(Calculatrices et documents interdits; durée : 1 heure)

Attention toute réponse devra être précisément justifiée.

Exercice 1 (2 points)

Voici les notes des élèves à un examen de statistique : 3; 4; 5;7;8;9;10;13;15;17;18;20.

Dessiner le diagramme de boîte à moustache de cette série statistique.

Exercice 2

Nous avons interrogé 100 couples et l'on veut savoir s'il y a un lien entre la durée de sommeil et le nombre d'enfants.

Nous souhaitons exprimer le nombre y d'heures de sommeil au cours d'une nuit en fonction du nombre xd'enfants d'un couple. Les résultats suivant sont disponibles :

$$\sum_{i=1}^{100} x_i = 180 \text{ et } \sum_{i=1}^{100} x_i^2 = 424, \sum_{i=1}^{100} y_i = 600 \text{ et } \sum_{i=1}^{100} y_i^2 = 6100 \text{ et } \sum_{i=1}^{100} y_i x_i = 1480.$$
 Pour cet exercice, on attend une réponse sous la forme d'une fraction irréductible.

- a) (1.5 points) Quelle est la moyenne des $((x_i)_{1 \le i \le 100})$? Quelle est la variance des $((y_i)_{1 \le i \le 100})$? Quelle est la covariance des $((x_i)_{1 \le i \le 100})$ et des $((y_i)_{1 \le i \le 100})$?
- b) (2 points) Après avoir donné les formules théoriques permettant de calculer l'équation de la droite de régression de y sur x, appliquez-les aux données de l'énoncé.
- c) (1 point) Donner les formules théoriques pour le coefficient de corrélation et pour le coefficient de détermination.

Exercice 3

Soit $\theta > 0$. Soient $X_1, \ldots X_n$ des variables aléatoires i.i.d. La variable aléatoire X_1 est continue et a pour densité,

$$f(x) = \begin{cases} \frac{1}{\theta} e^{\frac{-x}{\theta}} & \text{si } x > 0\\ 0 & \text{sinon.} \end{cases}$$

- 1)(2 points) Quelle est l'espérance de X_1 ?
- 2)(2 points) Quelle est la variance de X_1 ?
- 3)(1 point) Donner un estimateur $\hat{\theta}$ pour θ .
- 4)(1 point) Est ce que $\hat{\theta}$ est un estimateur sans biais de θ ?

Exercice 4

On veut savoir quelle proportion de la population française a peur des mathématiques. On effectue un sondage aléatoire dans la population française dans le but d'estimer la proportion p de personnes qui ont peur des mathématiques. On interroge 500 personnes prises au hasard dans la population. On appelle X_i la variable aléatoire définie par $X_i = 1$ si la *i*ème personne interrogée a peur des maths, $X_i = 0$ sinon.

- 1. (1 point) Quelle est la loi suivie par le nombre de personnes qui a peur des mathématiques dans un tel échantillon de 500 personnes? On considère que le sondage est fait avec remise.
- 2. (1 point) Énoncer le théorème limite central (pour une suite de variables de même loi que les X_i).
- 3. (2.5 points) Sur 500 personnes interrogées, 50 disent avoir peur des maths. En utilisant l'inégalité de Bienaymé-Tchebychev, donner un intervalle de confiance au niveau 0.95 pour la proportion p. (On pourra penser que comme $0 \le p \le 1$, on peut majorer p(1-p) par 1/4). Une réponse numérique à 10^{-3} près est attendue.
- 4. (3 points) Sur 500 personnes interrogées, 50 disent avoir peur des maths. En utilisant l'approximation fournie par le théorème limite central et le lemme de Slutsky (et la table jointe à l'énoncé) donner un intervalle de confiance au niveau 0,95 pour la proportion p. On pourra utiliser que $\sqrt{0.09/500} = 0.013$ à 10^{-3} près. Une réponse numérique à 10^{-3} près est attendue.

