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Let GF (2), be the Galois field with two elements1; Let V n be the set of
all vectors v = (v1, . . . , vn) with components vi ∈ GF (2). V n forms the n-
dimensional vector (coordinate) space over GF (2) 2. Any homomorphism of
V k into V n, k > n gives an (k, n) linear code (see [4]). The image of V k by
this representation gives the code space and its elements are the codewords.
It is convenient to represent a (k, n) linear code with the help of a matrix
(aji ), i = 1, . . . , k; j = 1, . . . , n over GF (2) of rank k, whose rows a1, . . . ,ak
form a basis of the code space.

The error-correcting capability of a (k, n)-linear code can be characterized
with the minimum of the weights 3 of non-zero codewords: If the minimum
equals 2t + 1, then any two codewords are distinguished by no less than 2t +
1 positions, therefore a distortion of any codeword with less than t positions
(substitution of 0 by 1 and 1 by 0) does not lead to a loss of information. One
of the problems in coding theory consists in the finding of theoretical bounds for
the error-correcting capability of linear codes. Here there are number of results
(see [4, 1]), from which we consider the following due to Varshamov and Gilbert:

If ∑

0≤i≤t−2

Ci
n−1 < 2n−k, (1)

then there exists a (k, n)-code with minimal weight ≥ t. However until now the
exact upper bound of the minimal weights of linear codes remains unknown. In
this present note, we proove that the minimal weights of most of (k, n)-linear
codes are gathered around the smallest solution (in t) of inequality (1). We pass
to the exact formula of the assertion.

Let us consider a uniform probabilistic measure on the set of all binary
k × n matrices, by considering that aji , i = 1, . . . , k; j = 1, . . . , n, are mutually
independent random variables, taken from the values 0 and 1, with uniform
probabilities. We introduce the random variable ηn, equal to the minimum
weight of a code space with generator matrix (aji ) and we define βn(t) = P{ηn >
t} its distribution function. Hereafter we will suppose that k = [nR] 4, where

∗Translated from Russian by P. Loidreau who expresses many thanks to his dictionary
1The elements of the field are 0 and 1, the addition and the multiplication are determined

by the relations 0⊕ 0 = 1⊕ 1 = 0, 0⊕ 1 = 1, 0 · 0 = 0 · 1 = 0, 1 · 1 = 1
2The operations in V n are given by the relations v ⊕ u = (v1, . . . , vn) ⊕ (u1, . . . , un) =

(v1 ⊕ u1, . . . , vn ⊕ un), w · v = (w · v1, . . . , w · vn), where w, vi, ui ∈ GF (2)
3The number of non-zero coordinates of vector a is called its weight w(a)
4[a] is the integer part of the number a
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0 < R < 1 is fixed, and we will interest ourselves to the asymptotic behaviour
of βn(t) under n → ∞. It is possible to describe an asymptotic expression for
the smallest solution tn of the inequality (1).

tn = np+
1

2

(
log2

1− p

p

)−1

log2 n+O(1), (2)

where p < 1/2 is the root of the equation, 1 − R = H(p) 5. With calculation
(2), we rewrite the result of Varshamov-Gilbert under the following form.

Theorem 1 (Varshamov, Gilbert) If the difference
[
np+

1

2

(
log2

1− p

p

)−1

log2 n

]
− sn (3)

is limited from below by some constant cp
6, then βn(sn) > 0.

For the distribution function βn(t), it is known (see [5, 3]) that

βn(t) ≥ 1− 2k−n
∑

0≤i≤t

Ci
n,

from which it is possible to derive

Theorem 2 (Gallager, Kochelev) If the difference (3) tends to +∞ then

βn(sn) → 1, under n → +∞.

The following theorem complements Theorem 2

Theorem 3 If the difference (3) tends to −∞, then βn(sn) → 0, under n →
+∞.

Theorem 3 is an immediate consequence of the following:

Theorem 4 Uniformly for t ≤ τn =

[
np+ 1

2

(
log2

1−p
p

)−1

log2 n

]
−c′p we have

the relation

βn(t) = [1 +O(2−δ
√
n)] exp

{
−2k−n

t∑

i=0

Ci
n

}
, n → ∞. (4)

Corollary 1 If the difference

[
np+ 1

2

(
log2

1−p
p

)−1

log2 n

]
− sn ≥ c′′p , then

βn(sn) > 0. In other words, there exists a (k, n)-code with minimum weight at

least np+ 1
2

(
log2

1−p
p

)−1

log2 n+O(1).

