y(A), x, y] . We also check that

(xA − x(A))(x−A − x(A)) = −ψ3(a1, a2, a3, a4, a6, x(A))

(x− x(A))2
− ψ̂3(a1, a2, a3, a4, a6, x(A))

x− x(A)
(2)

where ψ3(a1, a2, a3, a4, a6, x) is the so-called 3-division polynomial:

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8 ,

and

ψ̂3 = ψ′3/3 = 4x3 + b2x
2 + 2b4x+ b6 .

We also check that the resultant of ψ3 and ψ̂3 in the variable x is

Resx(ψ3, ψ̂3) = −∆2 (3)

where ∆ ∈ Z[a1, a2, a3, a4, a6] is the discriminant of the elliptic curve E.
If A, B and C are three pairwise distinct points in E(K), we define Γ(A,B,C) as in [9,

Section 2],

Γ(A,B,C) =
y(C −A)− y(A−B)

x(C −A)− x(A−B)
. (4)

Taking for C the generic point on E, we define a function uA,B ∈ K(E) by uA,B(C) =
Γ(A,B,C). It has two simple poles: one at A and one at B. The following identities are
proven in [9, Section 2].

Γ(A,B,C) = Γ(B,C,A) = −Γ(B,A,C)− a1 ,

= −Γ(−A,−B,−C)− a1 ,

uA,B + uB,C + uC,A = Γ(A,B,C)− a1 ,

uA,BuA,C = xA + Γ(A,B,C)uA,C + Γ(A,C,B)uA,B

+a2 + xA(B) + xA(C) , (5)

u2
A,B = xA + xB − a1uA,B + xA(B) + a2 . (6)
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We further can prove in the same way

xCuA,B = Γ(A,B,C)xC + xB(C)uC,B − xA(C)uC,A + yA(C)− yB(C) ,

xAuA,B = yA + xB(A)uA,B − yB(A) ,

xBuA,B = −yB − a1xB − a3 + xB(A)uA,B − yB(A) .

2.1.2. Vélu’s formulae. Let d > 3 be an odd integer and let T ∈ E(K) be a point of order d.
For k an integer, we set xk = xkT , yk = ykT and following Vélu [25], we define

x′ = x+
∑

16k6d−1

[xk − x(kT )] and y′ = y +
∑

16k6d−1

[yk − y(kT )] . (7)

We also set

w4 =
∑

16k6(d−1)/2

6x(kT )2 + b2 x(kT ) + b4 ,

w6 =
∑

16k6(d−1)/2

10x(kT )3 + 2 b2 x(kT )2 + 3 b4 x(kT ) + b6 ,

a′4 = a4 − 5w4 ,

a′6 = a6 − b2w4 − 7w6 ,

and

a′1 = a1, a
′
2 = a2, a

′
3 = a3 . (8)

Vélu proves the identity

(y′)2 + a′1x
′y′ + a′3y

′ = (x′)3 + a′2(x′)2 + a′4x
′ + a′6 .

So the map (x, y) 7→ (x′, y′) defines a degree d isogeny I : E → E′ where E′ is the elliptic
curve given by the above Weierstrass equation.

2.1.3. Elliptic normal basis. Let

Uk = ukT,(k+1)T and uk = aukT,(k+1)T + b (9)

where a 6= 0 and b are scalars in K chosen such that∑
k∈Z/dZ

uk = 1. (10)

Such scalars always exist by [9, Lemma 4]. For k and l distinct and non-zero in Z/dZ, we set

Γk,l = Γ(O, kT, lT ). (11)

Recall

uO,kT =
y − y(−kT )

x− x(kT )
. (12)

We check that

Uk = ukT,(k+1)T = uO,(k+1)T − uO,kT + Γk,k+1 . (13)

The system (uk)k∈Z/dZ is a basis of K(E) over K(E′). More precisely, we have the following
lemma, that generalizes Lemma 5 of [9].
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Lemma 1 (A normal basis). Let E be an elliptic curve over a field K. Let T ∈ E(K) be a
point of odd order d > 3 and I : E → E′ be the degree d separable isogeny defined from T
by Vélu’s formulae. Let (uk)k∈Z/dZ be the functions in K(E) defined above. Then the system
(uk)k∈Z/dZ is a K(E′)-basis of K(E).

Moreover, let L ⊃ K be an extension of K and let A ∈ E′(L) be a non-zero point. Let
B ∈ E(L) be a point on E such that I(B) = A and let

I(−1)(A) = [B] + [B + T ] + [B + 2T ] + · · ·+ [B + (d− 1)T ]

be the fiber of I above A. Then the three following conditions are equivalent:
(i) The images of the (uk)k∈Z/dZ in the residue ring at I−1(A) form an L-basis of it;

(ii) The matrix (uk(B + lT ))k,l∈Z/dZ is invertible;

(iii) The point A is not in the kernel of the dual isogeny I ′ : E′ → E.

Proof. We preliminary base change E and E′ to L and observe that the (uk)k∈Z/dZ are L-

linearly independent and form a basis of the linear space L(I−1(O′)) where O′ is the origin on
E′ and I−1(O′) = [O] + [T ] + [2T ] + · · ·+ [(d− 1)T ] is the kernel of I. Indeed, let (λk)k∈Z/dZ
be scalars in L such that f =

∑
k∈Z/dZ λkuk is the zero function. Taylor expansions of f at

poles of uk (see [9, Section 2]) show that all λk are equal. Since the sum of the uk is 1, we
deduce that every λk is zero. So the (uk)k∈Z/dZ are L-independent. They form a basis of

L(I−1(O′)) because I−1(O′) is a degree d divisor (Riemann Roch theorem).

Now, let us prove the second part of the lemma.

To prove that (i) and (ii) are equivalent, we notice that a vector (λk)k∈Z/dZ is in the kernel
of the matrix (uk(B + lT ))k,l∈Z/dZ if and only if

∑
k∈Z/dZ λkuk(B + lT ) is zero for every

l ∈ Z/dZ. This is equivalent to the vanishing of the function
∑

k∈Z/dZ λkuk on the fiber

I−1(A). Incidentally, we notice that the matrix (uk(B + lT ))k,l∈Z/dZ is circulant.

To show that (iii) implies (i), let (λk)k∈Z/dZ be scalars in L such that f =
∑

k∈Z/dZ λkuk

vanishes on the fiber I(−1)(A). If the λk are not all zero, then f is non-zero, and its divisor

is I(−1)(A)− I(−1)(O′). We deduce that
∑

k∈Z/dZ[B + kT ]− [kT ] is a principal divisor. Thus∑
k∈Z/dZ(B + kT − kT ) = dB = I ′(A) = O, the origin on E. So A lies in the kernel of I ′.

Conversely, if A lies in the kernel of I ′, then the divisor I(−1)(A) − I(−1)(O′) is principal.

Let f be a non-zero function on E such that (f) = I(−1)(A) − I(−1)(O′). Since f lies in
L(I−1(O′)), there exists a non-zero vector (λk)k∈Z/dZ in Ld such that f =

∑
k∈Z/dZ λkuk. But

f vanishes on the fiber I(−1)(A), by construction. So (i) implies (iii).

To finally prove the first part of the lemma, it is now enough to take for A the generic
point of E′/K. The generic point is not in the kernel of I ′ and thus the system (uk)k∈Z/dZ is
a K(E′)-basis of K(E). �

2.1.4. The trace form. Lemma 1 above provides a basis for the residue ring at a fiber I−1(A) =
[B] + . . . + [B + (d − 1)T ] where A ∈ E′(K). We need fast algorithms for multiplying
two elements in this residue ring, given by their coordinates in our basis. A prerequisite
is to determine the coordinates of x(B) in the basis (uk(B))k∈Z/dZ. More generally, we are
interested in the coordinates of x in the basis (uk)k∈Z/dZ of the K(E′)-vector space K(E).
The reason is that when multiplying uk and ul there appear some translates of x. See
Eqs. (5) and (6). We will give explicit expressions for these coordinates and explain how to
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compute them efficiently. We shall make use of the trace form of K(E)/K(E′). Remind this
is a non-degenerate quadratic form. For f a function on E, we denote by Tr(f) the sum∑

k∈Z/dZ f ◦ τkT . It can be seen as a function on E′. Our goal is to compute Tr(uO,kT ),

Tr(ukul) and Tr(ukx) as linear combinations of 1, x′ and y′. We then deduce an explicit
formula for the determinant of the trace form.
2.1.4.1. Traces of uO,kT . For 1 6 k 6 d− 1, we set ck = Tr(uO,kT ) . It is proven in [9, Section
4.2] that

c1 = Tr(uO,T ) =
∑

16l6d−2

Γl,l+1 − a1 . (14)

