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InteGriTy is a software package that performs topological analysis following the

AIM (atoms in molecules) approach on electron densities given on three-

dimensional grids. Tricubic interpolation is used to obtain the density, its

gradient and the Hessian matrix at any required position. Critical points and

integrated atomic properties have been derived from theoretical densities

calculated for the compounds NaCl and TTF±2,5Cl2BQ (tetrathiafulvalene±2,5-

dichlorobenzoquinone), thus covering the different kinds of chemical bonds:

ionic, covalent, hydrogen bonds and other intermolecular contacts.

1. Introduction

Nowadays, very accurate electron densities can be obtained

both experimentally and theoretically. Experimental methods

of recovering charge densities require high-resolution X-ray

diffraction measurements on single crystals, which are

analysed within the context of aspherical models. From the

theoretical point of view, not only crystals but also molecules,

clusters and surfaces can be tackled using either quantum-

chemistry techniques, ranging from standard Hartree±Fock

calculations to extremely accurate con®guration-interaction

methods, or techniques based on the density functional theory

(DFT), which are increasingly used to perform ab initio

calculations. Once the total electron density is known, it can be

analysed in detail by means of its topological properties within

the quantum theory of atoms in molecules (Bader, 1990, 1994).

With such an analysis, one can go beyond a purely qualitative

description of the nature and strength of interatomic inter-

actions. It can also be used to de®ne interatomic surfaces

inside which atomic charges and moments are integrated.

The topological features of the total electron density �(r)

can be characterized by analysing its gradient vector ®eld

rrr�(r). Critical points (CPs) are located at points bCP where

rrr�(rCP) = 0, and the nature of each CP is determined from the

curvatures (�1, �2, �3) of the density at this point. The latter

are obtained by diagonalizing the Hessian matrix Hij = @2�(r)/

@xi@xj (i, j = 1, 2, 3). Each CP is denoted by a pair of integers (!,

�), where ! is the number of non-zero eigenvalues of the

Hessian matrix H(r) and � is the sum of the signs of the three

eigenvalues. In a three-dimensional stable structure, four types

of CP can be found: (3, ÿ3) peaks, corresponding to local

maxima of �(r), which occur at atomic nuclear positions and in

rare cases at so-called non-nuclear attractors; (3, ÿ1) passes,

corresponding to saddle points where �(r) is maximum in the

plane de®ned by the axes corresponding to the two negative

curvatures and minimum in the third direction (such bond

critical points are found between pairs of bonded atoms);

(3, +1) pales, where �(r) is minimum in the plane de®ned by

the axes associated with the two positive curvatures and

maximum in the third direction (such ring critical points are

found within rings of bonded atoms); (3, +3) pits, corre-

sponding to local minima of �(r). The numbers of each type of

CP obey the following relationship depending on the nature of

the system: N(peaks) ÿ N(passes) + N(pales) ÿ N(pits) = 0 or

1 for a crystal or an isolated system, respectively. The Lapla-

cian of the electron density r2�(r), which is given by the trace

of H(r), is related to the kinetic and potential electronic

energy densities, G(r) and V(r), respectively, by the local

Virial theorem

1
4r2��r� � 2G�r� � V�r�

(atomic units, a.u., are used throughout the paper). The sign of

the Laplacian at a given point determines whether the positive

kinetic energy or the negative potential energy density is in

excess. A negative (positive) Laplacian implies that density is

locally concentrated (depleted). Within the quantum theory of

atoms in molecules, a basin is associated to each attractor

(3, ÿ3) CP, de®ned as the region containing all gradient paths

terminating at the attractor. The boundaries of this basin are

never crossed by any gradient vector trajectory and satisfy

rrr�(r) � N(r) = 0, where N(r) is the normal to the surface at

point r. The corresponding surface is called the zero-¯ux

surface and de®nes the atomic basin when the attractor

corresponds to a nucleus. Only in very rare cases have non-

nuclear attractors been evidenced (Madsen et al., 1999).

Within this space partitioning, the atomic charges deduced by

integration over the whole basin are uniquely de®ned.

