## Partiel n°3

Il sera tenu compte du soin apporté à la rédaction.

Durée 2 heures. Vous pourrez utiliser votre feuille recto-verso de note et vous pouvez utiliser une calculatrice simple pour faire vos calculs élémentaires.

Attention toute réponse devra être précisément justifiée. Une réponse oui ou non ne sera pas suffisante afin d'avoir les points.

I Soit le modèle d'échantillonage suivant :  $X_1, ..., X_n$  i.i.d. de loi  $Q_\theta$ ,  $\theta > 0$  où  $Q_\theta$  est la loi sur  $\mathbb{R}$  de densité

$$f_{\theta}(x) = \theta x^{\theta - 1} \mathbb{1}_{[0,1]}(x).$$

Le paramètre d'intérêt est  $\theta$ .

- [a] Écrire le modèle sous la forme d'un triplet, espace d'observation, tribu, famille de probabilités.
- [b] Quelle est l'estimateur du maximum de vraisemblance du paramètre  $\theta$ , noté  $\hat{\theta}_1$ ?
- [c] Quelle est la loi de  $Y_i = -\ln(X_i)$ ?
- [d] Quelle est la vitesse de convergence de l'estimateur  $\hat{\theta}_1$ ?
- [e] Donner un intervalle de confiance asymptotique à 98 pourcents de  $\theta$ .
- [f] Calculer le moment d'ordre 1 de la loi  $Q_{\theta}$ , et en déduire un estimateur par la méthode des moments noté  $\hat{\theta}_2$ . Est-il consistant?
- [g] Quel est la vitesse de convergence de l'estimateur  $\hat{\theta}_2$ ?
- [h] On désire effectuer le test de seuil 0.05, pour l'hypothèse nulle  $\mathcal{H}_0: \theta = \theta_0$ , contre l'hypothèse alternative  $\mathcal{H}_1: \theta = \theta_1$  avec  $\theta_1 > \theta_0$ .
- [i] Déterminer la statistique du test de Neyman-Pearson et donner la région critique de ce test. On écrira la zone de rejet du test sous la forme d'une inégalité contenant les observations et des quartiles (d'une loi à déterminer).
- [j] Quel est l'erreur de deuxième espèce de ce test (en fonction de quantiles et fonction de répartition de lois à déterminer)?
- [k] Maintenant on désire effectuer le test du rapport des vraisemblances maximales de seuil 0.05, pour l'hypothèse nulle  $\mathcal{H}'_0$ :  $\theta = 1$ , contre l'hypothèse alternative  $\mathcal{H}_1$ :  $\theta \neq 1$ . On écrira la zone de rejet du test sous la forme d'une inégalité contenant les observations et des quartiles (d'une loi à déterminer).
  - 2 Modèle à deux variables explicatives On considère le modèle de régression suivant :

$$\forall i \in \{1, ..., n\} \quad y_i = \beta_1 + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \beta_4 x_{i,4} + \epsilon_i.$$

Les  $x_{i,j}$  sont des variables exogènes du modèle, les  $\epsilon_i$  sont des variables aléatoires indépendantes, de loi normale centrée admettant la même variance  $\sigma^2$ . En posant :

$$X = \begin{pmatrix} 1 & x_{1,2} & x_{1,3} & x_{1,4} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n,2} & x_{n,3} & x_{n,4} \end{pmatrix} \quad \text{et} \quad Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix},$$

on a observé

$$X'X = \begin{pmatrix} 20 & 20 & 0 & 0 \\ 20 & 60 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix}, \qquad X'Y = \begin{pmatrix} 10 \\ 20 \\ 15 \\ 10 \end{pmatrix}, \qquad Y'Y = 63, 5.$$

