
“Simple” Corner-Edge Asymptotics

MONIQUE DAUGE

Abstract. I try to describe the Corner-Edge Asymptotics in a polyhedral cone in the
simplest way possible. You may argue that this is still involved, but nature is as it is... The
French version of my title could be, with reference to a well known series of computer
books and with certain humor, “Les asymptotiques coins-arêtes pour les Nuls”.
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1. GEOMETRY , COORDINATES
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Let C be a cone inR
3 with corner c . Let G ⊂ S

2 be the section ofC , i.e. the
intersection ofC with the unit sphereS2 centered inc . We assume that the boundary
of G is smooth, except in one point,a , that we will call “the angular point” ofG .
This means that the coneC has one edgee which is the ray originating inc and going
througha .
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We assume that in a conical neighborhood ofe , the coneC coincides with a wedge∗

W , which means that there exists a neighborhoodVa of a in S
2 such that in the cone

Ve defined as the union of the rays originating inc and going through any point ofVa ,
there holds

C ∩ Ve = W ∩ Ve .

Let ω be the opening of the wedgeW .

We chooseCartesian coordinatesx = (x, y, z) such that:
• the point (0, 0, 0) is c ,
• the half-line {(0, 0, z), z > 0} is the edgee ,
• the half-plane{(x, 0, z), x > 0, z ∈ R} is a side of the wedgeW .

The associatedcylindrical coordinatesare (r, θ, z) wherer =
√
x2 + y2 and the

angleθ is chosen such thatθ = 0 is the equation of the half-line{(x, 0), x > 0} in
the (x, y) plane. The wedgeW is described in cylindrical coordinates as

W =
{
(x, y, z) | r > 0, θ ∈ (0, ω), z ∈ R

}
.

The associatedspherical coordinatesare (ρ, ϑ) where ρ =
√
x2 + y2 + z2 .

Here ϑ denotes any coordinate system inS
2 . In the neighborhoodVe of e , we may

define the homogeneous (with respect toρ ) coordinatesX , Y and R by

X =
x

ρ
, Y =

y

ρ
and R =

r

ρ
=

√
X2 + Y 2 .

We note that in the neighborhoodVa of a , the couple(X,Y ) can be taken as coordi-
nate system forϑ .

The coneC is described in spherical coordinates as

C =
{
(x, y, z) | ρ > 0, ϑ ∈ G

}
.

Finally, let κ > 0 be such that the cone defined as{(x, y, z), r < κρ} is
contained in the conical neighborhoodVe .

We end this series of definitions by the notationB(c, T ) for the ball centered inc
with radiusT .

∗A wedge, or dihedron, is a three-dimensional domain which coincides with the product of an infinite
plane sector byR .
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2. THE OPERATOR AND ITS REDUCED FORMS AT EDGE & CORNER

Although any strongly elliptic systemL in AGMON-DOUGLIS-NIRENBERG sense
with constant coefficients could be considered, we treat for simplicity the case whenL
is a system of operators of degree2 without lower order terms. We write

L = L(∂x, ∂y, ∂z) .

The edge singularities alonge will be generated by the non-tangential part ofL , i.e. the
operator obtained fromL by removing the derivatives∂z which are tangential along the
edge. Thus we define

Le := L(∂x, ∂y, 0) .

We also need to writeLe in polar coordinates(r, θ) . There exists an operatorLe of
degree2 with coefficients depending smoothly onθ only such that

Le(∂x, ∂y) = r−2
Le(θ; r∂r, ∂θ) .

The associated symbol isC 	 α 
−→ Le(θ;α, ∂θ) , see§3.

The corner singularities are related to the full operatorL that we write in spherical
coordinates as

L(∂x, ∂y, ∂z) = ρ−2
Lc(ϑ; ρ∂ρ, ∂ϑ) ,

with a second order operatorLc with smooth coefficients depending onϑ ∈ G . We
have advantage to writeLc in the special fitted coordinates(ρ,X, Y ) in the conical
neighborhoodVe , which yields:

L(∂x, ∂y, ∂z) = ρ−2
Lc(X,Y ; ρ∂ρ, ∂X, ∂Y ) .

