Fiche de TD n°5: Tests

1 Test de Student et de Fisher : exercice à savoir faire et à penser à utiliser dans les autres exercices.

Soit $(X_1,...,X_n)$ un n échantillon de loi $\mathcal{N}(\theta,\sigma^2)$. Soit $(x_1,...,x_n)$ une observation de ce n-échantillon. Pour $u=(u_1,...,u_n)\in\mathbb{R}^n$, on note $\bar{u}_n=\frac{1}{n}\sum_{i=1}^n u_i$ et $s_n^2(u)=\frac{1}{n-1}\sum_{i=1}^n (u_i-\bar{u}_n)^2$.

1) Le premier but de l'exercice est de construire un test pur de niveau $\alpha\in(0,1)$ dans le problème de test de $\mathcal{H}_0: \theta \geq \theta_0$ contre l'alternative $\mathcal{H}_1: \theta < \theta_0$.

Soit t le quantile d'ordre α de la loi $\mathcal{T}(n-1)$.

Montrer que le test pur de région de rejet

$$R_{Student} = \{ u \in \mathbb{R}^n : \bar{u}_n \le \theta_0 + t \frac{s_n(u)}{\sqrt{n}} \},$$

appelé test de Student, est de niveau α . La procédure de décision consiste donc à rejeter \mathcal{H}_0 au niveau α lorsque $(x_1,...,x_n) \in R_{Student}.$

2) Le deuxième but de l'exercice est de construire un test pur de niveau $\alpha \in (0,1)$ dans le problème de test de $\mathcal{H}_0: \sigma \geq \sigma_0$ contre l'alternative $\mathcal{H}_1: \sigma < \sigma_0$.

Soit t le quantile d'ordre α de la loi χ^2_{n-1} .

Montrer que le test pur de région de rejet

$$R_{Fisher} = \{ u \in \mathbb{R}^n : s_n^2(u) \le \sigma_0^2 \frac{t}{n-1} \},$$

appelé test de Fisher, est de niveau α . La procédure de décision consiste donc à rejeter \mathcal{H}_0 au niveau α lorsque $(x_1,...,x_n) \in R_{Fisher}$.

- 2 L'objectif de l'étude est de préciser si la taux de sucre d'un soda respecte les recommandations d'un organisme de santé indépendant, à savoir une valeur inférieure à 0.100 g/ml. Dans des conditions expérimentales assurant l'indépendance des observations, 10 bouteilles de la production sont analysées. Sur cette observation, on observe un taux moyen de 0.103 g/ml de sucre et un écart-type de 0.010 g/ml. On suppose que les 10 observations sont issues d'une même loi gaussienne.
 - 1) Préciser le modèle statistique.
- 2) Construire le test en se plaçant du point de vue du directeur de l'usine de fabrication du soda. Quelle serait sa conclusion au niveau 5%?
- 3) Construire le test en se placant du point de vue de l'organisme de santé. Quelle serait sa conclusion au niveau 5%?
- 3 Soit $X_1, X_2, ..., X_n$ issus d'une loi $\mathcal{E}(\lambda)$. On souhaite tester $\mathcal{H}_0: \lambda = 1/2$ vs. $\mathcal{H}_1: \lambda = 1$. Quelle est la région de rejet au niveau 0,05 pour le test de Neyman Pearson simple?
- |4| Soit à tester $\mathcal{H}_0: \lambda = \lambda_0$ vs. $\mathcal{H}_1: \lambda \neq \lambda_0$ pour le paramètre λ de la loi $\mathcal{E}(\lambda)$ à partir d'un échantillon de taille n. Établir formellement le test du test des vraisemblances maximales. Application : établir le test pour $\lambda_0 = 1/4$ et n = 30 en utilisant la loi asymptotique du test des vraisemblances maximales.
- [5] Soit une loi mère $\mathcal{P}(\lambda)$ où λ est inconnu. On veut tester $\mathcal{H}_0: \lambda = \lambda_0$ vs. $\mathcal{H}_1: \lambda \neq \lambda_0$. Montrer que la région de rejet pour le test des vraisemblances maximales, est de la forme $x \in [c_1, c_2]^c$ avec une certaine contrainte liant c_1 et c_2 . Application : pour $\lambda_0 = 5$ et n = 10 résoudre au plus proche de la solution du des vraisemblances maximales en utilisant une région de rejet conservatrice par rapport au niveau 0,05. Calculer le niveau exact de cette règle.
- 6 Afin de tester la satisfaction des clients à un service donné, on effectue un sondage et on définit une variable aléatoire Y_i de la façon suivante :