- [a] Déterminer la valeur de n, la moyenne des  $x_{i,2}$ , le coefficient de corrélation des  $x_{i,2}$  et des  $x_{i,3}$ .
- [b] Estimer  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ ,  $\beta_4$ ,  $\sigma^2$  par la méthode des moindres carrés ordinaires.
- [c] Donner un intervalle de confiance de niveau 95 pourcent pour  $\beta_2$ .
- [d] En déduire un test de seuil 0.05, pour l'hypothèse nulle  $\mathcal{H}_0$ :  $\beta_2 = 1$ , contre l'hypothèse alternative  $\mathcal{H}_1$ :  $\beta_2 \neq 1$ . Est-ce que vous rejetez le test?
- 3 Chez un individu adulte, le logarithme du dosage en d-dimères, variable que nous noterons X, est modélisé par une loi normale d'espérance  $\mu$  et de variance  $\sigma^2$ . La variable X est un indicateur de risque cardio-vasculaire : on considère que chez les individus sains,  $\mu$  vaut -1, alors que chez les individus à risque,  $\mu$  vaut 0. Dans les deux cas, la valeur de  $\sigma^2$  est la même : 0.09.
  - [a] Le Dr. Espoir ne souhaite pas alarmer inutilement ses patients. Quelles hypothèses  $\mathcal{H}_0$  et  $\mathcal{H}_1$  choisiratil de tester? Donner la règle de décision pour son test, au seuil de 1%, et au seuil de 5%.
  - [b] Calculer le risque de deuxième espèce et la puissance des tests de la question précédente. Dr. Pessimiste a pour point de vue qu'il vaut mieux alarmer à tort un patient plutôt que de ne pas l'avertir d'un risque réel. Quelles hypothèses  $\mathcal{H}_0$  et  $\mathcal{H}_1$  choisira-t-elle de tester? Donner la règle de décision pour son test, au seuil de 1%, et au seuil de 5%.
  - [c] Donner la règle de décision du test de seuil 0.05, pour l'hypothèse nulle  $\mathcal{H}_0': \mu = -1$ , contre l'hypothèse alternative  $\mathcal{H}_1': \mu \neq -1$ .
- $\boxed{4}$  On jette n=120 fois un dé et on observe  $\mathbf{x}=(\mathbf{x}_1,...\mathbf{x}_n)$  les 120 numéros relevés sur la face du dé regroupés dans ce tableau

| face du dé          | 1  | 2  | 3  | 4  | 5  | 6  |
|---------------------|----|----|----|----|----|----|
| Nombre de résultats | 18 | 22 | 18 | 19 | 20 | 23 |

On désire tester si ce dé est truqué ou non.

- [a] Effectuer un test du  $\chi^2$  avec un risque  $\alpha=0.05$  et conclure.
- [b] Un non-statisticien propose le test suivant Rejet de  $\mathcal{H}_0$  si

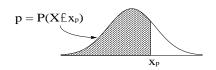
$$\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\frac{7}{2}\right)^{2}>s_{\alpha}$$

où  $s_{\alpha}$  est un seuil dépendant du risque de première espèce  $\alpha$ . Rappeler la loi approchée de  $\frac{1}{n} \sum_{i=1}^{n} X_i$  résultant de l'application du théorème de la limite centrale. En déduire une expression du seuil  $s_{\alpha}$  en fonction de  $\alpha$  et de l'inverse d'une fonction de répartition (à bien définir).

