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THE GEOMETRY OF SOME PARAMETERIZATIONS AND ENCODINGS

JEAN-MARC COUVEIGNES AND REYNALD LERCIER

Abstract. We explore parameterizations by radicals of low genera algebraic curves. We
prove that for q a prime power that is large enough and prime to 6, a fixed positive proportion
of all genus 2 curves over the field with q elements can be parameterized by 3-radicals. This
results in the existence of a deterministic encoding into these curves when q is congruent to
2 modulo 3. We extend this construction to parameterizations by `-radicals for small odd
integers `, and make it explicit for ` = 5.

1. Introduction

Let Fq be a finite field, let C/Fq be an algebraic curve, we propose in this paper new
algorithms for computing in deterministic polynomial time a point in C(Fq). This is useful in
numerous situations, for instance in discrete logarithm cryptography [2]. To be more precise,
we consider this question for low genus curves with an emphasis on the genus 2 case. The
mathematical underlying problem is to compute radical expressions for solutions of a system of
algebraic equations. Galois theory provides nice answers, both in theory and practice, for sets
of dimension 0 and degree less than 5. Explicit results are known in dimension 1 too. A famous
theorem of Zariski states that a generic curve of genus at least 7 cannot be parameterized by
radicals. Conversely, a complex curve of genus less than 7 can be parameterized by radicals
over the field of rational fractions [10, 9].

In this work we restrict the degree of radicals involved in the parameterizations. Typically,
for C a curve over the field with q elements, we only allow radicals of degrees l prime to
q(q − 1). The reason is that for such l, we can compute l-th roots of elements in Fq in
deterministic polynomial time in log(q). Especially, we do not allow square roots. We will be
mainly concerned with genus 2 curves.

Following pioneering investigations [19, 18] by Schinzel and Skałba, Shallue and Woestijne
came in 2006 to a first practical deterministic algorithm for constructing points on genus 1
curves over any finite field [20]. In 2009, Icart proposed a deterministic encoding with quasi-
quadratic complexity in log q for elliptic curves over a finite field when q is congruent to 2
modulo 3 [11]. To this end, he constructed a parameterization by 3-radicals for every elliptic
curve over a field with characteristic prime to 6. Couveignes and Kammerer recently proved
that there exists an infinity of such parameterizations [5], corresponding to rational curves
on a K3 surface associated with the elliptic curve. Nevertheless, in genus 2, only partial
results are known. Ulas attempted to generalize Shallue and Woestijne results [22]. Tibouchi
and Fouque designed encodings for curves with automorphism group containing the dihedral
group with 8 elements [8]. Each of these two constructions reaches a family of dimension
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1 inside the dimension 3 moduli space of the genus 2 curves. So the proportion of target
curves for such parameterizations tends to zero when q tends to infinity. At the same time,
Kammerer, Lercier and Renault [13] published encodings for a dimension 2 family of genus 2
curves. In particular their curves have no non-hyperelliptic involution. However these curves
still represent a negligible proportion of all genus 2 curves when q tends to infinity.

In this paper we construct a parameterization by 3-radicals for a genus 2 curve C over
a field K with characteristic p prime to 6 under the sole restriction that C has two K-
rational points whose difference has order 3 in the Jacobian variety. This is a dimension
3 family. In particular, we parameterize all genus 2 curves when K is algebraically closed.
When K is a finite field with characteristic prime to 6 we parameterize a positive proportion
of all curves in that way. Our construction extends the ones by Farashahi [7] for genus 1
curves and Kammerer, Lercier and Renault [13] for genus 2 curves. Our starting point is the
observation that the role played by Tartaglia-Cardan formulae in these parameterizations can
be formalized and generalized using the theory of torsors under solvable finite group schemes.
This leads us to a systematic exploration and combination of possibilities offered by the action
of small solvable group schemes over curves of low genus.

The principles of our method are presented in Section 2. We first recall the basics of
parameterizations of curves by radicals and encodings, then we explain how to produce such
parameterizations using the action of solvable group schemes on algebraic curves. Section 3
provides a first illustration of this general method in the case of genus 1 curves. This offers a
new insight on previous work by Farashahi, and Kammerer, Lercier, Renault. We present a
parameterization of a 3 dimensional family of genus 2 curves in Section 4. Variations on this
theme are presented in Section 5. Section 6 presents detailed computations for one of these
families. We parameterize Jacobians of dimension 2 with one 5-torsion point. We finish with
a few questions and prospects.

We thank Jean Gillibert, Qinq Liu, and Jilong Tong for useful discussions.

2. Definitions and generalities

In this section we recall a few definitions and present the principles of our method. Sec-
tions 2.1 and 2.2 recall elementary results about radicals. Section 2.3 recalls the definition of
a parameterization. Section 2.4 gives elementary definitions about torsors. Basic properties
of encodings are recalled in Section 2.5. Section 2.6 presents Tartaglia-Cardan formulae in
the natural language of torsors. Our strategy for finding new parameterizations is presented
in Sections 2.7 and 2.8.

2.1. Radical extensions. The following classical lemma [14, Chapter VI, Theorem 9.1] gives
necessary and sufficient conditions for a binomial to be irreducible.

Lemma 1. Let K be a field, let d ≥ 1 be a positive integer, and let a ∈ K∗. The polynomial
xd − a is irreducible in K[x] if and only if the two following conditions hold true

• For every prime integer l dividing d, the scalar a is not the l-th power of an element
in K∗,
• If 4 divides d, then −4a is not the 4-th power of an element in K∗.

Let K be a field with characteristic p. Let S be a set of rational primes such that p 6∈ S.
LetM ⊃ K be a finite separable K-algebra, and L ⊂M a K-subalgebra ofM . The extension
L ⊂M is said to be S-radical if M is isomorphic, as an L-algebra, to L[x]/(xl − a) for some
l ∈ S and some a ∈ L∗. When S contains all primes but p, we speak of radical extensions.

2



An extension M ⊃ L is said to be S-multiradical if there exists a finite sequence of K-
algebras

K ⊂ L = L0 ⊂ L1 ⊂ · · · ⊂ Ln = M

such that every intermediate extension Li+1/Li for 0 ≤ i ≤ n− 1 is S-radical.

2.2. Radical morphisms. LetK be a field with characteristic p. Let K̄ ⊃ K be an algebraic
closure. Let f : C → D be an epimorphism of (projective, smooth, absolutely integral) curves
over K. We say that f is a radical morphism if the associated function field extension
K(D) ⊂ K(C) is radical. We define similarly multiradical morphisms, S-radical morphisms,
S-multiradical morphisms. If f is a radical morphism then K(C) = K(D, b) where bl = a
and a is a non-constant function on D and l 6= p is a prime integer. Call γb the map

γb : C // D × P1

P
� // (f(P ), b(P )).

Let X ⊂ C be the ramification locus of f , and let Y = f(X) ⊂ D be the branch locus. A
geometric point Q on D is branched if and only if a has a zero or a pole at Q with multiplicity
prime to l. We ask if γb induces an injection on C(K̄). Equivalently we ask if b separates
points in every fiber of f . First, there is a unique ramification point above each branched
point. Then, if a has neither a zero nor a pole at Q, then b separates the points in the fiber
of f above Q. Finally, if a has a zero or a pole at Q with multiplicity divisible by l, then
b (and γb) fail to separate the points in the fiber of f above Q. However, there exists a
finite covering (Ui)i of C by affine open subsets, and functions bi ∈ O(Ui − X)∗ such that
bi/b ∈ K(D)∗ ⊂ K(C)∗. We set b = (bi)1≤i≤I and define a map

γb : C // D ×
(
P1)I

P
� // (f(P ), b1(P ), . . . , bI(P )).

