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Elliptic periods for finite fields∗

Jean-Marc Couveignes†and Reynald Lercier‡§

Abstract

We construct two new families of basis for finite field extensions. Bases in the first
family, the so-called elliptic bases, are not quite normal bases, but they allow very fast
Frobenius exponentiation while preserving sparse multiplication formulas. Bases in
the second family, the so-called normal elliptic bases are normal bases and allow fast
(quasi-linear) arithmetic. We prove that all extensions admit models of this kind.

1 Introduction
The main computational advantage of normal basis for a finite field extension Fqd/Fq is
that they allow fast exponentiation by q since it corresponds to a cyclic shift of coordinates,
and it can be computed in time O(d). There is a concern however about how difficult is
multiplication in this context.

Let α and β be two elements in Fqd with coordinates ~α = (αi)06i6d−1 and ~β = (βi)06i6d−1
in the given normal basis. Let (γi)06i6d−1 be the coordinates of the product α × β. Each
γi is a bilinear form in ~α and ~β. The number of non-zero terms in γi does not depend
on i because the d corresponding tensors are cyclic shifts of each others. This number of
terms is called the complexity C of the normal basis. Multiplication with the straightforward
algorithm can be done with 2dC operations (dC when coefficients of the bilinear forms γi are
all ±1). It was shown by Mullin, Onyszchuk, Vanstone and Wilson [15] that the complexity
C is at least 2d− 1. This bound is reached by the so-called optimal normal bases. But such
optimal normal bases only exist for very special extensions. As a general fact, normal bases
with bounded complexity are not known to exist, unless the degree d takes very special and
sparse values.
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Normal bases with low complexity usually are constructed using Gauss periods as in work
by Ash, Blake and Vanstone [2] or Gao and Lenstra [11]. The construction uses r-th roots
of unity where r = kd+ 1 is prime. It requires that q generates the unique quotient of order
d of (Z/rZ)∗. The parameter k is very important and should be kept as small as possible,
because the complexity of the normal basis is bounded by (d− 1)k + d and is not expected
to be much smaller [10, Theorem 4.1.4]. Optimal normal bases occur when k = 1 or k = 2.
This corresponds to very sparse values of d. In general, for q a prime, assuming the Extended
Riemann Hypothesis, it has been shown by Adleman and Lenstra [1] that there exists a k
and a r as above with r = O(d4(log(dq))2). This is unfortunately of no use when bounding
the complexity. In some cases, there is no k at all [22, Satz 3.3.4]. We shall not survey
all the variants and improvements for this method. We just quote works by Christopoulou,
Garefalakis, Panario and Thomson [7] where traces of optimal normal bases are shown to
have a reasonable complexity in some special cases. Wan and Zhou show [21] that the dual
of type I optimal normal bases have good complexity too.

Gao, von zur Gathen and Panario show [12] that fast multiplication methods (like FFT)
can be adapted to normal bases constructed with Gauss periods. They give a multiplication
algorithm in such a normal basis with complexity O(dk log(dk) log | log(dk)|). This is a
considerable progress for Gauss normal bases with bounded k. But in the general case, k
being only upperbounded by O(d3(log(dq))2), this is just too large.

In his thesis [10] Gao presented a new way of constructing normal bases with low com-
plexity. In Gao’s construction, the Lucas torus and its isogenies play an important, though
implicit, role. Gao thus constructs more normal bases with low complexity. In our work, we
consider the remaining algebraic groups of dimension one: elliptic curves. Since there are
many elliptic curves, we can enlarge significantly the number of cases where a normal basis
with fast multiplication exists.

In order to state our results, we shall need the following definition where v` stands for
the valuation associated to the prime `.
Definition 1 Let p be a prime and q a power of p. Let d > 2 be an integer.

We denote by dq the unique positive integer such that for every prime `

• v`(dq) = v`(d) if ` is prime to q − 1,
• v`(dq) = 0 if v`(d) = 0,
• v`(dq) = max(2v`(q − 1) + 1, 2v`(d)) if ` divides both q − 1 and d.

For example, if d = 14 and q = 654323 then q − 1 = 2.19.67.257 and dq = 23.7.
Note that dq = d whenever d is prime to q − 1.
We now can state our first result.

Theorem 1 To every couple (q, d) with q a prime power and d > 2 an integer and dq 6 q
1
2 ,

one can associate a normal basis Θ(q, d) of the degree d extension of Fq such that the following
holds:
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• There exist a positive constant K and an algorithm that multiplies two elements given
in the basis Θ(q, d) at the expense of 5d2 + 2d multiplications and 5d2 + 4d addi-
tions/subtractions in Fq. The amount of necessary memory is 6 Kd log q bits.

There is also a fast arithmetic version of Theorem 1.

Theorem 2 To every couple (q, d) with q a prime power and d ≥ 2 an integer and dq 6 q
1
2 ,

one can associate a normal basis Θ(q, d) of the degree d extension of Fq such that the following
holds:

• There exist a positive constant K and an algorithm that multiplies two elements given
in the basis Θ(q, d) at the expense of Kd log d log | log d| operations in Fq.
• There exists an algorithm that divides two elements given in the basis Θ(q, d) at the
expense of

Kd(log d)2 log | log d|

operations in Fq.

The basis Θ(q, d) that appears in Theorem 1 and Theorem 2 has a multiplication tensor
that mainly consists of 5 convolution products. We also construct a basis Ω(q, d) having
a sparse multiplication tensor. Sparsity is useful when using such constrained devices as
circuits. Further, this basis Ω(q, d) allows a faster elementary multiplication algorithm than
Θ(q, d). It is not quite a normal basis but exponentiation by q is still done in linear time.

Theorem 3 To every couple (q, d) with q a prime power and d ≥ 2 an integer and dq 6 2q 1
2 ,

one can associate a basis Ω(q, d) of the degree d extension of Fq such that the following holds:

• There exist a positive constant K and an algorithm that computes the q-th power of
an element given in basis Ω(q, d) at the expense of d − 1 multiplications and 2d − 3
additions in Fq. The amount of necessary memory is 6 Kd log q bits.
• There exists an algorithm that multiplies two elements given in basis Ω(q, d) at the ex-
pense of (31d2+6d)/12 multiplications, d2/12 inverses and (37d2+30d)/12 additions/subtrac-
tions in Fq. The amount of necessary memory is 6 Kd log q bits.

The following result is valid without any restriction.

Theorem 4 To every couple (q, d), one can associate a model Ξ(q, d) of the degree d exten-
sion of Fq such that the following holds :

There exists a positive constant K such that the following is true :

• Elements in Fqd are represented by vectors with less than Kd(log d)2(log(log d))2 com-
ponents in Fq.
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• Addition (resp. substraction) of two elements in Fqd requires less than

Kd(log d)2(log(log d))2

additions (resp. substractions) in Fq.
• Exponentiation by q consists in a circular shift of the the coordinates.
• There exists an algorithm that multiplies two elements at the expense of

Kd(log d)3| log(log d)|3

multiplications/additions/substractions in Fq.
• There exists an algorithm that divides two elements at the expense of

Kd(log d)4| log(log d)|3

multiplications/additions/substractions in Fq.

So, for every finite field extension, there exists a model that allows both fast multiplication
and fast application of the Frobenius automorphism.

In Section 2, we recall simple relations between low degree elliptic functions. We show in
Section 3 that evaluation of such functions at a well chosen divisor produces an almost normal
basis for the residue field. Relations between elliptic functions result in nice multiplication
formulas in this basis. Such bases have similar properties to those constructed by Gao in
his thesis: they have low complexity. This is shown in Subsection 3.3. In Section 4, we
construct normal bases allowing fast (quasi-linear) multiplication. We show in Section 5
that an elliptic basis exists for any degree d extension of Fq provided d is not too large. We
explain in Subsection 5.2 what to do when d is large. In Subsection 5.4, we introduce a
polynomial basis that can be related efficiently to the elliptic (normal) basis. We deduce a
fast inversion algorithm for elliptic normal bases.