The associated symbol isC 	 λ 
−→ Lc(X,Y ;λ, ∂X, ∂Y ) , see§3.

For any complex numberλ , the operatorLc(X,Y ;λ, ∂X, ∂Y ) acts onG , which
has the angular pointa . The operatorMa which will determine its singularities ata is
defined as

Ma(∂X, ∂Y ) = principal part
{
Lc(0, 0; 0, ∂X, ∂Y )

}
.

There holds

Lemma 2.1 The homogeneous operators of degree2 with constant coefficientsMa and
Le coincide with each other.

The lemma results from the formula

(∂X, ∂Y , ρ∂ρ) = ρ(∂x, ∂y, ∂z) + O (r) , r → 0,

where O (r) means operators of first order in∂x , ∂y , ∂z with coefficientsaj(x)
such thatr−1+|β|∂β

xaj(x) is bounded for anyj and β .
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3. MELLIN SYMBOLS AT EDGE AND CORNER

Let us consider the Dirichlet boundary conditions forL .

The associated Mellin symbolMe at the edgee is the operator valued function
C 	 α 
−→ Me(α) where Me(α) is defined as

Me(α) : H1
0(0, ω) −→ H−1(0, ω)

ϕ 
−→ Le(θ;α, ∂θ)ϕ . (3.1)

The associated Mellin symbolMc at the cornerc is the operator valued function
C 	 λ 
−→ Mc(λ) where Mc(λ) is defined as

Mc(λ) : H1
0(G) −→ H−1(G)

ψ 
−→ Lc(X,Y ;λ, ∂X, ∂Y )ψ . (3.2)

The operator valued functionsα 
→ Me(α)−1 and λ 
→ Mc(λ)−1 are mero-
morphic in C with finite dimensional polar part. LetA and L be respectively the sets
of their poles. As a consequence of the ellipticity ofL , any stripReα ∈ [ξ0, ξ1] con-
tains at most a finite number of elements ofA and any stripReλ ∈ [η0, η1] contains
at most a finite number of elements ofL .

Hypothesis 3.1We assume for simplicity that the poles ofα 
→ Me(α)−1 and λ 
→
Mc(λ)−1 are simple.

The index of the operatorsMe(α) and Mc(λ) is independent ofα and λ , thus
is 0 . ThereforeMe(α) and Mc(λ) are invertible if and only if their kernels are{0} .

Definition 3.2 For α ∈ A , we call multiplicity of α the dimension ofker Me(α)
and we make the convention thatwe repeatα in A according to its multiplicity, which
allows for defining bases ofker Me(α) by simply indexing them byα ∈ A , and
similarly for λ ∈ L . We denote these bases

ϕ[α], α ∈ A and ψ[λ], λ ∈ L .
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4. CORNER ASYMPTOTICS

We are interested in the structure of anyu satisfying

∀T > 0, u ∈ H1(C ∩ B(0, T )), u
∣∣
∂C

= 0, Lu = f with f ∈ C
∞(C) .

(4.1)
Any solution u of (4.1) is C∞(C) , i.e. C∞ inside C , and we are interested in its
structure asx → c , and in particular in the neighborhood of the edgee .

Hypothesis 4.1We assume for simplicity thatf ≡ 0 in B(c, 1) .

Under Hypotheses 3.1 and 4.1, there existcoefficientscλ ∈ C for any λ ∈ L with
Reλ > −1

2
such thatu ∼

∑
−1

2
< Re λ cλ ρ

λψ[λ](ϑ) in the sense of asymptotic

expansions asρ → 0 , which means that for anyη > −1
2

there holds

u =
∑

−1
2

< Re λ < η

cλ ρ
λψ[λ](ϑ) + uη

rem , c (4.2)

Here theremainderuη
rem , c = uη

rem , c(ρ, ϑ) satisfies† for all ϑ fixed in G

sup
ρ ∈ (0,1]

ρ−η
∣∣uη

rem , c(ρ, ϑ)
∣∣ < ∞ . (4.3)

This means that, roughly,uη
rem , c(ρ, ϑ) is a O (ρη) as ρ → 0 , but be careful about

the fact that thesup in (4.3) depends onϑ ