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Structural transitions in crystalline foams
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PACS. 82.70Rr – Aerosols and foams.
PACS. 68.90+g – Other topics in structure, and nonelectronic properties of surfaces and inter-

faces; thin films and whiskers.
PACS. 61.72−y – Defects and impurities in crystals; microstructure.

Abstract. – In this letter, the structural stability of foam is investigated experimentally.
We use crystalline foams (equi-sized gas bubbles confined in a cylindrical glass tube) under
conditions of a steady-state drainage where soap solution is added onto the top of the foam at
a constant rate. By varying this flow rate, we observe: 1) Reproducible structural transitions
that are induced when drainage exceeds a critical liquid flow rate. The transition leads to a
new ordered foam stable under the flow. A structural diagram is defined, showing the boundary
between the two structures for the whole range of existence of the initial structure. 2) A
deviation from the classical Poiseuille behavior of the draining liquid, exhibited at low flow
rates, is observed. 3) We propose a simple model for the flow into the foam, explaining
both the deviation from the Poiseuille behavior and the stability boundary shown in the
structural diagram.

Introduction. – Pouring a pint of beer is one of the simplest experiments that can be
performed to examine the fascinating physics of foam. It is observed that the height of the
foam reduces with time, due to coarsening and coalescence of the bubbles [1], [2]. Also the
foam is wetter at the bottom than at the top which is due to a phenomenon called the free
drainage: The liquid which is contained in the foam flows gravity-driven from the top to the
bottom of the foam until it reaches an equilibrium. This phenomenon has been the subject of
various studies [3], [4] and was mainly treated phenomenologically.

Recently the drainage at constant flow as studied by Weaire et al. [5] has led to and
confirmed analytical theories [6], [7]. In those experiments an amorphous foam is formed
inside a cylindrical tube and wetted from the top with a soap solution at a given flow rate.
It has been demonstrated that at low flow rate, the flow is meanly controlled by the Plateau
borders, channels of liquid at the intersection of three soap films, and thus that the flow is
essentially Poiseuille like.

What happens at intermediate and high flow rates? Has the real structure an influence
on the drainage or is the Plateau border approximation sufficient to understand drainage?
What kind of structural reorganization occurs when a foam is increasingly wetted until the
complete loss of rigidity? To answer these questions, we found of great interest to use crystalline
foams [8], [9]. They allow to link a direct local observation of the structure and its changes with
flow measurements. Also the crystalline aspect amplifies the physical effects of the drainage.

In this letter, we focus our attention on the reorganizations induced by the flow and the
departure from the Poiseuille flow regime at higher flow rates. In order to do so, we create
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ordered structures inside a cylindrical tube and examine their evolution with the flow. We
show that: 1) Above a critical flow rate, structural transitions are induced by the flow. The
transition leads to a new ordered structure. The mechanism of the transition is explained
by the creation and diffusion of a single defect. 2) A structural phase diagram can be built,
showing the boundary between the two observed structures. 3) The liquid contained inside the
foam depends on the flow rate and exhibits a departure from the standard Poiseuille regime
known at low flow rates. A simple model is proposed to explain both the phase boundary and
the departure from the Poiseuille regime in the flow curves.

Experimental facts. – During the course of one experiment, ordered foams are created
by using the experimental set-up first described by Weaire et al. [5]: Equi-sized air bubbles
made from a soap solution are introduced into a cylindrical transparent glass tube. The
packing of these identical objects into a geometrically constrained space leads to a crystalline
arrangement. It has been shown [8], [9] that in a range of bubble’s radii (rb) keeping the
cylinder’s radius (R) constant, one is able to produce topologically equivalent structures.
Each structure is labelled by 3 integers k, l, m (for more details see [10], [9]) as usually done
in crystallography and by a dimensionless number λ0 = R/rb.

In practice, bubbles are created by blowing air through a thin nozzle. By controlling the air
flow with a manometer, we are able to produce bubbles with a constant radius varying from
0.1 to 10 mm. The initial height (h0) of the foam is chosen to be 25 cm over the level of the
soap solution. This height corresponds to the height of the dry foam when there is no flow.
In this state, the foam is essentially all gas. The structure is then wetted by its top using the
same soap solution. The rate of drainage as controlled by a precise tunable pump ranges from
0 g/min to 65 g/min with a 0.2 g/min accuracy.