We further support our claims with extensive experiments using the computational alge-
bra system magma [4]. We developed for this task a package, named ellbasis, the sources
of which are available on the web page of the second author.
Acknowledgments: We thank Cécile Dartyge, Guillaume Hanrot, Gerald Tenenbaum and
Jie Wu for pointing Iwaniec’s result on Jacobsthal’s problem to us.

2 Linear and quadratic relations among elliptic func-
tions

In this section, we study the simplest elliptic functions: those with degree 2. We prove
simple linear and quadratic relations between these functions. The monography [19] by J.
Silverman contains all the necessary background about elliptic curves.
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Let K be a field and let E be an elliptic curve over K. We assume E is given by some
Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 .

We set x = X/Z, y = Y/Z and z = −x/y = −X/Y , and we find

x = 1
z2 −

a1

z
− a2 − a3z +O(z2) ,

y = − 1
z3 + a1

z2 + a2

z
+ a3 +O(z) .

The involution P = (x, y) 7→ −P = (x,−y − a1x− a3) transforms z into

z(−P ) = x

y + a1x+ a3
= −z − a1z

2 − a2
1z

3 − (a3
1 + a3)z4 +O(z5) .

If A is a geometric point on E, we denote by τA the translation by A. We denote by zA =
z◦τ−A the composition of z with the translation by −A. We define xA and yA in a similar way.
The composition of zA with the involution fixing A is −zA−a1z

2
A−a2

1z
3
A−(a3

1+a3)z4
A+O(z5

A).
The composition of 1/zA with the involution fixing A is −1/zA + a1 + a3z

2
A +O(z3

A).
If A and B are two distinct geometric points on E, we denote by uA,B the function on E

defined as
uA,B = yA − y(A−B)

xA − x(A−B) .

It has polar divisor −[A]− [B]. It is invariant by the involution exchanging A and B,

uA,B(A+B − P ) = uA,B(P ) .

Its Taylor expansion at A is uA,B = −1/zA − xA(B)zA + (yA(B) + a3)zA
2 +O(z3

A) .
If C is any third geometric point, we set Γ(A,B,C) = uA,B(C). This is the slope of the

secant (resp. tangent) to E going through C −A and A−B. It is well defined for any three
points A, B, C such that #{A,B,C} > 2. It is finite if and only if #{A,B,C} = 3. We
check

Γ(−A,−B,−C) = −Γ(A,B,C)− a1. (1)

The Taylor expansions of uA,B at A and B are

uA,B = − 1
zA

− xA(B)zA + (yA(B) + a3)z2
A +O(z3

A)

= 1
zB

− a1 + xA(B)zB + (yA(B) + a1xA(B))z2
B +O(z3

B).
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As a consequence uB,A = −uA,B − a1, xB(A) = xA(B) and yB(A) = −yA(B)− a1xA(B)− a3
and examination of Taylor expansions at A, B and C shows that

uA,B + uB,C + uC,A = Γ(A,B,C)− a1 (2)

and
Γ(A,B,C) = uB,C(A) = uC,A(B) = uA,B(C) = −uB,A(C)− a1. (3)

We deduce

uB,C = uB,C(A)− (xA(C)− xA(B))zA + (yA(C)− yA(B))z2
A +O(z3

A).

By comparison of Taylor expansions at A, B and C we prove

uA,BuA,C = xA + uB,C(A)uB,C − u2
B,C(A)− a1uA,B + xA(B) + xA(C) + a2

or, derived from Equation (2),

uA,BuA,C = xA + Γ(A,B,C)uA,C + Γ(A,C,B)uA,B + a2 + xA(B) + xA(C). (4)

Indeed,

(− 1
zA

− xA(B)zA + (yA(B) + a3)z2
A)(− 1

zA

− xA(C)zA + (yA(C) + a3)z2
A) +O(z2

A)

= 1
z2

A

+ xA(B) + xA(C)− (yA(B) + yA(C) + 2a3)zA +O(z2
A).

So, uA,BuA,C − xA + a1uA,B − xA(B) − xA(C) − a2 cancels at A and its polar divisor is
−[B]− [C]. Its residue at B is −uA,B(C). This proves Equation (4).

In the same vein, we prove

u2
A,B = xA + xB − a1uA,B + xA(B) + a2 . (5)

Indeed,

u2
A,B = (− 1

zA

− xA(B)zA + (yA(B) + a3)z2
A)2 +O(z2

A)

= 1
z2

A

+ 2xA(B)− 2(yA(B) + a3)zA +O(z2
A)
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and similarly

u2
A,B = ( 1

zB

− a1 + xA(B)zB + (yA(B) + a1xA(B))z2
B)2 +O(z2

B)

= 1
z2

B

− 2a1

zB

+ a2
1 + 2xA(B) + 2yA(B)zB +O(z2

B) .

So u2
A,B − xA − xB + a1uA,B = xA(B) + a2.
Here are more explicit formulas. For A and B distinct,

uA,B =



−uO,A − a1 if B = O ,

y+y(B)+a1 x(B)+a3
x−x(B) if A = O,

a1 y(A)−3 x(A)2−2 a2 x(A)−a4
2 y(A)+a1 x(A)+a3

− a1x+a3+2 y(A)
x−x(A) if B = −A ,

y(B)+y(A)+a1 x(A)+a3
x(B)−x(A)

+ (x(B)−x(A))(y+a1x+a3)+(y(B)−y(A))x+y(A)x(B)−y(B)x(A)
(x−x(A))(x−x(B)) otherwise.

Especially, when A = O, provided B and C are distinct and non-zero, we have

Γ(O,B,C) =


−3 x(B)2+a1 (y(B)+a1x(B)+a3)+2 a2 x(B)+a4

2 y(B)+a1 x(B)+a3
if C = −B ,

y(C)+y(B)+a1x(B)+a3
x(C)−x(B) otherwise.

(6)

These formulae can be derived from the definition of Γ(A,B,C) as a slope, using the
explicit form of the addition law on elliptic curves.

3 Elliptic bases for finite fields extensions
In this section, we use elliptic functions to construct interesting bases for many finite field
extensions.

Assume E is an elliptic curve over a finite field K = Fq and let d > 2 be an integer.
Let t ∈ E(Fq)[d] be a rational point of order d. We call T the group generated by t. Let
φ : E → E be the Frobenius endomorphism. Let b ∈ E(K̄) be a point such that φ(b) = b+ t.
So b belongs to E(L) where L is the degree d extension of K. We denote by E ′ the quotient
E/T and by I : E → E ′ the quotient isogeny. We also assume db 6= O ∈ E. We set a = I(b)
and check a ∈ E ′(Fq). For another use of Kummer theory of elliptic curves in order to
construct efficient representations for finite fields, see [9].
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3.1 The elliptic basis Ω
We denote by Ω the system (ωk)k∈Z/dZ defined as

ω0 = 1 and ωk = uO,kt(b) ∈ L for k 6= 0 mod d .

Lemma 1 With the above notation, the system Ω = (ω0, ω1, . . . , ωd−1) is a K basis of L.

Proof. Indeed, let the λk for k ∈ Z/dZ be scalars in K such that ∑k∈Z/dZ λkωk = 0. The
function f = λ0 + ∑

06=k∈Z/dZ λkuO,kt cancels at b and also at all its d conjugates over K
(because f is defined over K). But f has no more than d poles (the points in T ). If f is
non-zero, its divisor is (f)0 − (f)∞ with (f)0 = ∑

t∈T [b+ t] and (f)∞ = ∑
t∈T [t]. We deduce

d × b is zero in E. But this is impossible by hypothesis. Examination of poles shows that
all λk are zero.

�
We call such a basis as Ω an elliptic basis. It enjoys nice properties as we shall see.

We set
Γk,l = Γ(O, kt, lt) ∈ K

for any distinct non-zero k, l ∈ Z/dZ. For any k ∈ Z/dZ, we set furthermore ξk = xkt(b) ∈ L.
If k 6= 0 mod d, we set νk = xO(kt) ∈ K and ρk = yO(kt) ∈ K too.

