

Traitement Numérique du Signal (Partie 2)

Support de cours

Olivier SENTIEYS sentieys@enssat.fr

http://r2d2.enssat.fr/enseignements/Tns/Tns.php

Plan du cours Partie II

IV. Analyse des filtres numériques

- 1. Spécification, classification, représentation
- 2. Analyse fréquentielle
- 3. Structures des filtres RII et RIF

V. Transformées en TNS

- 1. TFD, convolution linéaire
- 2. TFR : Transformée de Fourier Rapide

VI. Quantification - évaluation de la précision

- 1. Quantification
- 2. Effets de la quantification en TNS

Plan du cours Partie II (suite)

VII. Synthèse des filtres numériques RII

- 1. Invariance Impulsionnelle
- 2. Transformation Bilinéaire

VIII. Synthèse des filtres numériques RIF

- 1. Introduction
- 2. Filtres à Phase Linéaire
- 3. Méthode du Fenêtrage
- 4. Échantillonnage en Fréquence

Plan du cours (fin)

IX. Analyse spectrale

- 1. Effets de la troncature
- 2. Caractéristiques des fenêtres
- 3. Influence sur l'analyse

X. Systèmes multi-cadences

- 1. Définition
- 2. Décimation
- 3. Interpolation

4

IV. Analyse des filtres numériques

- 1. Spécification, classification, représentation
- 2. Analyse fréquentielle
- 3. Structures des filtres RII et RIF

1 Introduction

Définition

 Système Linéaire Discret (SLD) modifiant la représentation temporelle et fréquentielle de signaux

1. Introduction

Un filtre numérique peut être représenté par :

- une fonction de transfert en z : H(z) = Y(z) / X(z)

IV Filtrage Numérique1 Introduction

$$y(nT) = \sum_{k=0}^{\infty} x(kT)h[(n-k)T] \xrightarrow{x(n)} h(n)$$

$$y(n) = \sum_{k=0}^{\infty} x(k)h(n-k)$$

Notes :

IV Filtrage Numérique1 Introduction

ENSSAT

si $x(n) = \delta(n)$ alors y(n) = h(n)

- une équation aux différences (récursive ou non récursive)

$$y(n) = \sum_{i=0}^{M} b_i \cdot x(n-i) - \sum_{i=1}^{N} a_i \cdot y(n-i)$$

Spécification d'un filtre numérique 2

Spécification d'un filtre numérique 2.

- Gabarit fréquentiel

Passe-Bas (ou Passe-Haut) défini par sa sélectivité, son ondulation en BP et son atténuation en BA

f

a) Gabarit fréquentiel linéaire

b) Gabarit fréquentiel en dB

Notes :

Passe-Bande (ou Réjecteur de Bande) défini par sa fréquence centrale, sa sélectivité, son ondulation en BP et son atténuation

Notes :

3 Classification des filtres numériques

3 Classification des filtres numériques

Un filtre numérique peut être classé selon :

- la durée de sa réponse impulsionnelle

finie : les filtres **RIF** ont leur réponse impulsionnelle à support fini i.e. h(n) = 0 pour n < 0 et n > Ninfinie : les filtres **RII** ont leur réponse impulsionnelle à support infini i.e. $h(n) \neq 0 \forall n$

- le type de représentation temporelle

récursifs : la sortie y(n) dépend de l'entrée courante, des entrées précédentes et des sorties précédentes non récursifs : la sortie y(n) ne dépend que de l'entrée courante et des entrées précédentes

3.1 Filtres numériques non récursifs

3.1 Filtres numériques non récursifs (ou transversaux)

$$y(n) = \sum_{i=0}^{M} b_i x(n-i)$$

$$Y(z) = H(z) X(z)$$

$$\Rightarrow H(z) = \sum_{i=0}^{M} b_i z^{-i} = \sum_{n=0}^{M} h(n) z^{-n}$$

$$\Rightarrow h(n) = \sum_{i=0}^{M} b_i \delta(n-i)$$

Les coefficients b_n du filtre sont les valeurs de la RI (h(n) = b_n). Ceci montre qu'un filtre non récursif est à **Réponse Impulsionnelle Finie (RIF)**.

M est appelée la longueur du filtre.

Notes :

3.1 Filtres numériques non récursifs

• Principales propriétés

- Les RIF sont toujours stables (pas de pôles)
- Les RIF peuvent avoir une caractéristique de phase linéaire
 - Retard constant en fréquence (temps de propagation de groupe)
 - Pas de distorsion harmonique
 - Symétrie de la RI
- A sélectivité équivalente, ils sont toujours plus coûteux (en temps de calcul) que leur équivalent RII

3.2 Filtres numériques récursifs

3.2 Filtres numériques récursifs

$$y(n) = \sum_{i=0}^{M} b_i x(n-i) - \sum_{i=1}^{N} a_i y(n-i)$$
$$\Rightarrow H(z) = \frac{\sum_{i=0}^{M} b_i z^{-i}}{1 + \sum_{i=1}^{N} a_i z^{-i}} = \frac{N(z)}{D(z)}$$

En pratique on a N=M, N est appelée l'ordre du filtre.

IV Filtrage Numérique 3.2 Filtres numériques récursifs

 Si N(z) n'est pas divisible par D(z) (cas général), on a un nombre infini de termes dans la division polynomiale.

$$H(z) = \sum_{i=0}^{\infty} c_i \, z^{-i} = \sum_{n=0}^{\infty} h(n) \, z^{-n}$$

Les coefficients c_n sont les valeurs de la RI (h(n) = c_n). Ceci montre qu'un filtre récursif est, dans le cas général, à **Réponse Impulsionnelle Infinie (RII)**.

- Si N(z) est divisible par D(z) (cas particulier), on a un nombre fini de termes dans la division polynomiale. Dans ce cas, le filtre est RIF.
- Exemple : filtre moyenneur

16

3.2 Filtres numériques récursifs

- Si N(z)=1 : filtre tout-pôle
- Si D(z)=1 : filtre RIF

$$H(z) = \frac{\sum_{i=0}^{M} b_i z^{-i}}{1 + \sum_{i=1}^{N} a_i z^{-i}} = \frac{N(z)}{D(z)}$$

- Les RII peuvent être instables : structure à base de pôles et de zéros

$$H(z) = b_0 z^{N-M} \frac{\prod_{i=1}^{M} (z - z_i)}{\prod_{i=1}^{N} (z - p_i)}$$

- Bande de transition faible
- Synthèse par réutilisation des méthodes analogiques
- Instabilité numérique due au rebouclage : forme cascade plus stable

Analyse fréquentielle

4. Analyse fréquentielle

L'analyse fréquentielle est l'étude du module, de la phase et du temps de propagation de groupe du filtre H.

$$H(e^{j\Omega}) = \frac{H(z)}{z} = e^{j\Omega}$$

 Ω est la pulsation relative : $\Omega = \omega T = 2\pi fT$

La fonction de transfert en fréquence $H(e^{j\Omega})$ est périodique de période

Notes :

4

4 Analyse fréquentielle

Conclusion

Trois domaines de représentation

- Temporel h(n), équation aux différences
- Fonction de transfert en z, diagramme des pôles/zéros
- Fréquentiel $H(\Omega)$, module, phase

Notes :

4 Analyse fréquentielle

Notes :

4 Analyse fréquentielle

Notes :

IV Filtrage Numérique4 Analyse fréquentielle

Notes :

5 Structures de réalisation

5. Structures de réalisation

– Filtres RIF

a) Structure directe

b) Structure transposée

a) Structure directe

Notes :

IV Filtrage Numérique 5 Structures de réalisation

Notes :

IV Filtrage Numérique 5 Structures de réalisation

b) Structure canonique transposée

- Forme cascade de filtres du second ordre

$$H(z) = \prod_{i=1}^{\frac{N+1}{2}} Hi(z) = \prod_{i=1}^{\frac{N+1}{2}} \frac{b_{i,0} + b_{i,1}z^{-1} + b_{i,2}z^{-2}}{1 + a_{i,1}z^{-1} + a_{i,2}z^{-2}}$$

$$\underbrace{X(z)}_{H_1(z)} \xrightarrow{H_2(z)} \cdots \xrightarrow{H_K(z)} \underbrace{H_K(z)}_{H_K(z)} \underbrace{Y(z)}_{H_K(z)}$$

Notes :

V. Transformées en TNS

- 1. TFD, convolution linéaire
- 2. TFR : Transformée de Fourier Rapide

Notes :