By varying the flow rate Q, one observes first a dilation of the structure which extends
below the level of the soap solution: The length of the immersed part (∆h) of the foam is
measured as a function of Q. The top of the foam shows no displacement under flow. Using
Archimedes law, the volume fraction of liquid φl = ∆h/(∆h+ h0) is calculated as a function
of Q, and curves φl(Q) are obtained. It has been shown [11] that this way of measuring φl(Q)
is sufficiently accurate and direct to calculate the volume fraction of liquid.

Above a critical flow rate, structural transitions are observed. The initially ordered structure
is transformed into another ordered structure.

Structural transitions. – We have systematically investigated the structural transitions
induced by forced drainage on the structure shown in fig. 1. This is a flat symmetric structure
labelled 4, 2, 2 known [8] to exist in a dry state in the range 1.54 < λ0 < 1.98. This
arrangement is a packing of truncated minimal Kelvin tetrakaidecahedra with a hexagonal
pattern at the surface of the tube and square faces in the middle of the tube. Once a 4, 2, 2
structure is formed inside the tube, we wet it from its top and gradually increase the flow rate,
while waiting until the structure is stabilized. Once the structure is in equilibrium, the same
procedure is repeated. Above a critical flow rate, a structural transition is observed: The 4,
2, 2 structure is transformed into a 3, 2, 1 one (see fig. 1).

In the whole range of existence of the dry 4, 2, 2 structure the same kind of transition is
observed. Moreover the critical flow rate (Qc) is found to be a function of the dimensionless
parameter λ0. We shall present later a complete study of this dependence in due course.

The mechanism of such a transition is a sequence of topological transformations made
possible by the increase of Q. Figure 2 shows a sketch of the mechanism responsible for the
transition. The first step is a loss of one edge of the inner square face (T1 process) followed
by the disappearance of a triangular face (T2 process). The first local rearrangement (T1 and
T2) is always observed at the top of the tube. This is due to the small variation in the flow



p. boltenhagen et al.: structural transitions in crystalline foams 573

Fig. 1 Fig. 2

Fig. 1. – Photographs of a 4, 2, 2 (left) and a 3, 2, 1 structure (right). Thick white lines show the
structure at the surface of the tube made of hexagons, then thin lines show the internal structure
(Plateau borders) of one bubble. The 4, 2, 2 structure is a packing of truncated Kelvin polyhedra.
The diameter of the tube is about 1 cm. By changing the rate of drainage, the structural transition
4, 2, 2 - 3, 2, 1 is observed.

Fig. 2. – Sketch of the topological transformation occurring during the structural transition. The first
step is the loss of one edge of the internal square face (T1 process), followed by the disappearance of
the triangular face (T2 process). This sequence of local switches moves from the top of the structure
to the bottom. At the end of the process the 4, 2, 2 structure is changed into the 3, 2, 1 one.

rate that makes the first switch possible. The destabilization occurs first at the top of the tube
and initiates the transition from the top to the bottom of the tube. The succession of these
local rearrangements defines a boundary between the 3, 2, 1 and the 4, 2, 2 structure which
moves from the top of the tube to its bottom.

At the end of the process, all the 4, 2, 2 structure is transformed into a 3, 2, 1 structure
stable under drainage. When the flow rate is further stopped before the 3, 2, 1 structure
occupies the entire tube, we have observed that the 3, 2, 1 structure is no longer stable and
transforms back to the 4, 2, 2 structure, but no systematic study has been done. This is the
first time that such reproducible transitions are observed, explained and quantified. We have
not observed stable coexistence of both structures under drainage. When the liquid fraction
is increased further, we observe a transition from the 3, 2, 1 structure to the 3, 3, 0 and
for higher liquid fraction, we observe the rigidity loss of the structure (long-range motions of
bubbles are visible).