Let now Φ : F̄q → F̄q be the q-Frobenius automorphism. We have xO(b) = ξ0 and
Φ(ξ0) = xO(φ(b)) = xO(b + t) = x−t(b) = ξ−1. There exist d scalars (κk)06k6d−1 in K such
that

ξ0 =
∑

06k6d−1
κkωk. (7)

We have for k 6= 0, 1 mod d,

Φ(ωk) = uO,kt(φ(b)) = uO,kt(b+ t) = u−t,(k−1)t(b)
= uO,(k−1)t(b)− uO,−t(b) + Γ(0,−t, (k − 1)t)
= ωk−1 − ω−1 + Γ−1,k−1 (8)

using Equation (2). Similarly

Φ(ω1) = uO,t(b+ t) = u−t,O(b) = −ω−1 − a1 and Φ(ω0) = ω0 . (9)

Equations (8) and (9) show that the action of Frobenius is expressed very easily in an elliptic
basis.
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As far as multiplication is concerned, we set A = O, B = kt and C = lt in Equation (4),
and we evaluate at b. We find, for k and l distinct and non-zero in Z/dZ,

ωkωl = ξ0 + Γ−k,−lωk + Γk,lωl + νk + νl + a2 . (10)

In the same vein, from Equation (5), we obtain for any non-zero k in Z/dZ,

ω2
k = ξ0 − a1ωk + ξk + νk + a2 . (11)

So, if we multiply two K-linear combinations of the ω’s, we quickly get a linear combination
of the ω’s and ξ’s using Equations (10) and (11). We then reduce (eliminate all the ξk)
using the expression of ξ0 in the basis Ω given by Equation (7). We also use Equation (8)
to deduce the expressions of all ξk’s in the basis Ω.

We don’t need to store all constants Γk,l. Equation (6) allows to recalculate all these d2

quantities from the νk and ρk. Moreover, we use in the following that only a small amount of
these coefficients has to be computed due to symmetry relations (3) and (1) and invariance
by translation.

Example. Let K = F7 and d = 5, we first consider the elliptic curve E of order 10 defined
by y2 + xy + 5 y = x3 + 3x2 + 3x + 2 . The point t = (3, 1) generates a subgroup T ⊂ E of
order 5, and with E ′ = E/T defined by y2 + xy + 5 y = x3 + 3x2 + 4x+ 6 , we find

I : (x, y) 7→
(
x5 + 2x2 + 5x+ 6
x4 + 3x2 + 4 ,

(x6 + 4x4 + 3x3 + 6x2 + 3x+ 4) y + 3x5 + x4 + x3 + 3x2 + 4x+ 1
x6 + x4 + 5x2 + 6

)
.

Let now a = (4, 2), we define L with the irreducible polynomial (τ 5 + 2 τ 2 + 5 τ + 6)−4 (τ 4 +
3 τ 2 + 4) = τ 5 + 3 τ 4 + 4 τ 2 + 5 τ + 4 , and we set b = (τ : τ 4756).

We find
(uO,kt)k∈Z/dZ =

(
1, y + 2
x+ 4 ,

y + 2
x+ 3 ,

y

x+ 3 ,
y + 6
x+ 4

)
,

so that,
Ω = (1, τ 10884, τ 11164, τ 9837, τ 15166) .

3.2 A cell decomposition of the torus
Equations (1) and (3) show that the quantity Γ(A,B,C) is covariant for the symmetric group
S3 and even for S3 × {1,−1}. It is also invariant by translation,

Γ(A+ P,B + P,C + P ) = Γ(A,B,C).
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Altogether, Γ is covariant for the group E(K̄) o (S3 × {1,−1}).
These covariance properties are useful when computing the Γk,l: we divide by 12 the

amount of work. Since in that case, A = 0, B = kt and C = lt lie in the group T =< t >,
a cyclic group or order d, it makes sense to study the action of (Z/dZ) o (S3 × {1,−1}) on
the group (Z/dZ)3. In particular, we are interested in fundamental domains for this action.
It turns out that it is more natural to study first the action of R3 o (S3×{1,−1}) on R3. In
this subsection we justify the choice of fundamental domain that is made in Subsection 3.3.

Let ψ : R3 → C be the map that sends the triplet (a, b, c) onto a + bρ + cρ2 where
ρ = exp(2iπ/3). This is a group homomorphism. Its kernel is the diagonal subgroup of R3.
The group S3 × {1,−1} acts on R3 and we have the following covariance formulas

ψ(a, c, b) = ψ(a, b, c) ,
ψ(c, a, b) = ρψ(a, b, c) ,

ψ(−a,−b,−c) = −ψ(a, b, c) .

So the map ψ induces a bijection between the quotient of R3 by R o (S3 × {1,−1}) and
the quotient of C by µ6 × {1, conj} where µ6 is the group of sixth roots of unity and conj is
complex conjugation.

The image of Z3 ⊂ R3 by ψ is the ring of Gaussian integers. Since Z3 is normalized
by S3 × {1,−1}, the map ψ induces a morphism ψ̃ : U3 → T0 where U = R/Z is the unit
circle and T0 = C/(Z + ρZ) the complex torus with zero modular invariant. This map ψ̃ is
covariant. We denote by Λ the lattice Z + ρZ. For any d > 2 an integer, we denote by U[d]
the d-torsion group of U and T0[d] the one of T0. We denote by ψd the map from U[d]3 to
T0[d] induced by ψ̃.

Let k and l be two elements in U and let z = kρ + lρ2 ∈ T0 the image of (0, k, l) by ψ̃.
We compute the stabilizer of z in µ6 × {1, conj}. It is clear that z = z̄ mod Λ if and only
if k = l mod 1. The set of fixed points by complex conjugation is the circle made of real
points in T0. In the same manner we show that −ρz̄ = z mod Λ if and only if z lies on the
circle with equation k = 2l mod 1. Similarly ρ2z̄ = z mod Λ if and only if l = 0 mod 1. And
−z̄ = z mod Λ if and only if k = −l mod 1. And ρz̄ = z mod Λ if and only if k = 0 mod 1.
At last −ρ2z̄ = z mod Λ if and only if 2k = l mod 1.

The only fixed point of z mod Λ 7→ −ρz mod Λ is 0. The same is true for z mod Λ 7→
−ρ2z mod Λ.

The map z mod Λ 7→ ρz mod Λ has three fixed points, namely 0, (ρ − ρ2)/3 and its
opposite. These are the fixed points of z mod Λ 7→ ρ2z mod Λ also. Altogether, these three
points form the intersection of the three circles with equations k = 2l mod 1, l = 2k mod 1
and l = −k mod 1.

The complementary set of the six circles above consists of 12 triangles. Each of these
triangles (with its boundary) is a fundamental domain for the action of µ6 × {1, conj} on
the torus. The intersection of such a triangle with T0[d] gives a fundamental domain for
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10

ρ

k

ρ2

l

k = l

k
=
−
l

l = 2k

k = 2l

Figure 1: Cell decomposition of the torus

the action of µ6 × {1, conj} on T0[d]. This is also a fundamental domain for the action of
(Z/dZ) o (S3 × {1,−1}) on (Z/dZ)3.

3.3 Complexities
Given an elliptic basis Ω = (ωk)k∈Z/dZ, we now focus on the complexity of algorithms for
computing the Frobenius or the multiplication of two elements. To be as efficient as pos-
sible, and since operands of the algorithms are already of size d log q, we assume that any
precomputation, the storage of which does not exceed O(d log q), is possible.

We first have the following result.

Lemma 2 Let α = ∑d−1
i=0 αiωi ∈ L. Then there exists algorithms that compute Φ(α) and

Φ−1(α) at the expense of d− 1 multiplications and 2d− 3 additions in K, among which are
one multiplication and one addition because of the coefficient a1.

