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Today’s integrated circuit technologies allow the design of complete systems on a single chip which exe-
cute complex applications specified as a set of tasks. The tasks are managed by an Operating System
whose main role consists in defining the resource allocation and the temporal scheduling. One of the
main characteristics of these architectures is the heterogeneity of their execution resources which makes
this scheduling complex.

In this paper, we propose a neural network based model for the design of heterogeneous multiproces-
sor architectures scheduler. Previous works have shown that neural networks using the Hopfield model
can be defined to schedule tasks on an homogeneous architecture. This approach was extended to take
platform heterogeneity into account. The work presented in this paper is based on a new neural network
structure using inhibitor neurons. These neurons allow to limit the number of additional neurons and the
number of network re-initialisations to reach convergence. We compare our network to the classic solu-
tions based on the Hopfield neural network. These comparisons show that the number of neurons is
reduced by a factor of more than two, which reduces the time convergence. We also compare our
approach in terms of number of migrations with the PFair algorithm which is known as an optimal solu-
tion in the context of homogeneous architecture. The results show that our solution significantly limit the
number of task migrations. Finally, we present results in the context of heterogeneous multiprocessor
architectures, which is representative of complex system-on-chip.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The increase in complexity of modern embedded applications
has led integrated circuit designers to develop system-on-chip
(SoC) architectures [1]. As shown in Fig. 1, an SoC includes a gen-
eral purpose processor (GPP), specific blocks for specialised tasks
(HW blocks), one or more specialised processors (i.e. digital signal
processor, DSP) and, since few years, reconfigurable areas.

Based on this general organisation, these architectures now
offer the capability to embed complete and complex systems. To
efficiently execute applications and ease the execution manage-
ment, designers propose to include Operating System (OS) in
heterogeneous SoC [2]. These architectures can be compared to
heterogeneous multi-processor systems for which the OS has to
ensure scheduling of a set of NT application tasks. Scheduling con-
sists in defining the time interval ½tj; tj þ Ci� (with Ci the Worst Case
Execution Time, WCET, of task Ti) of the task execution and the
supporting execution target Rk. In the context of heterogeneous
platform, the scheduling is a non-resolved hard problem, for which
ll rights reserved.
an optimal solution is not guaranteed. Numerous works have been
published on this issue, including the works of Cardeira [3] who
showed that it is possible to define an artificial neural network
(ANN) structure to solve the sheduling problem for homogeneous
systems. The principal limitations of the proposed structure are
the number of neurons necessary to model the problem, and the
large number of re-initialisations required to ensure the network’s
convergence in a state representing a valid solution.

In this article, we propose a new structure of neural networks
which provides a valid scheduling solutions on heterogeneous
multiprocessor architectures, an important reduction in the overall
number of neurons and a faster convergence towards a valid
scheduling solution. Our main objective is to propose an efficient
hardware implementation of the scheduler to support the required
performances.

The remainder of the paper is organised as follows. In Section 2
we present the works relative to the scheduling problem and more
particularly the use of neural networks. Section 3 presents our
solution which relies on the use of inhibitor neurons. The network
construction is explained and the convergence of such a network is
presented. Section 4 presents a technique to optimise the number
of neurons with the objective of reducing the convergence time.
Section 5 illustrates our proposal using a number of experiments.

http://dx.doi.org/10.1016/j.sysarc.2011.01.004
mailto:Daniel.Chillet@irisa.fr
http://dx.doi.org/10.1016/j.sysarc.2011.01.004
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


Fig. 1. An SoC architecture example including a processor, a memory hierarchy,
dedicated hardware accelerators and reconfigurable accelerators. Such systems can
be seen as an heterogeneous multi-processor architecture.
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We compare the results obtained using our solution with those
obtained by Cardeira and we show the significant gain obtained
especially in terms of network convergence. For the particular
homogeneous multiprocessor context, we compare our proposal
with the PFair algorithm and we show that our proposal provides
less task preemptions and migrations. We also present some re-
sults of a typical application executed on a heterogeneous execu-
tion platform. A discussion about the complexity of our proposal
is presented in Section 6. Finally, Section 7 discusses about the re-
sults and Section 8 concludes the paper and and presents some
perspectives.

2. Modelling of the scheduling problem with ANN

Numerous proposals for the scheduling problem have been
published over the years. For example, we can cite the rate mono-
tonic [4], the deadline monotonic [5] or the earliest deadline first
[6]. These approaches have been extended and there are numerous
derivative propositions which allow to take particular constraints
into account. The calculation of scheduling by these algorithms is
carried out either before the execution of the tasks, i.e. off-line or
statically [7], or at the execution time, i.e. in-line or dynamically
[8,9]. In the context of SoCs, the system must react and adapt itself
to external events, and such behaviour leds designers to favour on-
line scheduling or mixed approaches [10]. However, these on-line
approaches suffer from a high complexity which limits their use
in real time systems.

Some works have concentrated on the problem of scheduling
for multi-processor architectures. Algorithms producing optimal
solutions have been proposed [11], as well as solutions sharing
the tasks between multi-processor machines [12], but these stud-
ies consider homogeneous systems, i.e. systems with several iden-
tical processors. As a general rule, these solutions are not easily
applicable in the context of SoCs due to the implicit heterogeneous
nature of the architecture. The complexity of the scheduling prob-
lem as well as the time constraints (linked to the real time aspects
of the applications running on the SoCs) have encouraged a
number of works studying the implementation of OS services in
hardware [13–15]. Among the numerous solutions to solve the
optimisation problem, one uses artificial neural networks [3,16].
The underlying model is based on Hopfield’s proposition [17]. In
this model, each neuron ni is connected to all other by a Wi;j weight
and receives an input energy Ii. The evolution of state xi of neuron
ni is then given by:

xi ¼
1 if Ii þ

PN
j¼1

xj �Wi;j > 0

0 otherwise:

8><
>: ð1Þ

The Hopfield’s proposition defines an artificial neural network
fully connected, capable of producing solutions to an optimisation
problem by minimising an energy function. The definition of a
Hopfield neural network goes traditionally through three steps
which are:
� Model the problem in such a way that the neurons’ states define
a possible solution;
� Define the energy function that expresses a correct solution

from the neurons’ states;
� Compute the values of the weights of the connections Wi;j

between neurons and of the input energy Ii to each neuron.

From Hopfield’s model, the authors of Ref. [3] suggest a model-
ling of the scheduling problem for homogeneous architectures.
Their solution extends the results obtained in [18] where the
theoretical basis for ANN design for optimisation problems are
defined. By using a Hopfield model, they ensure the existence of
a Lyapunov function, called energy function [19]. This model
ensures that the network evolution converges towards stable
states. Among these states, there is at least one solution which sat-
isfies the constraints and produces an optimal solution. However,
among these states, it is possible to obtain invalid solutions which
correspond to local minima. The presence of these minima needs to
add some energy to extract the network from these specific point
and to ensure a new convergence. From the Hopfield model, the
energy function must be written as

E ¼ �1
2

XN

i¼1

XN

j¼1

Wi;j � xi � xj �
XN

i¼1

Ii � xi ð2Þ

where N is the total number of neurons. To ensure the convergence,
the neurons need to be randomly and sequentially evaluated. If this
evaluation protocol is respected, it has been demonstrated that the
evolution of the network will naturally lead to the minimisation of
the energy function [20,21]. Thus, the network converges to a stable
state, and the energy is minimum.