 $Y_i = 1$ si le client i est satisfait

 $Y_i = 0$ si le client i n'est pas satisfait

A l'aide d'un échantillon $(Y_1, ..., Y_n)$ de même loi de Bernoulli de paramètre λ on désire tester les hypothèse \mathcal{H}_0 : $\lambda = 0.58$ vs. \mathcal{H}_1 : $\lambda = 0.48$.

- 1) Construire la vraisemblance des observations $y_1, ..., y_n$ et expliciter la région de rejet de \mathcal{H}_0 du test de Neyman-Pearson (pour l'application numérique, on choisira un risque de première espèce $\lambda = 0.1$).
 - 2) Déterminer la puissance de ce test.

7 Un producteur de pneus envisage de changer la méthode de fabrication. La distribution de la durée de vie de ses pneus traditionnels est connue : moyenne 64 000 km, écart-type 8 000 km; elle est pratiquement gaussienne. Dix pneus sont fabriqués avec la nouvelle méthode et une moyenne de 67 300 km est constatée. En supposant que la nouvelle fabrication donnerait une distribution à peu près gaussienne et de même variance, testez l'efficacité de la nouvelle méthode au niveau $\alpha=0,05$. Tracez la fonction puissance de ce test. (aide : test de $\mathcal{H}_0: \lambda < \lambda_0$ contre $\mathcal{H}_1: \lambda \geq \lambda_0$)

8 Une enquête sur la gêne causée par la proximité d'un aéroport a donné, par sexe, les résultats suivants :

Sexe Gêne	Femmes	Hommes	tous
Aucune	75	35	110
Faible	25	27	52
Moyenne	17	8	25
Forte	3	12	15

Identifier la situation d'échantillonnage et poser l'hypothèse nulle correspondant à la question informelle : la gêne est-elle identique pour les deux sexes ? Tester cette hypothèse nulle.

9 On donne, pour une agglomération, la répartition du nombre de jours sans accident, avec un accident etc., parmi 50 jours d'observation tirés au hasard dans une année :

nombre d'accidents	nombre de jour		
0	21		
1	18		
2	7		
3	3		
4	1		

Tester que la répartition du nombre quotidien d'accidents suit une loi de Poisson. Aide : on effectuera le test du khi-deux en regroupant les catégories de façon à ne pas avoir de fréquences inférieures à 5. Pour simplifier on estimera λ par l'estimation usuelle du maximum de vraisemblance.

10 On lance 450 fois un dé à 6 faces. On obtient les résultats suivants

Numéro de la face observé	1	2	3	4	5	6
Effectif observé	62	50	76	68	111	83

Est ce que le dé est bien équilibré? (On pourra faire un test du chi 2 d'adéquation).

11 Dans un hôpital psychiatrique, on a recensé les résultats de 490 patients face à un certain médicament, on a note la saison pendant laquelle le médicament a été pris ainsi que le résultat.

Saison	Réaction au médicament	non réaction au médicament
Printemps	55	64
Eté	59	60
Automne	52	63
Hiver	60	77

Y-a-t-il un lien entre la saison et la réaction au médicament au seuil 5%? (On pourra faire un test du chi 2 d'indépendance).