### $\Phi(t) = P(X \le t) \text{ pour } X \sim \mathcal{N}(0, 1)$

| t   | 0       | 0,01    | 0,02    | 0,03    | 0,04    | 0,05    | 0,06    | 0,07    | 0,08    | 0,09    |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0   | 0,5     | 0,50399 | 0,50798 | 0,51197 | 0,51595 | 0,51994 | 0,52392 | 0,5279  | 0,53188 | 0,53586 |
| 0,1 | 0,53983 | 0,5438  | 0,54776 | 0,55172 | 0,55567 | 0,55962 | 0,56356 | 0,56749 | 0,57142 | 0,57535 |
| 0,2 | 0,57926 | 0,58317 | 0,58706 | 0,59095 | 0,59483 | 0,59871 | 0,60257 | 0,60642 | 0,61026 | 0,61409 |
| 0,3 | 0,61791 | 0,62172 | 0,62552 | 0,6293  | 0,63307 | 0,63683 | 0,64058 | 0,64431 | 0,64803 | 0,65173 |
| 0,4 | 0,65542 | 0,6591  | 0,66276 | 0,6664  | 0,67003 | 0,67364 | 0,67724 | 0,68082 | 0,68439 | 0,68793 |
| 0,5 | 0,69146 | 0,69497 | 0,69847 | 0,70194 | 0,7054  | 0,70884 | 0,71226 | 0,71566 | 0,71904 | 0,7224  |
| 0,6 | 0,72575 | 0,72907 | 0,73237 | 0,73565 | 0,73891 | 0,74215 | 0,74537 | 0,74857 | 0,75175 | 0,7549  |
| 0,7 | 0,75804 | 0,76115 | 0,76424 | 0,7673  | 0,77035 | 0,77337 | 0,77637 | 0,77935 | 0,7823  | 0,78524 |
| 0,8 | 0,78814 | 0,79103 | 0,79389 | 0,79673 | 0,79955 | 0,80234 | 0,80511 | 0,80785 | 0,81057 | 0,81327 |
| 0,9 | 0,81594 | 0,81859 | 0,82121 | 0,82381 | 0,82639 | 0,82894 | 0,83147 | 0,83398 | 0,83646 | 0,83891 |
| 1   | 0,84134 | 0,84375 | 0,84614 | 0,84849 | 0,85083 | 0,85314 | 0,85543 | 0,85769 | 0,85993 | 0,86214 |
| 1,1 | 0,86433 | 0,8665  | 0,86864 | 0,87076 | 0,87286 | 0,87493 | 0,87698 | 0,879   | 0,881   | 0,88298 |
| 1,2 | 0,88493 | 0,88686 | 0,88877 | 0,89065 | 0,89251 | 0,89435 | 0,89617 | 0,89796 | 0,89973 | 0,90147 |
| 1,3 | 0,9032  | 0,9049  | 0,90658 | 0,90824 | 0,90988 | 0,91149 | 0,91309 | 0,91466 | 0,91621 | 0,91774 |
| 1,4 | 0,91924 | 0,92073 | 0,9222  | 0,92364 | 0,92507 | 0,92647 | 0,92785 | 0,92922 | 0,93056 | 0,93189 |
| 1,5 | 0,93319 | 0,93448 | 0,93574 | 0,93699 | 0,93822 | 0,93943 | 0,94062 | 0,94179 | 0,94295 | 0,94408 |
| 1,6 | 0,9452  | 0,9463  | 0,94738 | 0,94845 | 0,9495  | 0,95053 | 0,95154 | 0,95254 | 0,95352 | 0,95449 |
| 1,7 | 0,95543 | 0,95637 | 0,95728 | 0,95818 | 0,95907 | 0,95994 | 0,9608  | 0,96164 | 0,96246 | 0,96327 |
| 1,8 | 0,96407 | 0,96485 | 0,96562 | 0,96638 | 0,96712 | 0,96784 | 0,96856 | 0,96926 | 0,96995 | 0,97062 |
| 1,9 | 0,97128 | 0,97193 | 0,97257 | 0,9732  | 0,97381 | 0,97441 | 0,975   | 0,97558 | 0,97615 | 0,9767  |
| 2   | 0,97725 | 0,97778 | 0,97831 | 0,97882 | 0,97932 | 0,97982 | 0,9803  | 0,98077 | 0,98124 | 0,98169 |
| 2,1 | 0,98214 | 0,98257 | 0,983   | 0,98341 | 0,98382 | 0,98422 | 0,98461 | 0,985   | 0,98537 | 0,98574 |
| 2,2 | 0,9861  | 0,98645 | 0,98679 | 0,98713 | 0,98745 | 0,98778 | 0,98809 | 0,9884  | 0,9887  | 0,98899 |
| 2,3 | 0,98928 | 0,98956 | 0,98983 | 0,9901  | 0,99036 | 0,99061 | 0,99086 | 0,99111 | 0,99134 | 0,99158 |
| 2,4 | 0,9918  | 0,99202 | 0,99224 | 0,99245 | 0,99266 | 0,99286 | 0,99305 | 0,99324 | 0,99343 | 0,99361 |
| 2,5 | 0,99379 | 0,99396 | 0,99413 | 0,9943  | 0,99446 | 0,99461 | 0,99477 | 0,99492 | 0,99506 | 0,9952  |
| 2,6 | 0,99534 | 0,99547 | 0,9956  | 0,99573 | 0,99585 | 0,99598 | 0,99609 | 0,99621 | 0,99632 | 0,99643 |
| 2,7 | 0,99653 | 0,99664 | 0,99674 | 0,99683 | 0,99693 | 0,99702 | 0,99711 | 0,9972  | 0,99728 | 0,99736 |
| 2,8 | 0,99744 | 0,99752 | 0,9976  | 0,99767 | 0,99774 | 0,99781 | 0,99788 | 0,99795 | 0,99801 | 0,99807 |
| 2,9 | 0,99813 | 0,99819 | 0,99825 | 0,99831 | 0,99836 | 0,99841 | 0,99846 | 0,99851 | 0,99856 | 0,99861 |