The application of this model to the task scheduling problem is
shown in Fig. 2a where each circle represents a neuron, each line is
the set of neurons allocated for one task Tl and each column is a
scheduling cycle. The number of column N is equal to the total
number of possible scheduling cycles. The state xi (active or inac-
tive) of the neuron ni represents the state of the task (running or
suspended). An active neuron (xi ¼ 1, black circles/neurons in
Fig. 2b) indicates that the task must be placed in the running state
and thus uses execution resource, while an inactive state ðxi ¼ 0Þ
represents a suspended task. The last line corresponds to a fictive
task Tf which allows to model the inactivity of resources when
no task needs to be executed. The computation load Cl of task Tl

is defined as the number of time steps that the task needs to be
completed on the execution resource, also known as the WCET of
the task. Example of Fig. 2 corresponds to an application which
has three tasks T1; T2; T3, with WCETs C1 ¼ 3;C2 ¼ 2;C3 ¼ 4, peri-
ods P1 ¼ P2 ¼ P3 ¼ 12, and the total number of scheduling cycles
N = 12. We also consider that the deadlines of a tasks are equal
to their periods. Fig. 2b shows an example of a valid result of net-
work convergence.

The proposed model relies heavily on the definition of a net-
work construction rule, namely rule k-OutOf-N, allowing the spec-
ification that k neurons among N must be activated. This rule is
defined by the energy function

Ek-OutOf -N ¼ k�
XN

i¼1

xi

 !2

: ð3Þ

As presented in Fig. 3 for k ¼ 6 and N ¼ 10, this function is min-
imal and equal to zero when k neurons are active.

It has been shown in Ref. [3] that the neural network can be
built by the addition of k-OutOf-N rules. The construction of the
network is then ensured by applying this rule to a series of neuron
groups. Fig. 4a and b shows the construction of a network for a
mono-processor system for the same example as in Fig. 2. The



Fig. 2. (a) Initial representation of the scheduling problem of three tasks on a single execution resource. Each line corresponds to a task Tl with a WCET Cl , and the line Tf

corresponds to a fictive task which allows to model the inactivity of resource when no task needs to be executed. (b) Convergence example of the neural network, the network
state represents a valid solution.

Fig. 3. Energy function evolution of a k-OutOf-N rule, with k ¼ 6. This function has
its minimum when six neurons are actived.
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k-OutOf-N rule is first applied horizontally on each line of neurons
for each task (see Fig. 4a), with k ¼ Ci for the application of the rule
to task Ti, and N is equal to the total number of scheduling cycles
(N ¼ 10 in this example). The application of this rule makes sure
that each task has the necessary number of active cycles to be exe-
cuted. The k-OutOf-N rule is then applied to each column of the
network in order to make sure that only one task is executed dur-
ing each cycle (with k ¼ 1 and N ¼ 4, see Fig. 4b). This constraint is
necessary to model a mono-processor with a mono-thread execu-
tion model.
Fig. 4. (a) Application of k-OutOf-N rule on the lines of the network (with k ¼ Cl the WCET
N is applied with k ¼ N �

PNT
i¼1Ci , with NT the number of application tasks. (b) Application

processor executing a single task at each time).
Furthermore, if the execution of the group of tasks requires few-
er cycles than the total number N, it is necessary to have a fictive
task Tf which becomes active at the time steps where there is no
more task to schedule. For this fictive task, a k-OutOf-N rule must
be applied with k ¼ N �

PNT
i¼1Ci, with NT the number of application

tasks.
Finally, the energy function needs to be rewritten as a Hopfield

formulation. The k-OutOf-N construction rule (Eq. (3)), which is
used to model the problem, is then rewritten to match the form
of Eq. (2),

Ek-OutOf -N ¼ �
1
2

XN

i¼1

XN

j¼1
j–i

ð�2Þ � xi � xj �
XN

i¼1

ð2k� 1Þ � xi þ k2
: ð4Þ

This allows the determination of the weights of the connections and
the inputs to the neurons, which are given by

Wi;j ¼ �2 � di;j 8i ¼ 1 . . . N;8j ¼ 1 . . . N ð5Þ
Ii ¼ 2k� 1 8i ¼ 1 . . . N ð6Þ

with di;j the complement of Kronecker’s symbol which takes the va-
lue 0 if i ¼ j, and 1 otherwise. We can note that the connection and
input values are independent of the k2 term of Eq. (4) which
corresponds to a constant offset. This term has no influence on
the energy minimality.

Based on the k-OutOf-N rule and using the additive character of
Hopfield’s model, the scheduling problem for a single processor
architecture is then easy to model. However, this simplicity hides
of task Tl on a single execution resource). For the last line (fictive task) the k-OutOf-
of k-OutOf-N rule on the columns of the network (with k ¼ 1 in the case of a single



Fig. 5. Scheduling problem of T tasks on a heterogeneous architecture with three execution resources modelled by a neural network. The neurons placed in the grey zone,
called Hni , ensure the convergence of (0-or-k)-OutOf-N rules applied on each execution target p. Neurons placed in the area called Hnd ensure the instanciation of task on a
unique execution target.
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a delicate problem of network convergence. As the authors of Ref.
[3] have shown, the successive applications of several construction
rules create several local minima in the energy function. These
minima lead the network to converge in stable states which are
not valid solutions for the problem to solve. In order to make the
network converge towards a satisfactory solution, it is necessary
to add energy to the network to extract from these minima. This
requires a complex control mechanism. The main limitation of this
proposal concerns the impossibility to schedule a multiprocessor
architecture and this is clearly not satisfactory for a system made
up of multiple execution resources, as is the case in today’s SoCs.

The idea has therefore been extended for heterogeneous multi-
processor architectures [22]. The general idea consists in ensuring
that if a task is to be executed once on a target type p, then it can
not be scheduled on another target at the same time. Each execu-
tion target is represented by a plan p of neurons as in Fig. 5. To en-
sure that tasks are executed on only one execution target, a new
rule is defined. This rule extends the k-OutOf-N rule towards a
new one called (0-or-k)-OutOf-N. This rule allows us to define that
the number of active neurons for a task Tl and for one specific exe-
cution target p is equal either to 0 or to k ¼ Cl;p (with Cl;p the WCET
of the task Tl on the execution target p). For that, the neural net-
work is extended and specific neurons, i.e. hidden neurons, are
added to ensure convergence. In Fig. 5, the hidden neurons are
placed in the grey zones and are dependent on the WCET Cl;p. For
S scheduling cycles (hyper-period) and R execution resources, we
need to place a set of S neurons for each task and each execution
resource. This set is called ei;j. For each set ei;j;Ci;j hidden neurons
(called Hni;j) are added in the hidden zone. For example, for task
T1 defined by the WCETs fC1;1;C1;2;C1;3g ¼ f4;1;2g, four neurons
are added in the grey zone Hn1 of execution resource R1, see
Fig. 5. For each task Ti;maxðjCi;j � Ci;kjÞ8ðj; kÞ neurons are added
as global hidden neurons Hnd. Finally, S neurons are added for each
execution resource to model the fictive task Tf . The number of use-
ful neurons Nu (which represents the solution) for a set of T tasks is
given by

Nu ¼ R � S � ðT þ 1Þ: ð7Þ

But the number of necessary neurons Nn to model the complete
problem is given by
Nn ¼ Nu þ
XT

i¼1

XR

j¼1
Ci;j þ

XT

i¼1
maxðjCi;j � Ci;kjÞ 8j; k ¼ 1;2; . . . R|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

number of extra neurons

:

ð8Þ
As we can see in this expression, the cost due to extra neurons depends
on the WCET of each task on each processor. These extra neurons are
the hidden neurons needed to ensure a correct convergence. Eq. (8)
shows that the number of hidden neurons changes linearly with the
number of tasks but also depends on the characteristics of the tasks.
For complex applications, the total number of neurons required to
model the problem is then critical to ensure a rapid convergence
and have a great impact on the implementation cost.

