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Abstract— The Groebner basis calculation algorithms were
successfully applied to construct new sequences analytically. New
unimodular perfect sequences with 6 phases were proposed for
various sequence lengths.

For perfect root-of-unity sequences and for binary sequences
with ideal autocorrelation this new approach was used to find
sequences analytically. Although this approach was not able
to find previously unknown sequences in both cases, it is still
better than any other analytical method and almost on par with
exhaustive search.

I. INTRODUCTION

Sequences with good periodic correlation properties with
unit magnitude have been extensively studied since the middle
of the twentieth century. They have been adopted widely in
numerous applications such as a linear system parameter iden-
tification, real-time channel evaluation, fast synchronization,
source coding, timing measurements, constant-wave radars and
two-dimensional processing.

There are three kinds of such sequences that attract a lot
of interest: unimodular perfect sequences (UPS), perfect root-
of-unity sequences (PRUS, a subclass of UPS), and binary
sequences with ideal autocorrelation (BSIA). Constructions for
UPS of square-free length can be found in ([2], [3], [6], [12],
[13], [11], [5], [1], [4], [7]). A very general construction for
PRUS can be found in ([9]). Also in that paper the results
of exhaustive search were presented, namely, there is no other
PRUS sequence exists for N ≤ 15, L ≤ 20, and NL ≤ 1111.
There is a recent survey on BSIA and related sequences ([14]).
A full classification of BSIA of length 210 − 1 is presented in
([29]).

In order to construct unimodular perfect sequences, in
([1], [4]) it was proposed to choose sequence components
from alphabet with very small size, to rewrite autocorrelation
properties (2) as a polynomial system and to solve it using
resultants. However in practice this system has been solved
only for 3 (in some cases for 4) different unknown phases.
This is due to double exponential (in number of variables)
complexity of multivariate resultant algorithms.

Among all available methods for solving polynomial sys-
tems, computation of Groebner bases remains one of the
most powerful. Historically, the Buchberger algorithm ([15],
[16]) was the first algorithm for computing Groebner bases.

Recently, new very efficient algorithms F4 ([20]) and F5 ([21])
were proposed. These algorithms were successfully applied to
many problems, including cryptanalysis of LFSR-based stream
ciphers and HFE cryptosystem ([19] and [18], resp.), decoding
cyclic codes beyond the correction capacity ([17]), and many
others.

There was an attempt to represent autocorrelation prop-
erties as a polynomial system. This approach is referred to
as “Cyclic-N” problem ([23], [24], [22]). This problem is
considered to be very hard. The biggest N for which Groebner
basis was calculated is 10 ([21]). On computer algebra system
and hardware been used only the Cyclic-7 problem can be
solved.

The purpose of this work is to apply recent results on
Groebner bases computations to construct new sequences with
good autocorrelation properties. Two different constructions
are used for unimodular perfect sequences: for lengths n =
p = 5f +1 and n = p1p2 = (4Q+3)(4P +1), where p, p1, p2

are prime numbers and f, P,Q are integers. For n = p1p2, a
new family of sequences is constructed and a direct formulae
is obtained. For perfect root-of-unity sequences and for ideal
binary sequences we determined the maximum length of the
sequence that can be obtained via Groebner bases approach.

All computations were performed using 32-bit version of
Magma software ([25]) running on dual Opteron 2.4 GHz
server with 4 Gb of available memory. Most of the results
cannot be presented in the paper due to the space limitation.
Instead, the sizes of the Groebner bases as well as time and
memory required for computation are presented.

II. PRELIMINARIES

A. Definitions

Let x = (x0, x1, . . . , xn−1) be a complex valued sequence
of length n containing at least one non-zero component. The
periodic autocorrelation function (PAF) of x is defined by

Rx (τ) =
n−1∑
s=0

xsx
∗
s+τ , τ = 0, 1, . . . , n − 1, (1)

where all indices are calculated (mod n) and x∗ denotes the
complex conjugation of x.



A sequence x = (x0, x1, . . . , xn−1) is called a perfect
sequence if and only if all the out-of-phase autocorrelation
coefficients are equal to 0, i.e.