Assume k, l and k + l are non-zero in Z/dZ, then Tr(uO,(k+l)T ) = Tr(uO,kT ) + Tr(uO,lT ) −
dΓk,k+l . Thus,

ck+l = ck + cl − dΓk,k+l . (15)

This formula enables us to compute all the ck for 1 6 k 6 d − 1, at the expense of O(d)
operations in K. Indeed, we first compute the coordinates (x(kT ), y(kT )) for 1 6 k 6 d− 1.
Then, using Eqs. (4) and (11), we compute Γk,k+1 for every 1 6 k 6 d − 2. We then use
Eq. (14) to compute c1. Finally, we use Eq. (15) repeatedly for l = 1 and 1 6 k 6 d− 2, and
we deduce the values of c2, . . . , cd−1.
2.1.4.2. Traces of ukul. Assume first that k 6∈ {−1, 0, 1}, so O, T , kT and (k+1)T are pairwise
distinct. Then

U0Uk = uO,T (uO,(k+1)T − uO,kT + Γk,k+1) ,

= x+ Γ1,k+1uO,(k+1)T − Γ1,k+1uO,T + x(T ) + x((k + 1)T )

−x− Γ1,kuO,kT + Γ1,kuO,T − x(T )− x(kT ) + Γk,k+1uO,T ,

= Γ1,k+1(uO,(k+1)T − uO,T )− Γ1,k(uO,kT − uO,T )

+x((k + 1)T )− x(kT ) + Γk,k+1uO,T .

So

Tr(U0Uk) = Γ1,k+1(ck+1 − c1)− Γ1,k(ck − c1) + d(x((k + 1)T )− x(kT )) + Γk,k+1c1 . (16)

For k = 0, we have U2
0 = x+ xT − a1u0,T + x(T ) + a2. And thus

Tr(U2
0 ) = 2x′ + d(x(T ) + a2)− a1c1 + 2

∑
16l6d−1

x(lT ) . (17)

For k = −1, we have

U0U−1 = uO,Tu−T,O = −uO,TuO,−T − a1uO,T ,

= −(x+ Γ1,−1uO,−T − Γ1,−1uO,T + a2 + x(T ) + x(−T )) ,

= −x+ Γ1,−1(u−T,O + a1) + Γ1,−1uO,T − a2 − 2x(T ) .

And thus

Tr(U0U−1) = −x′ + 2Γ1,−1c1 + d(a1Γ1,−1 − a2)− 2dx(T )−
∑

16l6d−1

x(lT ) . (18)

Finally, for k = 1, we have

Tr(U0U1) = Tr(U−1U0) = Tr(U0U−1) . (19)
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Now, for any k and l, we have

Tr(ukul) = a2 Tr(UkUl) + b2d+ 2abc1 . (20)

We set
ek = Tr(u0uk) . (21)

This is a polynomial in x′ with degree one if k ∈ {−1, 0, 1}, and zero otherwise. We denote
by −→e the vector (ek)k∈Z/dZ.

Assume now we are given a non-zero point A ∈ E′(K). For every k in Z/dZ, we write

ek = ek(A) . (22)

We can compute the vector −→e = (ek)k∈Z/dZ at the expense of O(d) operations in K. We first
compute the coordinates (x(kT ), y(kT )) for 1 6 k 6 d − 1, the coefficients Γk,k+1 for every
1 6 k 6 d− 2 and the ck for 1 6 k 6 d− 1 as explained in Section 2.1.4.1. We then compute
the Γ1,k for 2 6 k 6 d − 1 using Eqs. (4) and (11). Then, we use Eqs. (16), (17), (18), and
(19) to compute the values of the Tr(U0Uk) at A. Finally, we use Eq. (20) to deduce −→e .
2.1.4.3. Traces of xuk. For k 6∈ {−1, 0}, we have

xUk = xOukT,(k+1)T ,

= Γk,k+1x+ x((k + 1)T )uO,(k+1)T − x(kT )uO,kT +

y((k + 1)T )− y(kT ) + a1(x((k + 1)T )− x(kT )) .

And thus,

Tr(xUk) = Γk,k+1(x′ +
∑

16l6d−1

x(lT )) + x((k + 1)T )ck+1 − x(kT )ck +

d(y((k + 1)T )− y(kT ) + a1(x((k + 1)T )− x(kT ))) . (23)

For k = 0, we have

xU0 = xOuO,T = y + x(T )uO,T + y(T ) + a1x(T ) + a3 .

And thus,

Tr(xU0) = y′ + x(T )c1 + d(y(T ) + a1x(T ) + a3) +
∑

16l6d−1

y(lT ) . (24)

For k = −1, we have

xU−1 = xOu−T,O = −y − a1x+ x(T )u−T,O + y(T ) + a1x(T ) .

And thus,

Tr(xU−1) = −y′ − a1x
′ + x(T )c1 + d(y(T ) + a1x(T ))−

∑
16l6d−1

(y(lT ) + a1x(lT )) . (25)

We set
uk = Tr(xuk) = aTr(xUk) + b(x′ +

∑
16l6d−1

x(lT )) .

This is a polynomial in x′ and y′ with total degree at most 1. The vector −→u = (uk)k∈Z/dZ is
the coordinate vector of x in the dual basis of (uk)k∈Z/dZ. Remind we are interested in the

coordinates of x in the basis (uk)k∈Z/dZ itself. Call
−→
û = (ûk)k∈Z/dZ these coordinates. We

have
−→u = −→e ?

−→
û . (26)
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Assume now we are given a non-zero point A ∈ E′(K). For every k in Z/dZ, we write

ιk = uk(A) and ι̂k = ûk(A).

We can compute the vector −→ι = (ιk)k∈Z/dZ at the expense of O(d) operations in K. Then,

using Eq. (26), we can compute the vector
−→
ι̂ = (ι̂k)k∈Z/dZ at the expense of one division in

the degree d convolution algebra over K. This boils down to d(log d)2 log log d operations in
K.
2.1.4.4. The trace form. We now study the trace form in the basis (uk)k∈Z/dZ.

The matrix (Tr(ukul))k,l = (el−k)k,l is circulant and its determinant is

D = |Tr(ukul)|k,l =
∏

k∈Z/dZ

∑
l∈Z/dZ

ζklel (27)

where ζ is a primitive d-th root of unity (that is ζd = 1 and ζk − 1 is a unit for every
1 6 k 6 d− 1).

We compute ∑
l∈Z/dZ

el =
∑

l∈Z/dZ

Tr(u0ul) = Tr(u0

∑
l∈Z/dZ

ul) = Tr(u0) = 1 .

Using Eqs. (16), (17), (18) and (19), we deduce that D is a degree 6 d− 1 polynomial in x′

and the coefficient of (x′)d−1 is

a2d−2
∏

16k6d−1

(2− ζk − ζ−k) = a2d−2d2 .

Since ek = e−k for every k ∈ Z/dZ, we deduce from Eq. (27) that D is a square.
We now assume that d and the characteristic of K are coprime. So the degree of D(x′) is

d− 1. From Lemma 1, we deduce that the roots of D are the abscissae of points in the kernel
of the dual isogeny I ′ : E′ → E and they all have multiplicity two. Using Eq. (7), we deduce

ψ2d
I (x)D(x′) = a2d−2ψ2

d(x) , (28)

where

ψI(x) =
∏

16k6(d−1)/2

(x− x(kT )) (29)

is the factor of ψd(x) corresponding to points in the kernel of I.
2.1.4.5. Example. We detail on a simple example how to construct a ring of elliptic periods.
Following [9], we consider the elliptic curve E of order 10 defined by

E/F7 : y2 + xy + 5 y = x3 + 3x2 + 3x+ 2 .

The point T = (3, 1) generates a subgroup T ⊂ E(F7) of order d = 5. The quotient elliptic
curve E′ = E/T given by Vélu’s formulae has equation

E′/F7 : y2 + xy + 5 y = x3 + 3x2 + 4x+ 6 ,
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and the quotient isogeny is

I : (x, y) 7→ (x′, y′) =

(
x5 + 2x2 + 5x+ 6

x4 + 3x2 + 4
,(

x6 + 4x4 + 3x3 + 6x2 + 3x+ 4
)
y + 3x5 + x4 + x3 + 3x2 + 4x+ 1

x6 + x4 + 5x2 + 6

)
.