Concerning the network connectivity, the input and connection
values must be defined by application of the following rules:

� a (0-or-k)-OutOf-N rule on the sets ei;j of each execution
resource, with k ¼ Ci;j and N ¼ S;
� a k-OutOf-N rule on the sets ei;j

S
Hni;j of each execution

resource extended with the hidden neurons, with k ¼ Ci;j and
N ¼ Sþ Ci;j;
� a k-OutOf-N rule on the sets ei;1

S
ei;2
S
� � �
S

ei;R, with k ¼ Ci;j and
N ¼ R � S;
� a k-OutOf-N rule on each column of neurons to model the pos-

sible processor inactivity, with k ¼ 1 and N ¼ T þ 1;

Note that the additivity of the Hopfield neural network model
allows to apply several rules on the same neurons. But, as we have
said before, this additivity creates one or several local minima.

The main limitations of this proposition are the large number of
neurons required for the model and the great number of re-initiali-
sations of the network to ensure its convergence towards a correct
solution. In this context, the problem of the rule additivity is again
present, which moreover, increases with the number of used rules.
In fact, it is noteworthy that the greater the number of used rules
is, the more the number of local minima increases and the less the
probability of convergence towards a correct solution is. This last
point is particularly delicate regarding the control of the network,
since it has to be able to detect the stabilisation of the network, to
reject non-valid solutions, to add energy and to re-start a network
convergence.
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3. A model of ANN with inhibitor neurons

In this section, after the presentation of the model of tasks con-
sidered in our work, we present our neural network structure and
explain how this structure can converge towards valid solutions.

As in the previous works presented by Cardeira, the tasks con-
sidered in this paper are periodic and we suppose that the deadline
of the tasks is equal to the period. To simplify the presentation, we
also consider that the tasks are independent. The dependencies be-
tween tasks could be modelled, but this case is not considered in
this article. We also suppose that the tasks can not suspend itself,
but they can be preempted at each scheduling cycle.

Our proposition relies for its novelty on the reduction of the
number of neurons as well as on the fact that the network conver-
gence towards a correct solution is faster than the classical solu-
tions. The general idea which has been exploited in previous
works (a task executed once on a target resource cannot be exe-
cuted on another target at the same time) is used in a different
way through the use of new neurons, called inhibitor neurons.
These new neurons have the role of capturing the firing of a task
on a target resource and of preventing this same task from being
launched on another target [23].

The principle of operation of an inhibitor neuron relies on a par-
ticular connection of one specific neuron (the inhibitor neuron)
with the neurons to be inhibited. For the sake of clarity, we group
the S neurons of a task Ti on the resource Rj as a set
ei;j ¼ fni;j;1;ni;j;2; . . . ni;j;Sg. The application has T tasks and the archi-
tecture has P types of execution resources. We need to introduce
an inhibitor neuron nhi;j for each task Ti on each resource Rj, lead-
ing to a total of P � T inhibitor neurons.

The k-OutOf-N rule is applied to the group of neurons ei;j with
k ¼ Ci;j. The inputs of inhibitor neurons nhi;j are fixed at values
Ihi;j ¼ �Ci;j þ 1. And, in connecting the neurons ni;j;k of the set ei;j

to the inhibitor neuron nhi;j with a weight equal to 1, as soon as
the group ei;j has Ci;j active neurons the associated inhibitor neuron
nhi;j can become active. The state xhi;j of the inhibitor neuron nhi;j is
given by

xhi;j ¼ Ihi;j þ
XN

k¼1

xi;j;k �W ðni;j;k ;nhi;jÞ ð9Þ

with xi;j;k the state of neuron ni;j;k of the task Ti;Wðni;j;k ;nhi;jÞ the weight
of the connection between the neuron ni;j;k and the inhibitor neuron
nhi;j;k. Since these connections W ðni;j;k ;nhi;jÞ are always equal to 1 (blue
arrows in Fig. 6),1 the value xhi;j can be written as

xhi;j ¼ �Ci;j þ 1þ
XN

k¼1

xi;j;k: ð10Þ

And due to the k-OutOf-N rule applied on the set ei;j (with k ¼ Ci;j),
the value xhi;j can be set to value 1 only when Ci;j neurons are ac-
tives, i.e. when the task Ti has obtained all its required scheduling
cycles.

The activation of one specific inhibitor neuron nhi;j must then
inhibit the activation of the neurons of the other execution re-
sources. This is ensured by fixing the weights W ðnhi;j ;ni;j;kÞ between
the inhibitor neuron nhi;j and the neurons of task Ti at a value
which is sufficiently negative. Fig. 6 shows an example of a set
ei;j of neurons for task Ti, with the number of schedule cycle
S ¼ 5, and for one execution resource Rj. In Fig. 6, if the inhibitor
neuron nhi;j has been activated by the execution of task Ti on the
resource Rj, then the neurons of the other resources can no longer
be activated since the weights W ðnhi;j ;ni;l;kÞ (between inhibitor nhi;j
1 For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.
and neurons of ei;l8l – j, red arrows in Fig. 6) are strongly negative.
To ensure this operation it is necessary to fix W ðnhi;j ;ni;l;kÞ at a value
such that

W ðnhi;j ;ni;l;kÞ 6 �Ii;l 8j – l: ð11Þ

In associating an inhibitor neuron with each execution resource,
it is possible to ensure the convergence of the network towards a
solution having only a single set ei;j of activated neurons. The global
model is then represented in Fig. 7 for P execution resources and T
tasks. The neurons placed in the grey zones ðNHjÞ are the inhibitor
neurons of the execution resource Rj. The complete definition of
the neural network is formulated as follow:

� a (0-or-k)-OutOf-N rule on the sets ei;j of each execution
resource, with k ¼ Ci;j and N ¼ S;
� a k-OutOf-N rule on the sets of inhibitors neurons fnhi;jg8j for

each task Ti, with k ¼ 1 and N ¼ T;
� the inhibitor neuron inputs are fixed at Ihi;j ¼ �Ci;j þ 1;
� the inhibitor neuron connections are fixed at
W ðnhi;j ;ni;l;kÞ 6 �Ii;l 8i; j; k; ljj – l;

W ðni;j;k ;nhi;jÞ ¼ 1 8i; j; k:
In comparison with the solution defined in [22] (see Fig. 5), the
number of hidden neurons is fewer and moreover does not depend
on the WCET of tasks on the execution target. So, in this case, the
number of necessary neurons N0n to model the problem is given by
N0n ¼ Nu þ T � R|ffl{zffl}
extra neuron number

: ð12Þ

In comparison with Eq. 8, the number of extra neurons is fixed and
equal to 1 for each task and for each execution target. This small
number of extra cost neurons ensures a limited influence on the
convergence time.

We must note that the number of neurons representing the
solution is unchanged with our proposal. Indeed, our proposal fo-
cus on the number of extra neurons which can significantly in-
crease when the WCET of tasks is great. For example, if two tasks
have very different periods (T1 and T2 with periods equal to
P1 ¼ 5 and P2 ¼ 100), the number of neurons representing the
solution for each plan is equal to 100. But in our case, the number
of extra neurons is equal to one for each task and each plan, while
it depends from the WCET of tasks in the previous case. If the
WCET of task T2 is equal to 80 then the number of extra neurons
for this task is equal to 80.

In contrast to previously proposed models, this proposal is
based on a non symmetric connectivity, as we can see on the over-
all connections of the complete structure shown in Fig. 8. This
asymmetry concerns all the connections with inhibitor neurons.
In fact, the state of an inhibitor neuron nhi;j depends on the corre-
sponding neurons of task Ti and on resource Rj. On the other hand,
there is no connection from neuron nhi;j to the neurons of task Ti of
the execution resource Rj. It is important to note this asymmetry
since it brings into question the stability conditions defined by
Hopfield (especially the symmetry of the connections matrix).
However, as we shown below, convergence of the network is en-
sured. This can be explained and formulated as follow:

1. Initial condition: Initially, the system is in a state such that all
the inhibitor neurons are inactive, and all the other neurons
ni;j;k of the sets ei;j can be initialised in a random state (active
or inactive).
nhi;j ¼ 0 8i; j; ð13Þ
ni;j;k ¼ random ðactive; inactiveÞ 8i; j; k: ð14Þ



Fig. 6. Principle of inhibitor neurons utilisation for the task Ti , with five schedule cycles and two execution resources Rj and Rl . An inhibitor neuron nhi;j (respectively nhi;l) is
associated to the resource Rj (respectively Rl). The goal of the inhibitor neuron nhi;j consists in capturing the scheduling of the task Ti on the resource Rj and to inhibit the
scheduling of this task on other resources Rl8l – j.

