Abstract—The analytic evaluation of roundoff noise is an interesting approach to analyze the effects of fixed-point implementation of linear filters or controllers. This paper is based on a generic framework to describe controller algorithms. It exhibits the fixed-point implementations (in different schemes) that are associated and the analytic expression of the output roundoff noise power. Finally, the optimal realization problem, according to the roundoff noise power, is considered.

I. INTRODUCTION

The majority of signal processing and control systems are digitally implemented into general purpose microprocessors, DSP\(^1\) or specific computing devices (ASIC\(^2\), FPGA\(^3\), etc.). Since the processor cannot compute with infinite precision, the fixed-point implementation of filters/controllers leads to deterioration in performance. They have two separate origins \([3]\) corresponding to the quantization of coefficients and the roundoff errors in the numerical computations. They can respectively be formalized as parametric errors and numerical noises. If the controller and the target architecture are specified, they both depend on the realization (the mathematical algorithm used and its parameters), the fixed-point representation of the variables and the coefficients, and the software/hardware design. Here only roundoff errors (see \([5]\) for parametric errors) are considered.

The roundoff errors have been studied in two different ways: works in \([7], [14], [3]\) deal with a roundoff noise measure (the Roundoff Noise Gain) unlinked to hardware considerations in order to optimize the realization with respect to that criteria, whereas works in \([12], [10]\) deal with the Signal Quantization Noise Ratio and are more focused on the software/hardware realizations.

Since the equivalent realizations and the HW/SW considerations are not yet exploited, this work aims at combining these two approaches. It is a part of a more global approach, from the filter/controller design to the optimization of the fixed-point coefficients and the final code generation. A Toolbox for Matlab (FWR Toolbox\(^4\)) has been specially developed for this approach.

The objective of this paper is to exhibit the precise fixed-point specification of any given controller realization and to evaluate the global roundoff noise power. Then, since various algorithms exists to numerically realize a linear time invariant filter, it is of interest to consider the optimal implementation problem.

This paper is organized as follows. After presenting the implicit state-space framework in section II, a general roundoff noise analysis, applied to this form, is exhibited in section III. The automatic fixed-point implementation is presented in section IV and roundoff noise power in section V. The optimal design problem and some numerical results are finally proposed in section VI and VII.

\[J \quad 0 \quad 0 \quad 0 \quad T(k+1) \]
\[-K \quad I_n \quad 0 \quad X(k+1) \]
\[-L \quad 0 \quad I \quad Y(k) \]

Definition 1 (Implicit specialized form) Equation (1) recalls the specialized implicit form that explicitly expresses the parametrization and the intermediate variables used:

\[\begin{pmatrix} J & 0 & 0 & T(k+1) \\ -K & I_n & 0 & X(k+1) \\ -L & 0 & I & Y(k) \end{pmatrix} = \begin{pmatrix} 0 & M & N & T(k) \\ 0 & P & Q & X(k) \\ 0 & R & S & U(k) \end{pmatrix} \]

where
- \(J \in \mathbb{R}^{l \times l} \), \(K \in \mathbb{R}^{n \times l} \), \(L \in \mathbb{R}^{p \times l} \), \(M \in \mathbb{R}^{l \times n} \), \(N \in \mathbb{R}^{l \times m} \), \(P \in \mathbb{R}^{n \times n} \), \(Q \in \mathbb{R}^{n \times m} \), \(R \in \mathbb{R}^{p \times n} \), \(S \in \mathbb{R}^{p \times m} \), \(T(k) \in \mathbb{R}^l \), \(X(k) \in \mathbb{R}^n \), \(U(k) \in \mathbb{R}^m \) and \(Y(k) \in \mathbb{R}^p \),
- \(U(k) \) represents the \(m \) inputs, and \(Y(k) \) the \(p \) outputs,
- \(X(k+1) \) is the \(n \) stored states \(X(k) \) is effectively stored from one step to the next, in order to compute \(X(k+1) \) at step \(k \),
- \(T(k+1) \) is the \(l \) intermediate variables in the calculations of step \(k \) (the column of \(0 \) in the second matrix shows that \(T(k) \) is not used for the calculation at step \(k \): that characterizes the concept of intermediate variables).
- the matrix \(J \) is lower triangular with \(1 \) on the diagonal.