V Transformées en TNS

1 **Rappels**

• TFSD : Transformée de Fourier d'un Signal

 $X(e^{j\omega T}) = \sum_{n=-\infty}^{\infty} x(nT) e^{-jn\omega T}$ $\begin{cases}
X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x(nT) e^{-jn\Omega} \\
x(nT) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\Omega}) e^{jn\Omega} d\Omega
\end{cases}$ Discret

• Propriétés

- Linéarité
- Décalage en temps/fréquence
- Produit de convolution en temps/fréquence
- Théorème de Parseval
- Transformées de fonctions réelles

28

V Transformées en TNS

2 Transformée de Fourier Discrète

• TFD

En pratique, on prend seulement un nombre fini d'échantillons de x(nT). On ne peut donc obtenir qu'un nombre fini d'échantillons fréquentiels de X(e^{jΩ}).

V Transformées en TNS

2 Transformée de Fourier Discrète

Propriétés

- Linéarité
- Décalage en temps/fréquence
- Produit de convolution en temps/fréquence
 - Convolution discrète
 - Convolution circulaire (ou périodique)
- Théorème de Parseval
- Transformées de fonctions réelles

• Relation entre TFSD et TFD

- Signaux de durée finie ou périodique
- Cas général ?

V Transformées en TNS 2 Transformée de Fourier Discrète

• Définition $\begin{cases}
X(k) = \sum_{n=0}^{N-1} x(n) e^{-2j\pi \frac{kn}{N}} & k = 0..N-1 \\
x(k) \Leftrightarrow x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{+2j\pi \frac{kn}{N}} & n = 0..N-1
\end{cases}$

x(n) et X(k) sont, dans le cas général, des nombres complexes.

• Forme Matricielle

31

V Transformées en TNS 2 Transformée de Fourier Discrète

Propriétés des W_Nⁿ = e $-2j\pi \frac{n}{N}$

$$\begin{split} & W_N^{k(N-n)} = (W_N^{kn})^* & (3.1) \\ & W_N^{kn} = W_N^{k(n+N)} = W_N^{(k+N)n} & (3.2) & \text{Périodicité} \\ & W_N^{n+N/2} = -W_N^n & (3.3) & \text{Symétrie} \\ & W_N^{2kn} = W_{N/2}^{kn} & (3.4) \end{split}$$

Complexité de calcul

La TFD revient à calculer un produit matrice-vecteur où chaque élément est de type complexe. La complexité de calcul de la TFD est de N² multiplications, et de N(N-1) additions sur des nombres complexes. Ceci revient à une complexité de 4N² multiplications réelles et N(4N-2) additions réelles. Cet algorithme se comporte donc en O(N²), mais ne possède pas de problèmes d'adressage car les x(n) et les Wi sont rangés dans l'ordre en mémoire.

 En 1965, Cooley et Tuckey [COOLEY 65] ont publié un algorithme applicable quand N est le produit de 2 ou plusieurs entiers dont la complexité est en O(Nlog₂N)

3 Transformée de Fourier Rapide

• TFR (FFT) partagée dans le temps (DIT)

 $X(k + \frac{N}{2}) = G(k) - W_N^k \cdot H(k)$

33

••• TFR DIT •••

Complexité d'un papillon : 1 multiplication complexe, 2 additions/soustractions complexes

34

 $\frac{N}{2}\log_2\!N \text{ multiplications de nombres complexes,} \\ N\log_2\!N \text{ additions/soustractions de nombres complexes, ou,}$

35

2 N log₂N multiplications de nombre réels, 3 N log₂N additions/soustractions de nombre réels.

FFT DIT RADIX-2 en place sur 16 points

• TFR (FFT) partagée dans les fréquences (DIF)

Transformée de Fourier Rapide

38

FFT DIT RADIX-2 en place sur 16 points
Transformée de Fourier Rapide

Transformée de Fourier Rapide

40

FFT DIF RADIX-4 en place sur 16 points

1 Définitions

Corrélation

– Soit x_1 et x_2 , 2 signaux de durée finie [0 ... N-1], la corrélation est :

$$y(n) = \sum_{i=0}^{N-1} x_1(i) x_2(i+n)$$

• Convolution linéaire

Soit x et h, 2 signaux de durée finie respectivement N et M, la convolution est définie par :

$$y(n) = (x * h)(n)$$

$$y(n) = \sum_{i=0}^{\infty} x(i) h(n-i) = \sum_{i=0}^{\infty} h(i) x(n-i)$$

Le signal y(n) est de durée [0 ... N+M-2]