During the past 20 years, several programs have been

developed to perform topological analysis of electron densi-

ties, but they are either connected to computer program

packages (Gatti et al., 1994; Koritsanszky et al., 1995;
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Souhassou et al., 1999; Stash & Tsirelson, 2001; Stewart &

Spackman, 1983; Volkov et al., 2000) or have limitations

concerning the type of wavefunctions used to determine �(r)

in ab initio calculations (Barzaghi, 2001; Biegler KoÈ nig et al.,

1982, 2001; Popelier, 1996) or to re®ne experimental data

(Barzaghi, 2001). To our knowledge, only two procedures to

analyse the topology of �(r) numerically on grids have been

described: Iversen et al. (1995) used a maximum entropy

density, while Aray et al. (1997) sampled a theoretical density

on a homogeneous grid. However, these approaches are

limited to the determination of CPs. The present analysis of

the topological features of total electron densities is inde-

pendent of the way these densities are obtained and works for

periodic and non-periodic systems. We show in this paper that

this can be simply achieved by working with densities given on

regular grids in real space. The developed software, InteGriTy,

uses a tricubic Lagrange interpolation, which makes the CP

search and integration method both accurate and fast. The

densities used to illustrate the performance of our approach

are theoretical ab initio densities obtained with the projector

augmented wave (PAW) method (BloÈ chl, 1994).

The next section of this paper gives a short description of

the method. Test compounds and computational details are

given in x3. x4 is devoted to the determination of CPs and their

characteristics, whereas x5 concerns the determination of

atomic basins and charges. We will discuss the effect of grid

spacing of the input density and the plane-wave cutoff used for

the PAW calculations on the properties of different types of

interactions (ionic, covalent and intermolecular).

2. Description of the method

2.1. Input data and interpolation

In order to achieve the topological analysis of any experi-

mental or theoretical electron density, the density is given on a

regular, not necessarily homogeneous grid in real space. A

grid of stored values of �(r) must be prepared, preferably in

binary format in order to save disk space and with double

precision to ensure high precision. The grid, which is de®ned

by its origin, three mesh-grid vectors and the number of points

in each grid direction, as well as atomic positions, must be

speci®ed with respect to a Cartesian coordinate system.

Determination of the topological properties of �(r) requires

the knowledge of �(r), rrr�(r) and H(r) at many arbitrary

points. This can be achieved in an accurate and ef®cient way

by using a tricubic Lagrange interpolation (Press et al., 1992).

In one dimension, it uses values of � on two grid points on

each side of the current point, as illustrated in Fig. 1. For a

three-dimensional system, it uses 64 grid points surrounding

the box containing the current point:

��x; y; z� �P4

i�1

P4

j�1

P4

k�1

��i; j; k�Li�x�Lj�y�Lk�z�:

As the ®rst and second derivatives of this expression are

straightforward, the evaluation of rrr�(r) and H(r) is numeri-

cally very inexpensive. It is clear that with respect to analytical

expressions, the interpolation may introduce errors. However,

as shown in xx4 and 5, these errors are small for reasonable

values of the grid interval size, and insigni®cant when

compared with those resulting from the multipolar re®nement

of experimental structure factors. One should also note that

this interpolation is not suitable for the topological analysis

using r2�(r) from the density. Higher order interpolation

would be required or the Laplacian would have to be supplied

on a grid.

2.2. Critical points

To locate the CPs, starting from every grid point, a standard

Newton±Raphson technique (Press et al., 1992) is used to ®nd

the zeros of its gradient modulus:

ri�1 � ri ÿ �Hÿ1�ri� � rrr��ri�:
Far from the CPs, the full Newton step will not necessarily

decrease the gradient modulus and the parameter � allows the

step-size adjustment. In all our calculations, an � value of 0.3

led to stable results. This iterative procedure is used until the

gradient modulus becomes less than a chosen threshold value.

The corresponding CP is then stored if no other CP has been

found in its vicinity. Otherwise, the program keeps the point

that has the smallest gradient modulus. The CPs can then be

classi®ed with respect to their type and/or to the magnitude of

�(rCP). It is worth emphasizing that, since each grid point acts

in its turn as a starting point, the CP search does not require a

priori knowledge of atom location, nor the de®nition of plane

or local coordinate systems. Periodic boundary conditions are

used to treat periodic systems, whereas four grid points at each

border of the input box are ignored in the case of non-periodic

systems.