Proof. Plugging Equation (8) and Equation (9) in ∑d−1
i=0 αiΦ(ωi) or ∑d−1

i=0 αiΦ−1(ωi) proves
the correctness of Algorithm 3.1 and Algorithm 3.2. And, once precomputed the Γd−1,j’s
and Γj,d−1’s, the complexity is obvious.

�
Multiplying two elements in such a basis can be done with good complexity too.
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Algorithm 3.1 EllipticFrobenius
Frobenius of an element given in an elliptic basis.
input : ~α = (αi)06i6d−1 such that α =

∑d−1
i=0 αiωi ∈ L.

output : ~γ = (γi)06i6d−1 such that γ =
∑d−1

i=0 γiωi = Φ(α) ∈ L.
return (α0 − a1α1 +

∑d−1
j=2 αjΓd−1,j−1, α2, . . . , αd−1,−

∑d−1
j=1 αj)

Algorithm 3.2 EllipticFrobeniusInverse
Inverse Frobenius of an element given in an elliptic basis.
input : ~α = (αi)06i6d−1 such that α =

∑d−1
i=0 αiωi ∈ L.

output : ~γ = (γi)06i6d−1 such that γ =
∑d−1

i=0 γiωi = Φ−1(α) ∈ L.
return (α0 +

∑d−2
j=1 αjΓj,d−1 − a1αd−1,−

∑d−1
j=1 αj , α1, . . . , αd−2)

Lemma 3 Let α = ∑d−1
i=0 αiωi ∈ L and β = ∑d−1

i=0 βiωi ∈ L. Then there exists an algorithm
that computes the product α× β at the expense of

• (37 d2 + 30 d − 7ε − 60)/12 additions, (32 d2 + 42 d − 2ε − 48)/12 multiplications and
(d2 − ε)/12 inversions in K,

where ε = 12, 1, 4, 9, 4, 1 respectively for d = 0, . . . , 5 mod 6, among which are (d2 + 12d −
ε− 24)/12 additions and (d2 + 36 d− ε− 48)/12 multiplications because of the coefficient a1,
(d2 − ε)/12 additions because of the coefficient a3.

Proof. We prove the correctness of Algorithm 3.3 and establish its complexity.
Correctness. Equations (4) and (5), for k 6 l, yield

ωk ωl = ωl ωk =


ωl if k = 0 ,
ξ0 + a2 − a1ωk + Φ−k(ξ0) + νk ω0 if l = k and k > 0 ,
ξ0 + a2 − a1ωk + Γk,l (ωl − ωk) + (νk + νl)ω0 otherwise .
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Algorithm 3.3 EllipticMultiplication
Product of two elements given in an elliptic basis.
input : ~α = (αi)06i6d−1 and ~β = (βi)06i6d−1 such that α =

∑d−1
i=0 αiωi, β =

∑d−1
i=0 βiωi ∈ L.

output : ~γ = (γi)06i6d−1 such that γ =
∑d−1

i=0 γiωi = α× β ∈ L.
1. sa := 0 ; sb := β1 ; γ0 := 0 ; γ1 := −a1sbα1 ;
2. for k := 2 to d− 1 do sa+:= αk−1 ; sb+:= βk ; γk := −a1(sbαk + saβk) ;
3. sa+:= αd−1 ; (γ0, . . . , γd−1)+:= sasb (κ0 + a2, κ1, . . . κd−1) ;
4. s′a :=

∑d−1
i=1 αiνi ; s′b :=

∑d−1
i=1 βiνi ; γ0 +:= sas

′
b + s′asb ;

5. for k := 1 to d− 1 do
6. δ := αkβk ; γ0+:= δ ((Φ−k(ξ0))0 − νk) ; γk−:= δ

∑d−1
l=1 κl;

7. for l := 1 to k − 1 do γl+:= δ κ(d−k+l) mod d;
8. for l := k + 1 to d− 1 do γl+:= δ κ(d−k+l) mod d;
9. (γ0, . . . , γd−1) +:= (α0β0, α1β0 + α0β1, . . . , αd−1β0 + α0βd−1) ;
10. if d mod 3 = 0 then
11. g := −(3 ν2

2d/3 + 2a2ν2d/3 + a4)/(2ρ2d/3 + a1ν2d/3 + a3)− a1 ;
12. δ := g (α2d/3βd/3 + αd/3β2d/3) ; γ2d/3 −:= δ ; γd/3 +:= δ ;
13. for k := 2 to b(2d− 1)/3c by 2 do
14. l := k/2 ; g := (ρl + ρk + a1νk + a3)/(νl − νk) ;
15. i1, i2 := 2 l, d− l ; j1, j2 := d− 2 l, l ;
16. δ12 := g (αi1 βj2 + αj2 βi1) ; δ21 := g (αi2 βj1 + αj1 βi2) ; δ22 := g (αi2 βj2 + αj2 βi2) ;
17. γi1 −:= δ12 ; γi2 −:= δ21 + δ22 ; γj1 +:= δ21 ; γj2 +:= δ12 + δ22 ;
18. for k := b1 + d/2c to b(2d− 1)/3c do
19. l := 2k mod d ; g := (ρl + ρk + a1νk + a3)/(νl − νk) ;
20. i1, i2 := k, (2d− 2k) mod d ; j1, j2 := (2k) mod d, d− k;
21. δ11 := g (αi1 βj1 + αj1 βi1) ; δ22 := g (αi2 βj2 + αj2 βi2) ; δ12 := g (αi1 βj2 + αj2 βi1) ;
22. γi1 −:= δ11 + δ12 ; γi2 −:= δ22 ; γj1 +:= δ11 ; γj2 +:= δ22 + δ12 ;
23. for k := 3 to b(2d− 1)/3c do
24. for l := max(1, 2k − d+ 1) to b(k − 1)/2c do
25. g := (ρl + ρk + a1νk + a3)/(νl − νk) ;
26. i1, i2, i3 := k, d− l, d− k + l ; j1, j2, j3 := d− k, l, k − l;
27. δ12 := g (αi1 βj2 +αj2 βi1) ; δ13 := g (αi1 βj3 +αj3 βi1) ; δ21 := g (αi2 βj1 +αj1 βi2) ;
28. δ23 := g (αi2 βj3 +αj3 βi2) ; δ31 := g (αi3 βj1 +αj1 βi3) ; δ32 := g (αi3 βj2 +αj2 βi3) ;
29. γi1 −:= δ12 + δ13 ; γi2 −:= δ21 + δ23 ; γi3 −:= δ31 + δ32 ;
30. γj1 +:= δ21 + δ31 ; γj2 +:= δ12 + δ32 ; γj3 +:= δ13 + δ23 ;
31. return (γi)06i6d−1
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And we have,

α× β =
d−1∑
k=0

d−1∑
l=0

αkβlωkωl = (
d−1∑
k=1

αk)(
d−1∑
l=1

βl)(ξ0 + a2)

+
(

(
d−1∑
k=1

αk)(
d−1∑
l=1

βlνl) + (
d−1∑
k=1

αkνk)(
d−1∑
l=1

βl)
)
ω0

+ α0β0ω0 +
d−1∑
k=1

αk βk (Φ−k(ξ0)− νk ω0) +
d−1∑
k=1

(αkβ0 + βkα0)ωk

− a1
∑

0<k,l<d

αkβlωk +
∑

0<k,l<d

k 6=l

Γk,lαkβl(ωl − ωk) . (12)

The first two terms of this sum are computed at steps 3. and 4. of the algorithm. The three
next terms are computed in steps 5. to 9. Especially, steps 5. to 8. correspond to the action
of Φ−k on ξ0 (the quantity (Φ−k(ξ0))0, at step 4., is the first coordinate of Φ−k(ξ0) written
in basis Ω).

The constants Γk,l satisfied 12 symmetry relations and we take advantage of them to
compute the two last terms of the sum. More precisely, for k and l distinct and non-zero in
Z/dZ, we have{

Γk,l = Γ−l,−k = Γk,k−l = Γl−k,−k = Γl−k,l = Γ−l,k−l ,
Γl,k = Γ−k,−l = Γk−l,k = Γ−k,l−k = Γl,l−k = Γk−l,−l ,

and Γk,l = −Γl,k − a1 .