\(T(k+1) \) and \(X(k+1) \) form the state-vector: \(X(k+1) \) is stored from one step to the next, while \(T(k+1) \) is computed and used inside one time step.
It is implicitly considered throughout the paper that the computations associated to the realization (1) are associated to the following algorithm:

(i) intermediate variable computation (J is lower triangular, so the first value of $T(k+1)$, $T_1(k+1)$, is first calculated, and then $T_2(k+1)$ using $T_1(k+1)$ and so on (the computation of J^{-1} is not necessary)):

$$J.T(k+1) \leftarrow M.X(k) + N.U(k)$$

(ii) state-vector update:

$$X(k+1) \leftarrow K.T(k+1) + P.X(k) + Q.U(k)$$

(iii) outputs computation:

$$Y(k) \leftarrow L.T(k+1) + R.X(k) + S.U(k)$$

Steps (ii) and (iii) can be swapped in order to reduce the computational delay from input(s) to output(s).

Equation (1) is equivalent in infinite precision to the classical state-space form:

$$\begin{bmatrix}
T(k+1) \\
X(k+1) \\
Y(k)
\end{bmatrix} = \begin{bmatrix}
0 & J^{-1}M & J^{-1}N \\
0 & A_Z & B_Z \\
0 & C_Z & D_Z
\end{bmatrix} \begin{bmatrix}
T(k) \\
X(k) \\
U(k)
\end{bmatrix}$$

Equation (2) corresponds to a different parameterization than the one in eq. (1).

The equivalent transfer function considered is then given by

$$\begin{array}{c}
H : z \mapsto C_Z(zI_n - A_Z)^{-1}B_Z + D_Z
\end{array}$$

In the following, a realization R will be defined in the implicit form by its parameters used for the internal description $R \triangleq (J, K, L, M, N, P, Q, R, S)$. It could also be equivalently written in a compact form $R = (Z, l, m, n, p)$ with

$$Z \triangleq \begin{pmatrix}
-J & M & N \\
K & P & Q \\
L & R & S
\end{pmatrix}$$

The usual realizations (direct forms, state-space, δ-realizations, cascade, parallel, mixed realization, etc.) can be easily expressed in the Implicit State-Space Framework. For example, a δ-state-space realization

$$\begin{align*}
\delta[X(k)] &= A_\delta X(k) + B_\delta U(k) \\
Y(k) &= C_\delta X(k) + D_\delta U(k)
\end{align*}$$

where $\delta = \frac{q}{\Delta}$ (Δ is strictly positive constant, q is the shift-operator) can be expressed as:

$$\begin{bmatrix}
I_n & 0 & 0 \\
-\Delta I_n & I_n & 0 \\
0 & 0 & I
\end{bmatrix} \begin{bmatrix}
T(k+1) \\
X(k+1) \\
Y(k)
\end{bmatrix} = \begin{bmatrix}
0 & A_\delta & B_\delta \\
0 & I_n & 0 \\
0 & C_\delta & D_\delta
\end{bmatrix} \begin{bmatrix}
T(k) \\
X(k) \\
U(k)
\end{bmatrix}$$

This form is well known [3], [13] to be numerically superior to the usual shift-operator, because it generally results in less sensitive implementation with less roundoff noise. Other examples can be found in [5], [4].

III. Roundoff Noise Analysis

A. Preliminaries

The first (μ) and second (σ, ψ) order moments of a noise vector ξ are denoted and defined by:

$$\begin{align*}
\mu_\xi &\triangleq E\{\xi(k)\} \\
\psi_\xi &\triangleq E\left\{\left(\xi(k) - \mu_\xi\right) \left(\xi(k) - \mu_\xi\right)^\top\right\} \\
\sigma_\xi^2 &\triangleq E\left\{\left(\xi(k) - \mu_\xi\right)^\top \left(\xi(k) - \mu_\xi\right)\right\} = tr\left(\psi_\xi\right)
\end{align*}$$

where $E\{\cdot\}$ and $tr(\cdot)$ are respectively the mean and the trace operator.

The following lemma recalls the basic properties of noise transmission through a linear system:

Lemma 1 Assume the input noise, $U(k)$, to be such that

$$E\left\{(U(k) - \mu_U)(U(k) - \mu_U)^\top\right\} = \delta_{i,j} l_i l_j U$$

where $\delta_{i,j}$ represents the Kronecker delta. Denote by $Y(k)$ the resulting output of $U(k)$ through the transfer matrix G. If (A, B, C, D) is a state-space realization of G, the first and second order moments of Y are given by:

$$\begin{align*}
\mu_Y &= (C(I - A)^{-1}B + D)\mu_U \\
\sigma_Y^2 &= tr\left(\psi_U(D^\top D + B^\top W_o B)\right)
\end{align*}$$

where W_o is the observability Gramian of G. W_o is the unique solution of the discrete Lyapunov equation:

$$W_o = A^\top W_o A + C^\top C$$

Proof: It is well known that $C(I - A)^{-1}B + D$ is the DC gain and $\sigma_Y^2 = \|G \varphi_U\|_{22}^2$, with φ_U such that $\psi_U = \varphi_U \varphi_U^\top$. The l_2-norm expression with grammians is then applied. See [15], [6].

B. Roundoff Noise Analysis

Let us consider a realization R described with the implicit form (1), with transfer function H. When implemented, the steps (i) to (iii) are modified by the add of noises $\xi_T(k)$, $\xi_X(k)$ and $\xi_Y(k)$:

$$\begin{align*}
J.T(k+1) &\leftarrow M.X(k) + N.U(k) + \xi_T(k) \\
X(k+1) &\leftarrow K.T(k+1) + P.X(k) + Q.U(k) + \xi_X(k) \\
Y(k) &\leftarrow L.T(k+1) + R.X(k) + S.U(k) + \xi_Y(k)
\end{align*}$$

These noises added depend on:

- the way the computations are organized (the order of the sums) and done,
- the fixed-point representation of the inputs, the outputs, and the fixed-point representation chosen for the states, the intermediate variables and the coefficients.

They are modelled as independent white noise, characterized by their first and second order moments (section V).

Denote ξ the vector with all the added noise sources:

$$\xi(k) \triangleq \begin{pmatrix}
\xi_T(k) \\
\xi_X(k) \\
\xi_Y(k)
\end{pmatrix}$$
Proposition 1 It is then possible to express the implemented system as the initial system with a noise \(\xi'(k) \) added on the output(s) (see figure 1).

\[
\begin{align*}
U(k) & \xrightarrow{\mathcal{R}} Y(k) \\
\xi(k) & \xrightarrow{H\xi} \xi'(k) + Y'(k)
\end{align*}
\]

Fig. 1. Equivalent system, with noises extracted

\(\xi'(k) \) is the noise \(\xi(k) \) through the transfer function \(H\xi \) defined by:

\[
H\xi : z \rightarrow C_Z (zI_n - A_Z)^{-1} M_1 + M_2
\]

(17)

with

\[
M_1 \triangleq (KJ^{-1} I_n 0) \quad (18)
\]

\[
M_2 \triangleq (LJ^{-1} 0 I_{p_2}) \quad (19)
\]

Proof: \(H\xi \) comes from a reformulation of equation (15), with \(\xi \) as one input of the system.