2.3. Atomic basins

Interpolation of electronic density on a grid can also be

used to derive atomic basins and to integrate the density to

obtain the atomic charges with good accuracy and within

reasonable computer time. The surface S
 of each basin 
 is

determined by its intersection with rays originating from the

attractor. Only one intersection per ray is looked for. Then the

determined surfaces may not be fully correct (Biegler KoÈ nig et

al., 1982; Popelier, 1998) but the missing volume that can be

checked a posteriori is very low, thus having no appreciable

Figure 1
One-dimensional example for tricubic Lagrange interpolation. xi and �i

are respectively the abscissa and density value at grid point i. The density
at the current abscissa x is given by �(x) where Li(x) are third-order
polynomial, passing through all the grid points as shown by the example
of L1(x).



effect on the integrated charges. A basin search is performed

on the total density, whereas highly accurate integration is

obtained from the valence part only, to avoid using unrea-

sonably small grid steps. The program works with both peri-

odic and non-periodic conditions for the input grids and a

threshold electron density value can be applied to limit the

surface of open systems (e.g. van der Waals envelope; Bader,

1990). The present integration results concern only periodic

systems, thus allowing a posteriori validation of the process

according to the sum over the whole unit cell of all basin

volumes, including all atoms and possible non-nuclear

attractors.

2.3.1. Basin search. To search for the surface of a basin, a

radial coordinate system centred on each attractor is used and

one point of the basin surface, R
(�, '), is looked for along the

ray de®ned by the � and ' angles. A point r(�, ') is declared

inside the basin 
 if the following gradient path brings it

towards a sphere centred on the attractor and with radius Rmin

small enough to be in the basin, as illustrated in Fig. 2. The

running point is declared outside of 
 if a few iteration steps

successively move it away from the attractor. The step

amplitude used to follow the gradient is the product of a

minimum step dr0 weighted by a coef®cient g depending on

the angle ! between the considered ray and the gradient. It

takes the form ln(g) = A|cos(
)|B so that the maximum step

size corresponds to the parallel situation. The search algo-

rithm used for each ray is given in Fig. 3. A coarse bracketing,

Rlow < R
(�, ') < Rhigh, is ®rst performed, starting from the

value Rstart and using geometric progression with a common

ratio 1 + �. The sign and amplitude of � depends on whether

bracketing is performed downward to or away from the

attractor. A dichotomy procedure is then used to re®ne the

R
(�, ') value with prede®ned tolerance dtol. At the ®rst (�, ')

step, Rstart is set to an arbitrary value given for each atom as an

input parameter. A crude estimation of a basin's limits is

performed ®rst on a regular (�, ') grid with a small number of

points n� and n' = 2n�, with each R
(�, ') acting as a starting

value for the next (�, ') step. This search is suf®cient for

graphical purposes and enables Rstart initialization by linear

interpolation at all (�, ') points added during the integration

process. The Rmin value is updated at the end of the crude

estimation in order to save time during the integration process.

It is automatically reset to a lower value when necessary.

2.3.2. Integration. Two methods can be used for integration,

both using three nested integration `do loops' with spherical
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Figure 2
Schematic diagram to illustrate how a running point in radial coordinates
is checked following the gradient path inside (®lled circles) or outside
(open circles) a basin centred on the attractor A and delimited by the
surface S
. rA and r respectively give the positions of the attractor and the
running point in the absolute Cartesian coordinate system. The
incremental step length gdro is de®ned in the text.

Figure 3
Basin surface location ¯owchart for a given ray originating from an
attractor with spherical coordinates � and '. L and H are dummy logical
constants to check if both the low and high limits of the coarse bracketing
have been found. In the second part of the ¯owchart, the dichotomy
process is stopped when the distance between the two limits is below the
prede®ned tolerance dtol.
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coordinates. The ®rst one is straightforward and uses the same

®xed number of (�, ', r) points for all attractors. The numbers

nr and n� of radial and � steps are kept ®xed, whereas the

number n'(�) of ' steps is � dependent such that the

elementary solid angle sin(�)���' is constant. The integral Qf

of a quantity f(�, ', r) is simply given by the discrete sum

Qf � �r ��
Pn�
i�1

sin��i� �'��i�
Pn'��i�

j�1

Pnr

k�1

r2
k f ��i; 'j; rk�:

The second method uses the Romberg procedure (Press et

al., 1992) and is illustrated in Fig. 4 for a single variable

function f integrated in the interval [a, b]. The procedure ®rst

calculates an estimation of the integral Qf over n stages of the

extended trapezoidal rule with successive integration steps

{hn} and extrapolates Qf with a k-order polynomial in h2 to the

continuum limit h = 0 over the last n ÿ k stages. The inter-

polation starts after n � kmin stages. This iterative process is

terminated when either an estimated error � derived from the

extrapolation operation yields a desired relative accuracy "
such that � � ("Qf), or a ®xed maximum number of stages nmax

is reached. Several convergence criteria can be used for the

radial, ' and � levels of integration. Total and valence atomic

charges, volume and the Laplacian are integrated, and

convergence criteria can be chosen on each of these quantities.