All of these relations can be proved thanks to Equation (3) and Equation (1). For instance, to
check that Γk,l = Γl−k,−k, we start from Γ(O, kt, lt) = uO,kt(b+kt)+ukt,lt(b+kt)+ult,O(b+kt),
and we find Γ(O, kt, lt) = u−kt,O(b) + uO,(l−k)t(b) + u(l−k)t,−kt(b) = Γ(O, (l − k)t,−kt) .

We use first that Γk,l = −Γl,k − a1 and we rewrite the last two terms of Equation (12) as
follows,

−a1

d−1∑
k=1

(βk

k−1∑
l=1

αl + αk

k∑
l=1

βl)ωk +
∑

0<l<k<d

Γk,l(αkβl + αlβk)(ωl − ωk) .

The first term of this sum is computed at at steps 1. and 2. of the algorithm. To compute
the last term, we consider in turn each orbit of the action defined by the symmetries on the
coefficients Γk,l. We choose as a fundamental domain for this action the triangle delimited
by the circles l = 1, k = 2 l mod d and l = 2 k mod d (cf. Figure 2). It is cumbersome, but
not difficult, to check that any point of this domain, outside the two circles k = 2 l mod d
and l = 2 k mod d, has an orbit of exactly 12 points: we compute only once the constant
Γk,l corresponding to these 12 points and we calculate accordingly their contribution to the
product α× β. These are steps 23. to 30. of the algorithm.

Points on the line k = 2 l mod d have orbits of only 6 points. We precisely have Γ2 l,l =
Γ−l,−2 l = Γ−l,l = −Γl,2 l − a1 = −Γ−2 l,−l − a1 = −Γl,−l − a1 , and this yield steps 13. to 17.
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k

l
1 d−1

1

d−1

Γk,l

Γl,k

Γ−l,−k

Γ−k,−l

Γ−k,l−k

Γl−k,−k

Γk−l,k

Γk,k−l

Γl,l−k

Γl−k,l

Γk−l,−l

Γ−l,k−l

Figure 2: Symmetry relations on the coefficients Γk,l (d = 42)

of the algorithm. Similarly, points on the line l = 2 k mod d have orbits of only 6 points too.
We have Γk,2 k = Γ−2 k,−k = Γk,−k = −Γ2 k,k − a1 = −Γ−k,−2 k − a1 = −Γ−k,k − a1 and this
yield steps 18. to 22. of the algorithm.

Finally, when d is divisible by 3, the two circles k = 2 l mod d and l = 2 k mod d meet at
the exceptional point (2d/3, d/3), which is on the k + l = 0 mod d line too. This point has
an orbit of only 2 points, i.e. Γ2d/3,d/3 = −Γd/3,2d/3 − a1 . This yields steps 10. to 12. of the
algorithm.

Complexity. We precompute the d constants νk and ρk, the constant Γ2d/3,d/3 if d mod 3 =
0, the d coordinates in the basis Ω of ξ0, their sum

∑d−1
l=1 κl, κ0 + a2 and the ω0-coordinates

of all Φk(ξ0)− νk for 0 6 k 6 d− 1.
Then, Steps 1.-2. need 3d − 7 additions and 3d − 4 multiplications in K (among which

are d− 2 additions and 3d− 4 multiplications because of a1), Step 3. needs d+ 1 additions
and d + 1 multiplications in K, Step 6. needs d − 1 additions and 2d − 2 multiplications
in K, Steps 7.-8. need d2 − 2d + 1 additions and d2 − 2d + 1 multiplications in K, Step
9. needs 2d − 1 additions and 2d − 1 multiplications in K, Steps 11.-12. need 3 additions
and 3 multiplications in K if d is a multiple of 3 (and cost nothing otherwise), Steps 13.-17.
consist in b(d− 1)/3c iterations and Steps 18.-22. consist in b(d− 5 + 6ε′)/6c (where ε′ = 0
if d mod 6 = 0 and ε′ = 1 otherwise), each of them needs 16 additions, 11 multiplications
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and 1 inversion in K (among which are 1 addition, 1 multiplication because of a1 and 1
addition because of a3), and finally, Steps 23.-30. consist in bd2/12c − bd/2c+ ε′′ iterations
(where ε′′ = 0 if d mod 6 = 1, 5 and ε′′ = 1 otherwise), each of them needs 25 additions, 12
multiplications and 1 inversion in K (among which are 1 addition, 1 multiplication because
of a1 and 1 addition because of a3).

Adding all these complexities yields the complexity announced.

�
Depending on the characteristic of K, it is classical to consider the reduced Weierstrass

Model to define elliptic curves. We give in Table 3 precise complexities for these cases, all
obtained with Lemma 3.

Condition Model Add. Mult. Inv.
Char(K) 6= 2, 3 Y 2 = X3 + a4X + a6
Char(K) = 3, jE 6= 0 Y 2 = X3 + a2X

2 + a6
35 d2+18 d−5 ε−36

12
jE = 0 Y 2 = X3 + a4X + a6

31 d2+6 d−ε
12

d2−ε
12

Char(K) = 2 jE 6= 0 Y 2 +XY = X3 + a2X
2 + a6

6 d2+5 d−ε−10
2

jE = 0 Y 2 + a3Y = X3 + a4X + a6
6 d2+3 d−ε−6

2

Figure 3: Elliptic multiplication complexities

4 Elliptic normal bases
In this section, we assume that we are in the situation of Section 3. So E is an elliptic
curve over a finite field K = Fq and d > 2 is an integer. Let t ∈ E(Fq)[d] be a rational
point of order d. We call T the group generated by t. Let φ : E → E be the Frobenius
endomorphism. Let b ∈ E(K̄) be a point such that φ(b) = b+ t. So, b belongs to E(L) where
L is the degree d extension of K. We denote by E ′ the quotient E/T and by I : E → E ′ the
quotient isogeny. We also assume db 6= O ∈ E. We set a = I(b) and check a ∈ E ′(Fq). We
further assume there exists one point R in E(Fq) such that dR 6= 0.

We construct a normal basis for L, the degree d = #T extension of K. In this basis, the
product of two elements can be computed at the expense of 5 convolution products between
vectors of dimension d. Such bases may be preferred to the ones constructed in Section 3
when d is large enough, depending on the implementation context.
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4.1 The elliptic normal basis Θ
We start with a lemma concerning the sum ∑

k∈Z/dZ ukt,(k+1)t.

Lemma 4 The sum ∑
k∈Z/dZ ukt,(k+1)t is a constant c ∈ K. If the characteristic p of K

divides the degree d, then c 6= 0.

Proof. The sum ∑
k∈Z/dZ ukt,(k+1)t is invariant by translations in T . So it can be seen as a

function on E ′ = E/T . As such, it has no more than one pole. Therefore it is constant.
Assume now p divides d and ∑k∈Z/dZ ukt,(k+1)t = 0. The sum ∑

k∈Z/dZ kukt,(k+1)t is thus
invariant by translations in T . So it can be seen as a function on E ′ = E/T . As such, it has
no more than one pole. Therefore it is constant. However, seen as a function on E, this sum∑

k∈Z/dZ kukt,(k+1)t has a pole at O. A contradiction.

�
So at least one of the two following conditions holds: either d is prime to p or c 6= 0. In any
case, there exist two scalars a 6= 0 and b in K such that ac + db = 1. For k ∈ Z/dZ we set
uk = aukt,(k+1)t + b and xk = xkt.

We denote by Θ the system (θk)k∈Z/dZ defined as θk = uk(b). We have ∑k∈Z/dZ θk = 1 ∈
K. and Φ(θk) = θk−1.

Lemma 5 With the above notation, the system (u0, u1, . . . , ud−1) is a basis of

L = L(
∑

k∈Z/dZ
[kt]).

The system Θ = (θ0, θ1, . . . , θd−1) is a K basis of L.