41

Notes :

1 Définitions

• Propriétés

- Y(z) = H(z) X(z) (TZ)
- $Y(k) \neq H(k) X(k) (TFD)$

• Vue matricielle de la convolution

$$\begin{bmatrix} y(0) \\ y(1) \\ \vdots \\ y(N+M-2) \end{bmatrix} = \begin{bmatrix} h(0) & 0 & \vdots & 0 \\ h(0) & 0 & \vdots & 0 \\ h(M-1) & \vdots & \vdots & 0 \\ 0 & \vdots & h(0) \\ 0 & 0 & \vdots & h(M-1) \end{bmatrix} \times \begin{bmatrix} x(0) \\ y(1) \\ \vdots \\ x(N-1) \end{bmatrix}$$

→ O(N²)

Notes :

43

2 Convolution circulaire

• Convolution circulaire

 Soit x et h, 2 signaux périodiques de période N, la convolution circulaire est définie par :

$$y(n) = \sum_{i=0}^{N-1} x(i) h(n-i)$$

$$y(n) = x(n) \circledast h(n)$$

Le signal y(n) est de période N h(n-i) est évalué modulo N

TFD: Y(k) = H(k).X(k)

2 Convolution circulaire

• Convolution circulaire

 On passe de la convolution circulaire à la convolution linéaire en remplissant de zéros chaque séquence jusqu'à M+N-1

3 Convolution rapide

• Convolution rapide

- Passer dans le domaine de Fourier par une TFD : la convolution se transforme en produit
- Utiliser la FFT sur P points pour accélérer les calculs

46

3 Convolution rapide

- Problème : h(n) et x(n) doivent être de durée finie
- Application : FIR rapide
 - h(n) de durée M : H(k) peut être calculé une fois pour toute
 - x(n) de durée infinie

Convolution sectionnée

- x(n), de durée infinie, est découpé en blocs x_k de taille M

$$x_{k}(n) = \begin{cases} x(n) & pour \ kM \le n < (k+1)M \\ O & ailleurs \end{cases}$$
$$y(n) = h(n) * \sum_{k=-\infty}^{\infty} x_{k}(n)$$
$$y(n) = \sum_{k=-\infty}^{\infty} y_{k}(n)$$

47

3 Convolution rapide

• Méthode OLA (Overlap Add)

- Blocs x_k de taille M
- Addition des recouvrements entre les y_k

• Méthode OLS (Overlap Save)

- Blocs x_k de taille N+M avec recouvrement
- Troncature des y_k sur M points, addition entre les y_k

Introduction : pourquoi la quantification ?

1. Formats de codage (rappels) Virgule fixe, complément-à-2

2. Modèle de quantification

Caractéristiques de quantification Modèle de bruit, caractéristiques de dépassement

3. Bruit de conversion

Filtrage d'un bruit

4. Limitation des chemins de données

5. Effets en TNS

Filtrage RIF, RII, cycles limites, quantification des coefficients

• Rappel codage en virgule fixe

$$x = -2^m S + \sum_{i=-n}^{m-1} b_i 2^i$$

- *m* : distance (en nombre de bits) entre la position du bit le plus significatif p_{MSB} et la position de la virgule p_V
- *n* : distance entre la position de la virgule p_V et la position du bit le moins significatif p_{LSB}

Modèle bruit additif

- Définition : approximation de chaque valeur d'un signal x(n) par un multiple entier du pas de quantification élémentaire q.
- e(n) est l'erreur de quantification

Sources de bruit

- Bruit de conversion A/N
- Limitation des chemins de données de l'architecture cible Élimination de bits lors d'un changement de format

VI Quantification2 Caractéristiques de quantification

(a) Arrondi

 $Q(x) = k.q \text{ si } (k-0.5).q \le x < (k+0.5).q$

(b) Troncature

Notes :