Fig. 7. Scheduling problem modelling with inhibitor neurons for P execution resources and T tasks. The inhibitor neurons are placed in the grey areas. This model needs only
one inhibitor neuron by task and by execution resource.
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2. First convergence step: From this initial state, each set ei;j of neu-
rons (corresponding to the execution of task Ti on resource Rj)
will tend to converge towards a state such that Ci;j neurons
become active (due to the k-OutOf-N rule on neurons of
resource Rj, with k ¼ Ci;j).
Dðei;jÞ ! Ci;j 8i; j while nhi;j ¼ 0 ð15Þ

with Dðei;jÞ the number of active neurons in the ei;j set.
3. Inhibition step: When one of the plans Rj has Ci;j active neurons

(i.e. sufficient active neurons for the schedule of task Ti on
resource Rj, Dðei;jÞP Ci;jÞ, if the inhibitor neuron nhi;j is evalu-
ated, then it becomes active. It is however the only combination
which can lead to the activation of one of the inhibitor neurons.
nhi;j ¼
1 if Dðei;jÞP Ci;j and if nhi;j is evaluated
0 otherwise

�
ð16Þ
4. Second convergence step: When a single inhibitor neuron nhi;j is
active for a task Ti and resource Rj, the weight of its connections
with all the other neurons of the other execution resources
Rk8k–j (for the same task) cancels the weights of the inputs to
these neurons. In this case, when the neurons of the other exe-
cution plans are evaluated, they will remain or become inactive.
Dðei;kÞ !
0 if nhi;j ¼ 18kjk – j

Ci;k if nhi;k ¼ 1

�
: ð17Þ

The second convergence step leads the system to converge to-
wards a state for what each task is executed on only one execu-
tion resource, with sufficient active scheduling cycles. The most
important advantage of our proposal is that the convergence is
always ensured towards a valid solution, which is not always
the case for the classical methods.



Fig. 8. Neuron connection for the scheduling problem using the inhibitor neurons.

Fig. 9. Example of two neural networks and rule applications for three execution resources. (a) With the classical approach, three fictive tasks must be added to ensure the
correct convergence of the network. (b) We propose to delete the fictive tasks, but in this case the rule to apply on each column must change to take account of the variable
number of neurons that can be active on each column.
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4. Optimisation of neural number

In the classical solutions proposed by Cardeira [3] (see Fig. 9a), b
fictive tasks must be added in the neural network to model the
inactivity of the b processors during some cycles. These tasks are
necessary to ensure that exactly b neurons are active for each
scheduling cycle (which corresponds to b tasks in the running
mode for each cycle). Due to the additivity of the Hopfield model,
the neuron input of the task Ti is equal to: Ii ¼ Ihi þ Iv i, with Ihi and
Iv i respectively the inputs for the horizontal rule and for the verti-
cal rule. The value Ihi depends on the WCET of the task, and the va-
lue Iv i depends on the number of tasks that can be placed
simultaneously in the running mode (b). Fig. 9a presents an exam-
ple of a neural network for a set of five tasks to schedule on three
execution resources. In this case, three fictive tasks must be added
and a k-OutOf-N rule is applied on each column of neurons, with
k ¼ b ¼ 3 and N ¼ 8. In order to limit the number of neurons, we
propose to remove the neurons of fictive tasks, as presented in
Fig. 9b. In this case, we need to apply a (0-or-1-or-2-or-3)-OutOf-
5 rule on each column.

With a connection between vertical neurons j equal to �2=b (for
each cycle), the corresponding behaviour is obtained, with bthe
maximum number of tasks that can be executed in parallel at each
cycle (b ¼ 3 in the case of Fig. 10). The principle consists in
removing a little energy for a neuron ni;j when the maximum
number of tasks is scheduled at the cycle j. The removed energy
is equal to �2 and is sufficient to prevent the k-OutOf-N horizontal
rule to active the neuron ni;j.

For example, let us suppose that the neural network presented
in Fig. 9b is in the state presented in Fig. 10 (black neurons are
active, white neurons are inactive and grey neurons are consid-
ered as inactive first). At this step, if the third neuron of task T3

is evaluated, the k-OutOf-N rule applied in the neuron line of task
T3 leads to active this neuron (with k ¼ 6 and N ¼ 10). But the
third cycle already has three tasks scheduled, so we need to pre-
vent the task T3 to be scheduled at this cycle. This is ensured
through the specific connection of the neurons in column, equal
to �2=b. Now, if the last neuron of task T3 is evaluated, for the
same reason, the k-OutOf-N rule applied on the neurons of task
T3 leads to active this neuron. In this case, because this last cycle
does not have three tasks scheduled, it is possible to active the
neuron of task T3.

The results presented in Section 5.2 show that this construction
allows to obtain a substantial reduction of the number of neurons
with a fast convergence. The reduction of the number of neurons is
equal to b� S (with S the scheduling cycles, i.e. the hyper-period).
In the case of Fig. 9a and b, the reduction is equal to 30 neurons,
which represents 27% of reduction.



Fig. 10. Example of evolution of the neural network presented in Fig. 9b with three
execution resources and thus three tasks that can be executed in parallel ðb ¼ 3Þ.
We suppose that tasks T1; T2; T4; T5 have obtained their schedule cycles and T3

received only five of its six schedule cycles. The gray neurons are the next two
neurons evaluated in the network evolution. The third cycle of task T3 can not
become active due to the three tasks already scheduled at this cycle (T1; T4 and T5).
The last cycle of task T3 can become active due to the only one scheduled task at this
cycle ðT5Þ.

Fig. 12. Energy function evolution with our network model for the example of
Fig. 11.
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5. Results

In this section, we present comparisons of the proposed ANN
structure with the previous solutions proposed in [16,22]. We
show that our proposal is more efficient (i.e. convergence speed-
up), reduces significantly the number of neurons, and limits the
network re-initialisations. Although we have developed a solution
for heterogeneous architecture, our proposal is able to schedule
tasks onto homogeneous platform system. We also give some re-
sults to compare our approach with the optimal PFair algorithm
in the homogeneous context. However, in the case of heteroge-
neous multiprocessor architectures where PFair is not applicable,
we show that our solution is able to produce scheduling results.

5.1. Validation tools

To validate our proposal we have developed a neural network
simulator, SimulANN. This tool, developed in Java, allows to define
any neural network (i.e. number of neurons; neuron energy inputs
and weight connections between neurons) and is coupled with a
front end tool which facilitates the classical rule applications on
neurons set, for example a k-OutOf-N rule on a set ei;j of neurons.
The starting point of the SimulANN tool is the specification of the
application tasks characteristics. These characteristics concern the
number of tasks, the number of execution resources, the number
of schedule cycles, and the WCET of each task on each execution re-
source. From these information, the tool allows to simulate the neu-
ral network evolution. Some directives can be added to test the
network convergence and stop when a valid solution is found.