Proof. Indeed, let the λk for k ∈ Z/dZ be scalars in K such that ∑k∈Z/dZ λkθk = 0. The
function f = ∑

k∈Z/dZ λkuk cancels at b and also at all its d conjugates over K (because f
is defined over K). But f has no more than d poles (the points in T ). If f is non-zero, its
divisor is (f)0 − (f)∞ with (f)0 = ∑

t∈T [b+ t] and (f)∞ = ∑
t∈T [t]. We deduce d× b is zero

in E. But this is impossible by hypothesis. So f is constant equal to zero. This implies all
λk’s are equal (look at poles). Since the sum of all θk’s is non-zero, this implies that all λk’s
are null.

�
We call such a basis as Θ an elliptic normal basis.

If k, l ∈ Z/dZ and k 6= l, l + 1, l − 1 mod d, then

ukul ∈ L

where L = L(∑k∈Z/dZ[kt]) is the K-vector space generated by all um for m ∈ Z/dZ. Further

uk−1uk + a2xk ∈ L and u2
k − a2xk − a2xk+1 ∈ L .
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So if (αk)06k6d−1 and (βk)06k6d−1 are two vectors in Kd, we have

(
∑

k

αkuk)(
∑

k

βkuk) = a2∑
k

αkβk(xk + xk+1)− a2∑
k

αk−1βkxk − a2∑
k

βk−1αkxk mod L

= a2∑
k

(αk − αk−1)(βk − βk−1)xk mod L. (13)

Example. Let us continue the example of section 3, i.e. K = F7 and d = 5. We find

(ukt,(k+1)t)k =
(

5 y + 3
x+ 4 ,

5 y + 3x2 + 4
x2 + 5 ,

4
x+ 3 ,

y (2x+ 8) + 3x3 + 15x
(x2 + 5) (x+ 4) ,

2 y + 2x+ 6
x+ 4

)
,

so that c = 3, a = 5, b = 0, and

Θ = (τ 8083, τ 13159, τ 16285, τ 9529, τ 6163) .

4.2 Change of coordinates
Thanks to Equation (2), the θ’s can be given in the basis (ωk)k as

θk =


aω1 + bω0 if k = 0,
−aω−1 − a1aω0 + bω0 if k = d− 1,
aωk+1 − aωk + aΓk,k+1 ω0 + bω0 otherwise.

Inversely, we set λk = ∑k
i=1 Γi,i+1 and we observe that c = λd−2 − a1. We obtain

ωk =



d−1∑
i=0

θi if k = 0,

a−1θ0 − ba−1∑d−1
i=0 θi if k = 1,

−a−1θ−1 + (ba−1 − a1)
d−1∑
i=0

θi if k = −1,

a−1
k−1∑
i=0

θi − (kba−1 + λk−1)
d−1∑
i=0

θi otherwise.

This shows that one can compute the change of variable from Ω to Θ, and back, at the
expense of O(d) operations in K.

4.3 Complexities
We exhibit an algorithm with quasi-linear complexity to multiply two elements given in
an elliptic normal basis. As often with FFT-like algorithms, it consists in evaluations and
interpolations.
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Notation. If ~α = (αi)06i6d−1 and ~β = (βi)06i6d−1 are two vectors of length d we denote by
~α ?j

~β = ∑
i αiβj−i the j-th component of the convolution product. We denote by σ(~α) =

(αi−1)i the cyclic shift of ~α. We denote by ~α � ~β = (αiβi)i the component-wise product and
by ~α ? ~β = (~α ?i

~β)i the convolution product.

4.3.1 Reduction

Given a linear combination of the ξ’s we may want to reduce it: express it as a linear
combination of the θ’s.

Let ~ι = (ιi)06i6d−1 be the vector in Kd such that ξ0 = ∑
06k6d−1 ιkθk.

ξi = Φ−i(ξ0) =
∑

06k6d−1
ιkΦ−i(θk) =

∑
06k6d−1

ιkθk+i =
∑

06k6d−1
ιk−iθk.

Let ~α = (αi)06i6d−1 and ~β = (βj)06j6d−1 be vectors in Kd such that∑
06i6d−1

αiξi =
∑

06j6d−1
βjθj.

We want to express the βj’s as linear expressions in the αi’s.∑
06i6d−1

αiξi =
∑

06i6d−1
αi

∑
06k6d−1

ιk−iθk

=
∑

k

θk

∑
i

αiιk−i =
∑

k

(~ι ?k ~α)θk. (14)

We deduce ~β = ~ι ? ~α. So ~β is the convolution product of ~ι and ~α.

4.3.2 Evaluation

Let (αi)06i6d−1 be scalars in K. Let R ∈ E(K)−E[d] be a K-rational point on E such that
dR 6= 0.

We want to evaluate f = ∑
06i6d−1 αixi at all R + jt for 0 6 j 6 d − 1. We set

βj = f(R + jt). We have

βj =
∑

06i6d−1
αixi(R + jt) =

∑
06i6d−1

αix0(R + (j − i)t) = ~α ?j ~xR

where ~xR = (x0(R + kt))06k6d−1. So,

~β = ~xR ? ~α.
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Similarly, we want to evaluate f = ∑
06i6d−1 αiui at all R+ jt for 0 6 j 6 d− 1. We set

βj = f(R + jt). We have

βj =
∑

06i6d−1
αiui(R + jt) =

∑
06i6d−1

αiu0(R + (j − i)t) = ~α ?j ~uR

where ~uR = (u0(R + kt))06k6d−1. So,

~β = ~uR ? ~α. (15)

4.3.3 Interpolation

Let R ∈ E(K) − E[d] be a K-rational point on E such that dR 6= 0. The evaluation map
f 7→ (f(R + jt))06j6d−1 is a bijection from L onto Kd.

Given the βj = f(R+ jt) we want to compute the αi such that f = ∑
06i6d−1 αiui. Since

~β = ~uR ? ~α we just need to compute once for all the inverse −→uR
(−1) of ~uR for the convolution

product. This inverse exists because the evaluation map is bijective.

4.3.4 Multiplication

Let ~α = (αi)06i6d−1 and ~β = (βi)06i6d−1 be two vectors in Kd. We want to multiply ∑i αiθi

and ∑i βiθi.
We define four functions on E,

A =
∑

i

αiui , B =
∑

i

βiui ,

C = a2∑
i

(αi − αi−1)(βi − βi−1)xi ,

D = AB − C .

The product we want to compute is A(b)B(b) = C(b) +D(b).
>From Equation (13), we deduce that D is in L. >From Equation (14), we deduce that

the coordinates in Θ of C(b) are given by the vector

~ι ?
(
a2(~α− σ(~α)) � (~β − σ(~β))

)
.

According to Equation (15), the evaluation of A at the points (R+jt)j is given by the vector
~uR?~α. The evaluation at these points ofD is (~uR?~α)�(~uR?~β)−~xR?(a2(~α−σ(~α))�(~β−σ(~β))).
If we ? multiply this late vector on the left by −→uR

(−1) we obtain the coordinates of D in the
basis (u0, . . . , ud−1). These are also the coordinates of D(b) in the basis Θ.

Altogether, we have proved what follows.
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Lemma 6 The multiplication tensor for normal elliptic bases of type Θ is

(a2~ι) ?
(
(~α− σ(~α)) � (~β − σ(~β))

)
+

−→uR
(−1) ?

(
(~uR ? ~α) � (~uR ? ~β)− (a2~xR) ?

(
(~α− σ(~α)) � (~β − σ(~β))

))
It consists in 5 convolution products, 2 component-wise products, 1 addition and 3 sub-

tractions between vectors of size d, the degree of the extension.

Note that convolution products can be computed at the expense of O(d log d log | log d|)
operations in K using algorithms due to Schönhage and Strassen [17], Schönhage [16], and
Cantor and Kaltofen [5].