Etude statistique

- {e(n)} est une séquence d'un processus aléatoire continu et stationnaire
- {e(n)} est décorrélée de {x(n)}
- {e(n)} est un bruit blanc additif
- la distribution de probabilité de {e(n)} est uniforme sur l'intervalle de quantification
- ergodicité : moyennes temporelles = moyennes statistiques
- moyenne m_e = moyenne temporelle
- variance σ_e^2 = puissance du bruit variance = $q^2/12$

52

VI Quantification2 Caractéristiques de quantification

 Bruit lié à l'élimination de k bits

• Processus aléatoire discret

• Moments $(q = 2^{-j})$

$$\mu_{b} = 0 \qquad \sigma_{b}^{2} = \frac{q^{2}}{12} \left(1 - 2^{-2k} \right) \qquad \mu_{b} = \frac{q}{2} \left(1 - 2^{-k} \right) \qquad \sigma_{b}^{2} = \frac{q^{2}}{12} \left(1 - 2^{-2k} \right)$$

VI Quantification2 Caractéristiques de dépassement

- Valeurs de x(n) lorsqu'il sort de la dynamique de codage

Saturation

- Complexe
- Moins d'effets indésirables

Modulaire

Effets indésirables

VI Quantification

 Afin d'éviter le dépassement, on diminue l'amplitude avant ou pendant le traitement par un facteur d'échelle A < 1 (*scaling*).

- A peut être combiné avec les valeurs des coefficients
- A puissance de 2 (en pratique)

Critères

- Critère du pire-cas (ou norme L1)
 Pas de dépassement tant que |x(n)|<Xmax
- Critère de puissance (ou norme L2)
 Pas de dépassement tant que Px<Pmax
- Critère bande étroite (ou norme Chebychev) Pas de dépassement tant que |x(n)| < Xmax, avec x(n) sinusoïdal.

$\mathbf{x}_{\mathbf{Q}}(\mathbf{n}) = \mathbf{Q}[\mathbf{x}(\mathbf{n})]$ $\mathbf{e}(\mathbf{n}) = \mathbf{x}_{\mathbf{Q}}(\mathbf{n}) - \mathbf{x}(\mathbf{n})$ $|\mathbf{e}(\mathbf{n})| \leq \mathbf{q}/2$

Notes :

56

• Exemple : filtrage du bruit de conversion

VI Quantification

4 Limitation des chemins de données

• Limitation des chemins de données de l'architecture cible

- Multiplication => Quantification
- Addition => Débordement

0,1101	0,8125	0,1101		0,8125
+ 0,1001	+ 0,5625	<u>x 0,1001</u>	X	0,5625
01,0110	1,375	00,0111 0101		0,4570 3125

• Sources de bruit :

$$\sigma_{b_y}^2 = \sigma_{b_e}^2 + \sigma_{b_{mem}}^2 + \sum_{i=0}^{N-1} \sigma_{b_{gm,i}}^2$$
$$\sigma_{b_y}^2 = \sigma_{b_e}^2 \sum_{m=-\infty}^{+\infty} |h(m)|^2 + \sigma_{b_{mem}}^2 + \sum_{i=0}^{N-1} \sigma_{b_{gm,i}}^2$$
$$\sigma_{b_y}^2 = \frac{q_e^2}{12} \sum_{m=0}^{N-1} c_m^2 + \frac{q_{mem}^2}{12} + N \cdot \frac{q_{mi}^2}{12}$$

VII. Synthèse des filtres numériques RII

- 1. Introduction
- 2. Rappels sur la synthèse des filtres analogiques
- 3. Invariance impulsionnelle
- 4. Transformation bilinéaire

Notes :

61

1 Introduction

- Recherche de H(z) correspondant aux spécifications (gabarit)
 - Transposition des méthodes de synthèse applicables aux filtres analogiques, puis transformation de H(p) vers H(z) Invariance impulsionnelle Transformation bilinéaire
 - Synthèse directe en z
 - Méthodes d'optimisation : minimiser un critère d'erreur entre courbe réelle et courbe idéale

2 Synthèse de filtre analogique

Normalisation

- Calcul de la sélectivité s

a) Gabarit prototype linéaire

 Δ_2 +

 $|H_{Norm}(p)| (dB)$

 $\Delta_1 \\ 0$

 $-\Delta_1$

1

b) Gabarit prototype en dB

Notes :