#### Table pour les grandes valeurs


| ſ | 3       | 3,1     | 3,2     | 3,3     | 3,4     | 3,5     | 3,6     | 3,7     | 3,8     | 3,9     | 4       |
|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| ſ | 0,99865 | 0,99903 | 0,99931 | 0,99952 | 0,99966 | 0,99977 | 0,99984 | 0,99989 | 0,99993 | 0,99995 | 0,99997 |

## Percentage Points of the Chi-Square Distribution

| Degrees of | Probability of a larger value of x 2 |        |        |        |        |       |       |       |       |  |
|------------|--------------------------------------|--------|--------|--------|--------|-------|-------|-------|-------|--|
| Freedom    | 0.99                                 | 0.95   | 0.90   | 0.75   | 0.50   | 0.25  | 0.10  | 0.05  | 0.01  |  |
| 1          | 0.000                                | 0.004  | 0.016  | 0.102  | 0.455  | 1.32  | 2.71  | 3.84  | 6.63  |  |
| 2          | 0.020                                | 0.103  | 0.211  | 0.575  | 1.386  | 2.77  | 4.61  | 5.99  | 9.21  |  |
| 3          | 0.115                                | 0.352  | 0.584  | 1.212  | 2.366  | 4.11  | 6.25  | 7.81  | 11.34 |  |
| 4          | 0.297                                | 0.711  | 1.064  | 1.923  | 3.357  | 5.39  | 7.78  | 9.49  | 13.28 |  |
| 5          | 0.554                                | 1.145  | 1.610  | 2.675  | 4.351  | 6.63  | 9.24  | 11.07 | 15.09 |  |
| 6          | 0.872                                | 1.635  | 2.204  | 3.455  | 5.348  | 7.84  | 10.64 | 12.59 | 16.81 |  |
| 7          | 1.239                                | 2.167  | 2.833  | 4.255  | 6.346  | 9.04  | 12.02 | 14.07 | 18.48 |  |
| 8          | 1.647                                | 2.733  | 3.490  | 5.071  | 7.344  | 10.22 | 13.36 | 15.51 | 20.09 |  |
| 9          | 2.088                                | 3.325  | 4.168  | 5.899  | 8.343  | 11.39 | 14.68 | 16.92 | 21.67 |  |
| 10         | 2.558                                | 3.940  | 4.865  | 6.737  | 9.342  | 12.55 | 15.99 | 18.31 | 23.21 |  |
| 11         | 3.053                                | 4.575  | 5.578  | 7.584  | 10.341 | 13.70 | 17.28 | 19.68 | 24.72 |  |
| 12         | 3.571                                | 5.226  | 6.304  | 8.438  | 11.340 | 14.85 | 18.55 | 21.03 | 26.22 |  |
| 13         | 4.107                                | 5.892  | 7.042  | 9.299  | 12.340 | 15.98 | 19.81 | 22.36 | 27.69 |  |
| 14         | 4.660                                | 6.571  | 7.790  | 10.165 | 13.339 | 17.12 | 21.06 | 23.68 | 29.14 |  |
| 15         | 5.229                                | 7.261  | 8.547  | 11.037 | 14.339 | 18.25 | 22.31 | 25.00 | 30.58 |  |
| 16         | 5.812                                | 7.962  | 9.312  | 11.912 | 15.338 | 19.37 | 23.54 | 26.30 | 32.00 |  |
| 17         | 6.408                                | 8.672  | 10.085 | 12.792 | 16.338 | 20.49 | 24.77 | 27.59 | 33.43 |  |
| 18         | 7.015                                | 9.390  | 10.865 | 13.675 | 17.338 | 21.60 | 25.99 | 28.87 | 34.80 |  |
| 19         | 7.633                                | 10.117 | 11.651 | 14.562 | 18.338 | 22.72 | 27.20 | 30.14 | 36.19 |  |
| 20         | 8.260                                | 10.851 | 12.443 | 15.452 | 19.337 | 23.83 | 28.41 | 31.41 | 37.57 |  |
| 22         | 9.542                                | 12.338 | 14.041 | 17.240 | 21.337 | 26.04 | 30.81 | 33.92 | 40.29 |  |
| 24         | 10.856                               | 13.848 | 15.659 | 19.037 | 23.337 | 28.24 | 33.20 | 36.42 | 42.98 |  |
| 26         | 12.198                               | 15.379 | 17.292 | 20.843 | 25.336 | 30.43 | 35.56 | 38.89 | 45.64 |  |
| 28         | 13.565                               | 16.928 | 18.939 | 22.657 | 27.336 | 32.62 | 37.92 | 41.34 | 48.28 |  |
| 30         | 14.953                               | 18.493 | 20.599 | 24.478 | 29.336 | 34.80 | 40.26 | 43.77 | 50.89 |  |
| 40         | 22.164                               | 26.509 | 29.051 | 33.660 | 39.335 | 45.62 | 51.80 | 55.76 | 63.69 |  |
| 50         | 27.707                               | 34.764 | 37.689 | 42.942 | 49.335 | 56.33 | 63.17 | 67.50 | 76.15 |  |
| 60         | 37.485                               | 43.188 | 46.459 | 52.294 | 59.335 | 66.98 | 74.40 | 79.08 | 88.38 |  |