This map induces an injection on C(K̄). So every point P ∈ C(K̄) can be characterized by
its image f(P ) on D and the value of the bi at P .

2.3. Parameterizations. An S-parameterization of a projective, absolutely integral, smooth
curve C over K is a triple (D, ρ, π) where D is another projective, absolutely integral, smooth
curve over K, and ρ is an S-multiradical map from D/K onto P1/K, and π is an epimorphism
from D/K onto C/K. In this situation one says that C/K is parameterizable by S-radicals.

(1) D
π

~~~~~~~~~~
ρ

��
C P1

2.4. Γ-groups. Let K be a field with characteristic p. Let Ks be a separable closure of K.
Let Γ be the Galois group of Ks/K. Let A be a finite set acted on continuously by Γ. We
say that A is a finite Γ-set. We associate to it the separable K-algebra

Alg(A) = HomΓ(A,Ks)
of Γ-equivariant maps from A toKs. If G is a finite Γ-set and has a group structure compatible
with the Γ-action we say that G is a finite Γ-group, or a finite étale group scheme overK. Now
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let A be a finite Γ-set acted on by a finite Γ-group G. If the action of G on A is compatible
with the actions of Γ on G and A, then we say that A is a finite G-set. The quotient A/G is
then a finite Γ-set. If further G acts freely on A we say that A is a free finite G-set. A simply
transitive G-set is called a G-torsor. The left action of G on itself defines a G-torsor called
the trivial torsor. The set of isomorphism classes of G-torsors is isomorphic, as a pointed set,
to H1(Γ, G). See [16, Chapter I §2].

Let l 6= p be a prime and let A be a free finite µl-set. Let B = A/µl. According to Kummer
theory, the inclusion Alg(B) ⊂ Alg(A) is a radical extension of separable K-algebras. It has
degree l.

Let S be a finite set of primes. Assume that the characteristic p of K does not belong
to S. A finite Γ-group G is said to be S-solvable if there exists a sequence of Γ-subgroups
1 = G0 ⊂ G1 ⊂ · · · ⊂ GI = G such that for every i such that 0 ≤ i ≤ I − 1, the group Gi is
normal in Gi+1, and the quotient Gi+1/Gi is isomorphic, as a finite Γ-group, to µli for some
li in S.

Let G be a finite Γ-group. Assume that G is S-solvable. Let A be a free finite G-set.
Let B = A/G. The inclusion Alg(B) ⊂ Alg(A) is an S-multiradical extension of separable
K-algebras. It has degree #G.

2.5. Encodings. We assume that K is a finite field with characteristic p and cardinality q.
Let S be a set of prime integers. We assume that p 6∈ S and S is disjoint from the support
of q − 1. Let C and D be two projective, smooth, absolutely integral curves over K. Let
f : C → D be a radical morphism of degree l ∈ S. Let X ⊂ C be the ramification locus of
f , and let Y = f(X) ⊂ D be the branch locus. Let F : C(K) → D(K) the induced map on
K-rational points. We prove that F is a bijection.

A branched point Q in D(K) is totally ramified, so has a unique preimage P in C(K).
Let Q ∈ D(K) − Y (K) be a non-branched point. The fiber f (−1)(Q) is a µl-torsor. Since
H1(K,µl) = K∗/(K∗)l is trivial, this torsor is isomorphic to µl with the left action. Since
H0(K,µl) = µl(K) is trivial also, f (−1)(Q) contains a unique K-rational point. Therefore F
is a bijection.

Lemma 2. Let K be a finite field with q elements. Let S be a finite set of prime integers.
We assume that p 6∈ S and S is disjoint from the support of q − 1. Let f : C → D be an
S-multiradical morphism between two smooth, projective, absolutely irreducible curves over
K. The induced map F : C(K)→ D(K) on K-rational points is a bijection.

The reciprocal map F (−1) : D(K) → C(K) can be evaluated in deterministic polynomial
time by computing successive l-th roots for various l ∈ S.

We assume now that we are in the situation of the diagram (1). Let R : D(K)→ P1(K) be
the map induced by ρ and let Π : D(K)→ C(K) be the map induced by π. The composition
Π ◦R(−1) is called an encoding.

2.6. Tartaglia-Cardan formulae. Let K be a field with characteristic prime to 6. Let Ks

be an algebraic closure of K. Let Γ be the Galois group of Ks/K. Let µ3 ⊂ Ks be the finite
Γ-set consisting of the three roots of unity. Let Sym(µ3) be the full permutation group on
µ3. The Galois group Γ acts on µ3. So we have a group homomorphism Γ → Sym(µ3) and
Γ acts on Sym(µ3) by conjugation. This action turns Sym(µ3) into a group scheme over K.
Because µ3 acts on itself by translation, we have an inclusion of group schemes µ3 ⊂ Sym(µ3)
and µ3 is a normal subgroup of Sym(µ3). The stabilizer of 1 ∈ µ3 is a subgroup scheme of
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Sym(µ3). It is not normal in Sym(µ3). It is isomorphic to µ2. So Sym(µ3) is the semidirect
product µ3 o µ2. Let ζ3 ∈ Ks be a primitive third root of unity. We set

√
−3 = 2ζ3 + 1. Let

h(x) = x3 − s1x
2 + s2x− s3

be a degree 3 separable polynomial in K[x]. Let

R = Roots(h)

be the set of roots of h(x) in Ks. This is a finite Γ-set with cardinality 3. Let

A = Bij(Roots(h), µ3)

be the set of bijections from R to µ3. For γ ∈ Γ and f ∈ A we set γf = γ ◦ f ◦ γ−1. This
turns A into a finite Γ-set of cardinality 6. The action of Sym(µ3) on the left turns it into a
Sym(µ3)-torsor. Let

C = A/µ3

be the quotient of A by the normal Γ-subgroup µ3 ⊂ Sym(µ3) of order 3. This is a µ2-torsor.
Let

B = A/µ2

be the quotient of A by the stabilizer of 1 in Sym(µ3). This is a finite Γ-set of cardinality 3,
naturally isomorphic to Roots(h). We define a function ξ in Alg(B) ⊂ Alg(A) by

ξ : A // Ks

f � // f (−1)(1).

The algebra Alg(B) is generated by ξ, and the characteristic polynomial of ξ is h(x). So

Alg(B) ' K[x]/h(x).

Tartaglia-Cardan formulae construct functions in the algebra Alg(A) of the Sym(µ3) - torsor
A. These functions can be constructed with radicals because

Sym(µ3) = µ3 o µ2

is {2, 3}-solvable. A first function δ in Alg(C) ⊂ Alg(A) is defined by

δ : A // Ks

f
� // √−3(f (−1)(ζ)−f (−1)(1))(f (−1)(ζ2)−f (−1)(ζ))(f (−1)(1)−f (−1)(ζ2)).

Note that the
√
−3 is necessary to balance the Galois action on µ3. The algebra Alg(C) is

generated by δ. And

δ2 = 81s2
3 − 54s3s1s2 − 3s2

1s
2
2 + 12s3

1s3 + 12s3
2 = −3∆

is the discriminant ∆ of h(x) multiplied by −3. We say that −3∆ is the twisted discriminant.
A natural function ρ in Alg(A) is defined as

ρ : A // Ks

f // ∑
r∈R r × f(r) =

∑
ζ∈µ3 ζ × f

(−1)(ζ).
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It is clear that ρ3 is invariant by µ3 ⊂ Sym(µ3) or equivalently belongs to Alg(C). So it can
be expressed as a combination of 1 and δ. Indeed a simple calculation shows that

ρ3 = s3
1 + 27

2 s3 −
9
2s1s2 −

3
2δ.

A variant of ρ is
ρ′ : A // Ks

f // ∑
r∈R r × f(r)−1.

One has
ρ′3 = s3

1 + 27
2 s3 −

9
2s1s2 + 3

2δ

and
ρρ′ = s2

1 − 3s2.

Finally, the root ξ of h(x) can be expressed in terms of ρ and ρ′ as

ξ = s1 + ρ+ ρ′

3 .

Note that the algebra Alg(A) is not the Galois closure of K[x]/h(x). If we wanted to con-
struct a Galois closure we would rather consider the Sym({1, 2, 3})-torsor Bij(R, {1, 2, 3}) of
indexations of the roots. We are not interested in this torsor however. This is because µ3oµ2
is solvable while C3 oC2 is not, in general. The algebra constructed by Tartaglia and Cardan
contains the initial cubic extension, because the quotient of Bij(Roots(h), µ3) by the stabi-
lizer of 1 in Sym(µ3) is isomorphic to the quotient of Bij(R, {1, 2, 3}) by the stabilizer of 1 in
Sym({1, 2, 3}), that is Roots(h). On the other hand, the quotient of Bij(R, {1, 2, 3}) by the
3-cycle (123) ∈ Sym({1, 2, 3}) is associated with the algebra K[x]/(x2−∆) while the quotient
of Bij(R,µ3) by the 3-cycle (1ζζ2) ∈ Sym(µ3) is associated with the algebra K[x]/(x2 + 3∆).

2.7. Curves with a µ3 o µ2 action. We still assume that the characteristic of K is prime
to 6. Let A be a projective, absolutely integral, smooth curve over K. We assume that the
automorphism group Aut(A ⊗K Ks) contains a finite étale K-group-scheme isomorphic to
µ3 o µ2. The quotients B = A/µ2, and C = A/µ3 are projective, absolutely integral, smooth
curves over K. In this situation, we say that C is the resolvent of B. By abuse of language
we may say also that we have constructed a parameterization of B by C.

Assume now that C admits a parameterization by S-radicals as in diagram (1). We call D′
the normalization of the fiber product of A and D above C. We assume that D′ is absolutely
integral.

D′

~~}}}}}}} µ3

  BBBBBBBB

A
µ2

����������
µ3

  AAAAAAAA D
π

~~||||||||
ρ

��
B C P1

We set S′ = S ∪ {3}. We let ρ′ be the composite map

ρ′ : D′ µ3−→ D
ρ−→ P1,
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and π′ the composite map
π′ : D′ −→ A

µ2−→ B.

Then (D′, ρ′, π′) is an S′-parameterization of B. The mild condition that D′ be absolutely
integral is granted in the following cases:

(1) When C = P1 and π and ρ are trivial.
(2) When the µ3-quotient A→ C is branched at some point P of C, and π is not branched

at P . Indeed the two coverings are linearly disjoint in that case. We note that when
C has genus 1 we may compose π with a translation to ensure that it is not branched
at P .

(3) When the degree of π is prime to 3, because A→ C and π are linearly disjoint then.
Note that the resulting parameterization π′ has degree prime to 3 also. We can iterate
in that case.

2.8. Selecting curves. We still assume that the characteristic of K is prime to 6. We now
look for interesting examples of curves with a µ3oµ2 action. We keep the notation introduced
in Section 2.7. We set E = A/(µ3 o µ2).

A
µ2