Rx (τ) =
n−1∑
s=0

xsx
∗
s+τ = 0, τ = 1, . . . , n − 1. (2)

The sequence x = (x0, x1, . . . , xn−1) is called a phase
shift keyed (PSK), or a polyphase, or a unimodular sequence
if all the components of the sequence are unimodular (lie on
the unit circle):

|xi| = 1, i = 0, . . . , n − 1. (3)

If all the components are roots of unity of some degree,
then the sequence is called a polyphase, or a root-of-unity
sequence. In this paper the terms unimodular and root-of-
unity are used in order to avoid ambiguity.

If all components of the sequence are roots of unity of de-
gree 2, i.e. are equal to ±1, then the sequence is called binary.
Perfect binary sequences would receive a lot of applications,
particularly in communications, but so far only one such
sequence is known: {1, 1, 1,−1}. The best autocorrelation
property that can be attained by binary sequences of length
n > 4 is so-called ideal autocorrelation:

Rx (τ) =
n−1∑
s=0

xsx
∗
s+τ ≡

n−1∑
s=0

xsxs+τ = −1, τ = 1, . . . , n−1,

(4)
and only for n ≡ 3 mod 4.

This paper uses Groebner Bases calculation algorithm only
as a “black box”. All the definitions can be found in ([26]).
Only two properties will be used. First, Groebner basis of the
original polynomial system has exactly the same solution as
original system has. Second, if one calculate the Groebner
basis with respect to lexicografic order (x0 > x1 > x2 >
. . . > xn−1) , and the system is known to have only finitely
many solutions, then the last polynomial of the basis will be of
only one variable (xn−1), previous one polynomial or several
polynomials — of two variables xn−1, xn−2, and so forth.
This trianglular form of Groebner basis makes the computation
of the solution very easy. In fact, Groebner basis can be
considered as an exact solution, given in terms of algebraic
numbers.

III. UNIMODULAR PERFECT SEQUENCES

A. Construction method

Similarly to [1], [4], [7], [8], the algebraic methods for
polynomial system solving will be used. Instead of using
resultants, as it was in [1], [4], [7], the Groebner bases
technique will be utilized. Thus it will be possible to overcome
experimental limitation of 4 variables, that was found to be the
most significant issue with resultant-based approach.

We interpret the autocorrelation properties (2) together with
unimodularity (3) as a system of equations. All the solutions of
the system are (probably new) unimodular perfect sequences.
We will solve the system by converting it into system of poly-
nomial equations, and then to apply polynomial system solving

techniques, like Groebner Bases computation. The system can
be converted but new roots will appear (for example, restriction
|xi| = 1 cannot be expressed as a polynomial equation),
that may affect the performance of polynomial system solving
method. In some cases, we may receive an algebraic system
with infinite number of solutions from original non-algebraic
system which has only finitely many solutions.

Three different options were considered:

1) x∗
i = 1/xi,

2) yi = x∗
i , xiyi − 1 = 0,

3) yi = xix
∗
i+1.

It turns out that the first option requires least amount of
memory to compute Groebner bases, so it was used throughout
the paper.

In order to compose a sequence out of few different phases,
the following two experiment-based conjectures are used:

Conjecture 1: Any unimodular perfect sequence of prime
length p is equivalent to the sequence:

xi = zk, i ∈ Gk, k = −∞, 0, . . . , e − 1, (5)

where p = ef + 1, (G−∞, G0, . . . , Ge−1) — Gaussian
cyclotomic classes for p. For convenience, one can denote
G−∞ = {0}. The sequence contains e different values zk,
plus one more value x0 = 1.

Conjecture 2: Any unimodular perfect sequence of length
p1p2, where p1, p2 are different primes, is equivalent to the
sequence:

xi ≡ xi1,i2 = zk1,k2 , i1 ∈ G
(1)
k1

, i2 ∈ G
(2)
k2

, (6)

where p1 = e1f1 + 1, p2 = e2f2 + 1, i1 = i mod p1,
i2 = i mod p2, (G(1)

0 , . . . , G
(1)
e1−1) and (G(2)

0 , . . . , G
(2)
e2−1) —

Gaussian cyclotomic classes for p1 and p2, respectively. Here
G

(1)
−∞ = G

(2)
−∞ = {0} is denoted for consistency. The sequence

contains e1e2 + e1 + e2 different values zk1,k2 , plus one more
value x0 = z−∞,−∞ = 1.

