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Abstract. The goal of the paper is to show how to design a Gabidulin based public-
key cryptosystem resistant to all Overbeck’s like attacks. The main idea consists in
taking the coefficients of the right scrambler in a subspace of the coefficients field
with sufficiently small dimension. This gives a rank multiplier and scrambles the
structure of the code. We propose some parameters.

1 Introduction

In 1991, Gabidulin, Paramonov and Tretjakov presented a Gabidulin-codes
based cryptosystem [2]. Unfortunately, the original system and many of its
evolutions (such as taking subcodes) were broken.

The main weakness of the systems relies in the fact that Gabidulin codes
contain a huge vector space invariant by the action of the Frobenius automor-
phism (k − 2, where k is the dimension of the code). Even if one considers the
most recent evolutions using a right scrambler the problem remains. Namely,
some coefficients of the scrambler are fixed in the base field and this increases
the weakness of the system [3,8].

In this paper we follow this idea of using a right scrambler but benefit from
the study of LRPC codes [6]. The idea consists in taking the coefficients of the
inverse of the right scrambler in a fixed dimensional secret subspace. When
decoding, this provokes a rank multiplication of the error.

In this paper we present the construction, which relies on the existence for
rank metric of operators called rank multipliers. In the following of the paper
we consider codes of length n over GF (qm).

2 Gabidulin codes, GPT cryptosystem and Over-
beck’s attacks

We briefly recall the necessary stuff on GPT cryptosystem, and the principle of
Overbeck’s attacks. A more detailed analysis in English can be found in [4, 5].

2.1 Rank metric and Gabidulin codes

Here we give a non-standard definition of rank metric, but this definition is
equivalent to the classical definition of rank metric given in [1].
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Definition 1 (Rank metric). Let x = (x1, . . . , xn) ∈ GF (qm)n, and let

X =< x1, . . . , xn >=

{
n∑
i=1

µixi | µi ∈ GF (q)

}
,

be the GF (q)-linear vector space generated by the components of x. Then
Rk(x) = dimq(X ).

Let n ≤ m and let g = (g1, . . . , gn) ∈ GF (qm), where the g′is are linearly
independent over GF (q). The code Gabk(g), is the linear code with generator
matrix

G =


g1 · · · gn

g
[1]
1 · · · g

[1]
n

...
. . .

...

g
[k−1]
1 · · · g

[k−1]
n

 (2.1)

This code corrects errors of rank up to b(n−k)/2c. There are many different
efficient polynomial-time algorithms to perform the decoding. The original one
can be found in [1].

2.2 Principle of automorphism based attacks

The principle of GPT cryptosystem, see [2], consists in taking the generator ma-
trix of a Gabidulin code under the form (2.1), scrambling it and then publishing
the scrambled form. The most general scrambling has the form

Gpub = S(X | G)P,

where G is a generator matrix of a Gabidulin code G of length n, and P the right
scrambler. To ensure proper decoding, the right-scrambler P has to satisfy some
properties. In any case it has to be non-singular. Originally P was taken with
coefficients in the base field GF (q). This ascertains that P−1 has coefficients
in GF (q), and is therefore an isometry of rank metric.

This is a major weakness since: if we denote by Cpub the code generated by

Gpub and by C[i]pub the code obtained by elevating the codewords of Cpub to the

ith power of the Frobenius automorphism, a generator of this code is

G
[i]
pub = S[i](X[i] | G[i])P,

and the dimension of

C⊥pub ∩
(
C[1]pub

)⊥
∩ · · · ∩

(
C[i]pub

)⊥
,
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is at least The dimension of G⊥ ∪ · · · ∪
(
G[i]
)⊥

, that is at least n− k − i− 1. If
the codes were randomly chosen one would expect the dimension to be max(n−
ik, 0). Hence one obtains an efficient distinguisher for GPT cryptosystem. Even
worse, if i is sufficiently large, we generally obtain that

C⊥pub ∩ · · · ∩
(
C[i]pub

)⊥
=

(
G⊥ ∪ · · · ∪

(
G[i]
)⊥)

P.

Provided the codes are non-trivial this enables to recover a decoder.
More elaborate forms of right scrambler have been proposed, for instance

in [3, 8]. Unfortunately for the conceivers, the former point remains true that
is to know, the public key Gpub can always be rewritten under the form

Gpub = S∗(X∗ | G∗)P∗, (2.2)

where P∗ has coefficients in GF (q), and G∗ a generator matrix for a Gabidulin
code of smaller length. This nice result comes from [5].

Once we have (2.2), it is obvious that the public-code contains a subspace
invrariant by the action of the Frobenius automorphism.

Now the idea of relaxing optimality on the code by scrambling the columns
with a non-isometry of the metric is not new it was done for Hamming metric
in the case of GRS codes, [9], by using an almost permutation matrix P and
tolerating few rows and columns to have Hamming weight 2. However this
scheme and reparations was broken in [10], by designing a distinguisher on the
Hamming weight of the rows of the scrambler.

Rank metric is much more adapted for such transformations as we see in
the following.