~~~~~~~~~ µ3

��@@@@@@@

B

  @@@@@@@ C

��~~~~~~~

E

The curve C is the one we already know how to parameterize. The curve B is the one we
want to parameterize. It should be as generic as possible. In particular, we will assume that
E = P1. Otherwise, the Jacobian of B would contain a subvariety isogenous to the Jacobian
of E. It would not be so generic then.

Assuming now that E = P1 we denote by r the number of branched points of the cover
B → E. Let rs be the number of branched points with ramification type 2, 1. These are
called simple branched points. Let rt the number of branched points with ramification type
3. These are totally branched points. We have r = rs + rt. According to the Hurwitz Genus
Formula [21, III.4.12, III.5.1] the genus of B is

gB = rs
2 + rt − 2.

We note that every simple branched point of the cover B → E gives rise to a branched point
of type 2, 2, 2 of the cover A → E and to a (necessarily simple) branched point of C → E.
And every totally branched point of the cover B → E gives rise to a branched point of type
3, 3 of the cover A→ E and to a non-branched point of C → E. So

gA = 3rs
2 + 2rt − 5, and gC = rs

2 − 1.

We set
m = r − 3 = rs + rt − 3

and call it the modular dimension. It is the dimension of the family of covers obtained
by letting the r branched points move along E = P1. The −3 stands for the action of
Aut(P1) = PGL2. If we aim at all curves of genus gB we should have m greater than or
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equal to the dimension of the moduli space of curves of genus gB. We deduce the genericity
condition

rs + 4rt ≤ 12− 2ε(rs2 + rt − 2),

where ε(0) = 3, ε(1) = 1, and ε(n) = 0 for n ≥ 2. This is a necessary condition.
The first case to consider is when C has genus 0 (because we know how to parameterize

genus 0 curves). So we first take rs = 2. So gB = rt − 1 and the genericity condition reads
rt ≤ 2. Only rt = 2 is of interest. We shall see in Section 3 that we find a parameterization
similar to those by Farashahi and Kammerer, Lercier, Renault in this case.

Assuming that we know how to parameterize some genus 1 curves, we may consider the
case when C itself has genus 1. We have rs = 4 in that case. And gB = rt. The genericity
assumption reads rt ≤ 2. The case rt = 2 will be studied in detail in Section 4.

3. Curves of genus 1

Let K be a field of characteristic prime to 6. Let B/K be a projective, smooth, absolutely
integral curve of genus 1. This is the curve we want to parameterize, following the strategy
presented in Sections 2.7 and 2.8. Since rs = rt = 2 in this case, we look for a map B → P1

of degree 3 with two fully branched points and two simply branched points. Such a map has
two totally ramified points. They may be either K-rational or conjugated over K. We will
assume that they are K-rational. We call them P0 and P∞. The two divisors 3P0 and 3P∞
are linearly equivalent because they both are fibers of the same degree three map to P1. So
the difference P∞ − P0 has order 3 in the Jacobian of B. Our starting point will thus be a
genus 1 curve B/K and two points P0, P∞ in B(K) such that P∞ − P0 has order 3 in the
Jacobian.

Let z ∈ K(B) be a function with divisor 3(P0 − P∞). There is a unique hyperelliptic
involution σ : B → B sending P0 onto P∞. It is defined over K. There exists a scalar
a0,0 ∈ K∗ such that σ(z)× z = a0,0. Let x be a degree 2 function, invariant by σ, with polar
divisor (x)∞ = P0 + P∞. Associated to the inclusion K(x) ⊂ K(x, z) there is a map B → P1

of degree 2. The sum z + σ(z) belongs to K(x). As a function on P1 it has a single pole of
multiplicity 3 at x = ∞. So z + a0,0/z is a polynomial of degree 3 in x. Multiplying z by a
scalar, and adding a scalar to x, we may assume that

(2) z + a0,0
z

= x3 + a1,1x+ a0,1.

The image of x× z : B → P1 × P1 has equation

Z0Z1
(
X3

1 + a1,1X1X
2
0 + a0,1X

3
0

)
= X3

0

(
Z2

1 + a0,0Z
2
0

)
.