After substitution of variables, the following steps should
be undertaken.

1) Calculation of Groebner basis in lexicografic ordering.
2) Sequencial elimination process (Chapter 3 of [26])

yields union of triangular polynomial systems that have
exactly the same roots as the original system.

3) Subsystems that do not have unimodular roots should be
removed from the union.

Thus the set of polynomial systems can be obtained, each
of them being very easy to solve. This set of systems can be
considered as an analytical solution to our problem.

B. n = p = ef + 1, prime p, e = 4, 5 phases

In this case, we use the template as in the Con-
jecture 1. The alphabet {1, x0, x1, x2, x3} will be used
to construct sequences. For example, a template for se-
quence of length 29 = 4 × 7 + 1 is as follows: x =
(1, x0, x1, x1, x2, x2, x2, x0, x3, x2, x3, x1, x3, x2, x1, x3, x0,
x1, x3, x1, x0, x1, x2, x0, x0, x0, x3, x3, x2). Previously ([1])
the sequence of length 13 = 4 ∗ 3 + 1 of this type was



constructed using resultants approach. That required several
days of computations on Athlon-1000. With Groebner basis
approach, now it requires a few seconds and several Megabytes
of memory.

The lexicografic ordering x0 < x1 < x2 < x3 was
chosen. For every f that was tried, it were found that solution
consisted of two systems. Solution that is defined by the first
system is already known ([10]) and the second system has a
polynomial of degree 48 in variable x0. All other polynomials
are in the from xi = Fi(x0) for some polynomials Fi(x).
The polynomial of degree 48 has 4 unimodular solutions,
thus there are two non-equivalent sequences. Please note
that complementary roots of this polynomial yield equivalent
sequences.

The experimental results for memory required, calculation
time and Groebner basis size are summarized in Table I.

C. n = p = ef + 1, prime p, e = 5, 6 phases

In this case, we use the template as in the Conjecture 1.
The alphabet {1, x0, x1, x2, x3, x4} will be used to construct
sequences. There were no previously known sequences of this
type.

The lexicografic ordering x0 < x1 < x2 < x3 < x4 was
chosen. For every f that was tried, it were found that solution
is a single system. The system has a polynomial of degree
150 in variable x0. All other polynomials are in the from
xi = Fi(x0) for some polynomials Fi(x). The polynomial
of degree 150 has 40 unimodular solutions, thus there are 20
non-equivalent sequences.

The experimental results for memory required, calculation
time and Groebner basis size are summarized in Table I.

D. Case n = p1p2, p1 = 4Q + 3, p2 = 4P + 3, 6 different
phases

The case of 4-phased unimodular perfect sequences of
length n = 3p and n = p1p2, p, p1, p2 ≡ 3 mod 4,
were considered in ([4], [7]). The sequences had alphabet
{1, a, d, e}. We will use more general template, with alphabet
{1, a, b, c, d, e}. The particular case of this constructions for
Q = 0, n = 3p was considered in ([8]).

We create template according to conjecture 2. Gaussian
cyclotomic classes for p1 and p2 for e1 = e2 = 2 coinside with
sets of quadratic residues and non-residues modulo p1 and p2.
According to conjecture 2, the template should have 8 different
variables. We will use a template with reduced number of
variables. It should be noticed that at least two different
sequences satisfy this template: CRT-sequence constructed
from two-phase sequences of length p1 and p2, and . The
alphabet is as follows:

z−∞,−∞ = z0,−∞ = 1, z1,−∞ = d,

z−∞,0 = z0,0 = e, z1,0 = a,

z−∞,1 = z0,1 = b, z1,1 = c.