Proposition 2 The output noise power is defined as the power of the noises added on the output(s):

\[
P \triangleq E \left\{ \xi'(k)\xi'^T(k) \right\}
\]

(20)

It is evaluated by:

\[
P = \text{tr} \left(\psi_{\xi} (M_2^T M_2 + M_1^T W_o M_1) \right) + \mu_{\xi} \mu_{\xi}'
\]

(21)

where \(\mu_{\xi}' = (C_Z(I - A_Z)^{-1} M_1 + M_2)\mu_{\xi} \) and \(W_o \) is the observability grammian of the system \(\mathcal{R} \).

Proof: Eq. (20) leads to \(P = \sigma_{\xi}^2 + \mu_{\xi}^2 \mu_{\xi}' \). Then, lemma 1 is applied on noise \(\xi(k) \) through \(H\xi \).

Remark 1 Equation (21) is a good illustration of the relationship between the works done in the hardware/software community and the one done in the control community: \(\psi_{\xi} \) and \(\mu_{\xi} \) depend only on H/W implementation, whereas the other terms only depend on the algorithm used.

IV. FIXED-POINT IMPLEMENTATION

Since each variable can have free fixed-point formats, it exists various fixed-point possible implementations for steps (i) to (iii). This section specifies implementation scheme and fix the fixed-point formats, in order to determine \(\xi(k) \) and then \(\psi_{\xi} \).

A. Fixed-point representation

In the paper, the notation \((\beta, \gamma) \) is used for the fixed-point representation: \(\beta \) is the total wordlength in bits of the representation, whereas \(\gamma \) is the fractional part wordlength (see figure 2). These parameters could be scalars, vectors or matrices, according to the variables they refer to.

\[
\begin{array}{ccccccccc}
\pm 2^{\beta-1} & \ldots & 2^1 & 2^0 & 2^{-1} & \ldots & 2^{-\gamma} \\
\end{array}
\]

Fig. 2. Fixed-point representation

B. Scalar product

As the implementation of eq. (1) only requires scalar products, let us consider the following scalar product:

\[
S = \sum_{i=1}^{n} P_i E_i
\]

(22)

where \((P_i)_{1 \leq i \leq n} \) are given coefficients and \((E_i)_{1 \leq i \leq n} \) some bounded variables.

Let us consider the following very large hypotheses:

- \((\beta, \gamma) \) is the fixed-point format of \(S \), such that there is no overflow when evaluating \(\sum P_i E_i \).
- \((\beta_i, \gamma_i) \) are the fixed-point format of \(E_i \) \((\forall 1 \leq i \leq n) \).
- \((P_i)_{1 \leq i \leq n} \) are given, and represented with \(\beta'_i \) bits. The fixed-point format \((\beta'_i, \gamma'_i) \) can be deduced by:

\[
\gamma'_i = \beta'_i - 1 - \left\lfloor \log_2 |P_i| \right\rfloor
\]

(23)

where the \(\left\lfloor x \right\rfloor \) operation rounds \(x \) to the nearest integer greater than or equal to \(x \).

It is also considered that all the additions are realized by one accumulator with \(\beta_{ADD} \) bits, plus \(\beta_g \) guards bits and that all the additions are done on the same fixed-point format \((\beta_{ADD} + \beta_g, \gamma_{ADD}) \).

Since all the fixed-point formats are defined, some quantization operations (in order to adapt the wordlength and/or the fractional wordlength) could be necessary. Figure 3 shows the complete flow.

\[
\begin{array}{cccccc}
E_1 & \rightarrow & Q_1 \left[(\beta_{ADD} + \gamma_{ADD}) \right] \\
E_2 & \rightarrow & Q_2 \left[(\beta_{ADD} + \gamma_{ADD}) \right] \\
E_3 & \rightarrow & Q_3 \left[(\beta_{ADD} + \gamma_{ADD}) \right] \\
E_4 & \rightarrow & Q_4 \left[(\beta_{ADD} + \gamma_{ADD}) \right] \\
E_5 & \rightarrow & Q_5 \left[(\beta_{ADD} + \gamma_{ADD}) \right]
\end{array}
\]