5.2. Comparison with classical neural network approaches

The first example concerns the schedule of three tasks T1; T2

and T3 on one execution resource. To solve this problem, the model
Fig. 11. Example of state representation of neural network (task WCET are equal to 3, 2,
state and valid solution. (c) Initial state of our proposal without hidden neurons.
of Ref. [16] needs to add one neuron line to model the processor
idle cycles. In Fig. 11a and b the initial state of the network and
one possible network final state are presented. The authors indi-
cate that convergence is obtained after more than 600 fired neu-
rons. Fig. 11c presents our model for the same scheduling
problem. As we can see, the number of neurons is lower than for
the classical solution. Indeed, in this model, the fictive tasks are
deleted by modifying the k-OutOf-N vertical rule applied on each
column of the neural network. Moreover, for all simulations and
from a random initial state, our network always converges to a
valid solution. This convergence is obtained with an average
number of 79 fired neurons.

Fig. 12 shows the evolution of the energy function for one sim-
ulation. This simulation converges to a valid solution for only 65
fired neurons. Contrary to the classical energy function evolution,
we can observe that this function decreases monotonously with
the number of fired neurons.

Fig. 13a presents another example with two homogeneous exe-
cution resources which is modelled by the classical network.
Fig. 13b shows that by applying the same modified k-OutOf-N ver-
tical rule on each column of the neural network, the required neu-
rons to model the same problem with regards to the classical
proposition can be reduced. Moreover, the classical solution con-
verges to a valid solution with more than 300 fired neurons, while
our proposition limits the number of fired neurons to approxima-
tively 70. The number of removed hidden neurons is directly pro-
portional to the hyperperiod of the tasks, which can be important.
This reduction will favourably impact the hardware implementa-
tion of the scheduler.

5.3. Comparison with PFair algorithm

In this section, we compare our scheduling with the PFair algo-
rithm in the context of homogeneous multiprocessor architecture.
The main drawback of the PFair algorithm is the large number of
task preemptions and migrations required to ensure the complete
2 for respectively T1; T2; T3) (a) Initial state with one hidden neuron line. (b) Stable



Fig. 13. (a) Initial state of the classical neural network. (b) Initial state of our neural network.
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task scheduling. Conversely, our proposal is based on a strong con-
straint which ensures that tasks are always scheduled on one exe-
cution resource. This contraint can lead to an impossility of
scheduling all the tasks, but when the schedule is possible, the
number of migrations is nul.

The results presented in this section show that our proposal
produces solution without any task migration.

For these comparisons, we use the set of independent tasks
fTi;WCETig defined as

fTi;WCETig ¼ ðT0;4Þ; ðT1;5Þ; ðT2;3Þ; ðT3;7Þ;ðT4;9Þ; ðT5;6Þ; ðT6;8Þ; ðT7;4Þf g:
ð18Þ

A multiprocessor system composed of four processors is considered.
The schedule period is equal to 20 and each task must be executed
once on this period. This first simple example presents a global pro-
cessors (or system) workload equal to 58%.

Fig. 14a shows the result of the task scheduling with the PFair
algorithm, while Fig. 14b shows one result provided by our neural
network. As we can see, the two schedulers produce a valid
schedule solution where all the tasks are executed during the 20
schedule cycles.

Fig. 14a shows that the PFair algorithm generates a large num-
ber of task migrations between the four different processors. For
example, task T4 is scheduled on processor R1 at cycle t0, then
scheduled on processor R2 at cycle t5, then scheduled on processor
Fig. 14. Gantt diagrams for the scheduling of 8 tasks on a 4 resource multiprocessor syst
R1 at cycles t11. The total number of task migrations for the PFair
scheduling is equal to 16 (0 for T1, 1 for T2, 1 for T3, 2 for T4, 2
for T5, 5 for T6, 5 for T7, 0 for T8). Each task migration consists in
a task context saving on one processor and in a task context load-
ing on another processor. These task context transfers are time
consuming but completely ignored by the PFair algorithm. For a
distributed memory system, the task context must be transfered
between the processors for each migration. The same remark can
be made for all multiprocessor systems with a level-1 instruction
cache. Indeed, in this case this level-1 cache is always distributed.
The time overhead of these transfers is a main drawback for the
implementation of the PFair algorithm. Extension of PFair algo-
rithms have been proposed [24] to limit the number of migrations,
but some of them remain necessary to ensure the complete task
scheduling.

As we can see in Fig. 14b, no task migration between the differ-
ent processors is generated with our proposal. This characteristic is
ensured by the inhibitor neurons which prevent the schedule of
the same task on several processors. This characteristic allows to
limit the memory accesses for the task context switches, and there-
fore removes the time overhead presents in the PFair algorithm.

Concerning the number of task preemptions, the two proposals
generate preemptions but our neural network limits their num-
bers. Indeed, as we can see in Fig. 14a, the PFair scheduling gener-
ates 35 task preemptions, while our proposal generates only 21
task preemptions. The reduction of number of task preemptions
em during 20 schedule cycles. (a) PFair scheduler. (b) Our neural network scheduler.
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is also an important characteristic of our proposal. Indeed, each
task preemption needs a context switch which is time consuming:
the context of the current task must be saved and the context of
the next task must be loaded.

We can note that it is also possible to compact all the schedul-
ing cycles of each resource toward the left. For our proposal, the
compacting phase is very simple due to the absence of task migra-
tion between processors. Fig. 15 shows how the solution generated
by the neural network can be optimised. With the PFair algorithm,
this compacting phase is not so simple because of the schedule of
each sub-task on the different resources. The main problem in this
case is the possibility to invert the order of sub-task and the risk to
Fig. 15. Gantt diagrams for the schedule of 8 tasks on a 4-processor system during 20

Table 1
Comparisons between PFair scheduler and our neural network scheduler.

Graph number Workload (%) PFair scheduler with H2 heuristic

Valid schedule Number of
preemptions

G1 75.0 100% 308
G2 74.5 306
G3 71.3 290
G4 76.8 315
G5 77.3 317
G6 68.0 278
G7 73.8 299
G8 76.8 315
G9 81.0 331
G10 71.3 293
G11 82.0 335
G12 65.3 266
G13 72.3 297
G14 75.8 311
G15 72.8 297
G16 67.3 277
G17 75.3 309
G18 78.0 320
G19 77.3 317
G20 75.5 310
G21 74.0 304
G22 70.3 288
G23 73.8 303
G24 78.8 321
G25 69.0 284
G26 73.8 303
G27 74.0 304
G28 67.0 272
G29 73.8 300
G30 79.3 323
G31 80.0 328
G32 78.3 319
G33 75.3 306
G34 79.3 325
G35 76.8 315
G36 75.3 307
G37 78.5 322
G38 76.0 308
G39 78.0 320
G40 74.0 303

Average 74.8 100% 306.2
schedule two different sub-tasks of the same task at the same sche-
dule cycle. For example, if we compact the PFair solution given in
Fig. 14a, the first sub-task of T5 on resource R3 would be executed
in parallel with the fourth sub-task of T5 on resource R2. For the
solutions generated by our proposal, the compacting phase can
be done without problem of sub-task order or parallel sub-tasks.

For the following results, we use the task generator TGFF [25] to
generate large set of independent tasks. The number of tasks gen-
erated is equal to 30, the period for the scheduling is equal to 100
and the number of processors is equal to 5. The task executions are
randomly fired in the interval ½5; 15�. To try to limit the task migra-
tions produced by the PFair algorithm, we apply the heuristic H2
schedule cycles after a compacting phase of task within the execution resources.