Individual quantities are summed at the end of the loop over

all attractors. The total charge and volume are then compared

with the expected values and residuals are used to assess the

accuracy of the integration process.

Figure 5
Representation of a mixed stack of alternating TTF and 2,5Cl2BQ
molecules, including atomic numbering. Open circles indicate bond and
ring CPs. The lines connecting two molecules correspond to bond paths
determined by following r�(r) with a small step size. Diamonds indicate
some intermolecular (3, ÿ1) CPs.

Table 1
Characteristics of crystalline NaCl critical points (CPs) for different grid spacings (�rgrid) and numbers of plane waves (Ecutoff).

�1, �2 and �3 are the Hessian matrix eigenvalues. All values except Ecutoff are given in a.u.

Type Ecutoff �rgrid �(rCP) r2�(rCP) �1, �2, �3

(3, ÿ1) 40 Ry 0.1564 0.0130 0.0577 ÿ0.0122, ÿ0.0119, 0.0817
NaCl 40 Ry 0.1138 0.0130 0.0576 ÿ0.0122, ÿ0.0121, 0.0820

40 Ry 0.0939 0.0130 0.0571 ÿ0.0122, ÿ0.0121, 0.0814
30 Ry 0.1138 0.0130 0.0581 ÿ0.0123, ÿ0.0121, 0.0825

120 Ry 0.1138 0.0130 0.0583 ÿ0.0123, ÿ0.0121, 0.0827
(3, ÿ1) 40 Ry 0.1138 0.0049 0.0127 ÿ0.0024, ÿ0.0011, 0.0163
ClCl
(3, +1) 40 Ry 0.1138 0.0047 0.0134 ÿ0.0025, 0.0035, 0.0124
(3, +3) 40 Ry 0.1138 0.0019 0.0056 0.0019, 0.0019, 0.0019

Figure 4
Romberg ¯owchart for the integration of a function f in the interval [a, b].
Qf stands for an integrated property (charge, Laplacian, volume) at the
three imbricated levels of integration, namely radial, ' and � in the
respective intervals [0, R
(�, ')], [0, 2�] and [0, �].



3. Test compounds

Different types of crystals and molecules have been used to

test the limits, accuracy and performance of the algorithm. In

this paper, we have selected two crystals, namely NaCl, a

classical example of an ionic crystal, and TTF±2,5Cl2BQ, for

covalent and intermolecular interactions. The latter

compound was also chosen for the following reasons: with 26

atoms in the unit cell, the system is neither too small nor too

large; as the unit cell is triclinic, the grid will not be orthogonal;

the presence of inversion symmetry should be recovered in all

properties; the expected small intermolecular charge transfer

(about 0.5 out of 200 electrons) is a good quantity to test the

accuracy of charge integration.

All calculations used to generate the electron densities were

carried out with the projector augmented wave (PAW) method

(BloÈ chl, 1994), an all-electron code developed by P. E. BloÈ chl.

The wavefunctions were expanded into augmented plane

waves up to a kinetic energy Ecutoff ranging from 30 to 120 Ry.

NaCl was treated within a face-centred cubic (f.c.c.) cell with a

= 10.62 a.u. and eight k points in reciprocal space. For TTF±

2,5Cl2BQ, we used the experimental geometry at ambient

conditions (Girlando et al., 1993). The unit cell is triclinic (a =

14.995, b = 13.636, c = 12.933 a.u., � = 106.94, � = 97.58,  =

93.66�) and contains one TTF and one 2,5Cl2BQ molecule,

both on inversion centres. These molecules are respectively

electron donor and acceptor molecules, alternating along the b
axis to form mixed stacks (Fig. 5). The ab initio calculations

were performed with three k points between  and Y = 1
2 b* in

the Brillouin Zone (Katan et al., 1999).

4. Critical points

4.1. Ionic bonds

NaCl presents four types of different CPs, as shown in Fig. 6.

Within the unit cell there are six (3, ÿ1) CPs between Na and

Cl, six (3, ÿ1) CPs between Cl and Cl, surrounded in the

Na� � �Na direction by twelve (3, +1) CPs, two (3, +3) CPs and
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Table 2
Characteristics of the ring CP of 2,5Cl2BQ and the O1� � �H3 hydrogen
bond of TTF±2,5Cl2BQ for different Ecutoff and �rgrid = 0.104 a.u.