Fig. 3. Fixed-point formats of the scalar product
1. Accumulator fractional part determination: The common fixed-point format for the additions must be known. It is such that:

- the dynamic of each product can be represented without overflow. As \((\beta_i + 2\gamma_i + \gamma_i)\) is the format of each product, \(\gamma_{\text{ADD}}\) must satisfy \((\forall 1 \leq i \leq n)\):
 \[
 \beta_{\text{ADD}} - 1 - \gamma_{\text{ADD}} \geq \beta_i + 2\gamma_i - \gamma_i - 1 \geq 0
 \]
 \[
 \beta_{\text{ADD}} + \beta - 1 - \gamma_{\text{ADD}} \geq \beta - 1 - \gamma
 \]

- the final result may be represented without overflow with \((\beta_{\text{ADD}} + \beta, \gamma_{\text{ADD}})\) as format, so:
 \[
 \beta_{\text{ADD}} + \beta - 1 - \gamma_{\text{ADD}} \geq \beta - 1 - \gamma
 \]

Then, the condition \(\gamma_{\text{ADD}} \leq \gamma_{\text{ADD}}\), with

\[
\gamma_{\text{ADD}} = \max\left(\beta_{\text{ADD}}, \max_i (\beta_i + 2\gamma_i - \gamma_i)\right)
\]

guarantees no overflow in the evaluation of \(S\).

Moreover, \(\gamma_{\text{ADD}}\) should be the greatest possible in order to minimize the precision loss, but since \(\gamma_{\text{ADD}} \geq \max (\gamma_i + 2\gamma_i)\), there is no more precision loss.

So the following \(\gamma_{\text{ADD}}\) is chosen:

\[
\gamma_{\text{ADD}} = \min\left(\gamma_{\text{ADD}}, \max_i (\gamma_i + 2\gamma_i)\right)
\]

2. Quantization between product and accumulation: In order to align the fixed-point format after the products to the accumulator fixed-point format, there is a potential quantization block (shift) between each product and the accumulation. This scheme is called Roundoff After Multiplication (RAM).

It is also possible to move these shifts into the coefficients, by modifying their format such that the fixed-point format of each multiplication is compatible with the accumulator’s one. In that case, the computational scheme is called Roundoff Before Multiplication (RBM).

So, let us introduce \(\tilde{z}_i\) such that \((\beta_i, \tilde{z}_i)\) is the final fixed-point format for the coefficient \(P_i\):

\[
\tilde{z}_i = \begin{cases} \gamma_i & \text{in RAM scheme} \\ \gamma_{\text{ADD}} - \gamma_i & \text{in RBM scheme} \end{cases}
\]

It is then necessary to add, after the \(i\)th multiplication, a right shift of \(\gamma_i + \tilde{z}_i - \gamma_{\text{ADD}}\) in order to align the formats (so, no shift in RBM case).

3. Final quantization: After the last addition in the accumulator, the result could be quantified to be stored in \(S\). In order to align the accumulator format \((\beta_{\text{ADD}} + \beta, \gamma_{\text{ADD}})\) on the output format \((\beta, \gamma)\), a right shift of \(\gamma_{\text{ADD}} - \gamma\) bits is required.

C. Application to the Implicit Specialized Form

This analyze is applied to the Implicit Specialized Form. Let \(R = (Z, I, m, n, p)\) be a realization and let us consider that:

- the inputs \(U(k)\) (bounded by \(|U|\)) have \((\beta_U, \gamma_U)\) as fixed-point format;

- the outputs, states and intermediate variables are represented with \(\beta_V, \beta_X\) and \(\beta_T\) bits;

- the coefficients are represented with \(\beta_Z\) bits;

- the additions are done by accumulators of \(\beta_{\text{ADD}}\) bits, plus \(\beta_Z\) guards bits \((\beta_{\text{ADD}} \in \mathbb{R}^{(l+p+g+1)})\).