This is a curve B? ⊂ P1 × P1 with arithmetic genus 2. Since B has geometric genus 1,
we deduce that B? has one ordinary double point (with finite x and z coordinates). Let
(x, z) = (j, k) be this singular point. We find

a0,0 = k2, a1,1 = −3j2, a0,1 = 2k + 2j3.

The plane affine model B? has equation

(3) z2 + k2 = z
(
x3 − 3j2x+ 2(k + j3)

)
.

This is a degree 3 equation in x with twisted discriminant 81(1− k/z)2 times
h(z) = z2 − (2k + 4j3)z + k2.
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We can parameterize B with cubic radicals. We first parameterize the conic C with equation

(4) v2 = h(z)

using the rational point (z, v) = (0, k). Applying Tartaglia-Cardan formulae to the cubic
Equation (3) we deduce a parameterization of B with one cubic radical. In order to relate
Equation (3) to a Weierstrass model, we simply sort in z and find the degree 2 equation in z,

z2 − (x3 − 3j2x+ 2k + 2j3)z + k2 = 0

with discriminant

(x3 − 3j2x+ 2k + 2j3)2 − 4k2 = (x− j)2(x+ 2j)(x3 − 3j2x+ 4k + 2j3).

A Weierstrass model for B is then u2 = (x+2j)(x3−3j2x+4k+2j3). Replacing j by λj and
k by λ3k for some non-zero λ in K we obtain an isomorphic curve. So we may assume that
j ∈ {0, 1} without loss of generality. This construction is not substantially different from the
ones given by Farashahi [7] and Kammerer, Lercier, Renault [13]. Starting from any genus 1
curve B and two points P0 and P∞ such that P∞ − P0 has order 3 in the Jacobian, we can
construct a model of B as in Equation (3) and a parameterization of B.

3.1. Example. Let us consider an elliptic curve given in Weierstrass form Y 2 = X3 +aX+b,
for example the curve Y 2 = X3 + 3X − 11 over R, together with a 3-torsion point (x0, y0) =
(3,−5). Define the scalars α and β by

α = − 3x0
2 + a

2 y0
and β = −y0 − αx0.

The functions x = α/3 + (Y + y0)/(X − x0) and z = Y + αX + β have divisors with zeros
and poles as prescribed. On our particular curve, these functions are

(5) x = Y − 5
X − 3 + 1 and z = Y + 3X − 4 .

The functions x and z are related by Equation (2) where

a0,0 = 4 y2
0 = 100 , a1,1 = −4x0 = −12 , a0,1 = −4 4 a3 + 27 b2

27 y03 = 4 .

So
z + 100

z
= x3 − 12x+ 4 .

The double point on the latter is (x, z) = (j, k) with

j = −2α
3 = −2 and k = −2 y0 = 10 .

A parameterization of the conic C given by Equation (4) that reaches the point (z, v) = (0, k)
at t =∞ is

z = 2 kt− k − 2 j3

t2 − 1 = 4 5 t+ 3
t2 − 1 , v = k − tz = (2k + 4j3)t− kt2 − k

t2 − 1 .

and using Tartaglia-Cardan formulae we find x = ρ/3 + 3j2/ρ with

ρ = 3j2 × 3

√
2(t+ 1)

(2 j3 − kt+ k) (1− t) .
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It remains to invert Eq. (5) in order to express X and Y as functions of x and z, i.e. as
functions of the parameter t. For t = 0, we obtain in this way the point

(X,Y ) = (2 ( 3√3)2 + 4 3√3 + 3, −6 ( 3√3)2 − 12 3√3− 17) .

4. Curves of genus 2

We look for parameterizations of genus 2 curves. We will follow the strategy of Sections 2.7
and 2.8. We take rs = 4 and rt = 2 this time. Given a genus 2 curve B, we look for a degree
three map B → P1 having 4 simply branched points and 2 totally branched points. Such a
map has two totally ramified points. We will assume that they are K-rational. We call them
P0 and P∞. The difference P∞ − P0 has order 3 in the Jacobian of B. Our starting point
will thus be a genus 2 curve B/K and two points P0, P∞ in B(K) such that P∞ − P0 has
order 3 in the Jacobian. The calculations will be slightly different depending on whether the
set {P0, P∞} is stable under the action of the hyperelliptic involution of B or not. These
two cases will be treated in Sections 4.2 and 4.3 respectively. Section 4.1 recalls simple facts
about genus 2 curves. Explicit calculations are detailed in Sections 4.4 and 4.5.

4.1. Generalities. Let K be a field of odd characteristic. Let K̄ be an algebraic closure of
K. Let B/K be a projective, smooth, absolutely integral curve of genus 2. Take two non-
proportional holomorphic differential forms and let x be their quotient. This is a function on
B of degree 2. Any degree 2 function y on B belongs to the field K(x) ⊂ K(B). Otherwise
the image of x×y : B → P1×P1 would be a curve birationally equivalent to B with arithmetic
genus (2− 1)× (2− 1) = 1. A contradiction. So every degree two function on B has the form
(ix+ j)/(kx+ l) with i, j, k and l in K. And B has a unique hyperelliptic involution σ. This
is the non-trivial automorphism of the Galois extension K(x) ⊂ K(B). From Hurwitz genus
formula, this extension is ramified at exactly 6 geometric points (Pi)1≤i≤6 in B(K̄). If #K > 5
we can assume that the unique pole of x is not one of the Pi. Set F (x) =

∏
i(x−x(Pi)) ∈ K[x].

According to Kummer theory, there exists a scalar F0 ∈ K∗ such that F0F has a square root
y in K(B). We set f = F0F and obtain an affine model for B with equation

y2 = f(x)
and two K̄-points O and σ(O) at infinity. Every function c in K(B) can be written as

c = a(x) + yb(x)
with a and b in K(x). If P = (xP , yP ) is a K̄-point on B we denote by vP the associated
valuation of K̄(B). If P is one of the (Pi)1≤i≤6 then
(6) vP (c) = min(2vxP (a), 2vxP (b) + 1),
where xP = x(P ) ∈ K̄ and vxP is the valuation of K̄(x) at x = xP . If P is a finite point
which is not fixed by σ then
(7) min(vP (c), vσ(P )(c)) = min(vxP (a), vxP (b)).
Finally
(8) min(vO(c), vσ(O)(c)) = min(−deg(a),−deg(b)− 3).

Let J be the Jacobian of B. A point x in J can be represented by a divisor in the
corresponding linear equivalence class. We may fix a degree 2 divisor Ω and associate to
x a degree 2 effective divisor Dx such that Dx − Ω belongs to the linear equivalence class
associated with x. This Dx is generically unique. Indeed the only special effective divisors of
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degree 2 are the fibers of the map B → P1. We may also represent linear equivalence classes
by divisors of the form P − Q where P and Q are points on B. There usually are two such
representations as the map

B2 // Jac(B)

(P,Q) � // P −Q,

is surjective and its restriction to the open set defined by

P 6= Q,P 6= σ(Q)

is finite étale of degree 2.

4.2. A 2-dimensional family. Let K be a field of characteristic prime to 6. In this para-
graph we study genus 2 curves B/K satisfying the condition that there exists a point P in
B(K) such that the class of σ(P )−P has order 3 in the Picard group. In particular P is not
fixed by σ. We let x and y be functions as in Section 4.1. We can assume that x(P ) =∞. Let
z be a function with divisor 3(σ(P )−P ). There exists a scalar w ∈ K∗ such that σ(z)×z = w.
We write

z = a(x) + yb(x)

with a and b in K(x). We deduce from Equations (6), (7), (8), that a and b are polynomials
and deg(a) ≤ 3 and deg(b) ≤ 0. From zσ(z) = a2− b2f = w ∈ K∗ we deduce that deg(b) = 0
and deg(a) = 3. We may divide z by a scalar in K∗ and assume that a is unitary. Replacing
x by x+ β for some β in K, we may even assume that a(x) = x3 + kx+ l with k and l in K.
Replacing y by by we may assume that b = 1 so

z = y + x3 + kx+ l.