We focus first on Tr(uO,t). We have

(uO,kt)16k6d−1 =

(
y + 2

x+ 4
,
y + 2

x+ 3
,

y

x+ 3
,
y + 6

x+ 4

)
.

A direct but heavy calculation yields

c1 =
y + 2

x+ 4
+
y + 2x2 + 5

x2 + 5
+

5

x+ 3
+

6 yx+ 3 y + 2x3 + 3x

(x2 + 5) (x+ 4)
+

6 y + 6x+ 4

x+ 4
= 3 .

Alternatively, if we first compute Γ1,2 = 2 , Γ2,3 = 0 , Γ3,4 = 2 , we more easily come to
c1 = 2 + 0 + 2− 1 = 3. From Eq. (15), we deduce c2 = 3 , c3 = 6 , c4 = 6.

Let us now consider Tr(U2
0 ). A direct calculation yields

Tr(U2
0 ) =

(y + 2)2

(x+ 4)2
+

(y + 2x2 + 5)2

(x2 + 5)2
+

52

(x+ 3)2
+

(6 y(x+ 3) + 2x3 + 3x)2

(x2 + 5)2 (x+ 4)2
+

(6 y + 6x+ 4)2

(x+ 4)2
,

=
2x5 + 6x4 + x2 + 3x+ 1

x4 + 3x2 + 4
.

But we can easily deduce from Eq. (17) that this is equal to

2x′ + 5 (3 + 3)− 1 . 3 + 2 (3 + 4 + 4 + 3) .

If we now look more carefully at Tr(xU0), we have

Tr(xU0) = x .
y + 2

x+ 4
+

3 y + 3x2 + 4x+ 2

x2 + x+ 2
.
y + 2x2 + 5

x2 + 5
+

2 y + 4x2 + 3x+ 5

x2 + 6x+ 2
.

5

x+ 3
+

5 y(x+ 1) + 4x3 + 6x2 + 5x+ 6

(x2 + 6x+ 2) (x+ 3)
.
6 yx+ 3 y + 2x3 + 3x

(x2 + 5) (x+ 4)
+

4 y + 3x2 + x+ 1

x2 + x+ 2
.
6 y + 6x+ 4

x+ 4
,

=
y
(
x6 + 4x4 + 3x3 + 6x2 + 3x+ 4

)
+ 2x6 + 3x5 + 3x4 + x3 + 6x2 + 4x+ 6

x6 + x4 + 5x2 + 6
.

But, from Eq. (24), we find that this is equal to

y′ + 3 . 3 + 5 (1 + 1 . 3 + 5) + (1 + 0 + 5 + 5) .
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Let us finally notice that since c1 = 3 6= 0, we can take a = 1/c1 = 3 and b = 0 (see
Section 2.1.3). Moreover, let now A = (4, 2) ∈ E′(F7). Take B ∈ E(F7) such that I(B) =
A. We set τ = x(B) ∈ F7 and check that τ is a root of the irreducible F7-polynomial
(x5 + 2x2 + 5x+ 6)− 4 (x4 + 3x2 + 4) = x5 + 3x4 + 4x2 + 5x+ 4 . We find that

−→e = (0, 4, 0, 0, 4) .

2.2. Universal Weierstrass elliptic curves. All identities stated in Section 2.1 still make
sense and hold true for an elliptic curve over a commutative ring under some mild restrictions.
Some (but not all) of these identities are proven in this general context in Vélu’s thesis [24]
and Katz and Mazur’s book [13, Chapter 2]. In this section, we give an elementary proof for
all the required identities. We consider in Section 2.2.2 a sort of universal ring for Weierstrass
curves with torsion. This ring being an integral domain, the identities hold true in its fraction
field. There only remains to check the integrality of all quantities involved. By inverting the
determinant of Eq. (27), we define in Section 2.2.3 a localization of the universal ring where
the system (uk)k∈Z/dZ remains a basis for the function ring extension associated to the isogeny.

2.2.1. Division polynomials. Let A1, A2, A3, A4 and A6 be indeterminates and set B2 =
A2

1 + 4A2, B4 = 2A4 +A1A3, B6 = A2
3 + 4A6, B8 = A2

1A6 + 4A2A6 −A1A3A4 +A2A
2
3 −A2

4,
and

∆ = −B2
2B8 − 8B3

4 − 27B2
6 + 9B2B4B6 .

Set

A1 = Z[A1, A2, A3, A4, A6,
1

∆
] .

Let x and y be two more indeterminates. Set

Λ(A1, A2, A3, A4, A6, x, y) = y2 +A1xy +A3y − x3 −A2x
2 −A4x−A6 ∈ A1[x, y] .

Let Eaff be the affine smooth plane curve overA1 with equation Λ(A1, A2, A3, A4, A6, x, y) = 0.
Let E be the projective scheme over A1 with equation Y 2Z + A1XY Z + A3Y Z

2 = X3 +
A2X

2Z + A4XZ
2 + A6Z

3. We denote by O the section [0, 1, 0]. We have Eaff = E − O and
E is an elliptic curve over (the spectrum of) A1 in the sense of [13].

For every integer k > 0, we denote by ψk(A1, A2, A3, A4, A6, x, y) the functions inA1[x, y]/(Λ)
defined recursively as in [10, Proposition 3.53]:

ψ0 = 0, ψ1 = 1, ψ2 = 2y +A1x+A3,

ψ3 = 3x4 +B2x
3 + 3B4x

2 + 3B6x+B8 ,

ψ4 = ψ2

(
2x6 +B2x

5 + 5B4x
4 + 10B6x

3 + 10B8x
2+

(B2B8 −B4B6)x+B4B8 −B6
6

)
,

ψ2k =
ψk
ψ2

(
ψk+2ψ

2
k−1 − ψk−2ψ

2
k+1

)
,

ψ2k+1 = ψk+2ψ
3
k − ψk−1ψ

3
k+1 .

These are in A1[x, y]/(Λ) but we can see them as polynomials in A1[x, y] with degree
0 or 1 in y. If k is odd, then ψk belongs to A1[x] and, as a polynomial in x, we have

ψk = kx
k2−1

2 +O(x
k2−3

2 ). If k is even, then ψk/ψ2 belongs to A1[x]. The ring A1[x, y]/(Λ) is
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an integral domain. Following [10, Proposition 3.52, Proposition 3.55], we define the following
elements of its field of fractions:

gk = x− ψk+1ψk−1

ψ2
k

,

hk = y +
ψk+2ψ

2
k−1

ψ2ψ3
k

+
(
3x2 + 2A2x+A4 −A1y

) ψk−1ψk+1

ψ2ψ2
k

.

The following important relation holds true:

gk − gl = −ψk+lψk−l
ψ2
kψ

2
l

if k > l > 1 . (30)

We recall that multiplication by k on E − E[k] is given by (x, y) 7→ (gk, hk). Indeed, this is
well known on the generic fiber of E and it extends to all E by (Zariski) continuity.

2.2.2. Universal Vélu’s isogenies. Let d > 3 be an odd integer and let “x(T )” and “y(T )” be
two more indeterminates. Let S be the multiplicative subset in A1[x(T ), y(T )] generated by
all ψk(x(T ), y(T )) for 1 6 k 6 d− 1. Let Ad be the ring

Ad = A1[x(T ), y(T ),
1

S
,

1

d
]/(ψd(x(T )),Λ(A1, A2, A3, A4, A6, x(T ), y(T ))) .

This is an étale algebra over A1[1/d, 1/S]. Since the later is a regular ring, Ad is regular
too. This is also an integral domain. Indeed, the d-torsion of the generic Weierstrass curve is
irreducible. We denote by Kd the field of fractions of Ad. The point T = (x(T ), y(T )) defines
a section of Eaff over Ad. The curve E, base changed to Ad, may be seen as the universal
Weierstrass elliptic curve with a point of exact order d over a ring where d is invertible.

For every integer k such that 1 6 k 6 d− 1, the point kT defines a section of E over Ad.
We call x(kT ) and y(kT ) its coordinates and we have

x(kT ) = gk(A1, A2, A3, A4, A6, x(T ), y(T )) ∈ Ad ,
y(kT ) = hk(A1, A2, A3, A4, A6, x(T ), y(T )) ∈ Ad .

We note that due to Eq. (30), the difference x(lT )− x(kT ) is a unit in Ad for any k and l
in Z/dZ such that k, l, k + l and k − l are not zero. If we base change E to Kd, we obtain
an elliptic curve over a field and we can introduce all the scalars and functions of Section 2.1:
the Γk,l, the xk, yk, Uk, x

′, y′, w4, w6, ck. . . The denominators arising in the definition of
these scalars and functions are units in

Ad [E − E[d]] = Ad[
1

ψd(x)
, x, y]/(Λ(A1, A2, A3, A4, A6, x, y)) .