Proposition 3 The outputs, states and intermediate variables’ formats are given by:

\[
\begin{aligned}
\gamma_T &= \beta_T - 1_{l+n+p-1} \max \log_2\left(\|H_{\text{max}}\|_1 |U|\right) \\
\beta_X &= \beta_X - 1_{l+n+p-1} \\
\gamma_Y &= \gamma_Y - 1_{l+n+p-1}
\end{aligned}
\]

where \(1_{k,l} \) represents the matrix of \(\mathbb{R}^{k\times l}\) with all coefficients set to 1, \(\|\cdot\|_1\) the \(l_1\)-norm and

\[
H_{\text{max}} : z \rightarrow N_1 (zI_n - A_Z)^{-1} B_Z + N_2,
\]

\[
N_1 := \left[\begin{array}{c}
J^{-1}\!M
\end{array}\right], N_2 := \left[\begin{array}{c}
0
\end{array}\right]
\]

Proof: \(H_{\text{max}}\) is the transfer function from \(U(k)\) to \(T(k+1), X(k+1)\) and \(Y(k)\) and determine the maximum value for the intermediate variables, the states and the output(s).

Denote \(\gamma_Z\) the binary point position\(^6\) of the coefficients \(Z\):

\[
\gamma_Z = \beta_Z - 1_{l+n+p,l+n+m} - \lceil \log_2|Z| \rceil
\]

The fixed-point formats of the additions are given by:

\[
\gamma_{\text{ADD}} = \max \left(\beta_{\text{ADD}} - \max_{\text{row}} \left(\begin{array}{c}
\beta_T \\
\beta_X \\
\gamma_T
\end{array}\right) - \beta - \gamma_X \right)
\]

\[
\alpha = \max_{\text{row}} \left(\begin{array}{c}
\beta_Z - \gamma_Z + 1_{l+n+p-1} \left(\begin{array}{c}
\beta_T \\
\beta_X \\
\gamma_T
\end{array}\right) - \gamma_X \right)
\]

and \(\max(M)\) returns a column vector with the maximum value of each row of \(M\).

The final alignments are right shifts of \(d_{\text{ADD}}\) bits, with:

\[
d_{\text{ADD}} = \gamma_{\text{ADD}} - \gamma_Z
\]

Denote \(\tilde{\gamma}_Z\) the final binary point position of the coefficients \(Z\), according to RAM or RBM scheme, and \(d_Z\) the shifts needed after each multiplication \((u_{\text{AD}})_{i,j}\) is the right shift needed after the multiplication by \(Z_{i,j}\) in order to align the format after each multiplication. Then:

\[
\tilde{\gamma}_Z = \begin{cases} \gamma_Z & \text{if } \text{RAM} \\
\gamma_{\text{ADD}} \cdot 1_{l+n+m} - 1_{l+n+p-1} & \text{if } \text{RBM} \end{cases}
\]

\(^3\)In order to simplify the expressions, matrix extensions of \(\log_2\), ceil power of 2 are used. For example, if \(M \in \mathbb{R}^{p \times q}\), then \(\log_2(M) \in \mathbb{R}^{p \times q}\) such that \((\log_2(M))_{i,j} \equiv \log_2(M_{i,j})\).

\(^6\)\((\gamma_Z)_{i,j}\) could be \(-\infty\) for null coefficients, but it is not a problem because such coefficients are not implemented.
\[d_Z = \hat{\gamma}_Z + \mathbb{I}_{1+n+p,1} \begin{pmatrix} \gamma_T \\ \gamma_X \\ \gamma_Y \end{pmatrix} - \gamma_{ADD} \cdot \mathbb{I}_{1,l+n+m} \] (37)

\((d_Z \text{ is a null matrix in RBM case}).\)

With \(d_Z, \hat{\gamma}_Z, \gamma_{ADD}, d_{ADD}, \gamma_T, \gamma_X \text{ and } \gamma_Y\), the fixed-point implementation of the controller is entirely defined.