64

ω

2 Synthèse de filtre analogique

• Ordre du filtre et fonction de transfert normalisée

- Butterworth, Chebyschev, Elliptique, Bessel, Legendre, ...
- $H_{NORM}(p_N)$

Dénormalisation

- Passe-bas : $p_N = p / \omega_c$
- Passe-haut : $p_N = \omega_c / p$
- Passe-bande : p_N = 1/B (p / ω_0 + ω_0 / p)

• On obtient une fonction de transfert H(p) respectant le gabarit analogique spécifié

\Rightarrow Passage vers H(z)

66

3 Invariance impulsionnelle

• Le filtre numérique et le filtre analogique ont la même réponse impulsionnelle

filtre numérique

$$h(nT) = h_a(t) / t = nT$$

3 Invariance impulsionnelle

• Le filtre numérique et le filtre analogique ont la même réponse impulsionnelle

$$H_{a}(p) \xrightarrow{L^{-1}} h_{a}(t) \xrightarrow{t=nT} h(nT) \xrightarrow{Tz} H(z)$$

ou formulatio n directe

$$H(z) = \sum_{\{poles \ p_i \ de \ H_a(p)\}} Résidus \left[\frac{H_a(p)}{1 - z^{-1} e^{pT}}, p_i \right]$$

- Conserve la réponse temporelle et la stabilité
- Phénomène de recouvrement de spectre du à l'échantillonnage
- Non respect de la spécification fréquentielle

$$H(e^{j\Omega}) = \frac{1}{T} \sum_{k} H_{a} \left(j\omega + j \frac{2\pi k}{T} \right)$$

Notes :

67

- 4 Transformation bilinéaire
- Approximation d'une intégrale par la méthode des rectangles¹

¹Appelée également, selon les sources, méthode des trapèzes

4 Transformation bilinéaire

- Relation entre fréquences numériques et analogiques

4 Transformation bilinéaire

Notes :

4 Transformation bilinéaire

• Procédure de synthèse

- A partir du gabarit en fréquence numérique ω_n
- Effectuer une prédistorsion en fréquence

$$\boldsymbol{\omega}_a \frac{T}{2} = tg\left(\boldsymbol{\omega}_n \frac{T}{2}\right)$$

- Synthèse de H(p) par méthodes du chapitre V.2
- Transformation bilinéaire

$$H(z) = \frac{H(p)}{p} = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}$$

Notes :

Notes :

• Filtre numérique analogique du premier ordre

$$H(p) = \frac{1}{1 + \frac{p}{\omega_c}} \qquad fc = 1 \text{ KHz, } fe = 10 \text{ Khz}$$
$$\omega_c = \frac{1}{R.C}$$

- Invariance impulsionnelle : Hi(z)

- Transformation bilinéaire : Hb(z)

VIII. Synthèse des filtres numériques RIF

- 1. Introduction
- 2. Filtres à Phase Linéaire
- 3. Méthode du Fenêtrage
- 4. Échantillonnage en Fréquence

1 Introduction

Recherche de H(z) correspondant aux spécifications (gabarit)

- Synthèse directe en z
- Filtres à phase linéaire ou minimale

• 3 méthodes de synthèse

- Méthode du fenêtrage
- Méthode de l'échantillonnage fréquentiel
- Méthodes d'optimisation : minimiser un critère d'erreur entre courbe réelle et courbe idéale

• Filtre à phase minimale

- Zéros dans le cercle unité

• Filtre à phase linéaire

$$\begin{split} H(e^{j\Omega}) &= A(\Omega).e^{j\varphi(\Omega)} \\ avec & \begin{cases} A(\Omega): \, pseudo - module \ (amplitude \) \\ \varphi(\Omega) &= \beta - \alpha \Omega \end{cases} \end{split}$$

– Condition pour avoir une phase linéaire Symétrie ou antisymétrie par rapport à $\alpha = (N-1)/2$

VIII Synthèse des filtres RIF2 Phase linéaire

Notes :