So all these scalars (resp. functions) are in Ad (resp. Ad [E − E[d]]). Especially, we can now
define the isogenous curve E′ thanks to Eq. (8), then the isogenies I and I ′.

There remains to choose a and b. We just take a = 1 and b = (1 − c1)/d. Then the
functions uk = aUk+b are in Ad [E − E[d]]. All equations from Eq. (11) to Eq. (29) still hold
true because they are true in Kd(E) and Ad [E − E[d]] embeds in the later field.

2.2.3. A normal basis. The open subset E − E[d] is the spectrum of the ring Ad [E − E[d]].
This is an integral domain and a regular ring (because it is smooth over Ad). Therefore it is
integrally closed. The open subset E′ −Ker I ′ is the spectrum of the ring

Ad
[
E′ −Ker I ′

]
= Ad[

1

D(x′)
, x′, y′]/(Λ(A′1, A

′
2, A

′
3, A

′
4, A

′
6, x
′, y′)) .
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This is again an integral domain and a regular ring (because it is smooth over Ad). Therefore
it is integrally closed too. Eqs. (1), (7), (28) and (29) show that Ad [E′ −Ker I ′] is included
in Ad [E − E[d]]. Eqs. (1) and (7) prove that x and y are integral over Ad [E′ −Ker I ′]. We
deduce that the translates (xk)16k6d−1 and (yk)16k6d−1 are integral over Ad [E′ −Ker I ′] too.
Using Eq. (2), we deduce that the 1/(x − x(kT )) are integral over Ad [E′ −Ker I ′]. Note
that in the special case d = 3, we also need Eq. (3). Now Eqs. (28) and (29) prove that
1/ψd(x) is integral over Ad [E′ −Ker I ′]. Altogether Ad [E − E[d]] is the integral closure of
Ad [E′ −Ker I ′] in Kd(E).

Using Eqs. (12) and (13) and the fact that the 1/(x − x(kT )) are integral over Ad[E′−
Ker I ′], we show that the (uk)k∈Z/dZ are integral over Ad [E′ −Ker I ′], therefore belong to
Ad [E − E[d]]. For every function f in Ad [E − E[d]], the products fuk are integral over
Ad [E′ −Ker I ′]. Therefore their traces Tr(fuk) belong to Ad [E′ −Ker I ′], since this ring is
integrally closed. Now remember that the determinant of the trace form is

D(x′) = |Tr(ukul)|k,l ,

a unit in Ad [E′ −Ker I ′]. We deduce that the coordinates of f in the basis (uk)k∈Z/dZ are in
Ad [E′ −Ker I ′]. We thus have found a basis for the Ad [E′ −Ker I ′]-module Ad [E − E[d]].
This finite free module of rank d is also étale because the determinant D(x′) of the trace form
is a unit.

Let σ be the Ad [E′ −Ker I ′]-automorphism of Ad [E − E[d]] induced by the translation
τ−T . We have σ(uk) = uk+1 for every k ∈ Z/dZ.

Lemma 2 (A freeness result). The ring

Ad [E − E[d]] = Ad[
1

ψd(x)
, x, y]/(Λ(A1, A2, A3, A4, A6, x, y))

is a finite free étale algebra of rank d over

Ad
[
E′ −Ker I ′

]
= Ad[

1

D(x′)
, x′, y′]/(Λ(A′1, A

′
2, A

′
3, A

′
4, A

′
6, x
′, y′))

and (uk)16k6d−1 is a basis for this free algebra. For every k ∈ Z/dZ, we have σ(uk) = uk+1

where σ is the Ad [E′ −Ker I ′]-automorphism of Ad [E − E[d]] induced by the translation τ−T .

The following theorem is proven by base change in Lemma 2.

Theorem 1 (Elliptic Kummer extension). Let d > 3 be an odd integer. Let R be a ring where
d is invertible. Let a1, a2, a3, a4, a6, x and y be elements in R such that

• ∆(a1, a2, a3, a4, a6) is a unit in R,

• ψd(a1, a2, a3, a4, a6, x, y) = 0,

• ψk(a1, a2, a3, a4, a6, x, y) is a unit in R for any 1 6 k 6 d− 1.
Then T = (x, y) is a point of exact order d on the Weierstrass elliptic curve given by the
equation y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6 over R.

Set a = 1 and b = (1 − c1)/d and uk = aUk + b. Then all equations from Eq. (11) to
Eq. (29) still make sense and hold true in the ring

R [E − E[d]] = R[
1

ψd(x)
, x, y]/(Λ(a1, a2, a3, a4, a6, x, y))
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and this ring is a finite free étale algebra of rank d over

R
[
E′ −Ker I ′

]
= R[

1

D(x′)
, x′, y′]/(Λ(a′1, a

′
2, a
′
3, a
′
4, a
′
6, x
′, y′))

and (ul)16l6d−1 is a basis for this free algebra.

For every k ∈ Z/dZ, we have σ(uk) = uk+1 where σ is the R [E′ −Ker I ′]-automorphism
of R [E − E[d]] induced by the translation τ−T .

2.3. Rings of elliptic periods. In this section, we give a recipe for constructing an extension
of a ring R using an isogeny between two elliptic curves over R. The resulting ring will be
called a ring of elliptic periods. It will be a finite free étale algebra over R. We just adapt
the construction of [9, Section 4] to the case where the base ring is no longer a field. So in
this section, R is a ring and d > 3 is an odd integer. We assume that d is invertible in R and
that we are given an elliptic curve E over R by its Weierstrass equation y2 + a1xy + a3y =
x3 + a2x

2 + a4x+ a6 where ∆(a1, a2, a3, a4, a6) is a unit in R. We also are given an R-point
T = (x, y) on E with exact order d. We call I : E → E′ the corresponding isogeny, given by
Vélu’s formulae. Let D(x′) = |el−k|k,l be the polynomial in R[x′] defined by Eqs. (27), (28)

and (21).
We further assume that we are given a section A = (x′(A), y′(A)) ∈ E′(R) of E′aff →

Spec(R). We assume that D(x′(A)) is a unit in R. Geometrically, this means that the section
A does not intersect the kernel of the dual isogeny I ′ : E′ → I. This is equivalent to the
circulant matrix (el−k(A))k,l being invertible. For every k in Z/dZ, we write ek = ek(A).

This is an element of R. Saying that the circulant matrix (el−k)k,l is invertible means that

the vector −→e = (ek)k∈Z/dZ is invertible for the convolution product ? on Rd. We denote by
−→e (−1) the inverse of −→e for the convolution product. The ideal (x′ − x′(A), y′ − y′(A)) of
R [E − E[d]] = R[x, y, 1/ψd(x)]/(Λ(a1, a2, a3, a4, a6, x, y)) is denoted by FA. We call

S = R[x, y,
1

ψd(x)
]/(Λ(a1, a2, a3, a4, a6, x, y),FA) ,

the residue ring of I−1(A). We say that S is a ring of elliptic periods. If we specialize at A
in Theorem 1, we find that S is a finite free étale R-algebra with basis Θ = (θk)k∈Z/dZ where

θk = uk mod FA.

We call σ : S → S to be the R-automorphism induced on S by the translation τ−T ,

σ : S −→ S ,
f mod FA 7−→ f ◦ τ−T mod FA .

It is clear that σ(θk) = θk+1 for all k ∈ Z/dZ. So, if α =
∑

k∈Z/dZ αkθk is an element of S

with coordinates −→α = (αk)k∈Z/dZ ∈ Rd in the basis Θ, then the coordinate vector of σ(α) is

the cyclic shift σ(−→α ) = (αk−1)k∈Z/dZ of −→α . We see that the R-automorphism σ : S → S of
the free R-algebra S takes a very simple form on the basis Θ.

We call L ⊂ R(E − E[d]) the R-module generated by the uk for k ∈ Z/dZ. We know that
reduction modulo FA defines an isomorphism of R-modules:

εA : L −→ S ,
f 7−→ f mod FA .

So elements in S can be represented by elements in L.
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We now study the multiplication tensor in S. We shall find a simple expression for this
tensor using interpolation at some auxiliary points, in the spirit of discrete Fourier transform.
We first notice that if k, l ∈ Z/dZ and k 6= l, l + 1, l − 1 mod d, then

ukul ∈ L.