An affine plane model for B has thus equation

z2 − 2a(x)z + w = 0

that is

(9) x3 + kx+ l = z + wz−1

2 .

This is a degree 3 equation in x with coefficients s1 = 0, s2 = k, s3 = (z + wz−1)/2− l, and
twisted discriminant 81/4 times

h(z) = z2 + w2z−2 − 4l(z + wz−1) + 2w + 4l2 + 16k3

27 .

We can parameterize B with cubic radicals. We first parameterize the elliptic curve C with
equation v2 = h(z) with one cubic radical, using e.g. Icart’s method [11]. We deduce a
parameterization of B applying Tartaglia-Cardan formulae to the cubic Equation (9). This
introduces another cubic radical. This is essentially the construction given by Kammerer,
Lercier and Renault [13]. Note that this family of genus 2 curves has dimension 2: when K
is algebraically closed we may assume that w = 1 without loss of generality.

11



4.3. The complementary 3-dimensional family. We still assume that K has prime to
6 characteristic. We consider a genus 2 curve B and two points P0 and P∞ in B(K) such
that the difference P0 − P∞ has order 3 in the Picard group. This time we assume that
P∞ 6= σ(P0). There exists a degree 2 function x having a zero at P0 and a pole at P∞. Let z
be a function with divisor 3(P0 − P∞). The image of x× z : B → P1 × P1 has equation

(10)
∑

06i63
06j62

ai,jX
i
1X

3−i
0 Zj1Z

2−j
0 = 0.

The function z takes the value ∞ at a single point, and x has a pole at this point. So if we
set Z0 = 0 in Equation (10) the form we find must be proportional to Z2

1X
3
0 . We deduce that

a3,2 = a2,2 = a1,2 = 0
and

a0,2 6= 0.
The function z takes value 0 at a single point, and x has a zero at this point. So if we set
Z1 = 0 in Equation (10) the form we find must be proportional to Z2

0X
3
1 . We deduce that

a2,0 = a1,0 = a0,0 = 0
and

a3,0 6= 0.
Equation (10) now reads

(a3,0Z0 + a3,1Z1)Z0X
3
1 + (a1,1X0 + a2,1X1)Z0Z1X0X1 + (a0,1Z0 + a0,2Z1)Z1X

3
0 = 0.

This is a curve of arithmetic genus 2 in P1 × P1. It must be smooth because it has geometric
genus 2. The corresponding plane affine model has equation

(11) (a3,0 + a3,1z)x3 + (a1,1 + a2,1x)zx+ (a0,1 + a0,2z)z = 0.
This is a degree 3 equation in x with twisted discriminant z2(a3,0 + a3,1z)−4 times

h(z) = (9a0,2a3,1)2z4 + (12a0,2a
3
2,1 + 162a3,0a

2
0,2a3,1 − 54a1,1a2,1a0,2a3,1

+ 162a0,1a
2
3,1a0,2)z3 + (81a2

3,0a
2
0,2 + 12a0,1a

3
2,1 − 54a1,1a2,1a0,1a3,1

+ 324a3,0a0,1a0,2a3,1 − 3a2
1,1a

2
2,1 − 54a3,0a1,1a2,1a0,2 + 81a2

0,1a
2
3,1

+ 12a3,1a
3
1,1)z2 + (12a3

1,1a3,0 − 54a3,0a1,1a2,1a0,1 + 162a2
3,0a0,1a0,2

+ 162a3,0a
2
0,1a3,1)z + (9a3,0a0,1)2.

We can parameterize B with cubic radicals. We first parameterize the elliptic curve with
equation v2 = h(z) with one cubic radical, using Icart’s method. We deduce a parameteri-
zation of B applying Tartaglia-Cardan formulae to the cubic Equation (11). This introduces
another cubic radical.

In order to relate Equation (11) to a hyperelliptic model, we simply sort in z and find the
degree 2 equation in z,

a0,2z
2 + (a3,1x

3 + a2,1x
2 + a1,1x+ a0,1)z + a3,0x

3 = 0
with discriminant
(12) m(x) = (a3,1x

3 + a2,1x
2 + a1,1x+ a0,1)2 − 4a0,2a3,0x

3.
12



A hyperelliptic model for B is then
y2 = m(x).

The construction will succeed for every genus 2 curve having a rational 3-torsion point in
its Jacobian that splits in the sense that it can be represented as a difference between two
K-rational points on B.

4.4. Rational 3-torsion points in genus 2 Jacobians. In this section we start from a
hyperelliptic curve

y2 = m(x),
where m(x) is a degree 6 polynomial. We look for a parameterization of it, following Sec-
tions 4.2 or 4.3. To this end we need a model as in Equations (11) and (12). Such a model
is obtained by writing m(x) as a difference m3(x)2 − m2(x)3 where m3 is a degree ≤ 3
polynomial and m2 is a degree ≤ 2 polynomial with rational roots. We now are very close
to investigations by Clebsh [4] and Elkies [6]. Three-torsion points in the Jacobian of the
curve y2 = m(x) correspond to expressions of m as a difference between a square and a
cube. When the base field K is finite, we may first compute the Zeta function of the curve,
deduce the cardinality of the Picard group and obtain elements of order 3 in it by multiplying
random elements in the Picard group by the prime to three part of its order. For a general
base field K, we can look for solutions to m(x) = m3(x)2−m2(x)3 by a direct Gröbner basis
computation. Our experiments with the computer algebra softwares maple or magma show
that this approach is efficient enough when K is a finite field of reasonable (say cryptographic)
size. When K is the field Q of rationals, this direct approach becomes quite slow.

In this section we explain how to accelerate the computation using invariant theory. Our
method takes as input, instead of m(x), the standard homogeneous invariants for the action
of GL2 evaluated at m(X1,X0), the degree 6 projective form associated with m(x). Classical
invariant theory results [1, 4] show that the orbit under GL2 of a degree 6 non-singular form
m(X1,X0) is characterized by 5 homogeneous invariants I2, I4, I6, I10, I15, of respective
degrees 2, 4, 6, 10, and 15. There is a degree 30 algebraic relation between the Ii (see [12]).