For example, let us consider a sequence of length n = 77 =
7×11 = (1×4+3)(2×4+3). The quadratic residues sets Γ1 =
{1 = 12 = 62, 4 = 22 = 52, 2 = 32 = 42} = {1, 2, 4} and

Γ2 = {1 = 12 = 102, 4 = 22 = 92, 9 = 32 = 82, 5 = 42 =
72, 3 = 52 = 62} = {1, 3, 4, 5, 9}. The matrix representation
is as follows:

x =




1 e b e e e b b b e b
1 e b e e e b b b e b
1 e b e e e b b b e b
d a c a a a c c c a c
1 e b e e e b b b e b
d a c a a a c c c a c
d a c a a a c c c a c




, (7)

and the corresponding 6-phase sequence is as follows: x =
(1, e, b, a, e, a, c, b, b, e, c, 1, a, c, e, e, e, c, b, c, a, b, 1, e, c, e, a, a,
b, b, b, a, b, d, a, b, e, e, a, b, c, c, e, b, 1, a, b, a, a, e, b, b, c, e, c, d,
e, b, e, a, e, c, c, b, e, b, d, e, c, a, e, e, b, c, b, a, c).

It turns out that for every p1 and p2 autocorrelation
properties yield only 5 different equations with 5 variables.
Coefficients of the equations depend on parameters P and Q:



2P (4Q + 3)ecbad + 2(Q + 1)(Pb2cad + (P + 1)e2cad)+
+(2Q + 1)((P + 1)a2ebd + Pc2ebd)+
+2(Q + 1)(cbad + ecb2ad) + (2Q + 1)(c2eba + d2ecb) = 0,

(4P + 3)(2Q + 1)ecbad + (Q + 1)(ecba + ecbad2)+
+(Q + 1)(2P + 1)(b2ead + a2cbd + c2ead + e2cbd) = 0,

2P (4Q + 3)ecbad + 2(Q + 1)((P + 1)b2cad + Pe2cad)+
+(2Q + 1)(Pa2ebd + (P + 1)c2ebd)+
+(2Q + 1)(d2eba + a2ecb) + 2(Q + 1)(ecad + e2cbad) = 0,

2P (2Q + 1)ecbad + (P + 1)(Q)c2ebd+
+P (Q + 1)(b2ead + a2cbd + c2ead + a2ecd)+
+P (Q + 1)(e2cad + e2cbd + e2bad)+
+Q(d2eba + a2ecb)+
+(P + 1)(Q + 1)(b2ecd + c2bad + b2cad)+
+PQa2ebd + (Q + 1)(ebad + ecad)+
+(Q + 1)(ecba2d + e2cbad + e2cba + d2eca) = 0,

2P (2Q + 1)ecbad + Q((P + 1)a2ebd + c2eba + d2ecb)+
+P (Q + 1)(b2cad + b2ead + b2ecd)+
+P (Q + 1)(a2cbd + c2ead + e2cbd + c2bad)+
+(P + 1)(Q + 1)(e2bad + a2ecd + e2cad)+
+(Q + 1)(cbad + ecbd) + PQc2ebd+
+(Q + 1)(b2eca + d2cba + ecb2ad + ec2bad) = 0.

(8)
The lexicografic ordering a > b > c > e > d was

chosen since it is easy to classify solutions according to
polynomial in variable d. Several solutions of this system are
already known (for every suitable P and Q), namely, two
CRT-constructions (the last polynomial is d2 + 2Q+1

Q+1 d + 1)
and two 4-phase sequence ([7]). For every parameters P and
Q that was tried, 2 new solutions were found, namely, they
contain irreducible over Q polynomials of degree 2 and 52
in variable d, respectively. Each of the two systems yields 4
non-equivalent unimodular perfect sequences.

The experimental results for memory required, calculation
time and Groebner basis size are summarized in Table I.