This is proven using Eqs. (5), (9), and (13). Using Eqs. (5), (6), (9), and (13), we also
show that

uk−1uk + a2xk ∈ L and u2
k − a2xk − a2xk+1 ∈ L .

So if (αk)k∈Z/dZ and (βk)k∈Z/dZ are two vectors in Rd, we have

(
∑
k

αkuk)(
∑
k

βkuk) = a2
∑
k

αkβk(xk + xk+1)− a2
∑
k

αk−1βkxk − a2
∑
k

βk−1αkxk mod L

= a2
∑
k

(αk − αk−1)(βk − βk−1)xk mod L. (31)

We now assume we are given an auxiliary section M = (x(M), y(M)) of Eaff → Spec(R)
such that the image N = I(M) of M by I is a section (x′(N), y′(N)) of E′aff → Spec(R) and
D(x′(N)) is a unit in R. So, the residue ring at I−1(N) is a free R-module of rank d and the
evaluation map

εN : L −→ Rd ,
f 7−→ (f(M + kT ))k∈Z/dZ .

is a bijection. Also, the vector

−→uN = (u0(M + kT ))k∈Z/dZ (32)

is invertible for the convolution product in Rd. We call −→uN (−1) its inverse. We denote by −→xN
the vector

−→xN = εN (x) = (x(M + kT ))k∈Z/dZ . (33)

We note

ξk = xk mod FA

for every k ∈ Z/dZ. Since S is free over R and Θ is a basis for it, there exist scalars (ι̂k)k in
R such that

ξ0 =
∑

k∈Z/dZ

ι̂kθk.

So
−→
ι̂ = (ι̂k)k is the coordinate vector of ξ0 in the basis Θ. In Section 2.1.4.3, we already

explained how to compute these coordinates in quasi-linear time in the dimension d.
Let α, β and γ be three elements in S such that γ = αβ. Let −→α = (αk)k∈Z/dZ be the

coordinate vector of α in the basis Θ. Define
−→
β and −→γ in a similar way. To compute the

multiplication tensor, we use an argument similar to the one of [9, Section 4.3]. We define
four functions in Ad [E − E[d]],

fα =
∑
i

αiui , fβ =
∑
i

βiui ,

Q = a2
∑
i

(αi − αi−1)(βi − βi−1)xi ,

R = fαfβ −Q .
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The product we want to compute is fαfβ = Q+R mod FA. From Eq. (31), we deduce that

R is in L. From the definition of
−→
ι̂ , we deduce that the coordinates in Θ of Q mod FA are

given by the vector
−→
ι̂ ?

(
a2(−→α − σ(−→α )) � (

−→
β − σ(

−→
β ))

)
.

The evaluation of fα at the points (M + kT )k is the vector εN (fα) = −→uN ?−→α . The evaluation

of R is εN (R) = (−→uN ?−→α )�(−→uN ?
−→
β )−−→xN ?(a2(−→α −σ(−→α ))�(

−→
β −σ(

−→
β ))). If we ? multiply this

last vector on the left by −→uN (−1), we obtain the coordinates of R in the basis (u0, . . . , ud−1).
These are the coordinates of R mod FA in the basis Θ too.

So the multiplication tensor in the R-basis Θ of the free R-algebra S is given by

−→γ = (a2−→ι̂ ) ?
(

(−→α − σ(−→α )) � (
−→
β − σ(

−→
β ))

)
+

−→uN (−1) ?
(

(−→uN ?−→α ) � (−→uN ?
−→
β )− (a2−→xN ) ?

(
(−→α − σ(−→α )) � (

−→
β − σ(

−→
β ))

))
(34)

This multiplication tensor consists of 5 convolution products, 2 component-wise products, 1
addition and 3 subtractions between vectors in Rd.

The following theorem summarizes the results in this section.

Theorem 2 (The ring of elliptic periods). Let d > 3 be an odd integer. Let R be a ring where
d is invertible. Let a1, a2, a3, a4, a6, x and y be elements in R such that ∆(a1, a2, a3, a4, a6) is
a unit in R and the point T = (x, y) is a point of exact order d on the Weierstrass elliptic curve
over R given by the equation y2 +a1xy+a3y = x3 +a2x

2 +a4x+a6. Let I : E → E′ be Vélu’s
isogeny with kernel 〈T 〉 and let A = (x′(A), y′(A)) ∈ E′(R) be a section of E′aff → Spec(R)

that does not intersect the kernel of the dual isogeny I ′ : E′ → I (equivalently D(x′(A)) is
a unit in R). Let FA = (x′ − x′(A), y′ − y′(A)) be the corresponding ideal of R [E − E[d]] =
R[x, y, 1/ψd(x)]/(Λ(a1, a2, a3, a4, a6, x, y)). Let

S = R[x, y, 1/ψd(x)]/(Λ(a1, a2, a3, a4, a6, x, y),FA) ,

be the residue ring of I−1(A). Then S is a finite free étale R-algebra of rank d. If we call
σ : S → S the R-automorphism induced on S, by the translation τ−T , then S is a free
R[σ]-module of rank 1.

Using notations introduced from Eq. (11) to Eq. (29), we set a = 1, b = (1 − c1)/d,
uk = aUk + b and θk = uk mod FA. Then σ(θk) = θk+1, and Θ = (θk)k∈Z/dZ is an R-basis of
S. If M = (x(M), y(M)) ∈ E(R) is an auxiliary section that does not cross E[d], then the
multiplication tensor of S in the basis Θ is given by Eq. (34).

2.4. Example. Let R be the ring Z/1012Z. We consider the elliptic curve E over R defined by
the Weierstrass equation E/(Z/1012Z) : y2 = x3 +55x+91 . Let T be the point (659, 8304) ∈
E/(Z/1012Z). This is a point with exact order d = 7.

We first compute Γ1,2 = 5780 , Γ2,3 = 4390 , Γ3,4 = 3596 , Γ4,5 = 4390 and Γ5,6 = 5780 .
We then find c1 = 3534, and from Eq. (15), we deduce c2 = 7412 , c3 = 618 , c4 = 9583 , c5 =
2789 and c6 = 6667 . Moreover c1 is a unit in R and we set a = 1/c1 = 6665 and b = 0.

We compute the quotient elliptic curve E′ = E/〈T 〉 thanks to Vélu’s formulae. This
yields the curve E′/(Z/1012Z) : y2 = x3 + 6725x+ 6453 . Let A be the point (1373, 1956) ∈
E′(Z/1012Z). This is a point with exact order 14.
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We can efficiently compute traces of ukul evaluated at A with Eqs. (16), (17), (18), (19)
and (20). We find

−→e = (9428, 6046, 1946, 2596, 2596, 1946, 6046) .

This vector is invertible for the convolution product in Rd and its inverse is

−→e (−1) = (3392, 3344, 10 161, 101, 101, 10 161, 3344) .

We now compute traces of xuk evaluated at A with Eqs. (23), (24), (25) and (26), and find

−→ι = (10 063, 4509, 6660, 4259, 6660, 4509, 138) .

We finally obtain

−→
ι̂ = −→e (−1) ?−→ι = (7790, 6555, 2470, 2741, 4358, 2047, 636) .

Let us consider the additional evaluation point M = (8903, 4033) ∈ E(Z/1012Z). We check
that (ek(N))k where N = I(M) is invertible for the convolution product in Rd. So N does
not cross the kernel of the dual isogeny. Then Eq. (33) yields

a2−→xN = (2742, 2044, 649, 2348, 7216, 9732, 7464) .

Similarly, Eq. (32) yields

−→uN = (1029, 7201, 10 176, 1807, 4875, 3261, 2255) .

And therefore, −→uN (−1) = (7790, 1761, 3889, 6998, 5866, 1090, 3210) .

Now, let us make use of these precomputations to, for instance, compute θ2
0 with Eq. (34).

We thus start from −→α = (1, 0, 0, 0, 0, 0, 0) , and we first compute

−→uN ?−→α = (1029, 7201, 10 176, 1807, 4875, 3261, 2255) ,

and

a2−→xN ? ((−→α − σ(−→α )) � (−→α − σ(−→α ))) = (5, 4786, 2693, 2997, 9564, 6747, 6995) .

Thus,

−→uN (−1) ?
(

(−→uN ?−→α ) � (−→uN ?
−→
β )− (a2−→xN ) ?

(
(−→α − σ(−→α )) � (

−→
β − σ(

−→
β ))

))
=

(8133, 8133, 8133, 8133, 8133, 8133, 8133) .