The action of GL2 on pairs (m2(X1,X0),m3(X1,X0)) consisting of a quadric and a cubic
gives rise to well known invariants also: ι2 (the discriminant of m2), ι4 (the discriminant of
m6) and 3 joint invariants ι3, ι5 and ι7, of respective degrees 2, 4, 3, 5 and 7. There is a degree
14 algebraic relation between the ιi [17, p.187-189]. Since the map (m2,m3) 7→m = m2

3−m3
2

is GL2-equivariant we can describe its fibers in terms of the invariants on each side. We easily
obtain the Ii’s as functions of the ιi’s,

22 I2 = 120 ι5 + 4 ι4 − 12 ι3 ι2 + 3 ι23 ,

27 I4 = 2640 ι52 + 96 ι5 ι4 − 768 ι5 ι3 ι2 + 240 ι5 ι23 − 24 ι4 ι3 ι2 + 8 ι4 ι23

−8 ι33 + 48 ι32ι2
2 − 24 ι3 ι24 + 3 ι26 ,

210 I6 = −5120 ι53 − 192 ι52ι4 − 2304 ι52ι3 ι2 + 3504 ι52ι2
3 − 96 ι5 ι4 ι3 ι2

+240 ι5 ι4 ι23 − 288 ι5 ι33 + 1008 ι5 ι32ι2
2 − 768 ι5 ι3 ι24 + 120 ι5 ι26

+4 ι42ι2
3 + 24 ι4 ι32ι2

2 − 24 ι4 ι3 ι24 + 4 ι4 ι26 + 36 ι34ι2(13)
−72 ι33ι2

3 + 48 ι32ι2
5 − 12 ι3 ι27 + ι2

9 ,

212 I10 = 46656 ι55 + 3456 ι54ι4 − 3888 ι54ι3 ι2 + 729 ι54ι2
3 + 64 ι53ι4

2

−144 ι53ι4 ι3 ι2 + 27 ι53ι4 ι2
3 + 128 ι53ι3

3 − 27 ι53ι3
2ι2

2 .
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Given the Ii’s evaluated at m(X1,X0), the generic change of variable λ = ι2
3 and µ = ι2×ι3

turns these equations into a system of 4 equations of total degrees 1, 3, 4 and 6 in the 4
variables λ, µ, ι4 and ι5 . A Gröbner basis can be easily computed for the lexicographic order
(note that the first equation is linear). This yields a degree 40 polynomial in λ. If none of the
roots of this polynomial are squares, we can abort the calculation because we need m2(x) to
have rational roots in order to parameterize the curve y2 = m(x).

Considering Equation (12) of Section 4.3 it is natural to look for a formm in the GL2-orbite
of m such that m = m2

3 −m3
2 for some m2(x) = e x and m3(x) = a x3 + b x2 + c x+ d, where

e3 = 4a0,2a3,0, a = a3,1, b = a2,1, c = a1,1, d = a0,1. The invariants of (m2,m3) are

ι2 = e2 , ι3 = −e(9 ad− bc) , ι5 = −e3ad , ι7 = e3(ac3 − b3d) ,(14)
ι4 = −27 a2d2 + 18 abcd− 4 ac3 − 4 b3d+ b2c2 .

So for each candidate (ι2, ι3, ι4, ι5) issued from Equations (13), we invert Eq. (14). A Groebner
basis for the lexicographic order d, c, b, a, e yields generically a 1 dimensional system the last
two equations of which are

0 = e2 − ι2 ,
0 = ι2

3ι5 b
6 − ι2 (ι23ι4 − ι22ι3

2 + 36 ι2 ι3 ι5 − 216 ι52) e a b3 − 4 (ι2 ι3 − 9 ι5)3 a2 .

We keep solutions m2(x) and m3(x) that yield a polynomial m(x) = m3(x)2 −m2(x)3 which
is GL2-equivalent to m(x) over the base field (see [15] for efficient algorithms). Applying the
isomorphism to m2(x) and m3(x) gives m2(x) and m3(x).

4.5. An example. Let K be a field with 83 elements. We start from the genus 2 curve with
affine equation y2 = m(x) with m(x) = x6 + 39x5 + 64x4 + 7x3 + x2 + 19x + 36. In order to
find m3(x) and m2(x) such that m(x) = m3(x)2 −m2(x)3, we first compute the invariants
of the degree six form m

(I2, I4, I6, I10) = (23, 9, 38, 53, 59) .
14



A Groebner basis for the relations between λ, µ and ι4 is

ι4 = 27λ39 + 58λ38 + 3λ37 + 18λ36 + 42λ35 + 26λ34 + 52λ33 + 60λ32

+78λ31 + 17λ30 + 50λ29 + 12λ28 + 75λ27 + 20λ26 + 75λ25 + 38λ24

+19λ23 + 21λ22 + 35λ21 + 31λ20 + 27λ19 + 49λ18 + 44λ17 + 30λ16

+38λ15 + 55λ14 + 59λ13 + 6λ12 + 2λ11 + 36λ10 + 18λ9 + 2λ8 + 41λ7

+62λ6 + 3λ5 + 49λ4 + λ3 + 33λ2 + 36λ+ 69 ,
µ = 62λ40 + 46λ39 + 11λ38 + 33λ37 + 75λ36 + 19λ35 + 53λ34 + 10λ33

+48λ32 + 47λ31 + 77λ30 + 14λ29 + 49λ28 + 47λ27 + 38λ26 + 19λ25

+25λ24 + 44λ23 + 68λ22 + 15λ21 + 36λ20 + 9λ19 + 73λ18 + 13λ17

+64λ16 + 5λ15 + 67λ14 + 82λ13 + 69λ12 + 9λ11 + 69λ10 + 35λ9

+57λ8 + 57λ7 + 7λ6 + 11λ5 + 37λ4 + 78λ3 + 10λ2 + 73λ ,
0 = λ40 + 48λ39 + 67λ38 + 35λ37 + 50λ36 + 23λ35 + 4λ34 + 12λ33

+37λ32 + 49λ31 + 40λ30 + 71λ29 + 60λ28 + 79λ27 + 19λ26 + 81λ25

+82λ24 + 26λ23 + 9λ22 + 19λ21 + 82λ20 + 40λ19 + 50λ18 + 67λ17

+80λ16 + 29λ15 + 73λ14 + 38λ13 + 81λ12 + 73λ11 + 5λ10 + 14λ9

+82λ8 + 46λ7 + 62λ6 + 32λ5 + 17λ4 + 74λ3 + 15λ2 + 30λ+ 43 .

Here, we only have two rational candidates for (λ, µ, ι4), the first one gives

(ι2, ι3, ι4, ι5) = (17, 51, 35, 55) .

Now, inverting Eq. (14) yields 4 possibilities, all parameterized by a:
(1) { d+ 74 c3 = 0, c b+ 45 = 0, c a+ 63 b2 = 0, b3 + 23 a = 0, e+ 73 = 0 } ,
(2) or { d+ 65 c3 = 0, c b+ 45 = 0, c a+ 73 b2 = 0, b3 + 46 a = 0, e+ 73 = 0 } ,
(3) or { d+ 18 c3 = 0, c b+ 38 = 0, c a+ 73 b2 = 0, b3 + 37 a = 0, e+ 10 = 0 } ,
(4) or { d+ 9 c3 = 0, c b+ 38 = 0, c a+ 63 b2 = 0, b3 + 60 a = 0, e+ 10 = 0 } .

A solution to the first set of equations is, for a = 1,

m3(x) = x3 + 46x2 + 73x+ 47 and m2(x) = 10x,

and the polynomial
m(x) = m3(x)2 −m2(x)3

is GL2-equivalent to m(x). Indeed

m(76x + 70
36x + 43)× (36x + 43)6 = m(x).

So we set
m3(x) = m3(76x + 70

36x + 43)× (36x + 43)3 = 15x3 + 30x2 + 46x + 7

and
m2(x) = m2(76x + 70

36x + 43)× (36x + 43)2 = 53x2 + 29x + 54

and we check that m = m2
3 −m3

2.
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4.6. Parameterization. The curve with equation y2 = m(x) over the field with 83 elements
is isomorphic to the curve with equation

y2 = (ax3 + b x2 + c x+ d)2 − (e x)3 = (x3 + 46x2 + 73x+ 47)2 − (10x)3

through the change of variables

(15) x = 76x + 70
36x + 43 , and y = y

(36x + 43)3 .