Type Ecutoff �(rCP) r2�(rCP) �1 �2 �3

Ring CP 50 Ry 0.0210 0.1233 ÿ0.0128 0.0613 0.0747
2,5Cl2BQ 70 Ry 0.0209 0.1327 ÿ0.0134 0.0664 0.0796

90 Ry 0.0209 0.1314 ÿ0.0131 0.0656 0.0789
100 Ry 0.0209 0.1315 ÿ0.0131 0.0656 0.0791

O1� � �H3 50 Ry 0.0103 0.0359 ÿ0.0106 ÿ0.0102 0.0567
70 Ry 0.0103 0.0384 ÿ0.0109 ÿ0.0103 0.0596
90 Ry 0.0103 0.0375 ÿ0.0108 ÿ0.0103 0.0585

100 Ry 0.0103 0.0370 ÿ0.0107 ÿ0.0103 0.0580

Table 3
Characteristics of the ring CP of 2,5Cl2BQ and the O1� � �H3 hydrogen
bond of TTF±2,5Cl2BQ for different �rgrid and Ecutoff = 90 Ry.

Type �rgrid �(rCP) r2�(rCP) �1 �2 �3

Ring CP 0.125 0.0209 0.1314 ÿ0.0132 0.0656 0.0790
2,5Cl2BQ 0.104 0.0209 0.1314 ÿ0.0131 0.0656 0.0789

0.085 0.0209 0.1313 ÿ0.0131 0.0656 0.0788
O1� � �H3 0.125 0.0103 0.0375 ÿ0.0108 ÿ0.0102 0.0585

0.104 0.0103 0.0375 ÿ0.0108 ÿ0.0103 0.0585
0.085 0.0103 0.0373 ÿ0.0107 ÿ0.0103 0.0584

Table 4
Characteristics of selected covalent-bond CPs of TTF±2,5Cl2BQ for
various Ecutoff and �rgrid = 0.104 a.u.

Type Ecutoff �(rCP) r2�(rCP) �1 �2 �3

C11ÐO1 50 Ry 0.4038 0.6240 ÿ1.0511 ÿ0.9774 2.6526
70 Ry 0.4070 0.3862 ÿ1.0359 ÿ0.9567 2.3788
90 Ry 0.4079 0.3182 ÿ1.0401 ÿ0.9579 2.3162

100 Ry 0.4079 0.3131 ÿ1.0394 ÿ0.9571 2.3096
C6ÐS2 50 Ry 0.2089 ÿ0.3931 ÿ0.3364 ÿ0.2823 0.2256

70 Ry 0.2094 ÿ0.4185 ÿ0.3370 ÿ0.2835 0.2021
90 Ry 0.2094 ÿ0.4243 ÿ0.3371 ÿ0.2833 0.1961

100 Ry 0.2094 ÿ0.4251 ÿ0.3371 ÿ0.2833 0.1954
C1ÐC2 50 Ry 0.3410 ÿ1.2044 ÿ0.7568 ÿ0.5956 0.1480

70 Ry 0.3387 ÿ1.0740 ÿ0.7496 ÿ0.5893 0.2649
90 Ry 0.3388 ÿ1.0786 ÿ0.7453 ÿ0.5853 0.2519

100 Ry 0.3387 ÿ1.0734 ÿ0.7452 ÿ0.5852 0.2570

Table 5
Characteristics of selected covalent-bond CPs of TTF±2,5Cl2BQ for
various �rgrid and Ecutoff = 90 Ry.

Type �rgrid �(rCP) r2�(rCP) �1 �2 �3

C11±O1 0.125 0.4080 0.2268 ÿ1.0899 ÿ1.0180 2.3347
0.104 0.4079 0.3182 ÿ1.0401 ÿ0.9579 2.3162
0.085 0.4079 0.2913 ÿ1.0266 ÿ0.9879 2.3058

C6ÐS2 0.125 0.2095 ÿ0.4207 ÿ0.3353 ÿ0.2824 0.1970
0.104 0.2094 ÿ0.4243 ÿ0.3371 ÿ0.2833 0.1961
0.085 0.2095 ÿ0.4239 ÿ0.3369 ÿ0.2835 0.1965