As already said, the driving parameter of this transition is the flow rate, Q. When the
liquid drains at low flow rate corresponding to low liquid fraction, Verbist et al. [12] have
shown that the liquid flow is mainly located in the Plateau borders and thus we can assume
very few changes in the morphology of the foam. At higher flow, Plateau borders become
thicker, the polyhedral cells more rounded and thus the fourfold junctions larger and closer to
each other. At even higher flow rate, geometrical changes are expected when two junctions are
close enough to allow the first local topological transformation: This will define our critical
flow rate. We have systematically investigated the dependence on Qc with λ0. This has been
done by creating dry 4, 2, 2 foams in the whole range of existence of this family of structures.
Results are represented on the plot (λ0, Qc) (see fig. 3). The curve defines the boundary of
stability between the 4, 2, 2 and the 3, 2, 1 structures: Below the curve, each 4, 2, 2 structure
is stable under drainage.
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Fig. 3 Fig. 4

Fig. 3. – Structure diagram in the space (λ0, Qc). The points display the experimental boundary
between the 4, 2, 2 structure and the 3, 2, 1 structure. The line is the theoretical boundary obtained
by fitting eq. (5).

Fig. 4. – Liquid volume fraction φl(Q) for the 4, 2, 2, (λ0 = 1.72) structure as a function of the rate
of the drainage Q. The two lines show the limiting case for very low and high flow rates derived from
eq. (4). The big arrow shows the position of the structural transition 4, 2, 2 - 3, 2, 1, the small one
the location of the 3, 2, 1 - 3, 3, 0 transition.

Flow behavior. – It is well established experimentally [5], [13] and theoretically [6], [12], [7],
that at low flow rate, the liquid fraction φl(Q) behaves by the scaling law φl(Q) ∝ Q1/2. This
result can be derived as follows: At low flow rate the morphology of the foam is very little
perturbed by the liquid. Hence in a good approximation, a simple way to describe the foam is
to model the foam structure only by only taking into account the Plateau borders, where the
liquid is assumed to flow. The simplest model is N -independent vertical parallel elastic pipes
in which the flow is Poiseuille-like (i.e. Q ∝ r4, where r is the radius of the pipes). It follows
that the liquid fraction reads

φl ∝ r
2 ∝ Q1/2 . (1)

We present in fig. 4 a φl(Q) curve obtained for one typical 4, 2, 2 structure. We have
plotted the liquid fraction as obtained by the method described in the experimental section
as a function of the flow rate. We observe that the Poiseuille regime is only valid at low Q: A
departure from Q1/2 is observed at high flow rates. The model of the liquid flowing through
the pipes only is then found to be too restrictive to describe the high flow rate behavior.
Indeed the liquid can also flow along the faces of the polyhedral cells as well as along the tube
wall. However, using simple scaling arguments, those effects would decrease the exponent to
1/4 at high flow rate instead of increasing it. The other alternative for the flowing liquid is
to be also located into the fourfold junctions. The volume of the junction increases with the
liquid content and thus can be a perturbation of the Poiseuille behavior.

A simple model for the flow and the transitions. – Here, we present a very simple way
to model the foam, taking into account the fourfold junctions: Following the assumption of
Weaire et al. [5], Plateau borders are still modelled as N vertical cylindrical pipes with a
radius r. The junctions are idealized as spheres with a radius proportional to that of the
pipes. These spheres are distributed along the pipes with a constant distance.
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This description gives a periodic foam with a distance between the centers of two adjacent
spheres equal to the typical Plateau border length separating two fourfold junctions in a dry
foam. The spheres and the pipes behave differently under the liquid flow: In the pipes, the
flow is still Poiseuille-like, but the volume of liquid contained in the junctions scales as Q3/4

(a junction is modelled by a sphere). Taking into account the contribution of both pipes and
junctions, we find that the liquid fraction reads

φl(Q) =
Vpipes + Vjunctions

Vtotal
= αr2 + βr3 = aQ1/2 + bQ3/4 . (2)

In fig. 4, Q1/2 and Q3/4 are plotted in order to show the asymptotic behavior for low and
high liquid flow rates before the transition. Our measurements are in the cross-over of the two
different regimes and are limited at low flow rates by the accuracy of the pump and at high
flow rate by the transition occurring above Qc. Equation (2) cannot be applied as a fit in
fig. 4, since the coefficients a and b are dependent on Q in a full description of the cross-over
between the low and high flow rates.