# Table des quantiles de la v.a. de Student

Fournit les quantiles  $x_{_p}$  tels que  $\ P(X \, \dot{\mathbb{E}} x_{_p}) = p$  pour  $X \sim t_{_{dl}}$ 



| р   | 0.7500 | 0.9000 | 0.9500 | 0.9750  | 0.9900  | 0.9950  | 0.9975   | 0.9990   |
|-----|--------|--------|--------|---------|---------|---------|----------|----------|
| dl  |        |        |        |         |         |         |          |          |
| 1   | 1.0000 | 3.0780 | 6.3140 | 12.7060 | 31.8210 | 63.6570 | 127.3213 | 318.3088 |
| 2   | 0.8160 | 1.8860 | 2.9200 | 4.3030  | 6.9650  | 9.9250  | 14.0891  | 22.3271  |
| 3   | 0.7650 | 1.6380 | 2.3530 | 3.1820  | 4.5410  | 5.8410  | 7.4533   | 10.2145  |
| 4   | 0.7410 | 1.5330 | 2.1320 | 2.7760  | 3.7470  | 4.6040  | 5.5976   | 7.1732   |
| 5   | 0.7270 | 1.4760 | 2.0150 | 2.5710  | 3.3650  | 4.0320  | 4.7733   | 5.8934   |
| 6   | 0.7180 | 1.4400 | 1.9430 | 2.4470  | 3.1430  | 3.7070  | 4.3168   | 5.2076   |
| 7   | 0.7110 | 1.4150 | 1.8950 | 2.3650  | 2.9980  | 3.4990  | 4.0293   | 4.7853   |
| 8   | 0.7060 | 1.3970 | 1.8600 | 2.3060  | 2.8960  | 3.3550  | 3.8325   | 4.5008   |
| 9   | 0.7030 | 1.3830 | 1.8330 | 2.2620  | 2.8210  | 3.2500  | 3.6897   | 4.2968   |
| 10  | 0.7000 | 1.3720 | 1.8120 | 2.2280  | 2.7640  | 3.1690  | 3.5814   | 4.1437   |
| 11  | 0.6970 | 1.3630 | 1.7960 | 2.2010  | 2.7180  | 3.1060  | 3.4966   | 4.0247   |
| 12  | 0.6950 | 1.3560 | 1.7820 | 2.1790  | 2.6810  | 3.0550  | 3.4284   | 3.9296   |
| 13  | 0.6940 | 1.3500 | 1.7710 | 2.1600  | 2.6500  | 3.0120  | 3.3725   | 3.8520   |
| 14  | 0.6920 | 1.3450 | 1.7610 | 2.1450  | 2.6240  | 2.9770  | 3.3257   | 3.7874   |
| 15  | 0.6910 | 1.3410 | 1.7530 | 2.1310  | 2.6020  | 2.9470  | 3.2860   | 3.7328   |
| 16  | 0.6900 | 1.3370 | 1.7460 | 2.1200  | 2.5830  | 2.9210  | 3.2520   | 3.6862   |