V. OUTPUT NOISE POWER IN RBM SCHEME

Due to lack of place, this section only focuses on RBM scheme (RAM case could be examined in similar way). In Roundoff Before Multiplication case, quantizations only occurs at the end of the additions, when the accumulator result is stored in intermediate variables, states or output(s) and a right shift of \(d_{ADD}\) bits is applied.

Remark 2 in RBM scheme, part of the roundoff errors is transformed in parametric errors, that are not studied here. See [5] for work on transfer function sensitivity.

The lemma 2 recalls the noise produced during shift:

Lemma 2 Let \(x(k)\) be a signal with fixed-point format \((\beta + d, \alpha + d)\). Right shifting \(x(k)\) of \(d\) bits is similar to add to \(x(k)\) the independent white noise \(e(k)\).

The right shift could round \(x(k)\) towards \(-\infty\) (truncation: default behaviour) or toward the nearest integer (nearest rounding: possible with some additional hardware/software operations [11]). If \(d > 0\), the moments of \(e(k)\) are given by:

\[
\begin{array}{c|c|c}
\mu_e & 2^{-\gamma_T} (1 - 2^{-d}) & 2^{-\gamma_T - 1} \\
\sigma_e^2 & 2^{-\gamma_T} (1 - 2^{-2d}) & 2^{-\gamma_T - 1} (1 - 2^{-2d}) \\
\end{array}
\]

else \((d \leq 0)\) \(e(k)\) is null.

Proof: See [2].

It is now possible to define the moments of \(\xi(k)\):

Proposition 4 Denote \(\bar{\gamma} \triangleq \begin{pmatrix} \gamma_T \\ \gamma_X \\ \gamma_Y \end{pmatrix}\) and define \(s_i\) by

\[
\begin{align*}
\mu_\xi & \triangleq \begin{cases}
\gamma_T, & \text{truncation} \\
\gamma_X, & \text{best roundoff}
\end{cases} \\
\sigma_\xi^2 & \triangleq \begin{cases}
2^{-\bar{\gamma}_T} (1 - 2^{-d}) & \text{truncation} \\
2^{-\bar{\gamma}_T - 1} (1 - 2^{-2d}) & \text{best roundoff}
\end{cases}
\end{align*}
\]

Then \(\mu_\xi\) is given by:

\[
(\mu_\xi)_i = \begin{cases}
2^{\bar{\gamma}_T - 1}, & \text{truncation} \\
2^{-\bar{\gamma}_T - 1 - d_{ADD}}, & \text{nearest rounding}
\end{cases}
\]

(40)

and, since these noises are independent, \(\psi_\xi\) is diagonal with:

\[
(\psi_\xi)_{i,i} = s_i 2^{-\bar{\gamma}_T} \frac{1}{12} (1 - 2^{-d_{ADD}})
\]

(41)

Then, with equation 21, the roundoff noise power could be determined.

VI. OPTIMAL DESIGN

Since the Roundoff Noise power depends on the realization chosen to numerically realize the filter, it is of interest to find, among the equivalent realizations set, those with low roundoff noise.

In order to exploit the potential offered by the specialized implicit form in improving implementations, it is necessary to describe sets of equivalent system realizations. The Inclusion Principle introduced by Šiljak and Ikeda [8] in the context of decentralized control, could be extended to the Specialized Implicit Form in order to characterize equivalent classes of realizations [5]. Although this extension gives the formal description of equivalent classes, it is of practical interest to consider only realizations with the same dimensions, where transformation from one realization to another is only a similarity transformation.

Proposition 5 Consider a realization \(\mathcal{R}_0 = (Z_0, l, m, n, p)\). All realizations \(\mathcal{R}_1 = (Z_1, l, m, n, p)\) such that

\[
Z_1 = \begin{pmatrix} \gamma & \mathcal{U}^{-1} \\ \mathcal{W} & \mathcal{U} \end{pmatrix}
\]

(42)

are equivalent (with \(\mathcal{U} \in \mathbb{R}^{n \times n}, \mathcal{Y} \in \mathbb{R}^{l \times l} \text{ and } \mathcal{W} \in \mathbb{R}^{l \times l} \text{ non-singular matrices}).