E. Infinite family of sequences n = p1p2, p1 = 4Q + 3, p2 =
4P + 3, 6 different phases

Now we are going to present an infinite family of unimod-
ular perfect sequences of length n = p1p2, where p1, p2 ≡
3 mod 4 — any different primes. It was mentioned that one
of particular solutions has a very simple polynomial of degree
2 in d:

d2 + 2
p1 − p2

p1 + p2
d + 1. (9)

By adding this polynomial to autocorrelation equation system
(8) for every given p1 and p2, the Groebner bases calculation
speed increases significantly, and a resulting Groebner basis
is as follows:


a − A(e, d),
b − B(e, d),
c − C(e, d),
e4 + 4P+2Q+5

4(P+1)(Q+1)e
3d − 4P+2Q+5

4(P+1)(Q+1)e
3+

+ (16(2Q2−1)P 2+(−56−48Q+64Q2+32Q3)P−(51+96Q+36Q2))e2d
8(2(P+1)2+(P+1)(2Q+1))(Q+1)2 −

− (8P 2−(20Q+2)P−(12Q2+36Q+15)
4(Q+1)(P+1)(2(P+1)+(2Q+1)) ed + 4P+2Q+5

4(P+1)(Q+1)e+

+ 2(4P−4Q)
(4P+4Q+6d − 1,

d2 + 2p1−p2
p1+p2

d + 1,
(10)

where A(e, d), B(e, d), C(e, d) are polynomials of total
degree 4 in e and d with coefficients depending on P, Q. These
polynomials are not placed here due to space limitation.

After finding the partial solution of the system (8) one
should prove that all the values are unimodular. The following
criterion is used: |y| = 1 ⇔ {(y + 1/y)/2 ∈ R and |(y +
1/y)/2| ≤ 1}. It is easy to see that it holds for variable
d. In order to prove unimodularity for other variables, one
can compute Groebner basis of (8) plus (9) with coefficients
in univariate rational function field over integer ring. The
following lexicografic orders should be used: (a > b >
c > d > e), (a > b > d > e > c), (a > c > d > e > b),
(b > c > d > e > a). In each of the Groebner basis
attained, the last polynomial is of degree 8 in one variable,
e, c, b, a, respectively with coefficients being rational functions
in parameters P and Q. The proof is quite technical and is
omitted here.

So for every P and Q such that 4P +3 and 4Q+3 are dif-
ferent primes, there exists 4 previously unknown inequivalent
sequences of length (4P + 3)(4Q + 3), each is composed of
roots of polynomials of degree 8.

IV. PERFECT ROOT-OF-UNITY SEQUENCES

For root-of-unity sequences (xn
i = 1 ∀i), it is possible

to express perfect autocorrelation properties as an algebraic
equations. Indeed, x∗

i = xn−1
i . In addition, unimodularity

properties are implicitly present via root-of-unity restriction,
xn

i = 1. So there will be no parasite particular solutions.
In order to slightly simplify construction of PRUS, one

should use unimodularity properties together with the follow-
ing equivalence transforms ([10]): x′

i := axi (to make the first

element equal to 1) and x′
i := xiζ

si, ζ = exp{ 2πj
n } (to make

another element equal to 1 too). In this case, it is possible to
compute PRUS of length up to 9. For example, Groebner basis
for PRUS of length 9 is as follows (x1 and x2 were fixed):
{x3−x7x8x9, x4+x7x8+x2

8, x5−x2
8, x6+x7x9+x8x9, x

2
7+

x7x8 +x2
8, x

3
8−1, x9

9−1, x2−1, x1−1}. For PRUS of length
10, computations have run out of memory.

The experimental results for memory required, calculation
time and Groebner basis size are summarized in Table I.

V. BINARY SEQUENCES WITH IDEAL AUTOCORRELATION

Construction of BSIA is another example of pure al-
gebraic task. Indeed, autocorrelation properties Rx (τ) =∑n−1

s=0 xsxs+τ = −1 should be accompanied by restriction of
variables to be binary, i.e. ±1. These restrictions are algebraic
too: x2

i −1 = 0. Due to equivalence transforms, it is possible to
fix several variables without loss of generality: x0 = 1, x1 =
1, x2 = 1, x3 = −1. This trick will slightly simplify the
Groebner bases calculation. Using these restrictions together
with autocorrelation properties and restriction of values to
binaries x2

i −1 = 0 it is possible to construct binary sequences
of length up to 19. For n = 23 system runs out of memory.