| 17  | 0.6890 | 1.3330 | 1.7400 | 2.1100  | 2.5670  | 2.8980  | 3.2225   | 3.6458   |
| 18  | 0.6880 | 1.3300 | 1.7340 | 2.1010  | 2.5520  | 2.8780  | 3.1966   | 3.6105   |
| 19  | 0.6880 | 1.3280 | 1.7290 | 2.0930  | 2.5390  | 2.8610  | 3.1737   | 3.5794   |
| 20  | 0.6870 | 1.3250 | 1.7250 | 2.0860  | 2.5280  | 2.8450  | 3.1534   | 3.5518   |
| 21  | 0.6860 | 1.3230 | 1.7210 | 2.0800  | 2.5180  | 2.8310  | 3.1352   | 3.5272   |
| 22  | 0.6860 | 1.3210 | 1.7170 | 2.0740  | 2.5080  | 2.8190  | 3.1188   | 3.5050   |
| 23  | 0.6850 | 1.3190 | 1.7140 | 2.0690  | 2.5000  | 2.8070  | 3.1040   | 3.4850   |
| 24  | 0.6850 | 1.3180 | 1.7110 | 2.0640  | 2.4920  | 2.7970  | 3.0905   | 3.4668   |
| 25  | 0.6840 | 1.3160 | 1.7080 | 2.0600  | 2.4850  | 2.7870  | 3.0782   | 3.4502   |
| 26  | 0.6840 | 1.3150 | 1.7060 | 2.0560  | 2.4790  | 2.7790  | 3.0669   | 3.4350   |
| 27  | 0.6840 | 1.3140 | 1.7030 | 2.0520  | 2.4730  | 2.7710  | 3.0565   | 3.4210   |
| 28  | 0.6830 | 1.3130 | 1.7010 | 2.0480  | 2.4670  | 2.7630  | 3.0469   | 3.4082   |
| 29  | 0.6830 | 1.3110 | 1.6990 | 2.0450  | 2.4620  | 2.7560  | 3.0380   | 3.3962   |
| 30  | 0.6830 | 1.3100 | 1.6970 | 2.0420  | 2.4570  | 2.7500  | 3.0298   | 3.3852   |
| 35  | 0.6820 | 1.3060 | 1.6900 | 2.0300  | 2.4380  | 2.7240  | 2.9960   | 3.3400   |
| 40  | 0.6810 | 1.3030 | 1.6840 | 2.0210  | 2.4230  | 2.7040  | 2.9712   | 3.3069   |
| 45  | 0.6800 | 1.3010 | 1.6790 | 2.0140  | 2.4120  | 2.6900  | 2.9521   | 3.2815   |
| 50  | 0.6790 | 1.2990 | 1.6760 | 2.0090  | 2.4030  | 2.6780  | 2.9370   | 3.2614   |
| 100 | 0.6770 | 1.2900 | 1.6600 | 1.9840  | 2.3640  | 2.6260  | 2.8713   | 3.1737   |
| inf | 0.6745 | 1.2816 | 1.6449 | 1.9600  | 2.3263  | 2.5758  | 2.8070   | 3.0902   |