$\Phi(t) = P(X \le t) \text{ pour } X \sim \mathcal{N}(0, t)$, 1)
---	-----	---

t	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0,5	0,50399	0,50798	0,51197	0,51595	0,51994	0,52392	0,5279	0,53188	0,53586
0,1	0,53983	0,5438	0,54776	0,55172	0,55567	0,55962	0,56356	0,56749	0,57142	0,57535
0,2	0,57926	0,58317	0,58706	0,59095	0,59483	0,59871	0,60257	0,60642	0,61026	0,61409
0,3	0,61791	0,62172	0,62552	0,6293	0,63307	0,63683	0,64058	0,64431	0,64803	0,65173
0,4	0,65542	0,6591	0,66276	0,6664	0,67003	0,67364	0,67724	0,68082	0,68439	0,68793
0,5	0,69146	0,69497	0,69847	0,70194	0,7054	0,70884	0,71226	0,71566	0,71904	0,7224
0,6	0,72575	0,72907	0,73237	0,73565	0,73891	0,74215	0,74537	0,74857	0,75175	0,7549
0,7	0,75804	0,76115	0,76424	0,7673	0,77035	0,77337	0,77637	0,77935	0,7823	0,78524
0,8	0,78814	0,79103	0,79389	0,79673	0,79955	0,80234	0,80511	0,80785	0,81057	0,81327
0,9	0,81594	0,81859	0,82121	0,82381	0,82639	0,82894	0,83147	0,83398	0,83646	0,83891
1	0,84134	0,84375	0,84614	0,84849	0,85083	0,85314	0,85543	0,85769	0,85993	0,86214
1,1	0,86433	0,8665	0,86864	0,87076	0,87286	0,87493	0,87698	0,879	0,881	0,88298
1,2	0,88493	0,88686	0,88877	0,89065	0,89251	0,89435	0,89617	0,89796	0,89973	0,90147
1,3	0,9032	0,9049	0,90658	0,90824	0,90988	0,91149	0,91309	0,91466	0,91621	0,91774
1,4	0,91924	0,92073	0,9222	0,92364	0,92507	0,92647	0,92785	0,92922	0,93056	0,93189
1,5	0,93319	0,93448	0,93574	0,93699	0,93822	0,93943	0,94062	0,94179	0,94295	0,94408
1,6	0,9452	0,9463	0,94738	0,94845	0,9495	0,95053	0,95154	0,95254	0,95352	0,95449
1,7	0,95543	0,95637	0,95728	0,95818	0,95907	0,95994	0,9608	0,96164	0,96246	0,96327
1,8	0,96407	0,96485	0,96562	0,96638	0,96712	0,96784	0,96856	0,96926	0,96995	0,97062
1,9	0,97128	0,97193	0,97257	0,9732	0,97381	0,97441	0,975	0,97558	0,97615	0,9767
2	0,97725	0,97778	0,97831	0,97882	0,97932	0,97982	0,9803	0,98077	0,98124	0,98169
2,1	0,98214	0,98257	0,983	0,98341	0,98382	0,98422	0,98461	0,985	0,98537	0,98574
2,2	0,9861	0,98645	0,98679	0,98713	0,98745	0,98778	0,98809	0,9884	0,9887	0,98899
2,3	0,98928	0,98956	0,98983	0,9901	0,99036	0,99061	0,99086	0,99111	0,99134	0,99158
2,4	0,9918	0,99202	0,99224	0,99245	0,99266	0,99286	0,99305	0,99324	0,99343	0,99361
2,5	0,99379	0,99396	0,99413	0,9943	0,99446	0,99461	0,99477	0,99492	0,99506	0,9952
2,6	0,99534	0,99547	0,9956	0,99573	0,99585	0,99598	0,99609	0,99621	0,99632	0,99643
2,7	0,99653	0,99664	0,99674	0,99683	0,99693	0,99702	0,99711	0,9972	0,99728	0,99736
2,8	0,99744	0,99752	0,9976	0,99767	0,99774	0,99781	0,99788	0,99795	0,99801	0,99807
2,9	0,99813	0,99819	0,99825	0,99831	0,99836	0,99841	0,99846	0,99851	0,99856	0,99861

Table pour les grandes valeurs

3	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9	4
0,99865	0,99903	0,99931	0,99952	0,99966	0,99977	0,99984	0,99989	0,99993	0,99995	0,99997