With the notation in Section 4.3 we have a = a3,1 = 1, b = a2,1 = 46, c = a1,1 = 73,
d = a0,1 = 47, e = 10, a0,2 = −1/2, a3,0 = −e3/2. Let P0 be the point with coordinates x = 0
and y = −47. Let P∞ be the point where x has a pole and y/x3 = 1. The functions x has a
zero at P0 and a pole at P∞. The function z = y+a x3 +b x2 +c x+d has divisor 3(P0−P∞).
These two functions are related by the equation
(16) (−e3/2 + az)x3 + (bx+ c)zx+ (d− z/2)z = 0,
that is (z+81)x3 +(46x+73)zx+(47+41 z)z = 0 . The resolvent elliptic curve has equation
v2 = h(z) with

h(z) = 41 z4 + 15 z3 + 38 z2 + 46 z + 7 .
It is birationally isomorphic to the Weierstrass curve with equation Y 2 = X3 + 37X + 60 ,
whose Icart’s parameterization in t is

X = κ/6 + t2/3 , Y = (t3 + t κ+ 28/t)/6
where

κ = 3

√
81 t6 + 79 t2 + 71 + 56

t2
.

After a birational change of variable, we obtain

z = 10Y + 16X + 72
74X2 + 79X + 49 ,

v = (47X2 + 8X + 64)Y + 51X4 + 5X3 + 20X2 + 20X + 18
81X4 + 72X3 + 47X2 + 23X + 77 .

We then apply Tartaglia-Cardan formulae to Eq. (16) in order to obtain x and y = z−m3(x)
as functions of t. Inverting the change of variables in Equation (15) gives a point (x,y) on
the initial curve.

4.7. The density of target curves. We prove that the construction in Section 4.3 provides
a parameterization for a fixed positive proportion of genus 2 curves over Fq when q is prime to
6 and large enough. We call S the set of non-degenerate sextic binary forms with coefficients
in Fq. Scalar multiplication

(λ,m(X1, X0)) 7→ λm(X1, X0)
defines an action of the multiplicative group F∗q on S. The linear group GL2(Fq) also acts on
S. Call G the subgroup of GL2(Fq) × F∗q consisting of pairs (γ, λ) where λ is a square. To
every non-degenerate sextic binary form m(X1, X0) with coefficients in Fq we associate the
Fq-isomorphism class of the curve with equation y2 = m(x, 1). This defines a surjective map
ν from S onto the set I of Fq-isomorphism classes of genus 2 curves over Fq. The fibers of ν
are the orbites for the action of G on S. When q tends to infinity, the proportion of forms
in S with non-trivial stabilizer in G tends to zero. So it is equivalent to count isomorphism
classes of curves in I or to count forms in S.
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We call P the set of pairs (m2,m3) consisting of a split quadratic form
m2(X1, X0) = (aX1 − bX0)(cX1 − dX0)

and a cubic form m3, such that m2
3 −m3

2 is a non-degenerate sextic form. The cardinality of
P is q7× (1/2+o(1)) when q tends to infinity. Let χ : P → S be the map that sends (m2,m3)
onto m2

3 −m3
2. According to work by Clebsh [4] and Elkies [6, Theorem 3], fibers of χ have

no more than 240 elements. So the image of χ has cardinality at least q7 × (1/480 + o(1))
and density at least 1/480 + o(1).

Theorem 1. Let q be a prime power that is prime to 6. The proportion of all genus 2 curves
over the field with q elements that can be parameterized by 3-radicals is at least 1/480 + ε(q)
where ε tends to zero when q tends to infinity.

5. Other families of covers

In Sections 3 and 4 we have studied two families of µ3 o µ2 covers corresponding to
(rs, rt) = (2, 2) and (rs, rt) = (4, 2) respectively. In this section we quickly review a few
other possibilities. We also present an interesting family of µ5 o µ2 covers.

5.1. The case (rs, rt) = (4, 1). Both B and C have genus 1. The map B → E is any degree
three map having a triple pole. If B is given by a Weierstrass model, then for every scalar t,
the function y+ tx will do. So we obtain a one parameter family of parameterization of B by
elliptic curves Ct. The resolvents Ct form a non-isotrivial family. However, we observed that
the 3-torsion group scheme Ct[3] is isomorphic to B[3] for every value of t.

5.2. The case (rs, rt) = (6, 1). Both B and C have genus 2. The map B → E is any degree
three map having a triple pole. There is one such map for every non-Weierstrass point P on
B. We obtain a one parameter family of parameterization of B by genus 2 curves CP . The
resolvents CP form a non-isotrivial family. However, we observed that the 3-torsion group
scheme JCP

[3] is isomorphic to JB[3] for every P ∈ B.

5.3. The case (rs, rt) = (8, 1). Both B and C have genus 3. The map B → E is a degree
three map having a triple pole P . This pole is a rational Weierstrass point. The curve C is
hyperelliptic. For every genus 3 curve B having a rational Weierstrass point, we thus obtain a
parameterization of B by a hyperelliptic curve of genus 3. Conversely, for every hyperelliptic
curve of genus 3 which we can parameterize, we obtain a parameterization for a 1-dimensional
family of non-hyperelliptic genus 3 curves.

5.4. Curves with a µ5 o µ2 action. This time we assume that the characteristic of K is
prime to 10. Let ζ5 ⊂ K̄ be a primitive 5-th root of unity. We denote by µ5oµ2 the subgroup
scheme of Sym(µ5) generated by x 7→ x−1 and x 7→ ζ5x. Let A be a projective, absolutely
integral, smooth curve over K. We assume that Aut(C ⊗K K̄) contains the finite étale K-
group scheme µ5 o µ2. We set B = A/µ2, and C = A/µ5. If C admits a parameterization by
S-radicals as in Equation (1), and if the normalization D′ of the fiber product of A and D
above C is absolutely integral, then we can construct an S ∪ {5}-parameterization of B just
as in Section 2.7. We assume that E = A/(µ5 o µ2) has genus 0. Let rd be the number of
branched points with ramification type 2, 2, 1. Let rt be the the number of branched points
with ramification type 5. According to the Hurwitz Genus Formula [21, III.4.12, III.5.1] the
genus of B is

gB = rd + 2rt − 4.
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Every branched point of type 2, 2, 1 of the cover B → E gives rise to a branched point of type
2, 2, 2, 2, 2 of the cover A→ E and to a simple branched point of C → E. And every totally
branched point of the cover B → E gives rise to a branched point of type 5, 5 of the cover
A→ E and to a non-branched point of C → E. So

gA = 5rd
2 + 4rt − 9, and gC = rd

2 − 1.

We still call
m = rd + rt − 3

the modular dimension. The genericity condition is

2rd + 5rt ≤ 12− 2ε(rd + 2rt − 4),

where ε(0) = 3, ε(1) = 1, and ε(n) = 0 for n ≥ 2.
An interesting case is when rd = 6 and rt = 0. Then both B and C have genus 2. The map

B → E is a µ5 oµ2-cover. The cover A→ C is unramified. It is a quotient by µ5. Associated
to it, there is a C5 inside JC . So we are just dealing with a genus 2 curve C having a 5-torsion
point in its Jacobian. We provide explicit equations for this situation in Section 6.

6. Genus 2 curves with a 5-torsion divisor

We assume that K has characteristic prime to 10. Let C be a genus 2 curve having a
K-rational point of order 5 in its Jacobian. We assume that this point is the class of P∞−P0
where P∞ and P0 are two K-rational points on C. We give explicit equations for C, P0 and
P∞ depending on rational parameters. In Sections 6.1, 6.2, and 6.3, we distinguish three cases
depending on the action of the hyperelliptic involution σ on P0 and P∞. We note that these
two points cannot be both Weierstrass points. We finally give in Section 6.4 an example of
how to combine this construction and the previous ones in order to parameterize more genus
2 curves.