It follows,

(a2−→ι̂ ) ?
(

(−→α − σ(−→α )) � (
−→
β − σ(

−→
β ))

)
= (6406, 4952, 8520, 969, 8109, 7516, 7834) ,

and finally

−→γ = (4338, 2884, 6452, 9102, 6041, 5448, 5766) .
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Algorithm 1: AKS primality test

Input : an integer n > 1

if n = ab for a ∈ N and b > 1 then1

return composite2

Find the smallest integer r such that the3

multiplicative order of n modulo r is > log2
2 n

if 1 < gcd(a, n) < n for some a 6 r then4

return composite5

if n 6 r then6

return prime7

for a = 1 to b
√
ϕ(r) log2 nc do8

if (x+ a)n 6= xn + a (mod xr − 1, n) then9

return composite10

return prime11

3. An elliptic AKS criterion

Agrawal, Kayal and Saxena have proven [1] that primality of an integer n can be tested

in deterministic polynomial time (log n)
21
2

+o(1). Their test, often called the AKS test, relies
on explicit computations in the multiplicative group of a well chosen free commutative R-
algebra S of finite rank, where R = Z/nZ. More precisely, they take for S the cyclic algebra
R[x]/(xr − 1) where r is a well chosen, and rather large, integer (see Algorithm 1).

Lenstra and Pomerance generalized this algorithm and obtained the better deterministic
complexity (log n)6+o(1) [16]. The main improvement in Lenstra and Pomerance’s approach
consists in using a more general construction for the free commutative algebra S. As a
consequence, the dimension of S is much smaller for a given n, and this results in a faster
algorithm. A nice survey [23] has been written by Schoof.

Berrizbeitia first [6], and then Cheng [8], have proven that there exists a probabilistic

variant of these algorithms that works in time (log n)4+o(1) provided n − 1 has a divisor d
bigger than (log2 n)2 and smaller than a constant times (log2 n)2. Avanzi and Mihăilescu [4],
and independently Bernstein [5], explain how to treat a general integer n using a divisor d of
nf −1 instead, where f is a small integer. The initial idea consists in using R-automorphisms
of S to speed up the calculations. In these variants, the free commutative R-algebra S has
to be constructed in such a way that a non-trivial R-automorphism σ : S → S is effectively
given, and can be efficiently applied to any element in S.

All the aforementioned algorithms construct S as a residue ring modulo n of a cyclotomic
or Kummer extension of the ring Z of integers. In this section, we propose an AKS-like
primality criterion that relies on Kummer theory of elliptic curves. The main advantage of
this elliptic variant, compared to the Berrizbeitia-Cheng-Avanzi-Mihailescu-Bernstein one, is
that it allows a much greater choice for the value of d, since there exist many elliptic curves
modulo n. We are not restricted to divisors of n − 1. We can use any d that divides the
order of any elliptic curve modulo n. In particular, we avoid the complication and the cost
coming from the exponent f in nf − 1. The algorithm remains almost quartic both in time
and space. However, we heuristically save a factor (log log n)O(log log log logn) in the complexity.
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From a practical viewpoint, it might be worth choosing for d a product of prime integers of
the appropriate size, depending of ones implementation of fast Fourier transform.

Section 3.1 gathers prerequisites from commutative algebra. In Section 3.2, we describe a
rather general variant of the AKS primality criterion: it makes uses of a free R-algebra S of
rank d together with an R-automorphism σ : S → S of order d. We recall how this algebra
can be constructed from multiplicative Kummer theory as in [6]. In Section 3.3, we state and
prove a primality criterion involving rings of elliptic periods. The construction of such rings
is detailed in Section 3.4.

3.1. Étale cyclic extensions of a field. Let K be a field and let L ⊃ K be a commutative
algebra over K. We assume L is of finite dimension d > 1 over K. We also assume there exist
a K-automorphism σ of L and a K-basis (ωi)i∈Z/dZ of L such that σ(ωi) = ωi+1. So L is a
rank 1 free K[G]-module, where G = 〈σ〉 is the cyclic group generated by σ. And ω0 is a basis
of the K[G]-module L. In this section, we recall a few elementary facts about the arithmetic
of L.

First, L is a noetherian ring, because it is of finite type over the field K. Further K is the
subring LG of elements in L that are invariant by σ. We deduce [7, Chapitre 5, paragraphe
1, numéro 9, Proposition 22] that L is integral over K. Let p be a prime ideal in L. The
intersection p∩K is a prime ideal in K, so it is equal to 0. Since 0 is maximal in K, the ideal
p is maximal in L [7, Chapitre 5, paragraphe 2, numéro 1, Proposition 1]. Thus L is a ring of
dimension 0. Since L is noetherian, it is an artinian ring [7, Chapitre 4, paragraphe 2, numéro
5, Proposition 9]. Its nilradical N, which is equal to its Jacobson radical, is nilpotent. The
automorphism σ acts transitively on the set of prime ideals in L [7, Chapitre 5, paragraphe 2,
numéro 2, Théorème 2]. We denote by GZ (resp. GT ) the decomposition group (resp. inertia
group) of all these prime ideals. Let e > 1 be the order of the inertia group GT , and let f be
the order of the quotient GZ/GT . We check that d = efm where m is the number of prime
ideals in L. Let p0, p1, . . . , pm−1 be all these prime ideals. They are pairwise relatively prime.
The radical of L is

N =
⋂

06i6m−1

pi =
∏

06i6m−1

pi.

The canonical map

φ : L→
∏

06i6m−1

L/pi

is a ring epimorphism and its kernel is the radical N. For every i in {0, 1, . . . ,m − 1}, the
quotient GZ/GT is isomorphic to the group of K-automorphisms of the residue field Mi = L/pi
[7, Chapitre 5, paragraphe 2, numéro 2, Théorème 2]. The field extensions Mi of K are normal
and their separable degree is f . Let r be their inseparable degree. The dimension of the K-
vector space Mi is rf . We deduce that the dimension of

∏
06i6m−1 L/pi is rfm. And the

dimension of the radical N is

dimK(N) = d− rfm = (e− r)fm. (35)

The radical N is nilpotent: there exists an integer k such that Nk = 0. The artinian ring
L is isomorphic [3, Theorem 8.7] to the product of local artinian rings

∏
06i6m−1 L/pki .

One says that the algebra L is unramified over K [18, Chapter 4, Definition 3.17] if the
residue fields L/pi are separable extensions of K (that is r = 1) and the local factors L/pki
are fields (e.g. the nilradical is zero or equivalently e− r = 0). This is equivalent to L being
étale over K, e.g. the trace form being non-degenerate.
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A sufficient condition for L to be unramified over K is that for every prime divisor ` of d
there exists an element a` in L such that σD/`(a`)−a` is a unit. Indeed this proves that σD/`

does not lie in GT . So e = 1. And r = 1 also, using Eq. (35).
Assume now K is a finite field and L is reduced (therefore étale over K). Remember p0,

p1, . . . , pm−1 are the prime ideals in L. The Frobenius automorphism Φi of Mi = L/pi is the
reduction modulo pi of some power σzi of σ lying in GZ . Especially, for every a in L, one has
σz0(a) = ap mod p0 for some integer z0. We let σ act on the above congruence and deduce
that z0 = z1 = · · · = zd−1 because σ acts transitively on the set of primes. So there exists an
integer z such that for every element a in L we have

ap = σz(a) . (36)

Of course, z is a multiple of m.

3.2. Ring extensions and primality proving. Let n > 2 be an integer and set R = Z/nZ.
In this section, we state a general AKS-like primality criterion in terms of the existence of
some commutative free R-algebra S of finite rank fulfilling simple conditions.

Let S ⊃ R be a finite free commutative R-algebra of rank d > 1. Then R can be identified
with a subring of S. Let σ : S → S be an R-automorphism of S and assume that there exists
an R basis (ωi)i∈Z/dZ of S such that σ(ωi) = ωi+1. Let p be a positive prime integer dividing
n. Set L = S/pS and K = R/pR = Z/pZ. Assume L is reduced. This is always the case
when S is étale over R [18, Chapter 4, Definition 3.17, Lemma 3.20]. The R-automorphism
σ : S → S induces a K-automorphism of L that we call σ also. Let θ be a unit in S such that

θn = σ(θ) .