C1ÐC2 0.125 0.3388 ÿ1.0770 ÿ0.7438 ÿ0.5841 0.2509
0.104 0.3388 ÿ1.0786 ÿ0.7453 ÿ0.5853 0.2519
0.085 0.3388 ÿ1.0804 ÿ0.7462 ÿ0.5862 0.2520

Figure 6
Octahedron with one Cl at its centre and six Na at its vertices. Iso-density
curves are represented in the plane of the Na� � �Cl nearest neighbours.
The six dark spheres correspond to the (3, ÿ1) CPs between Na and Cl,
the 12 grey spheres correspond to the (3,ÿ1) CPs between Cl and Cl, and
the lightest smallest spheres correspond to the (3, +1) CPs. The (3, +3)
CPs are not shown here.
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two nuclear attractors. The characteristics of these CPs are

given in Table 1 along with the variation of CP properties

versus grid spacing (�rgrid) and number of plane waves

(Ecutoff) for only one representative CP, all other CPs

presenting even smaller variations. These results show that a

grid spacing of about 0.15 a.u. and a plane-wave cutoff of

30 Ry are suf®cient to achieve accurate results for this ionic

compound.

4.2. Molecular compounds

Low densities at critical points are observed in the crystal of

TTF±2,5Cl2BQ in interaction regions. Two examples are

shown in Tables 2 and 3, corresponding to the ring CP of

2,5Cl2BQ and to the strongest hydrogen bond occurring in the

plane shown in Fig. 7. In both cases, the smallest Ecutoff (50 Ry)

and the largest grid spacing (0.125 a.u.) already give quite

good results. These properties converge even better for all

other low-density CPs. As for ionic bonding, even smaller

Ecutoff and large �rgrid can be used since the electron density is

particularly smooth close to the CPs. The situation is much

different for covalent bonds where �(rCP) is much higher and

the electron density varies more rapidly. All covalent-bond

CPs have been plotted in Fig. 5. Typical covalent bonds of

TTF±2,5Cl2BQ are summarized in Tables 4 and 5 for different

Ecutoff and �rgrid. For most bonds, the CP properties do not

vary too much, except for the C O bond where the low Ecutoff

gives a value of r2�(rCP) that is twice as large as the values at

higher Ecutoff. This is due the rapid change in the electron

density along the bond path. For this reason, the C O bond

properties are also the most sensitive to �rgrid (Table 5). This

makes the problem particularly dif®cult to treat. Evidently,

accurate CP characteristics of simple bonds are more readily

obtainable than those of double bonds.

Finally, we have checked in each case that CPs which are

equivalent by symmetry are equivalent at least within the

numbers of digits indicated in the different tables of this

section. All these results clearly show that CP properties can

easily be deduced from densities given on regular grids, the

choice of the grid step size depending on the nature of the

bonds of interest.

5. Atomic basins

The accuracy of integration from a grid density not only

depends on the integration method and on the way of deter-

mining the basin surfaces, but also on the accuracy of the

electron density data at the grid points, on the degree of

missing information due to grid spacing, and on the possible

bias introduced by the interpolation procedure. The following

residuals have been de®ned to estimate the accuracy of the

integration process: Ngrid is the number of electrons in the unit

cell obtained over all elementary volume units, either by

discrete summation or by using an analytical integral expres-

sion of the tricubic interpolation. Then �N = Ngrid ÿ Nreal is

the difference between the number of valence electrons

obtained by integration over the whole unit cell and its

expected real value. The quantities v
 and S
 respectively

refer to the volume and surface of the basin 
. The number of

electrons in an individual basin is denoted n
. �N =
P

n
 ÿ
Nreal is the residual after summation over all atomic basins.

The basin volume uncertainty is set equal to the product of the

tolerance dtol and an estimation of the atomic surface S
. The

total volume uncertainty is given by �V = dtol

P
S
 and the

Table 6
NaCl integration results versus �rgrid with Ecutoff = 120 Ry.

�rgrid

0.095 0.0885 0.08 0.063

�N 0.0362 0.0289 0.0198 0.0086
�N 0.0367 0.0285 0.0199 0.0090
�V 0.095 0.096 0.020 0.090
qNa 0.8282 0.8282 0.8188 0.8283
vNa 63.36 63.36 63.29 63.36
qCl ÿ0.8648 ÿ0.8572 ÿ0.8387 ÿ0.8373
vCl 236.18 236.18 236.17 236.17
CT 0.85 0.84 0.83 0.83
�CT 0.04 0.03 0.02 0.01

Table 7
TTF±2,5Cl2BQ integration results versus Ecutoff with �rgrid = 0.104 a.u.