Neural network scheduler

Number of
migrations

Number of tasks
scheduled (%)

Number of
preemptions

Number of
migrations

146 95.9 338.7 0
142 97.7 336.5
115 99.5 330.8

86 87.9 345.5
110 92.1 343.4

82 100.0 322.1
85 96.8 335.9

114 90.7 343.7
120 64.5 355.8
115 97.1 329.9
109 64.5 358.3

42 100.0 318.1
101 98.6 331.3

86 91.1 341.5
90 98.9 334.5
98 100.0 322.7
97 98.1 336.8

113 83.7 348.4
113 85.8 345.9

94 59.5 341.2
88 96.9 334.5
94 100.0 327.4
99 96.5 337.3
85 80.5 350.1
96 99.7 325.5
92 98.2 334.3
99 95.4 338.1

112 100.0 320.6
94 97.9 336.3
95 73.1 352.4
86 73.4 353.5
85 79.6 350.1

113 90.1 341.5
101 81.6 349.7
100 89.5 343.8
123 95.9 336.8

71 80.6 348.7
103 90.7 341.1
143 86.2 347.4

90 94.9 336.82

100.7 90.95 339.6 0
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presented in [24]. Table 1 compares the results for a set of 40 task
graphs (Gi is the graph name). The first three columns give the
PFair scheduler performances: firstly the capability of the PFair
to schedule the task graph, secondly the number of task preemp-
tions, and thirdly the number of task migrations. The other col-
umns give the performances of our proposal for the same three
parameters.

Firstly, we can observe that the PFair scheduler always obtains a
solution. For all these produced solutions, the average number of
migrations is about 100, and the average number of preemptions
is about 306. As we explain before, our scheduler does not obtain
a complete solution for each convergence. For the set of graphs
presented here, the average number of scheduled tasks is 91%.
For each incomplete schedule, a small number of neural network
re-initialisations is sufficient to converge towards a complete solu-
tion, see Section 5.4. Concerning the number of preemptions, our
proposal produces approximately 10% more than the PFair algo-
rithm, but the major advantage of our proposal is the complete
cancellation of migrations. As we have said before, this last point
Table 2
a) Example of task characteristics for two types of execution resources. b) Input file of
the SimulANN simulation tool for neural networks.

Tasks Ci;1 Ci;2

(a)
T1 1 2
T2 2 1
T3 4 2
T4 3 5
T5 4 6
T6 3 2
T7 2 3

(b)
Tasks T1 T2 T3 T4 T5 T6 T7

Plans P1 P2

NbProcByPlans 1 1

SchedulingInterval 20

WCETByPlan T1 1 2

WCETByPlan T2 2 1

WCETByPlan T3 4 2

WCETByPlan T4 3 5

WCETByPlan T5 4 6

WCETByPlan T6 3 2

WCETByPlan T7 2 3

Table 3
Results for the classical neural network model for the scheduling of 2–7 tasks, for an arch
cycles. Note that, in average, 10 neuron evaluations are necessary to obtain a stable networ

Number of tasks 2 3

Number of neurons ðNnÞ 180 240
Number of useful neurons ðNuÞ 80 120
Extra cost of hidden neurons 2.25 2

Average number of network re-initialisations 54 338
Average number of neural evaluations 545 3379

Table 4
Results for the proposed neural network model with inhibitor neurons for the scheduling o
20 scheduling cycles. The three last lines highlight the reduction of our proposal in terms of
too small, we present the maximum value found in the total neural network simulations.

Number of tasks 2 3

Number of neurons 84 126
Number of useful neurons 80 120
Extra cost of hidden neurons
Neuron reduction 2.1 1.9

Max number of network re-initialisations 0 0
Average number of neural evaluations 339 539
Gain in number of evaluations 1.6 6.3
is a major drawback of the PFair algorithm, and although our pro-
posal does not target homogeneous multiprocessor, it can provide
interesting alternative for this context.

5.4. Results on heterogeneous architectures

We have applied the proposed model and the model presented
in [22] to an architecture composed of two different types of re-
sources, each type having one execution target available. Table
2a gives the list of tasks with the WCET of each task on the two
execution resources. Table 2b is the input file of the SimulANN

tool. The results of the simulations on a group of tasks varying from
2 to 7 are given in Table 3 for the classical model, and in Table 4 for
our proposal.

For the classical model, the number of network re-initialisations
corresponds to the number of simulations necessary to ensure the
convergence towards a valid solution. For each invalid solution
produced, we need to restart the system. For all the performed
simulations, we noted that approximately 10 neurons are evalu-
ated before stopping the convergence and restart it.

Results in Table 3 show clearly that the total number of neurons
needed to model the problem with the previous approach is signif-
icantly higher than the useful neurons. The extra cost line of the ta-
ble represents the ratio between the total number of neurons Nn

and the number of useful neurons Nu, see Eq. (8). Similarly, this ta-
ble shows that the model requires a number of re-initialisations of
the network which makes its practical use impossible in real-time
in the context of SoCs, where the aim is to calculate the scheduling
in-line.

The scheduling results for the proposed structure of neural net-
work with the concept of inhibitor neurons are given in Table 4.
These results show that the percentage of extra neurons needed
to model the problem remains low and does not increase with
the number of tasks for a given number of execution cycles. We
can note that in the previous proposals, especially in [3], a large
number of hidden neurons are added to the model, which leads
to an increasing convergence time. In our case, the extra costs in-
curred by the inhibitor neurons is 5%, which remains acceptable.
The reduction of the total number of neurons is between a factor
of 1.6 and a factor of 2.1 compared to the previous works. Further-
more, this extra cost does not depend on the number of scheduling
cycles, which is a huge advantage for real-life applications.
itecture having one execution resource of two different types, and for 20 scheduling
k state, but many re-initialisations are necessary to converge towards a valid solution.

4 5 6 7

306 364 416 468
160 200 240 280
1.91 1.82 1.73 1.67

1492 9191 31783 28546
14920 91910 317830 285460

f 2–7 tasks. The architecture has two plans each with one execution resource, and for
total number of neuron evaluations. Because the average number of re-initlisations is

4 5 6 7

168 210 252 294
160 200 240 280

1.05 (+5%)
1.8 1.7 1.65 1.6

0 1 2 5
1025 1170 1583 1951
14.5 78 200 146
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If the hardware cost of the implementation is an important is-
sue, convergence time is also of great interest. On this point, our
solution has a much more significant improvement. The three last
lines of Table 4 show the convergence efficiency of the proposed
approach compared to classic solutions. We can notice that our
proposal greatly reduces the number of network evaluations (up
to a factor of 200) and the number of network re-initilisations.
Moreover, we can note that this benefit will increase with the
application complexity. This is an important characteristic which
reinforces the idea that this type of structure is particularly well
suited for an SoC platform.

Concerning the scheduling for seven tasks, an example of result
is presented in Fig. 16. We can notice that the schedule of each task
is always exclusive, i.e. if a task is scheduled on resource i, this task
is never scheduled on resource j with i – j. For example, tasks 2, 3,
and 6 are scheduled on the execution resource type 1, and tasks 1,
4, 5, and 7 are scheduled on the execution resource type 2. The
figure also shows the inhibitor neurons of each execution plan
(in the grey zones).
Fig. 16. Scheduling example of the proposed neural network model for an application wi
and for 20 scheduling cycles. Each task is scheduled only one time on one of the two exe
neuron is then active.