Reducing this identity modulo p and setting a = θ mod p ∈ L, we obtain

an = σ(a) . (37)

Using Eqs. (37) and (36) repeatedly, we prove that there exists an integer z such that for
k, l ∈ N, we have

an
kpl = σk+zl(a). (38)

Let p be a prime ideal in L and set M = L/p. Set b = a mod p ∈M. Let G ⊂ L∗ be the
group generated by a and let H ⊂ M be the group generated by b. We first show that the
reduction modulo p map G → H is a bijection. Indeed, let k be a positive integer such that
bk = 1 ∈ M. Then ak = 1 mod p. We raise both members in this congruence to the n-th
power. Using Eq. (37), we find akn = ank = σ(a)k = σ(ak) = 1 mod p. So ak = 1 mod σ−1(p).
We remind that σ acts transitively on the set of primes in L. So ak is congruent to 1 modulo
all these primes. Since L is reduced, we deduce that ak = 1.

The group H is a subgroup of M∗. Therefore the order h of H (which is the order of G
also) divides pf − 1 where f is the dimension of M over K. It is thus clear that p and #H

are coprime. Iterating d times Eq. (37), we find that an
d

= a. So n also is invertible modulo
h = #G = #H. So Eq. (38) makes sense and holds true for k and l in Z, provided the
exponents are seen as residues modulo h.

We set q = n/p and from Eqs. (37) and (36), we deduce that aq = σ1−z(a) . Moreover, there

exist four integers i, i′, j and j′ in {0, 1, . . . , b
√
dc} such that (i, j) 6= (i′, j′) and i(1− z) + jz

is congruent to i′(1 − z) + j′z modulo d. Setting in Eq. (38), first k = i and l = j − i, and
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then k = i′ and l = j′ − i′, we find that exponentiations by qipj and qi
′
pj
′

act similarly on a.
We deduce that

qipj = qi
′
pj
′

mod #G. (39)

We now observe that both integers qipj and qi
′
pj
′

are bounded above by nb
√
dc. If

nb
√
dc 6 #G ,

then congruence (39) is an equality between integers and we deduce that n is a power of p.

Theorem 3 (AKS criterion). Let n > 2 be an integer and set R = Z/nZ. Let S ⊃ R be a free
algebra of rank d over R. Let σ be an R-automorphism of S. Let G be the group generated
by σ. Assume S is a free R[G]-module of rank 1: there exists an element ω in S such that
(ω, σ(ω), . . . , σd−1(ω)) is an R basis of L. Let θ be a unit in S such that θn = σ(θ). Let p be
a prime divisor of n. Assume S/pS is reduced and θ mod p generates a subgroup of order at

least nb
√
dc in (S/pS)∗. Then n is a power of p.

The condition that S/pS is reduced is granted if S is étale over R. A sufficient condition
for S to be étale over R is that for every prime divisor ` of d, there exists an element a` in S
such that σD/`(a`)− a` is a unit.

The condition on the size of the group generated by θ mod p is often obtained with the
help of geometric arguments. In our case, these are degree considerations, which yield a lower
bound for d.

Berrizbeitia, Cheng, Avanzi, Mihăilescu and Bernstein construct S as R[x]/(xd−α) where
d > 2 divides n − 1 and α is a unit in R. We set n − 1 = dm and ζ = αm. Assume ζ has
exact order d in R∗. This means that ζd = 1 and ζk − 1 is a unit for every 1 6 k < d. We
define an R automorphism σ : S → S by setting σ(x) = ζx. We set ω = (α − 1)/(x − 1) =
1 + x + x2 + · · · + xd−1 mod xd − α and we check that (ω, σ(ω), . . . , σd−1(ω)) is an R-basis
of S. Indeed (1, x, x2, . . . , xd−1) is a basis, and the matrix connecting the two systems is a
Vandermonde matrix V (1, ζ, . . . , ζd−1) which is invertible since ζ has exact order d. So S is
a free R[σ]-module of rank 1.

We note that x mod xd − α is a unit in S because α is a unit in R. For every integer
1 6 k < d, the difference σk(x)−x = (ζk−1)x is a unit in S, because ζ has exact order d. So
S is étale over R. The main computational step in Berrizbeitia test is to check, by explicit
calculation, that the following congruence holds true in S,

(x− 1)n = ζx− 1 mod (n, xd − α) . (40)

So, we set θ = x − 1 mod (n, xd − a). This is a unit in S because α − 1 is a unit in R.
Letting σ repeatedly act on Eq. (40), we deduce that for any positive integer k, the class
ζkx− 1 mod (n, xd − α) is a power of θ.

Let p be any prime divisor of n. We set a = θ mod p = x− 1 mod (p, xd − α) ∈ S/pS. We
show that the order of a in (S/pS)∗ is large. For every subset S of {0, 1, . . . , d−1}, we denote
by aS the product ∏

k∈S
(ζkx− 1) mod (p, xd − a) =

∏
k∈S

σk(a).

This is a power of a, because every σk(a) is. Degree considerations similar to those in the
original paper [1] show that if S1 and S2 are two strict distinct subsets of {0, 1, . . . , d − 1},
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then aS1 and aS2 are distinct elements in S/pS. So the order of a in (S/pS)∗ is at least 2d−1.
This lower bound can be improved by several means (see for instance Voloch’s work [26]).

If 2d is bigger than nb
√
dc, we deduce from Theorem 3 that n is a prime power.

Corollary 1 (Berrizbeitia criterion). Let n > 3 be an integer and set R = Z/nZ. Let
S = R[x]/(xd − α) where d > 2 divides n− 1. Set n− 1 = dm and assume ζ = αm has exact

order d in R∗. Assume Eq. (40) holds true in S. If 2d is bigger than nb
√
dc, then n is a prime

power.

In Section 3.3, we adapt this construction to the broader general context of Kummer theory
of elliptic curves. This way, we get rid of the condition that d divides n− 1.

3.3. A primality criterion. In this section, we state and prove a primality criterion in-
volving elliptic periods. Assume we are given an integer n > 2. We set R = Z/nZ and we
assume we are in the situation of Theorem 2. We are given a Weierstrass elliptic curve E
over R, a positive integer d relatively prime to 2n and a section T ∈ E(R) of exact order d.
The quotient by 〈T 〉 isogeny I : E → E′ is given by Vélu’s formulae. We are given a section
A ∈ E′aff(R) and we call

FA = (x′ − x′(A), y′ − y′(A))

the ideal of I−1(A) in R[x, y, 1/ψd(x)]/(Λ(a1, a2, a3, a4, a6, x, y)). We assume that D(x′(A))
is a unit in R, where D is defined in Eqs. (27), (28) and (29). Let

S = R[x, y, 1/ψd(x)]/(x′ − x′(A), y′ − y′(A))

be the residue ring of R[x, y, 1/ψd(x)]/(Λ(a1, a2, a3, a4, a6, x, y)) at I−1(A).
We call σ : S → S the automorphism induced on S by the translation τ−T :

σ : S −→ S ,
f mod FA 7−→ f ◦ τ−T mod FA .

For k ∈ Z/dZ, we set θk = uk mod FA. The (θk)k∈Z/dZ form an R-basis of S and we have
σ(θk) = θk+1. The algebra S is finite free étale of rank d over R because the determinant
D(x′(A)) of the trace form is a unit. The main computational step now is to check, by explicit
calculation, that the following congruence holds true in S,

θn0 = θ1 . (41)

Letting σ repeatedly act on Eq. (41), we deduce that for any k ∈ Z/dZ, θk is a power of
θ0. In particular, all θk belong to the ideal generated by θ0. Using Eq. (10), we deduce that
1 =

∑
k∈Z/dZ θk belongs to the ideal generated by θ0. So θ0 is a unit.

Let p be any prime divisor of n. We set a = θ0 mod p ∈ S/pS. We show that the order of
a in (S/pS)∗ is large. To every subset S of Z/dZ, we associate the product

uS =
∏
k∈S

uk

We note that uS mod (FA, p) =
∏
k∈S(θk mod p) is a power of a. Let S1 and S2 be two

subsets of
{0, 2, 4, . . . , d− 3} ⊂ Z/dZ.

Let l1 and l2 be two integers that are relatively prime to p. Then l1uS1 6= l2uS2 mod (FA, p)
unless S1 = S2 and l1 = l2 mod p. Indeed, if l1uS1 = l2uS2 mod (FA, p) then l1uS1−l2uS2 mod
p is a function on E mod p with divisor > −

∑
k∈Z/dZ[kt] and it cancels on the degree d divisor
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I−1(A) mod p. So l1uS1 = l2uS2 mod p. Therefore these two functions have the same poles.
We deduce first, that S1 = S2, and then, that l1 = l2.

There are 2
d−1
2 subsets of {0, 2, 4, . . . , d− 3}. So, the order of a in (S/pS)∗ is at least 2

d−1
2 .