Ecutoff (Ry)

50 70 90 100

�N ÿ0.006 ÿ0.005 ÿ0.006 ÿ0.006
�N 0.066 0.022 0.020 0.020
�V ÿ0.92 ÿ1.44 ÿ1.93 ÿ1.89
qTTF 0.455 0.453 0.452 0.453
q2,5Cl2BQ ÿ0.522 ÿ0.475 ÿ0.472 ÿ0.473
CT 0.49 0.46 0.46 0.46
�CT 0.07 0.02 0.02 0.02

Figure 7
Representation of atomic basins in the plane containing both the TTF and
the 2,5Cl2BQ molecules. The strongest hydrogen bond in the TTF±
2,5Cl2BQ crystal occurs between O1 and H3. The arrows indicate the
direction and magnitude of the gradient in the plane. An example of a
small unreachable volume due to multiple intersection of the atomic
surface with a ray originating from atom C5 can be seen in the top right of
the ®gure.



residual volume error by �V =
P

v
 ÿ Vcell. If the uncertainty

�V is found to be clearly less than the residual �V, the

question arises about the way the atomic surfaces are derived.

In this case, either there are several intersections of the basin

surface with one ray originating from the attractor, or the

parameters used to follow the gradient path have to be

modi®ed, or some attractors are missing in the input list.

Finally, the largest charge difference between symmetry-

equivalent atoms, the intra- or intermolecular charge transfer

(CT) and its estimated uncertainty (�CT) are the other criteria

which can be used as a measure of the accuracy of the inte-

gration process.

5.1. Grid spacing and ab initio calculation convergence

In the case of NaCl, ab initio calculations are not too

sensitive to the convergence criterion Ecutoff, so the grid-

spacing effect can clearly be evidenced. Well converged inte-

gration results using the Romberg procedure are given in

Table 6. One can see that the electron number residual �N
after integration and summation over all basins is very close to

�N, given as input. This residue monotonically decreases with

reducing grid spacing, whereas the volume residual �V is

almost constant. A reasonable estimation of interatomic

charge transfer can be derived from the valence density within

a precision of 0.01 electron for a grid spacing of about 0.06 a.u.

The prohibitive grid spacing required to obtain the charge

transfer with the same precision from the total density can be

estimated to 0.03 a.u., as illustrated in Fig. 8.

In the case of molecular crystals, which exhibit short bonds

with large and quickly varying electron density at their bond

critical points, such as C O, the ab initio calculations are

more sensitive to the convergence criterion Ecutoff de®ning the

plane-wave expansion basis set. This is found in the integra-

tion results, as illustrated in Table 7 for TTF±2,5Cl2BQ, where

the electron number residual �N after integration over all

atomic basins is slightly different from that after direct

summation over the unit cell �N. This may arise from the

larger number of atoms and from the less smooth shapes of the

atomic basins (Fig. 9) in comparison with the NaCl case.

Nevertheless, using Ecutoff above 50 Ry is enough to obtain the

intermolecular charge transfer within 0.02 electron precision,

which is the goal that originally motivated this work.

5.2. Romberg versus fixed spherical grid integration

Different sets of parameters for the Romberg integration

procedure, including adequate parameters for the basin-limits

search, are given in Table 8. The indicated CPU time corre-

sponds to a PC with an 800 MHz processor and 512 MB RAM,

and does no include the time spent reading the density ®les or

performing the direct unit-cell summation. The preliminary
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Figure 8
NaCl atomic charges from the total electron density versus grid spacing.
Solid lines are guides to the eye, converging at the 0.83 charge transfer
estimated from valence-density considerations.

Figure 9
Three-dimensional representation of some atomic basins in the TTF±
2,5Cl2BQ charge-transfer complex.

Table 8
Sets of tested parameters and results for Romberg integration on the
charge-transfer crystal TTF±2,5Cl2BQ.

The cell volume is Vcell = 2493.062 a.u. Direct integration of valence electron
density over the whole unit cell gives an input error �N = ÿ0.0056 electron.
�rgrid = 0.104 a.u.; Ecutoff = 90 Ry.