Fig. 17. Results for a SoC architecture running an application. This application is compos
5.5. Results in the context of a system-on-chip architecture

Modern SoC architectures are composed of several heteroge-
neous resources (typically between five and ten resources) and exe-
cute applications which are composed of several tasks (typically ten
to twenty). In the general case, several tasks are defined for different
resources, while the others are defined for one specific resource. This
section shows the results obtained for a specific architecture which
is composed of five different resources: resource R1 is a GPP, re-
sources R2, R3 and R4 are specialised intellectual property (IP) blocks
and resource R5 is a dynamically reconfigurable accelerator (DRA).
The complete application is composed of 10 tasks and we suppose
that these tasks must be scheduled in 10 cycles. Seven tasks have
been described for the GPP resource ðT2; T3; T4; T6; T8; T9; T10Þ. Three
tasks have been defined for the three IP blocks ðT1; T5; T7Þ. Finally, six
tasks have been also described for DRA ðT2; T3; T6; T8; T9; T10Þ. These
information are summarised in the matrix C (Eq. 19), which defines
the WCET of each task Ti on each resource Rj (1 indicates that the
task cannot be executed on the corresponding resource).
th seven tasks, for an architecture with two plans each with one execution resource,
cution plans. If a task is executed on an execution plan the corresponding inhibitor

ed of ten tasks, which are introduced step by step in the scheduling neural network.
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C ¼ fCi;jg ¼

1 2 2 4 1 4 1 4 4 2
1 1 1 1 1 1 10 1 1 1
1 1 1 1 5 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1
1 2 1 1 1 2 1 2 1 2

�����������

�����������

R1

R2

R3

R4

R5

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

:

ð19Þ

Fig. 17 presents the results obtained on the application with the
number of tasks varying from 1 to 10. The complete model of this
problem requires 10 neurons per task and per resource. So 500 neu-
rons are necessary for the complete neural network. Nevertheless,
because some tasks cannot be scheduled on all resources, the net-
work can be reduced and some neurons can be deleted from the
model. For example, task T1 can only be scheduled on resource R4

so it is not necessary to place neurons for its schedule on the other
resources. On the other side, because task T2 is executable by re-
sources R1 and R5, we need to place 2� 10 neurons for its schedule.

Finally, only 160 neurons are necessary to model this problem.
Fig. 17 shows that the number of fired neurons evolves linearly
with the number of tasks, i.e. linearly with the neural network
complexity. Another important result is the relatively constant
number of evaluations of each neuron. In our example, each neu-
ron is evaluated between 8 and 12 times. These results show that
the time convergence of our proposal remains controlled. This is
mainly due to the limitation of neurons number which ensures a
fast convergence without re-initialization.

6. Complexity

Event if our contribution does not target a software implemen-
tation, we can briefly analyse the complexity of our neural network
in comparison with to the previous solutions.

For each neuron evaluation, the calculation to achieve is gievn
in Eq. (1). In this equation, the sum is done with each neuron con-
nection. In our neural network, each neuron ni;j;k representing the
scheduling cycle k for the task i and for execution resource j needs
to be connected to all other neurons of the same task and for the
same execution resource ðni;j;m8m – kÞ. Furthermore, the neuron
ni;j;k of scheduling cycle k needs to be connected to all other neu-
rons of the same scheduling cycle ðnm;j;k8m – iÞ. Finally, the neuron
ni;j;k needs to be connected to all inhibitor neurons of all other exe-
cution resources ðnhi;m 8m – jÞ The number of multiplications and
additions are then equal to

Nbmult ¼ Nbadd ¼ Sþ T þ R ð20Þ

With S the scheduling cycles, T the number of tasks and R the num-
ber of execution resources.

For the solution presented in [22], each neuron of a specific task
and a specific execution resource needs to be connected to each
other neurons of the same task for each execution resource. In this
case, the number of multiplications and additions are then equal to

Nb0mult ¼ Nb0add ¼ S � Rþ T: ð21Þ

As we can see, our proposal limits the number of connections be-
tween neurons, and this limitation could be interesting for a soft-
ware implementation of the our neural network. However, as
mentionned in the introduction, our objective is to target an efficient
hardware implementation of the neural network, in particular by
exploiting the parallel evolution of the neurons in the network. In
this context, the software complexity is an interesting information,
but does not represent the hardware implementation complexity.
We are currently working on the hardware implementation of the
network in order to optimised the performances, but this part is
out of the scope this article.
7. Discussions

Several studies have been proposed for multiprocessor schedul-
ing and can be divided into two main techniques. The first is the
partionning technique for which each task is firstly assigned to a
processor and then scheduled on the processor. The second is the
global scheduling technique for which tasks are managed globally
and can migrate from a processor to another one. The most effi-
cient algorithm is a global scheduling technique based on propor-
tionate fair scheduling (PFair). This algorithm is known as an
optimal scheduling for periodic and/or sporadic set of tasks. The
complexity of this algorithm is polynomial and depends on the
number of tasks to shedule. Due to its complexity, the PFair algo-
rithm is generally not implemented in multiprocessor systems,
and simpler schedule algorithms, such as EDF (earliest deadline
first), are generally used. Compared with this solution, the number
of neurons of our proposal remains linear for a given number of cy-
cles, as shown in Fig. 17. Indeed, the convergence of the neural net-
work depends on the number of neurons, and, in our context, this
number is defined by the number of tasks to schedule, the total
number of execution resources and the number of cycles of the
scheduling period. In Fig. 17, the dotted line shows that, for a given
number of cycles and a given number of execution resources, the
convergence time is approximatively linear. Due to the inhibitor
neuron behaviour, the number of execution resources do not have
a great impact on the convergence. The number of cycles in the
schedule period and the total number of tasks can limit the use
of our proposal, but because our solution computes the schedule
for a hyper-period (few tens of classical OS ticks, i.e. few tens of
milliseconds), this hyper-period allows a large number of neuron
evaluations. So, the interest of our solution largely depends on
the neural network implementation and on its capability to sup-
port a very fast neuron evaluations. In this way, we are currently
working on an hardware implementation of our neural network.
Due to its very simple computation model, each neuron can be
implemented with a very low hardware cost. Remember that we
focus on tasks scheduling for sytem-on-chip and that, for this type
of systems, a specific hardware block can be developed to ensure a
specific functionality. In this particular context, our proposal can
be more efficient than other classical solutions.
8. Conclusion

In this paper, a new neural network model is proposed to facil-
itate the implementation of the scheduling service in the context of
heterogeneous multiprocessor architectures. Previous neural net-
work models managing heterogeneous architectures have been
adapted from the Hopfield model. They use a very large number
of neurons and the major drawback of these solutions is the diffi-
culty to converge toward a valid solution. The major contributions
of this paper concern the limitation of hidden neurons and the
limitation of the number of ANN re-initializations to ensure the
convergence. To limit the number of neurons, we propose to
replace the hidden neurons of classical solutions by several inhib-
itor neurons. With a particular connectivity between these specific
neurons and the rest of the neural network, we can limit the num-
ber of invalid solutions generated. Based on these inhibitors, a new
structure of a neural network is presented. The main characteristic
is its capacity to always ensure the rapid convergence towards a
valid solution.

We have validated our proposal through simulations, and have
shown the efficiency of our proposition compared to previous
works. Such a network allows us to reduce significantly the number
of neurons necessary to model the problem, since approximatively
two times less neurons are used than in the classical case. The other
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main improvement of our proposal is the substantial reduction (up
to 200) in the number of cycles needed to ensure convergence.

These contributions are important advances for our future
works on defining an hardware implementation of the scheduling
service in the context of SoC architecture. Globally, the limitation
of the network size ensures that the hardware implementation will
be as simple as possible, and thus as fast as possible. Furthermore,
the limitation of the number of network re-initializations is also an
interesting point to ensure that the convergence is fast.

From this neural network model, we are currently working on
the hardware implementation of such a structure. From the appli-
cation’s characteristics, we produce a register–transfer level VHDL
description of the neural network which can be synthetised in an
FPGA circuit. Our preliminary results using Xilinx FPGA circuits
confirm that neural network convergence is reached in a few clock
cycles. Therefore, in the context of SoC architectures, this type of
structure has the capacity to compute efficiently the scheduling
of several tens of tasks in a few cycles.

References

[1] Wayne Wolf, The future of multiprocessor systems-on-chips, in: DAC ’04:
Proceedings of the 41st annual Design Automation Conference, ACM, New
York, NY, USA, 2004, pp. 681–685.

[2] H. Walder, M. Platzner, Reconfigurable hardware operating systems: from
design concepts to realizations, in: Proceedings of the 3rd International
Conference on Engineering of Reconfigurable Systems and Architectures
(ERSA), 2003, pp. 284–287.