Using Theorem 3, we deduce the following primality criterion.

Corollary 2 (Elliptic AKS criterion). Let n > 2 be an integer and let E be a Weierstrass
elliptic curve over R = Z/nZ. Let T ∈ E(R) be a section of exact order d where d is an
integer relatively prime to 2n. Let E′ be the quotient E/〈T 〉 given by Vélu’s formulae. Let
A ∈ E′aff(R) be a section such that the vector −→e = (ek(A))k defined by Eq. (22) is invertible

for the convolution product ? on Rd.
Assume that

(θ0)n = θ1 (42)

holds true in the ring of elliptic periods S = R[x, y, 1/ψd(x)]/(x′ − x′(A), y′ − y′(A)).
Assume further that

2
d−1
2 > n

√
d. (43)

Then n is a prime power.

We recall that the condition that the vector −→e be invertible means that the section A does
not cross the kernel of the dual isogeny I ′ : E′ → E. Checking Eq. (42) requires O(log n)
multiplications in the ring S. Any such multiplication requires O(d log d log log d) operations
(additions, subtractions, multiplications) in R = Z/nZ. So the total cost is

O((log n)2(log log n)1+o(1) × d log d log log d)

elementary operations using fast arithmetic [21, 22]. In Section 3.4, we explain why one can
hope to find a degree d that is O((log n)2). With such a d, one can verify Eq. (42) in time

O((log n)4(log log n)2+o(1)).

Moreover, we explain how to construct the ring S in Corollary 2.

3.4. Construction of a ring of elliptic periods. In this section, we explain how to con-
struct the ring of elliptic periods that is required to prove that a given integer n > 2 is prime
using Corollary 2. So, we are given an integer n > 2 which is probably prime: it already
passed many pseudo-primality tests. We want to construct a ring of elliptic periods modulo
n with rank d for some d satisfying inequality (43). A sufficient condition is that d > dmin

with
dmin = d4(log2 n)2 + 2e .

We assume that d is odd too. We like d to be as small as possible. We set dmax = dmin×O(1)
and ask that d ∈ [dmin,dmax]. The construction is probabilistic and relies on several heuristics.
Since n is probably prime, we shall allow ourselves to use algorithms that are only proven to
work under the condition that n is prime. This is not an issue as far as we can check the
result rigorously (and efficiently).

We set R = Z/nZ. We want to construct an elliptic curve E over R with a section T ∈ E(R)
of exact order d in the sense of [13, Chapter 1, 1.4]. We use complex multiplication theory.

The first step of the algorithm selects quadratic imaginary orders. We look over the maximal
quadratic imaginary orders O for decreasing fundamental discriminants −∆. We start with
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−∆ = −7. For each order O, we first look for a square root δ of −∆ modulo n using
the algorithm of Legendre. Since n is expected to be prime, the algorithm will succeed in
probabilistic time (log n)2(log log n)1+o(1). And of course we can check the result rigorously

in time (log n) (log log n)1+o(1). For a given n, such a square root exists for one quadratic
order over two. If we fail to find such a square root, we go to the next quadratic order.

Once we have found a square root δ of −∆ modulo n, we call n the ideal (n,
√
−∆− δ) in

O and we look for an element with norm n in n. We use fast Cornachia’s algorithm. It runs
in deterministic time (log n)(log log n)2+o(1) and finds such an element φ ∈ O when it exists.

We then set t = Tr(φ) and look for an integer d that satisfies the following conditions:
• d ∈ [dmin,dmax],

• d is relatively prime to n(n− 1)(n+ 1),

• there exists an ε ∈ {1,−1} such that d divides n + 1 − εt and is relatively prime to
(n+ 1− εt)/d.

In order to find such a d, we apply the elliptic curve factoring method to n + 1 − t and
n+ 1 + t. Since the factors we are looking for are very small, we expect to find them in time
(log n)1+o(1). If we find no such integer d, we go to the next fundamental discriminant −∆.

We expect to succeed in finding an integer d for some ∆ = (log log n)2+o(1). Also the

expected running time of this first step is (log n)2+o(1). We note that the search for split
discriminants can be accelerated using the same technique as in the J.O. Shallit fast-ECPP
algorithm [15, 19].

The second step of the algorithm constructs the ring S from the pair (−∆, d). Once we have
found a quadratic order O, we compute the associated Hilbert class polynomial. Computing
HO(X) requires quasi-linear time in the size of this polynomial. This polynomial has degree

∆1/2+o(1) and height ∆1/2+o(1), where −∆ is the discriminant of O. So HO(X) can be

computed in time ∆1+o(1). Finding a root j of HO(X) modulo n is achieved in probabilistic
time

∆1/2+o(1)(log n)2+o(1) .

So the time for finding this root will be (log n)2+o(1).

Once computed a root of the modular polynomial, we construct an elliptic curve E over
R = Z/nZ having modular invariant j. We then construct a random R-section P on E. We
expect one and only one among [n+ 1− t]P and [n+ 1 + t]P to be equal to the zero section
O. If this is not the case, we pick another point P . Let ε ∈ {−1, 1} be such that d divides
n + 1 − εt. If we have found a section P such that [n + 1 − εt]P 6= O, then we replace E
by its quadratic twist. And we start again with this new curve. If we have found a point P
such that [n+ 1− εt]P = O and [n+ 1 + εt]P 6= O, then we multiply P by (n+ 1− t)/d and
obtain a section T that, we hope, has exact order d. We can test that T has exact order d
by checking that ψk(x(T )) is a unit in R for every strict divisor k of d. If this condition does
not hold, we pick another section P on E.

Once we have found a T of exact order d, we consider the quotient isogeny I : E → E′.
We compute the coefficients in the Weierstrass equation of E′ thanks to Eq. (8). We do not
write down explicit equations for I. We look for an R-section A on E′ having exact order
d. We let S be the residue ring of I−1(A). Elements in S are represented by vectors in
Rd. The automorphism σ is the cyclic shift of coordinates. There remains to describe the
multiplication law. To this end, we pick an auxiliary R-section M of E such that N = I(M)
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does not cross the kernel of the dual isogeny I ′; or equivalently D(x′(N)) is a unit in R. We
now can compute the multiplication tensor of the ring S. This tensor is given by Theorem 2.

We just need to compute the vectors
−→
ι̂ , −→uN , −→xN using the method given in Section 2.1.4.

This requires O(d(log d)2 log log d) operations in R. This finishes the construction of the ring
S.

The expected running time of this second step is (log n)1+o(1)(log n+d1+o(1)) = (log n)3+o(1)

operations in R.

3.5. Example. We consider here a primality test for n = 1009.

We first notice that dmin = d4(log2 n)2 + 2e = 401, and a quick search among maximal
quadratic imaginary orders O for decreasing fundamental discriminants yields d = 479 for
−∆ = −148 (and class number 2). In truth, we have 522+32 148 = 4n , and the corresponding
elliptic curve has got n+ 1− 52 (= 2× 479) points.

The Hilbert class polynomial associated to −∆ = −148 is

H−148(X) = X2 − 39 660 183 801 072 000X − 7 898 242 515 936 467 904 000 000 .

One of its roots mod n is jE = 353, and one can check that the point T = (296, 432) is of
order d on the elliptic curve

E : y2 + xy = x3 + 364x+ 907.

Similarly, we can check that the point M = (726, 695) is of order 958. Vélu’s formulae yield
then the quotient elliptic curve,

E/〈T 〉 : y2 + xy = x3 + 130x+ 233 .

We choose A = (383, 201), a point of order d on E/〈T 〉. We can check also that the image of
M by the isogeny is equal to N = (321, 344), a point of order 2.

With this setting, we can now define, without any ambiguity, a normal elliptic basis Θ =
(θk)k∈Z/dZ (see Section 2.3) and a final computation yields

θ1009
0 = θ91 .

We check that 91 is relatively prime to 479. So T ′ = 91T is a point of exact order 479.
Applying Corollary 2 with T ′ instead of T , we prove that 1009 is a prime.
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[4] R. M. Avanzi and P. Mihăilescu. Efficient quasi-deterministic primality test improving AKS. Available at
http://xwww.uni-math.gwdg.de/preda/, 2007.

[5] Daniel J. Bernstein. Proving primality in essentially quartic random time. Mathematics of Computation,
76(257):389–403, January 2007.

[6] Pedro Berrizbeitia. Sharpening “Primes is in P” for a large family of numbers. Mathematics of Computa-
tion, 74(252):2043–2059, October 2005.
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