3 Rank multipliers

The concept of rank multiplication can be found in [6]. Consider α1, . . . , αλ ∈
GF (qm), GF (q)-linearly independent elements. Let V =< α1, . . . , αλ > be the
GF (q)-linear subspace generated by α1, . . . , αλ. Let P ∈Mn(V), be a n×n-non
singular matrix with coefficients taken in V. Then

Proposition 1 (Rank multiplication). For all x ∈ GF (qm)n, Rk(xP) ≤ λRk(x).

Proof. Consider x = (x1, . . . , xn) ∈ GF (qm) of rank r. Let X =< x1, . . . , xn >
be generated by < y1, . . . , yt >. Suppose moreover that V =< α1, . . . , αλ >,
then the components of xP, belong to the vector space < yiαj >i,j which has
dimension ≤ λt.

This property of combining subspaces was first introduced in the design of
LRPC codes. These codes are the equivalent of LDPC codes with respect to
rank metric. An immediate corollary is
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Corollary 1. Let C be a [n, k, d]r code over GF (qm). Let V be a λ-dimensional
subspsace of GF (qm) seen as an GF (q)-vector space. And let P ∈ Mn(V).
Then

CP−1 def= {cP−1 | c ∈ C}
has rank dimension k and rank distance d′ ≥ bd/λc .

Proof. Since P is invertible C and CP−1 have the same dimension. Concerning
the minimum distance, suppose that d′ < d/λ. Then let c ∈ CP−1 6= 0 with
rank distance d′. By construction cP ∈ C. But from proposition 1, Rk(cP) ≤
d′λ < d, which implies that cP = 0. Thus c = 0, which contradicts the
hypothesis.

4 Proposition of cryptosystem

In this section we formalize our proposal of cryptosystem, give some security
analysis and propose parameters.

4.1 A McEliece like form

The key generation procedure is the following:

• Private key:

– A Gabidulin code of length n over GF (qm), dimension k with gen-
erator matrix G under the form (2.1).

– A non-singular k × k-matrix S with coefficients in GF (qm).

– A λ-dimensional subspace of GF (qm), denoted by V.

– A non-singular matrix P ∈Mn(V).

• Public key: Gpub = SGP−1.

The encryption and decryption procedure is:

• Encryption of x ∈ GF (qm)k:

– Choose a random vector e ∈ GF (qm)n of rank b(n− k)/(2λ)c.
– Compute y = xGpub + e.

– Send the encrypted message y to the receiver.

• Decryption of y:

– Compute yP = xSG + eP.

– By construction the rank of eP is ≤ λb(n− k)/(2λ)c ≤ b(n− k)/2c,
and therefore can be decoded with G.
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– Recover xS and eP by decoding and finally get x by multiplying
with S−1.

A Niederreiter form can be obtained similarly to the Niederreiter idea. A
remark here is that with this construction it is worth looking at the concept of
Trace code or even subfield subcode to scramble the structure.

4.2 How to analyse the system ?

In this section we raise the question of the security. This a two-fold analysis.

1. We analyse the security against decoding attacks. This path is relatively
well studied and the most recent results in [7] establish that the average
complexity for generic decoding of a code [n, k] over GF (qm) is at least

m3q(t−1)b(kmin (m,n))/nc operations in GF (q).

2. We provide a basic analysis of the system to show that the commonly
employed ideas used to break such systems are inefficient. First it is
quite obvious that Overbeck’s approach consisting in making use of the
Frobenius automorphism cannot be employed. Namely we have

G
[i]
pub = S[i]G[i]P[i].

Since V has no reasons to be invariant by the Frobenius, Cpub and C[i]pub have

no reasons to be correlated. So the most straightforward way to attack
would be to rewrite the systems originally written for GPT cryptosystem
and try to solve it. Provided P has no particular structure (monomial,
cyclic or whatsoever), we propose a lower bound on the complexity of
recovering a decoder as being the number of λ − 1-dimensional GF (q)-
subspaces of GF (qm). We choose λ− 1 comes from the fact that if λ = 1,
i.e. V =< α >, for some element α ∈ GF (qm), it is obvious that an
attack can be achieved in polynomial time. Namely, P = (1/α)P′ with
P′ has coefficients in the base field GF (q). Roughly speaking we lower

bound the complexity by n3qm(λ−1)−(λ−1)2 .

4.3 Proposition of parameters

We propose parameters for 128 bits security, one in the McEliece setting, the
other one in the Niederreiter setting. The complexity estimations are given in
terms of binary operations.

1. First option code of length n, dimension k over GF (2m)

• m = 96, n = 64, λ = 3, t = 4, k = 40.

• Public-Key size: ≈ 11, 5KBytes under systematic form.
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• Decoding attack estimation: ≈ 2139.

• Structural attack estimation: ≈ 2206.

2. Second option: Niederreiter type

• m = 64, n = 64, λ = 3, t = 8, k = 22.

• Public-Key size: ≈ 7, 4KBytes under systematic form.

• Decoding attack estimation: ≈ 2130.

• Structural attack estimation: ≈ 2142.
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