However this result can be improved due to the fact that
Groebner basis calculations with polynomials over GF (2)
are much more efficient than calculations over Z. So we use
sequences with alphabet yi ∈ {0, 1} by considering mapping
xi := 2yi − 1. Alphabet restrictions are y2

i − yi = 0.
Autocorrelation properties are as follows:

∑n−1
i=0 yiyi+τ −∑n−1

i=0 yi+ n+1
4 = 0. In order to solve this system all equations

can be considered mod 2. Then the solutions of this system
should be checked against original system. For n = 27 no
sequences were found, although there is a number of solutions
that satisfies system taken ( mod 2). For n = 31 system have
run out of memory. Also it is possible to consider this system
of equations modulo 3. In this case, the system can be solved
for n up to 39. The best known result for exhaustive search
is the sequences of length 43 ([14]).

All the above results were obtained from the autocorrelation
properties only. However in certain cases it is possible to use
additional properties ([27], [28]) that simplify solution process
significantly:

1) If n is not prime, then for every w, divisor of n,
additional integer variables

b
(w)
i =

∑
yj=1

i≡j mod w

yj , 0 ≤ b
(w)
i < n/w, 0 ≤ i < w (11)

can be used. These variables satisfy equations∑w−1
i=0 b

(w)
i b

(w)
i−k = n(n−3)

4 , k = 1, . . . , w − 1. It is

possible ([29]) to compute all possible b
(w)
i and then to

add linear equations (11) to original polynomial system.
2) Sometimes BSIA has so-called multiplier t, i.e. an equa-

tion xti = xi+s holds for every i and some s = s(t).
In this case, BSIA is constant on cyclotomic cosets. For
sequences of length 2N − 1, 2 is always a multiplier.



Using these properties it is possible ([29]) to find all BSIA of
length 210 − 1. For BSIA of length 211 − 1, we computed all
b
(w)
i for w = 23 and 89. With restrictions (11) been added to

the system, Groebner bases computation took 8 Gb of RAM
and then ran out of memory.

VI. CONCLUSION

The Groebner basis calculation algorithms were success-
fully applied to construct new sequences analytically. For
n = p1p2 and for n = p = 5f + 1, where p, p1, p2 are
primes, new unimodular perfect sequences of length n with
6 phases are proposed. For n = p1p2, a new family of
sequences is constructed and a direct formulae is obtained.
For perfect root-of-unity sequences and for binary sequences
with ideal autocorrelation this new approach was used to find
sequences analytically. Although this approach was not able to
find previously unknown sequences, it is still better than any
other analytical method. Since a great progress was achieved
in recent years in the area of Groebner Bases computations,
it seems possible for Groebner bases approach to outperform
exhaustive search. This also can be true due to the fact that the
fastest know algorithm F5 ([21]) is now being implemented
into computer algebra software system been used.

The results of computation are presented below.

TABLE I

TIME AND MEMORY REQUIRED FOR GB CALCULATION

Construction Memory Time Size of GB
n = p1p2, Q = 4, P = 10 150 Mb 580 s 14 Mb

Q = 4, P = 1000 311 Mb 1660 s 32 Mb
n = p = fe + 1, e = 4, f = 3 3.5 Mb 1.4 s 300 Kb

e = 4, f = 100 4.8 Mb 5.7 s 670 Kb
e = 4, f = 1000009 45 Mb 65 s 4.7 Mb

e = 5, f = 6 99 Mb 2500 s 41 Mb
e = 5, f = 12 143 Mb 4500 s 62 Mb
PRUS, n = 8 96 Mb 205 s < 1 Kb
PRUS, n = 9 2.5 Gb 21000 s < 1 Kb

PRUS, n = 10 out of memory
binary, via GF(2), n = 27 103 Mb 922 s 0
binary, via GF(2), n = 31 out of memory
binary, via GF(3), n = 31 1583 Mb 7200 s 34 sequences
binary, via GF(3), n = 35 3348 Mb 7500 s 10 sequences
binary, via GF(2), n = 39 107 Mb 9.9 s 0
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