For the sake of simplicity and in order to understand the structural phase diagram (fig. 3),
we set before the transition that

φl(Q→ Qtransition) ∝ Q3/4 . (3)

This simple model of a foam and its drainage can be incorporated into a phenomenological
model that explains the structural boundary observed and presented in fig. 1. Let us imagine
that we create a dry 4, 2, 2 structure inside a cylindrical tube. If we gradually decrease
the diameter of the tube we will observe first an extension of the foam and some structural
transitions at a typical cylinder’s radius. This is due to the fact that in this process the value
of λ0 = R/rb decreases and reaches the value λc = 1.54 below which no stable 4, 2, 2 structure
exists as was found by Pittet et al. [8].

A very close analogy can be done with the drainage experiments that we have performed.
When the liquid drains into the structure, the foam is observed to expand below the level of
the soap solution and furthermore to transit to another structure. The action of the drainage
can be seen as a squeezing of the structure due to the liquid content. We model this effect by
making the following assumption: The volume of the liquid contained in the foam decreases
the available space of the gas divided in bubbles. We model this effect as a reduction of the
tube diameter by putting all the liquid of the foam in a hollow tube surrounding a dry 4,
2, 2 structure. The outer diameter of this hollow tube is equal to the diameter of the tube
D. The inner one is the diameter available for the structure and is a function of φl(Q) (the
inside volume of the hollow tube is identified with the liquid volume contained in the foam).
Increasing φl(Q) leads to a reduction of the available diameter Dav and thus extends the foam
vertically. The relation between φl(Q), D and Dav is readily obtained from this simple model
to give

φl(Q) =
π(D2 −D2

av)

πD2
= 1− λ2

av , (4)

where λav is given by

λav =
Dav

D
= λ0[(1− φl(Q)]1/2 . (5)

One can see from eq. (5) that increasing Q will decrease λav. This will define the critical
flow rate Qc which will be a function of λ0: Qc is obtained when λav = 1.54. Then, eq. (5)
defines the boundary between the 4, 2, 2 structure and the 3, 2, 1. Equation (5) can be
rewritten in terms of the critical flow rate (Qc) as

Qc =

[
1

b
(1− (1.54/λ0)2)

]4/3

. (6)
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The line in fig. 3 is obtained by fitting the experimental points with eq. (6) where b is a free
parameter. The general trend of the boundary is well described, nevertheless, the small bending
of the experimental points is certainly due to some effects that are difficult to define in the
model. Eespecially one would rather take a more accurate description of the fourfold junctions.

Conclusion. – In conclusion, we have demonstrated that reproducible structural transitions
are induced in ordered foams by a steady-state drainage. The sequence 4, 2, 2 - 3, 2, 1 is
observed and the mechanism of the transition is explained by the increase of the size of the
fourfold junction. A structural diagram is built and the stability boundary between the two
structures is explained in terms of the reduction of the available diameter of the tube. The
next step of in such studies will be the elaboration of a global model to relate these transitions
and their dynamical aspects [14], [15].

As a follow-up of this work, it might seem very interesting to study the next transition
occurring in this system, namely the transition 3, 2, 1 - 3, 3, 0, and to build a more complete
structural diagram. The mechanism of the complete set of transitions and the stability
boundary should give important information about the flow at high rates. Moreover, the loss
of rigidity observed in the course of our experiments, with its long-range motion of bubbles
is also of interest [14], [15]. We would like to add that the transition between two ordered
structures strongly suggests that it may be possible to induce disorder-order transition driven
by the drainage. Particularly, if two sizes of bubbles are introduced into the cylindrical tube,
it is possible to make a separation of the two families of bubbles. By controlling the flow, the
formation of a more complicated ordered structure is possible.
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