[3] C. Cardeira, Z. Mammeri, Preemptive and non-preemptive real-time
scheduling based on neural networks, in: Proceedings of Distributed
Computer Control Systems, Toulouse, France, 1995, pp. 67–72.

[4] C. Liu, J. Layland, Scheduling algorithms for multiprogramming in a hard real-
time environment, Journal of the ACM 20 (1) (1973) 46–61.

[5] J.Y.-T. Leung, J. Whitehead, On the complexity of fixed-priority scheduling of
periodic real-time tasks, Performance Evaluation 2 (4) (1982) 237–250.

[6] C.L. Liu, J.W. Layland, Scheduling algorithms for multiprogramming in a hard-
real-time environment, Journal of the ACM (JACM) 20 (1) (1973) 46–61.

[7] K. Schild, J. Würtz, Off-line scheduling of a real-time system, in: Proceedings of
the ACM Symposium on Applied Computing, Atlanta, USA, 1998, pp. 29–38.

[8] X. Lu, R. Sitters, L. Stougie, A class of on-line scheduling algorithms to minimize
total completion time, Operations Research Letters 31 (3) (2003) 232–236.

[9] N. Megow, A.S. Schulz, On-line scheduling to minimize average completion
time revisited, Operations Research Letters 32 (5) (2004) 485–490.

[10] M. Young, L.C. Shu, Hybrid online/offline scheduling for hard real-time
systems, in: Proceedings of the International Symposium on Real-Time and
Media Systems, Taipei, Taiwan, 1996, pp. 231–240.

[11] A. Srinivasan, P. Holman, J.H. Anderson, S. Baruah, The case for Fair
multiprocessor scheduling, in: Proceedings of the IEEE International
Symposium on Parallel and Distributed Processing, Washington, DC, USA,
2003, pp. 1143–1153.

[12] S. Baruah, N. Fisher, The partitioned multiprocessor scheduling of deadline-
constrained sporadic task systems, IEEE Transactions on Computers 55 (7)
(2006) 918–923.

[13] P. Kohout, B. Ganesh, B. Jacob, Hardware support for real-time operating
systems, in: Proceedings of the Conference on Hardware/Software Codesign
and System Synthesis, Newport Beach, USA, 2003, pp. 45–51.

[14] P. Kuacharoen, M. Shalan, V. Mooney III, A configurable hardware scheduler for
real-time systems, in: Proceedings of the International Conference on
Engineering of Reconfigurable Systems and Algorithms, Las Vegas, USA,
2003, pp. 96–101.

[15] A. Morton, W.M. Loucks, A hardware/software kernel for system on chip
designs, in: Proceedings of the ACM Symposium on Applied Computing,
Nicosia, Cyprus, 2004, pp. 869–875.

[16] C. Cardeira, M. Silva, Z. Mammeri, Handling precedence constraints with
neural network based real-time scheduling algorithms, in: Proceedings of
Euromicro Workshop on Real Time Systems, Toldeo, Spain, 1997, pp. 207–214.

[17] R. Rojas, Neural Networks – A Systematic Introduction, Springer-Verlag, 1996.
[18] G. Tagliarini, J.F. Christ, W.E. Page, Optimization using neural networks, IEEE

Transactions on Computers 40 (12) (1991) 1347–1358.
[19] J.J. Hopfield, D.W. Tank, Neural computation of decisions in optimization

problems, Biological Cybernetics 52 (3) (1985) 141–152.
[20] M.A. Cohen, S. Grossberg, Absolute stability of global pattern formation and

parallel memory storage by competitive neural networks, IEEE Transactions on
Systems, Man, and Cybernetics 13 (5) (1983) 815–826.

[21] S. Grossberg, Studies of Mind and Brain: Neural Principles of Learning,
Perception, Development, Cognition, and Motor Control, Reidel Press, Boston,
1982.
[22] D. Chillet, I. Benkermi, S. Pillement, O. Sentieys, Hardware task scheduling for
heteregeneous SoC architectures, in: Proceedings of the European Signal
Processing Conference, Poznan, Poland, 2007, pp. 1653–1657.

[23] D. Chillet, S. Pillement, O. Sentieys, A neural network model for real-time
scheduling on heterogeneous SoC architectures, in: Proceedings of the IEEE
International Joint Conference on Neural Networks, Orlando, FL, USA, 2007, pp.
102–107.

[24] Dalia Aoun, Anne-Marie Déplanche, Yvon Trinquet, Pfair scheduling
improvement to reduce interprocessor migrations, in: Giorgio Buttazzo,
Pascale Minet (Eds.), 16th International Conference on Real-Time and
Network Systems (RTNS 2008), Rennes France, 2008, pp. 131–138.

[25] Robert P. Dick, David L. Rhodes, Wayne Wolf, Tgff: task graphs for free, in:
CODES/CASHE ’98: Proceedings of the 6th International Workshop on
Hardware/software Codesign, IEEE Computer Society, Washington, DC, USA,
1998, pp. 97–101. <http://ziyang.eecs.umich.edu/dickrp/tgff/>.

Daniel Chillet received the Engineering degree and the
M.S. degree in electronics and signal processing engi-
neering from ENSSAT, University of Rennes, respectively,
in 1992 and in 1994, and the Ph.D. degree in signal
processing and telecommunications from the University
of Rennes, in 1997. He is currently an Associate Professor
of electrical engineering at the University of Rennes and
a member of the CAIRN Research Team at the IRISA
Laboratory. His research interests include memory
hierarchy, reconfigurable resources, real-time systems,
and middleware. All these topics are studied in the
context of SoC design for embedded systems.
Antoine Eiche received the Master degree of computer
science in 2008 from University Louis Pasteur at Stras-
bourg. He is currently a Ph.D. student in signal pro-
cessing and telecommunication at the University of
Rennes. He is a member of the CAIRN INRIA team at the
IRISA laboratory. His research interests include operat-
ing systems with a focus on real-time scheduling,
reconfigurable architectures, and artificial neural
networks.
Sébastien Pillement is an associate professor in the IUT
de Lannion at Rennes 1 University. He is also a research
member in the CAIRN INRIA team of the IRISA Lab at
Rennes 1 University. He received a Ph.D. degree in
Computer Science from the University of Montpellier II.
His research interests include Dynamically Reconfigu-
rable architectures, SoC (system-on-chips) design
methodology and NoC (Network on Chip) based circuits.
He focus his research on designing flexible and efficient
architectures managed in real-time.
Olivier Sentieys received the M.Sc. and Ph.D. degrees in
Electrical Engineering from the University of Rennes, in
1990 and 1993, respectively. After completing his
Habilitation thesis in 1999, he joined University of
Rennes (ENSSAT) and IRISA Laboratory, France, as a full
Professor of Electronics Engineering, in 2002. He is
leading the CAIRN Research Team at INRIA Institute
(national institute for research in computer science and
control) and is a Cofounder of Aphycare Technologies, a
company developing smart sensors for biomedical
applications. His research interests include design of
mobile communication systems, finite arithmetic

effects, low-power and reconfigurable architectures, and cooperation in mobile
systems. He is the author or coauthor of more than 80 journal publications or
published conference papers and holds six patents.

http://ziyang.eecs.umich.edu/dickrp/tgff/

	Real-time scheduling on heterogeneous system-on-chip architectures using an optimised artificial neural network
	Introduction
	Modelling of the scheduling problem with ANN
	A model of ANN with inhibitor neurons
	Optimisation of neural number
	Results
	Validation tools
	Comparison with classical neural network approaches
	Comparison with PFair algorithm
	Results on heterogeneous architectures
	Results in the context of a system-on-chip architecture

	Complexity
	Discussions
	Conclusion
	References