VIII Synthèse des filtres RIF2 Phase linéaire

	Type I	Type III	
$H(e^{j\Omega}) = e^{-j\alpha\Omega} \sum_{n=0}^{\alpha} a_n G$	$\cos(n\Omega)$	$H(e^{j\Omega}) = e^{j\frac{\pi}{2}}e^{-j\alpha\Omega}\sum_{n=1}^{\alpha}c_n$	$sin(n\Omega)$
$a_0 = h(\alpha), \ a_n = 2h(\alpha)$	$(n-n), n=1\ldots \alpha$	$c_n = 2h(\alpha - n), \ n = 1\dots$	α
N impair	Tout filtre	$H(0) = H(\pi) = 0$	Passe Bande Dérivateur
N pair	Type II	Type IV	
N pair $H(e^{j\Omega}) = e^{-j\alpha\Omega} \sum_{n=1}^{N/2} b_n c$	Type II os[$(n-1/2)\Omega$]	Type IV $H(e^{j\Omega}) = e^{j\frac{\pi}{2}}e^{-j\alpha\Omega}\sum_{n=1}^{N/2}d_n s$	$\operatorname{in}[(n-1/2)\Omega]$
N pair $H(e^{j\Omega}) = e^{-j\alpha\Omega} \sum_{n=1}^{N/2} b_n c$ $b_n = 2h(N/2 - n), n = 0$	Type II os[$(n - 1/2)\Omega$] = 1 N / 2	Type IV $H(e^{j\Omega}) = e^{j\frac{\pi}{2}}e^{-j\alpha\Omega}\sum_{n=1}^{N/2}d_n s$ $d_n = 2h(N/2 - n), n = 1$	in[(<i>n</i> -1/2)Ω] . <i>N</i> /2

VIII Synthèse des filtres RIF 2 Phase linéaire

- 3 Méthode du fenêtrage
- Développement en série de Fourier du filtre idéal

$$H(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} h(n) e^{-jn\Omega}$$
$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\Omega}) \cdot e^{jn\Omega} d\Omega$$

– Filtre non causal, de type RII

 Passage de h(n) idéal au RIF approché par fenêtrage de h(n)

$$h_a(n) = h(n).w(n)$$

3 Méthode du fenêtrage

• Exemple : filtre passe-bas idéal

Notes :

83

- 3 Méthode du fenêtrage
- Prise en compte d'une condition de phase linéaire par décalage de α

• Fenêtrage de h(n)

 $h_a(n) = h(n).w(n) \Leftrightarrow H_a(e^{j\Omega}) = H(e^{j\Omega}) * W(e^{j\Omega})$

3 Méthode du fenêtrage

- Largeur de la zone de transition $\Delta\Omega \Leftrightarrow 1/2$ largeur du lobe principal
- Atténuation $\Delta A \Leftrightarrow$ amplitude du premier lobe secondaire

Notes :

3 Méthode du fenêtrage

Fenêtres usuelles

- Rectangle, Triangle, Hanning, Hamming, Blackman, Kaiser, ...
- Réponses temporelles

VIII Synthèse des filtres RIF 3 Méthode du fenêtrage

3 Méthode du fenêtrage

• Influence de la fenêtre

Fenêtre	Lobe	Demi largeur du	Atténuation
	secondaire	lobe principal	minimum
Rectangulaire	-13dB	2π/N	-21dB
Triangulaire	-25dB	4π/N	-25dB
Hanning	-31dB	4π/N	-44dB
Hamming	-41dB	4π/N	-53dB
Blackman	-57dB	6π/N	-74dB

– Le type de fenêtre influe sur ΔA et $\Delta \Omega$

– Le nombre de points influe sur $\Delta \Omega$

4 Méthode de l'échantillonnage

• Échantillonnage en fréquence

- Échantillonnage du filtre idéal

– TFD inverse de H(k $\Omega_{\rm e}$)

$$h(n) = \frac{1}{N} \sum_{k=0}^{N-1} H(k\Omega_e) e^{j\frac{2\pi}{N}n.k}$$

- Méthode valable pour tout type de filtre
- Possibilité d'utiliser un fenêtrage

- 1. Effets de la troncature
- 2. Caractéristiques des fenêtres
- 3. Influence sur l'analyse

Notes :

1 Définition

• Analyse spectrale de signaux continus

- Etude du contenu fréquentiel (spectre) d'un signal continu xc(t)

- Nombre limité d'échantillons du signal d'entrée pour la TFD

• Troncature temporelle

- $x_N(n) = x(n) \cdot w_N(n)$ avec $w_N(n)$ fenêtrage sur N points
- $-T_0 = N.T$: horizon d'observation