Basin search
dro = dtol 5 � 10ÿ2 5 � 10ÿ3 10ÿ3 5 � 10ÿ4 5 � 10ÿ4 10ÿ4

A 5 50 250 500 500 2500
B 0.5 0.5 0.5 1 1 1
Romberg
kmin 4 6 6 6 6 6
"r 10ÿ3 10ÿ3 5 � 10ÿ4 10ÿ4 2 � 10ÿ7 10ÿ7

"' 10ÿ2 10ÿ2 5 � 10ÿ3 10ÿ3 8 � 10ÿ5 10ÿ5

"� 5 � 10ÿ2 5 � 10ÿ2 10ÿ2 10ÿ3 5 � 10ÿ5 10ÿ4

CPU time 23 s 104 s 222 s 19 min 3.5 h 43 h
�N ÿ0.413 0.080 0.056 0.019 0.014 0.006
�V 18.98 ÿ1.88 ÿ0.98 ÿ1.56 ÿ0.77 ÿ1.11
�V 120 12 2.4
1.25 1.2 0.2
qTTF 0.862 0.424 0.434 0.448 0.454 0.455
q2,5Cl2BQ ÿ0.448 ÿ0.503 ÿ0.490 ÿ0.467 ÿ0.468 ÿ0.461
CT 0.65 0.46 0.46 0.46 0.461 0.458
�CT 0.40 0.08 0.06 0.02 0.015 0.006
C1

n�,' 89 1089 1089 1441 8639 38081
�nr 15 33 33 56 212 258
q ÿ0.311 ÿ0.285 ÿ0.285 ÿ0.283 ÿ0.284 ÿ0.284
v 69.11 65.96 65.96 65.50 65.56 65.56
S1

n�,' 81 1089 1089 1089 2591 8513
�nr 23 33 40 61 292 373
q 0.249 0.252 0.255 0.258 0.258 0.258
v 183.22 181.86 181.84 181.95 182.21 182.18
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estimation of basin envelopes is performed with n� = 18 and n'
= 36, using a tolerance dtol = 0.05 a.u. This operation takes

about 0.8 s per basin. The integration convergence criteria

have been applied only to the volume and the valence density,

since the grid spacing used may not correctly restore density

cusps near atomic nuclei. Obtaining the intermolecular charge

transfer, in the case of TTF±2,5Cl2BQ, within a precision of

about one hundredth of an electron takes about 1 min per

basin. The weaker criteria, although leading to an unsa-

tisfactory residual from the point of view of intermolecular

charge transfer, nevertheless give a good indication of atomic

charges within less than 1 s per basin. The residual volume

error remains of the order of one cubic a.u. out of nearly

2500 a.u. for the unit cell, and only for the more severe inte-

gration convergence criteria may the problem of very precise

determination of basin boundaries appear (Fig. 7). The

greatest discrepancy between charges obtained for equivalent

atoms ranges from 10ÿ4 for the set of parameters leading to

the best integration, to 10ÿ3 for the set giving the shorter CPU

times. For comparison, integration has been performed using a

®xed spherical grid for all basins. The corresponding para-

meters and results are listed in Table 9. The total number of

angular loops is denoted n�,'. Below n�,'nr ' 104 integration

points, no realistic atomic charges can be obtained. Indeed, the

very short time that can be used with Romberg integration

comes from its internal k-order polynomial extrapolation,

which gives an error estimate of the order of O(1/N2k) instead

of O(1/N2) for the simple discrete summation with the same

number N of integration points.

In the case of ®xed spherical grid integration, compared

with Romberg integration, the volume uncertainty is in most

of the cases greater than the residual volume error, thus giving

no information about missing or overlapping volumes. The

discrepancy between charges of equivalent atoms is also about

an order of magnitude higher. The point that makes the

Romberg procedure more favourable is that the number of

integration points is automatically adapted to each basin to

the desired level of convergence, as illustrated for atoms C1

and S1 in Table 8, whereas taking a ®xed mean spherical grid

leads to missing or biased information for some atoms and

adds unnecessary points for other ones. The number �nr of

radial loops indicated in Table 8 is the average over all angular

loops for each basin.

6. Conclusion

We have shown that topological properties can be derived

from electron densities given on three-dimensional grids by

using tricubic interpolation to extract the density, its gradient

and the Hessian matrix at any given position. Except for very

short covalent bonds, such as C O, critical-point properties

can be obtained with a grid spacing of about 0.1 a.u. The same

grid spacing can also be used to obtain atomic charges with

highly accurate values by integration over atomic basins using

the valence electron density. The integration is performed with

a spherical coordinate system centred on the attractors and

uses the robust Romberg algorithm, which allows the number

of integration points to be automatically adapted for each

basin and offers the choice between saving computing time or

giving preference to accuracy.
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