We pass to the proof of Theorem 4. We introduce the notation Dt
ν for the

events {w(x1
νa1 ⊕ · · · ⊕ xk

νak) > t}, consisting in this: the weight of the linear
combination of the lines ai of the matrix (aji ), i = 1, . . . , k; j = 1, . . . , n, with
coefficients xi

ν is greater than t; here, x1
ν , . . . , x

k
ν are the binary writing of the

number ν, 1 ≤ ν ≤ 2k − 1. Then

βn(t) = P{ηn > t} = P{ ∩
1≤ν≤2k−1

Dt
ν}.

5H(p) = −p log2 p− (1− p) log2(1− p)
6cp, c

′
p, c

′′
p are constants depending only on p
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Lemma 1 ([2]) Let Gν , ν = 1, . . . , N be an arbitrary number of events and

Sr =
∑

1≤ν1<ν2<···<νr≤N

P{Gν1
Gν2

, . . . , Gνr
}. (5)

Then

P{∪N
ν=1Gν} = S1 − S2 + S3 − · · ·+ (−1)N−1SN .

with this

P{∪N
ν=1Gν} ≥ S1 − S2 + · · · − S2m, (6)

P{∪N
ν=1Gν} ≤ S1 − S2 + · · · − S2m + S2m+1, (7)

where m is any integer such that 2m+ 1 ≤ N .

By using (6) and (7) with the events Gν = D
t

ν , N = 2k − 1, and by using the
proof of lemma 4 below, we arrive at the following expression for βn(t):

βn(t) =

2m∑

r=0

[−un(t)]
r

r!
+O

(
[un(t)]

2m+1

(2m+ 1)!
+ 2−ǫneun(t)

)
, (8)

where un(t) = 2k−n
∑

0≤i≤t C
i
n, m = O(

√
m). If un(τn) ≤ 1

2m, then the
residual term in (8) tends uniformly to zero for t ≤ τn under n → ∞. Further

log2 un(τn) = − 1
2 log2 n+ n

[
R− 1 +H

(
τn
n

)]
+O(1) =

= n
[
H

(
τn
n

)
−H

(
tn
n

)]
+O(1) = 1

2 log2 n−
(
log2

1−p
p

)
c′p +O(1).

By choosing the constant c′p sufficiently large, we obtain the fulfilment of the

condition un(τn) ≤ 1
2m whatever be m of the form O(

√
n). Thus it remains to

proove lemma 4, preceded by the following two propositions.

Lemma 2 If the system of vectors xi = (x1
i , . . . , x

k
i ) ∈ V k, i = 1, . . . , ℓ; ℓ ≤ k,

are linearly independent, then the random vectors bi = x1
ia1 ⊕ · · · ⊕ xk

i ak, i =
1, . . . , ℓ are mutually independent 7.

Proof : Since all variables aji are mutually independent, then it is enough
to check that x1

i a
1
1⊕· · ·⊕xk

i a
1
k, i = 1, . . . , ℓ are mutually independent. Without

loss of generality, it is possible to consider that ℓ = k. We show that the
probability of the intersection of events

{x1
i a

1
1 ⊕ · · · ⊕ xk

i a
1
k = yi}, i = 1, . . . , k, (9)

is equal to the product of probabilities, that is 2−k; here yi = 0 or 1, i = 1, . . . , k.
By solving the system of linear equations (9), with the method of elimination of
variables we obtain the equivalent event to (9) ∪1≤i≤k{aki = ỹi} (where ỹi = 0
or 1, i = 1, . . . , k) which evidently has probability 2−k, and this prooves lemma
2. �

7Hereafter we say that the vectors bi, i = 1, . . . , ℓ are mutually independent if the totality
of their coordinates b

j
i , i = 1, . . . , ℓ; j = 1, . . . , n. are mutually independent
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Lemma 3 Let b1, . . . ,bℓ; ℓ ≥ 2, be independent random vectors from V n.

Then uniformly for t ≤ τn and ℓ ≤ n

P{w(b1) ≤ t, . . . , w(bℓ) ≤ t, w(b1 ⊕ · · · ⊕ bℓ) ≤ t} = O(2−ǫ1n)





∑

i≤t

C
i
n2

−n





ℓ

, (10)

where ǫ1 > 0 does not depend on ℓ.