Note also that it is standard to use elliptic curves (and even curves of higher genera) to
bound the bilinear complexity of multiplication. One should mention in particular work by
Chudnowsky [8], Shokrollahi [18], Ballet [3], Chaumine [6]. The tensor we produce here is
not competitive with theirs from the point of view of bilinear complexity. But this tensor is
symmetric enough to allow fast application of the Frobenius automorphism.

Example. In the setting of the examples of Section 3 and Section 4, i.e. K = F7 and
d = 5, we first precompute, with R = (1, 2) a point of order 10 on E,

~ι = (0, 5, 5, 1, 0), ~uR = (4, 1, 5, 1, 4), −→uR
(−1) = (2, 2, 0, 4, 0) and ~xR = (1, 5, 5, 1, 2) .

Now, we are going to multiply∑i αiθi and
∑

i βiθi with ~α = (6, 3, 6, 1, 2) and ~β = (2, 6, 6, 4, 2) .
We first easily find ~α − σ(~α) = (4, 4, 3, 2, 1), ~β − σ(~β) = (0, 4, 0, 5, 5) and thus (~α − σ(~α)) �
(~β − σ(~β)) = (0, 2, 0, 3, 5) .

Therefore,

(a2~ι) ?
(
(~α− σ(~α)) � (~β − σ(~β))

)
= (6, 0, 4, 5, 5) ,

(~uR ? ~α) � (~uR ? ~β) = (0, 4, 0, 3, 0) ,
(a2~xR) ?

(
(~α− σ(~α)) � (~β − σ(~β))

)
= (1, 1, 0, 1, 4) .

It remains to compute

−→uR
(−1) ? ((~uR ? ~α) � (~uR ? ~β)− (a2~xR) ? ((~α− σ(~α)) � (~β − σ(~β)))) = (4, 5, 4, 0, 1) ,

and finally, we obtain

(
∑

i

αiθi)× (
∑

i

βiθi) = 3 θ0 + 5 θ1 + 1 θ2 + 5 θ3 + 6 θ4 .
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5 Beyond Gauss periods
Complexity estimates in Subsection 3.3 and Subsection 4.3.4 suggest that an elliptic basis
may be preferred to standard normal basis.

In this section we first show that the main condition for the existence of an elliptic basis
is that the degree should not be too large. This is explained in Subsection 5.1. If this
condition is not fulfilled, we may translate the field extension along a small auxiliary base
change. This is explained in Subsection 5.2. We recall in Subsection 5.3 that fast inversion
using Lagrange’s theorem and addition chains is possible in the context of elliptic normal
bases. In Subsection 5.4 we associate a well chosen polynomial basis to any elliptic basis.
We explain how to fast change coordinates between either bases. This gives a quasi-linear
division algorithm for elliptic bases.

5.1 Existence conditions for elliptic bases
Let q be a power of a prime p. Given a finite field Fq and an integer d > 2, we want to
construct an elliptic basis for the degree d extension of Fq.

We first need some easy properties of the dq (cf. Definition 1).

Lemma 7 Let p be a prime and q a power of p. Let d > 2 be an integer.

• If d is prime to q − 1 then dq = d.
• If q − 1 is squarefree then dq 6 d3.
• In any case dq 6 d2(q − 1)2.
• If f > 1 is an integer prime to dϕ(d) then dqf = dq.

We can now give a sufficient condition for the existence of an elliptic basis. The necessary
background about elliptic curves over finite fields can be found in chapter 5 of Silverman’s
book [19].

Lemma 8 Let p be a prime and q a power of p. Let d ≥ 2 be an integer. We assume that

dq 6 2√q .

Then, there exists an elliptic curve E over Fq, a point t of order d in E(Fq) and a point
b in E(F̄q) such that φ(b) = b+ t and the order of b is a multiple of d2. In particular db 6= 0.

Proof. There are at least too consecutive multiples of dq in the interval [q+ 1− 2√q, q+ 1 +
2√q]. One of them is not congruent to 1 modulo p. We call M = λdq this integer and we
set t = q+ 1−M and ∆ = t2− 4q. Let O be the maximal order in Q(

√
∆). There exists an

ordinary elliptic curve E over Fq such that E has M points over Fq and End(E) = O . Let
` be a prime divisor of d. We set e` = v`(d).
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Assume first that ` is prime to q − 1.
It cannot divide both q + 1 − t and t2 − 4q. So ` is prime to t2 − 4q and is unramified in
Z[φ] and in End(E). If ` were inert, it would divide both φ− 1 and its conjugate φ̄− 1 and
also the trace Tr(φ − 1) = t − 2. Since ` divides q + 1 − t this would imply that ` divides
q − 1, a contradiction. So ` splits in Z[φ]. Let l = (`, φ − 1) be the ideal in End(E) above
` and containing φ− 1. This prime ideal divides φ− 1 exactly e times, where e ≥ e` is the
valuation of M at `. Let λ be the unique root of (X + 1)2 − t(X + 1) + q in Z` that is
congruent to 0 modulo `. The `-adic valuation of λ is e. The kernel of le+e` is cyclic of order
`e+e` . The Frobenius φ acts on this group as multiplication by 1 + λ. Let b` be a generator
of this group. We set t` = φ(b`) − b` and we check that t` has order `e` and is Fq-rational.
Indeed t` is left invariant by φ because e > e`.
Assume now ` divides q − 1.
So v`(M) ≥ v`(dq) > 2v`(q − 1). We check

t2 − 4q = (q − 1)2 +M2 − 2M(q + 1) = (q − 1)2 +O(`s)

where s = v`(M) > 2v`(q − 1) if ` is odd, and s = v`(M) + 2 > 2v`(q − 1) + 2 if ` = 2.
We deduce t2 − 4q is a square in Z` and ` splits in End(E). Let λ1 and λ2 be the two

roots of (X + 1)2 − t(X + 1) + q in Z`. Since λ1λ2 = q + 1− t = M , one of these two roots
has `-adic valuation > e`. Assume for example v`(λ1) = e1 > e`. The `e1+e`-torsion group
E[`e1+e` ] has a cyclic subgroup V1 of order `e1+e` where φ acts as multiplication by 1 + λ1.

Let b` be a point of order `e1+e` in V1. We set t` = φ(b`) − b` = λ1b`. This is a point of
order `e` . It is left invariant by φ because e1 > e`. So again t` is in E[`e` ](Fq).
We now patch all these points together.
We set t = ∑

` t` and b = ∑
` b`. We have φ(b) − b = t and t has order d. The order of the

point b is a multiple of ∏` `
2e` = d2. In particular db 6= 0.

�

Lemma 9 Let p be a prime and q a power of p. Let d ≥ 2 be an integer. We assume that

dq 6
√
q .

Then, there exists an elliptic curve E over Fq, a point t of order d in E(Fq) and a point
b in E(F̄q) such that φ(b) = b+ t and the order of b is a multiple of d2. In particular db 6= 0.
There is also a point R in E(Fq) that such that dR 6= 0.

Proof. We apply lemma 8 above to p, q and d′ = 2d 6 2√q. We obtain an elliptic curve E,
a point t′ of order d′ = 2d in E(Fq) and a point b′ such that φ(b′) = b′ + t′. We set t = 2t′,
b = 2b′ and R = t and we are done.

�
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5.2 Base change
Let q be a prime power and let d be an integer. If d is too large we may not be able to
construct an elliptic basis for the degree d extension of Fq. We try to embed Fq into some
small degree auxiliary extension K = FQ with Q = qf then construct an elliptic basis for
the degree d extension L of K. We shall need the following lemma.

Lemma 10 (Iwaniec) There exists a constant KIw > 1 such that the following is true.
Let k > 2 be an integer and let p1, p2, . . . , pk be distinct prime integers. Let µi and µs be

two integers with µs− µi > KIwk
2(log k)2. Let I be the interval [µi, µs]. There is an integer

n in I that is prime to every pi for i ∈ {1, 2, . . . , k}.

This lemma is proven by Iwaniec in [14].
The number of prime divisors of d is O(log d). We look for some integer f such that

• f is prime to dϕ(d) ,
• dqf = dq 6 q

f
2 .