6.1. A first special case. We first assume that P0 is a Weierstrass point. So P∞ is not.
Let x be a degree 2 function having a pole at P∞ and a zero at P0. Let y be a function as in
Section (4.1). We have y2 = f(x) for some degree 6 polynomial in K[x]. Let z ∈ K(C) be a
function with divisor 5(P0 − P∞). We write

z = a(x) + yb(x)

with a(x) and b(x) in K(x). We deduce from Equations (6), (7), (8), that a and b are
polynomials and deg(a) ≤ 5 and deg(b) ≤ 2. Since z has a pole of order 5 at P∞ and has
valuation 0 at σ(P∞) we actually know that deg(a) = 5 and deg(b) = 2. Also b is divisible
by x exactly twice, and a is divisible by x at least thrice. Multiplying z by a scalar we
may ensure that a is unitary. Multiplying y by a scalar we may ensure that b = x2. And
a(x) = x3(x2 + kx+ l) for some k and some l in K. There exists a scalar w ∈ K∗ such that

z × σ(z) = wx5 = x4(x2(x2 + kx+ l)2 − f(x)).

So f(x) = x2(x2 + kx+ l)2 − wx. The curve C has affine equation

y2 = x2(x2 + kx+ l)2 − wx,

P∞ is one of the two points at infinity, and P0 is the point (0, 0). This is essentially the model
given by Boxall, Grant and Leprévost [3].
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6.2. Another special case. We assume now that σ(P0) = P∞. Let x be a degree two
function having poles at P0 and P∞. Let y and f(x) be as in Section 4.1. Let z be a function
with divisor 5(P0 − P∞). We write z = a(x) + yb(x) where a and b are polynomials in x
with degrees 5 and 2. Multiplying z by a constant in K we may assume that a is unitary.
Multiplying y by a constant in K we may assume that b is unitary. Adding a constant to x
we may assume that

b(x) = x2 − k
for some k ∈ K. There is a scalar w ∈ K∗ such that

z × σ(z) = w = a2 − fb2.

So w is a square in the algebra K[x]/b(x). This leaves two possibilities. Either w = W 2

for some W ∈ K∗ and a(x) = W mod b(x), or w = W 2k for some W ∈ K∗ and a(x) =
Wx mod b(x). We study these two subcases successively.

6.2.1. If w = W 2 and a(x) = W mod b(x). We check that

a(x) = W mod b(x)2

indeed. Since a is unitary, there exists a scalar j ∈ K such that a = W + (x + j)b2. We
deduce expressions for a, b and f in the parameters k, W , and j. The actual dimension of
the family is 2 because we may multiply x by a scalar.

6.2.2. If w = W 2k and a(x) = Wx mod b(x). In particular k is not 0. We check that
a(x) = Wx + a1(x)b(x) mod b(x)2 with a1(x) = −Wx/(2k). So there exist a scalar j ∈ K
such that

a = Wx−Wxb(x)/(2k) + (x+ j)b(x)2.

We deduce expressions for a, b and f in the parameters k, W , and j. The actual dimension
of the family is 2 again.

6.3. Generic case. We assume that none of P0 and P∞ is a Weierstrass point and σ(P0) 6=
P∞. Let x be a degree 2 function having a zero at P0 and a pole at P∞. Let y be a function
as in Section 4.1. We have y2 = f(x) where f ∈ K[x] is a degree 6 polynomial. Both f(0)
and the leading coefficient of f are squares in K. Let z ∈ K(C) be a function with divisor
5(P0 − P∞). We write

z = a(x) + yb(x)
with a(x) and b(x) in K(x). We deduce from Equations (6), (7), (8), that a and b are
polynomials and deg(a) ≤ 5 and deg(b) ≤ 2. Since z has a pole of order 5 at P∞ and has
valuation 0 at σ(P∞) we actually know that deg(a) = 5 and deg(b) = 2. Multiplying z by
a scalar, we may ensure that a is unitary. Multiplying y by a scalar, we may ensure that b
is unitary. Since z has a zero of order 5 at P0 and has valuation 0 at σ(P0) we know that
a(0) 6= 0 and b(0) 6= 0.

The three polynomials a(x), b(x), and f(x) are related by the equation

a2 − fb2 = wx5

for some w ∈ K∗. In particular, wx is a square modulo b(x). We can easily deduce that

b(x) = x2 + (2k − wl2)x+ k2
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Figure 1. Composing parameterizations

for some k and l in K∗. A square root of wx modulo b(x) is then (k+ x)/l. A square root of
wx5 modulo b is then

a0(x) = (k2 − 3kwl2 + w2l4)x+ (k − wl2)k2

l
.

Using Hensel’s lemma we deduce that a is the square root of wx5 modulo b2 of the form
a0 + a1b with

a1(x) = k2 − 2wkl2 + 2w2l4 + x(wl2 + k)
2wl3 .

So there exists j ∈ K such that a = a0 + a1b+ a2b
2 with

a2(x) = x+ j.

We deduce the expressions for a, b and f = (a2 − x5)/b2 in the parameters j, k, l, w.

6.4. An example. Let K be a field with 83 elements. We set w = 1, j = 2, k = 3, l = 14
and find a(x) = x5 + 37x4 + 78x3 + 18x2 + 26x+ 29 and b(x) = x2 + 59x+ 9, and

f(x) = x6 + 39x5 + 64x4 + 7x3 + x2 + 19x+ 36.
The curve C with equation y2 = f(x) has genus 2. Its Jacobian has 3.5.7.71 points over K.
We set z = a(x) + yb(x) and define a cyclic unramified covering A of C by setting t5 = z. We
lift the action of the hyperelliptic involution σ onto A by setting σ(t) = x/t. The function
u = t + x/t is invariant by σ. The field K(u, x) is the function field of the quotient curve
B = A/σ. A singular plane model for B is given by the equation

u5 + 78xu3 + 5x2u = 2a(x) = 2(x5 + 37x4 + 78x3 + 18x2 + 26x+ 29).
Note the Tchebychev polynomial on the left hand side. The Jacobian of B has 5.372 points
over K. In particular, its 3-torsion is trivial. However we can parameterize the curve B using
the parameterization of C constructed in Section 4.5. Note that C appears in Section 4.5
under the name B.

6.5. Composing parameterizations. In Section 6.4 we parameterize a genus 2 curve (call
it B2) by another genus 2 curve (call it C2), using a µ5 o µ2 action on some curve A2. In
Section 4.5 we had constructed a parameterization of C2 = B1 by a genus one curve (call it
C1) using a µ3 oµ2 action on some curve A1. This C1 can be parameterized e.g. using Icart’s
parameterization. Composing the three parameterizations we obtain a parameterization of
B2 by P1.
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This situation is represented on Figure 1. The curve D1 is the normalization of the fiber
product of D and A1 over C1. The curve D2 is the normalization of the fiber product of D1
and A2 over C2. We can prove that D1 and D2 are absolutely irreducible by observing that
all down left arrows have degree a power of two, while all down right arrows are Galois of odd
degree. The interest of this construction is that, the Jacobian of B2 having trivial 3-torsion,
we reach a curve that was inaccessible before. We may compose again and again e.g. with
parameterizations as in Section 5.2. It is natural to ask if we can reach that way all genus
2 curves over a large enough finite field or cardinality q when q is prime to 30. Answering
this question requires to study some morphisms from a moduli space of covers to the moduli
space of genus 2 curves : proving in particular that the morphism is surjective and that the
geometric fibers are absolutely irreducible.
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