Proof : We denote by aℓ the probability (10), and by γℓ the probability of
the same event as in (10) too, but by considering that the components of the
vectors b1, . . . ,bℓ are in essence independent random variables taken from the
values 0 and 1 with probabilities pn and 1− pn respectively; here pn = (tn/n).
Every elementary solution constrained by the vectors b1, . . . ,bℓ is described by
a binary ℓ×n matrix. The number of such matrices answering the event in (10)
is equal to aℓ2

ℓn, moreover any such matrix has no more than tℓ ones. Thus

γℓ ≥ aℓ2
ℓnptℓn (1− pn)

nℓ−tℓ, (11)

if only pn ≤ 1/2. Clearly,

γℓ ≤ P̂{w(b1 ⊕ · · · ⊕ bℓ) ≤ t},

where the mark ̂ over P points out that the components of the vectors b1, . . . ,bℓ

are taken according to the new distribution. The vector b1 ⊕ · · · ⊕ bℓ has
independent coordinates each of which has value 1 with probability δℓ, obeying
to the recurrence equation

δℓ = δℓ−1(1− pn) + (1− δℓ−1)pn, δ1 = pn.

From here it is easy to deduce, that δℓ increases monotonically with ℓ (towards
1/2). Therefore, under t ≤ δ2n

γℓ ≤
∑

i≤t

Ci
nδ

i
2(1− δ2)

n−i, ℓ ≥ 2. (12)

But δ2 = 2pn(1 − pn) → 2p(1 − p) > p, while τn/n → p. Therefore, the right
term in (12) is O(2−ǫ1n), uniformly for t ≤ τn. By gathering together (11) and
(12) and by noticing that uniformly for t ≤ τn,

∑

i≤ℓ

Ci
n = 2o(n)[ptn(1− pn)

n−t]−1,

we arrive to the requested result. �

Lemma 4 For St
r, defined by (3) with Gν = D

t

ν , N = 2k−1, r ≤ 2m+1, m =
O(

√
n), uniformly for t ≤ τn we have the relation

St
r =

[un(t)]
r

r!
+O(2−ǫ2n)

∑

i≤r

[un(t)]
i

i!
. (13)
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Proof : To simplify the demonstration, we identify the indexes νj in the sum
(5) for St

r with the k-dimensional binary vectors corresponding to the k-size
binary writing of the numbers νj . We will divide the sum (5) into r − [log2 r]
terms according to the number of vectors in the linearly independent maximal
subsystem from ν1, . . . , νr (such systems contains no less than [log2 r]+1 vectors,
since ν1, . . . , νr are distinct). For the sum Σ(r), by solving the case of the linear
independence of the vectors ν1, . . . , νr and by using the independence of the

events D
t

ν1
, . . . , D

t

νr
(lemma 2), we have

Σ(r)P{Dt

ν1
, . . . , D

t

νr
} =

[un(t)]
r

r!

∏

0≤j≤r−1

(1− 2−k+j).8, (14)

Suppose now that the linearly independent maximal system consists of ℓ < r
vectors, and for convenience we suppose that ν1, . . . , νℓ are independent. Then

P{Dt

ν1
, . . . , D

t

νr
} ≤ P{Dt

ν1
, . . . , D

t

νℓ
D

t

νℓ+1
} =

= P{w(b1) ≤ t, . . . , w(bℓ) ≤ t, w(x1b1 ⊕ · · · ⊕ xℓbℓ) ≤ t},

where the vectors b1, . . . ,bℓ are mutually independent, and xi is equal to 0 or
1, while the number of xi equal to 1 is greater or equal to 2. We upper bound
the number of items in the sum Σ(ℓ) by the quantity

1

ℓ!

∏

0≤i≤ℓ−1

(2k − 2i)2ℓ(r−ℓ)r! =
1

ℓ!
2kℓO(2r

2

) =
1

ℓ!
2kℓO(2m

2

).

By choosing m = O(
√
n) such that m2 ≤ ǫ1

2 n, and by applying lemma 3, we

arrive to the following estimate for Σ(ℓ):

Σ(ℓ)P{Dt

ν1
, . . . , D

t

νr
} = O(2−ǫ2n)

[un(t)]
ℓ

ℓ!
, ǫ2 =

ǫ1
2
. (15)

By summing (14) and (15) under ℓ = 1, 2, . . . , r − 1, we arrive at (13). �

The author expresses his sincere thanks to A. N. Kolmogorov for the formu-
lation of the problem and the guidance.
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8
∏

0≤j≤r−1
(2k − 2j) represents exactly the number of r × k matrices of rank k (see [6])
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