>From Lemma 10, we find some f that is

O(logq dq + (log d)2(log(log d))2) = O((log d)2(log(log d))2).

In this context, we call Φq : F̄q → F̄q the absolute Frobenius of Fq and ΦQ = Φf
q the Frobenius

of K. Once given an elliptic basis for L/K, we can compute efficiently the action of ΦQ. Let
F be an integer such that 1 6 F 6 d − 1 and fF = 1 mod d. The restriction of ΦF

Q to Fqd

is Φq : Fqd → Fqd . We thus can compute efficiently the Frobenius action on Fqd using the
elliptic basis for L/K.

Elements in Fqd being represented and treated as elements in L, we have a slight loss
of efficiency: the size is multiplied by f . An element in Fqd is represented by d logQ bits
instead of d log q.

5.3 Inversion using Lagrange’s theorem
We have constructed models for finite fields where addition, multiplication and Frobenius
action can be quickly computed. We should worry now about inversion.

The inverse of α ∈ Fqd can be computed as αqd−2 because of Lagrange Theorem. This
exponentiation can be done at the expense of O(log q+ log d) multiplications in Fqd using an
addition chain for d− 1 and another addition chain for q− 2. This is [13, Theorem 2] of Itoh
and Tsujii generalized in [20, Corollary 30] by von zur Gathen and Nöcker. The computation
also requires O(log d) exponentiations by powers of q.
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5.4 Moving to a polynomial basis and quasi-linear inversion
Using Lagrange’s theorem for inversion is one of the possible motivations for using normal
bases but it brings an extra log q factor in the complexity. This may harm if log q is bigger
than any polynomial in log d. So it makes sense to look for an inversion algorithm that uses
less than e.g. Kd(log d)2 log | log d| operations in Fq where K does not depend on d nor on
q.

In this subsection we show that to any elliptic basis one can associate a polynomial r
basis such that changing coordinates between either bases can be done in quasi-linear time.
This gives another algorithm for fast multiplication in elliptic bases. More importantly, this
allows fast division in elliptic bases.

Let K = Fq, d, L, E, t and b be as in the beginning of Section 4. We further assume
2db 6= 0. This is guaranteed if we use Lemma 9 and if d > 3. The unitary polynomial

Π(x) = (x− x(b))(x− x(b+ t)) · · · (x− x(b+ (d− 1)t)) ∈ K[x]
is then irreducible.

In order to simplify the presentation, we shall assume in the following that d is odd. There
exist a degree (d+ 1)/2 unitary polynomial Y1 ∈ K[x] and a degree 6 (d− 3)/2 polynomial
Y0 ∈ K[x] such that the function Y1(x)− yY0(x) cancels at b, b+ t,. . . , b+ (d− 1)t. Besides
Y1 and Y0 are coprime and Y1(x) − yY0(x) also cancels at −db. We precompute these two
polynomials.

We denote by R ⊂ K(E) the ring of functions having no pole outside {O, t, 2t, . . . , (d−
1)t}. The ideal b ⊂ R of the closed subset {b, b+ t, b+ 2t, . . . , b+ (d− 1)t} is generated by
Π(x) and Y1(x)− yY0(x).

The system (1, uO,t, . . . , uO,(d−1)t) is a K-basis of L1 = L(O+ t+ 2t+ · · ·+ (d− 1)t) and
reduction modulo b (evaluation at b) defines a bijection ε1 : L1 → K(b) = L. The system
(1, uO,t(b), . . . , uO,(d−1)t(b)) is the elliptic basis Ω.

The system (1, x, x2, . . . , xd−1) is free and generates a subspace L2 of L((2d − 2)O).
Reduction modulo b (evaluation at b) defines a bijection ε2 : L2 → K(b) = L. The system
Ψ = (1, x(b), x(b)2, . . . , x(b)d−1) is a K-basis of L. This is a polynomial basis.

In order to change coordinates from Ω to Ψ and back1, we now explain how to quickly
evaluate the bijections ε−1

2 ◦ ε1 and ε−1
1 ◦ ε2.

From Ω to Ψ.
Recall we have set νk = x(kt) for k ∈ Z/dZ. Equation (6) shows that there exist constants

sk = a1x(kt) + a3 + y(kt) in K such that for 1 6 k 6 d− 1

uO,kt = y + sk

x− νk

.

1Recall that changing coordinates from Ω to Θ and back is done in linear time as explained in praragraph
4.2.
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Any function f in L1 is a combination

f = α0 +
∑

16k6d−1
αk
y + sk

x− νk

with αk ∈ Fq for 0 6 k 6 d− 1. We set

D(x) =
∏

16k6(d−1)/2
(x− νk).

We can rewrite f as (U(x) + yV (x))/D(x) where U(x) and V (x) are polynomials in K[x]
with degree 6 d−3

2 .
The numerator U(x) + yV (x) can be computed at the expense of O(d(log d)2 log | log d|)

operations in Fq using a divide and conquer algorithm.
Now the function f is congruent modulo b to (U(x) +M(x)V (x))/D(x). There exists

a polynomial W (x) ∈ K[x] with degree 6 d − 1 that is congruent to the later fraction
modulo Π(x). We compute it at the expense of O(d(log d)2 log | log d|) operations in Fq using
standard fast modular multiplication and inversion algorithms. This polynomial W (x) is
nothing but ε−1

2 (ε1(f)).
From Ψ to Ω.

Conversely, let W (x) ∈ L2 be a polynomial in K[x] with degree 6 d − 1. We look for a
function f = α0 +∑

16k6d−1 αk(y + sk)/(x− νk) in L1 that is congruent to W (x) modulo b.
For k 6= 0 in Z/dZ we set

Dk(x) =
∏

16l6(d−1)/2, l 6≡±k mod d

(x− νl) = D(x)/(x− νk).

We assume we have precomputed the Dk(νk) for 1 6 k 6 (d− 1)/2 using fast multipoint
evaluation of the derivative D′(x) at the expense of O(d(log d)2 log | log d|) operations in Fq.

We first compute a degree 6 d−1 polynomial N(x) that is congruent to W (x)D(x)Y0(x)
modulo Π(x). This is done at the expense of O(d(log d)2 log | log d|) operations in Fq using a
standard fast modular multiplication and reduction algorithm.

We have

N(x) ≡ D(x)Y0(x)f ≡ α0D(x)Y0(x) +
∑

16k6d−1
αkDk(x)(Y1(x) + skY0(x)) mod b.

The leftmost and rightmost terms in the above congruence are polynomials in x with
degree 6 d− 1. Therefore they are equal. Since Dk = D−k, we obtain

N(x) = α0D(x)Y0(x) +
∑

16k6(d−1)/2
(αk(Y1(x) + skY0(x)) + α−k(Y1(x) + s−kY0(x)))Dk(x).
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We set

A0(x) =
∑

16k6(d−1)/2
(αksk + α−ks−k)Dk and A1(x) =

∑
16k6(d−1)/2

(αk + α−k)Dk (16)

and we obtain

N(x) = α0D(x)Y0(x) + A0(x)Y0(x) + A1(x)Y1(x).
We now reduce this identity modulo Y1(x). Let N̂(x) ∈ K[x] be a polynomial with degree

6 (d−1)/2 that is congruent to N(x)/Y0(x) modulo Y1(x). We have A0(x) = N̂(x)−α0D(x)
where α0 is the only constant in K such that N̂(x)− α0D(x) has degree 6 (d− 3)/2. Once
we know α0 and A0(x) we set A1(x) = (N(x)− α0D(x)Y0(x)− A0(x)Y0(x))/Y1(x).

>From equations (16) we deduce

αksk + α−ks−k = A0(νk)/Dk(νk),
αk + α−k = A1(νk)/Dk(νk).

These pairs of equations allow us to compute all the αk from the A0(νk), A1(νk), and
Dk(νk) at the expense of O(d) operations in K. The A0(νk) and A1(νk) are computed using
a fast multipoint evaluation algorithm at the expense of O(d(log d)2 log | log d|) operations
in Fq.
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