For particular structured realizations, the transformation matrices \(\mathcal{U}, \mathcal{Y}\) and \(\mathcal{W}\) may be linked (for \(\delta\)-state-space, \(\mathcal{Y} = \mathcal{U}^{-1}\) and \(\mathcal{W} = \mathcal{U}\), see (7) ; and for classical state-space, \(\mathcal{Y} = \mathcal{W} = I_l\)).

Then, the optimal design problem that consists in finding the best realization, among the equivalent realizations set, could be defined:

\[
\mathcal{R}_{\text{opt}} = \arg \min_{\mathcal{R} \in \mathcal{R}_H} J(\mathcal{R})
\]

(43)

where \(J\) is a FWL criteria (output roundoff noise gain, transfer function sensitivity [5], etc.) and \(\mathcal{R}_H\) the set of equivalent realizations.

Due to the size of \(\mathcal{R}_H\), this problem cannot be solved practically: the search is done among equivalent realizations with particular structure (state-space, cascade decomposition, sparse structures, \(\delta\)-state-space, etc.).

Since the measure \(J\) could be non-smooth and/or non-convex, the Adaptive Simulated Annealing (ASA) method has been chosen to solve that problem ([9], [1]).

VII. EXAMPLES

To illustrate the roundoff noise power measure and the optimal design problem, let us consider the following lowpass Butterworth filter:

\[
H(z) = \frac{0.003622 z^2 + 0.007243 z + 0.003622}{z^2 - 1.823 z + 0.8372}
\]

and the associated realizations in Roundoff Before Multiplication scheme, with input, output, coefficients, states, intermediate variables represented with 16 bits and 32 bits...
for the accumulator (no guard bit). $|U| = 20$ (so $\gamma_U = 10$).

The following realizations are considered:

Z_1: direct form II with shift-operator,
Z_2: roundoff noise-optimal state-space realization,
Z_3: roundoff noise-optimal δ-realization (described by eq. (6)), with $\Delta = 2^{-5}$.

The roundoff noise-optimal realizations Z_2 and Z_3 are obtained by solving the optimal design problem for the output roundoff noise measure.

The roundoff noise power predicted by eq. (21) was confirmed by statistical measures on the difference between floating-point realizations and so-determined fixed-point realizations (with fixed-point quantized coefficients).

<table>
<thead>
<tr>
<th>Table I</th>
<th>Roundoff Noise Power and Computational Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>realization</td>
<td>$\text{roundoff noise power}$</td>
</tr>
<tr>
<td>Z_1</td>
<td>3.914e−3</td>
</tr>
<tr>
<td>Z_2</td>
<td>3.903e−7</td>
</tr>
<tr>
<td>Z_3</td>
<td>3.540e−7</td>
</tr>
</tbody>
</table>

The results are given in table I. Z_3 has the lowest roundoff noise power but required more operations than Z_1 and Z_2.

Algorithm 1 presents the fixed-point algorithm associated to realization Z_3 (RBM scheme). If a low tolerance on roundoff noise is required, the simplest implementation Z_1 should not be used.

These results depend on the filter/controller. It is possible to find examples where the optimal state-space realization has a lower roundoff noise than the optimal δ-realization.

Even if it is not the goal of this paper, one could also consider the parametric errors (transfer function sensitivity, pole sensitivity). A global methodology with multi-objectives optimization will be presented in future papers.

VIII. Conclusion

The Implicit State-Space Form provides a general framework for the analysis and design of digital filter implementation in FWL context. The fixed-point format determination for two computational schemes has been exhibited, with a bit-accurate output noise power analysis. It allows to compare different realizations and to find the optimal one (according to roundoff noises). The fixed-point code can be automatically produced.

Our present work focuses on a global methodology to search for the best implementation and to solve tradeoff between sensitivity, roundoff errors, computational resources, etc.

References