2 Troncature temporelle

Troncature temporelle

 $- x_N(n) = x(n) \cdot w_N(n)$ avec $w_N(n)$ fenêtrage sur N points

• Influence sur le spectre

- Convolution fréquentielle $X_N(e^{j\Omega}) = X(e^{j\Omega}) * W_N(e^{j\Omega})$

• TFD du signal tronqué

$$X_{N}(k) = \sum_{n=0}^{L-1} x_{N}(n) e^{-2j\pi \frac{kn}{L}} \qquad k = 0..L-1$$
$$L \ge N$$
$$X_{N}(k) = X_{N}(e^{j\Omega})\Big|_{\Omega = 2\pi k/L}$$

Notes :

SAT

2 Troncature temporelle

• Exemple

3 Influence de la fenêtre

Notes :

3 Influence de la fenêtre

• Influence de la fenêtre

Fenêtre	Lobe secondaire $\lambda = 20\log W(fs)/W(0) $	Largeur du lobe principal LLP = ΔΩm
Rectangulaire	-13dB	4π/N
Triangulaire	-25dB	8π/N
Hanning	-31dB	8π/N
Hamming	-41dB	8π/N
Blackman	-57dB	12π/N

– Le type de fenêtre influe sur λ et $\Delta \Omega m$

– Le nombre de points influe sur $\Delta \Omega m$

Notes :

3 Influence de la fenêtre

Fenêtres usuelles

- Rectangle, Triangule, Hanning, Hamming, Blackman, Kaiser, ...
- Réponses temporelles

3 Influence de la fenêtre

4 Paramètres de l'analyse

• Finesse en fréquence

- Capacité de l'analyseur à détecter 2 raies proches
- Masquage fréquentiel
- Largeur du lobe principal : LLP = $2\Delta\Omega$
- Dépend de N et du type de fenêtre
 Exemple sur transparent 9

• Finesse en amplitude

- Capacité de l'analyseur à détecter des raies de faibles amplitudes ou masquée par une autre raie proche
- Masquage d'amplitude ou bruit de l'analyse
 - $\lambda = 20\log|W(fs)/W(0)|$
- Dépend du type de fenêtre
 Exemple sur transparent 10

Notes :

ENSSAT

4 Paramètres de l'analyse

4 Paramètres de l'analyse

5 Zero-padding

X. Systèmes multi-cadences

- 1. Définition
- 2. Décimation
- 3. Interpolation

Notes :

X Systèmes multi-cadences1 Définition

Systèmes multi-cadences

- Systèmes dans lesquels on pourra avoir plusieurs fréquences d'échantillonnage dans une même chaîne de traitement
- Ils tirent partie de la forme spectrale d'un signal en gardant Fe toujours à sa valeur optimale

Notes :

Notes :

103

ENSS

104

X Systèmes multi-cadences2 Décimation

 Pour éviter le recouvrement de spectre, le signal xc(t) doit être à bande limitée et respecter le théorème de Shannon par rapport à T'

$$X_{c}(\boldsymbol{\omega}) = 0 \quad pour |\boldsymbol{\omega}| \ge \boldsymbol{\omega}_{0}$$

et $\boldsymbol{\pi}/\mathbf{T}' = \boldsymbol{\pi}/(\mathbf{MT}) \ge \boldsymbol{\omega}_{0} \quad ou \quad F'e = Fe / M \ge \boldsymbol{\omega}_{0}$

X Systèmes multi-cadences

2 Décimation

• Filtres à décimation

- Filtre suivi d'un décimateur

• Optimisation du filtre à décimation

Notes :

X Systèmes multi-cadences

3 Interpolation

Interpolation d'un facteur L

 Objectif : augmenter la fréquence d'échantillonnage d'un signal x(n) échantillonné à la période T d'un facteur L

 $x_i(n) = x(n/L) = x_c(nT'), avec T' = T/L$

• Elévateur de fréquence

Notes :

• Interpolateur

 Succession d'un élévateur de fréquence et d'un filtre passe-bas idéal de gain L, de période d'échantillonnage T' et de fréquence de coupure Fc = 1/2T (i.e. Ωc = π/L).

3 Interpolation

Optimisation du filtre à interpolation

• Multiplication de Fe par un facteur rationnel R=L/M

-T' = T.M/L

Notes :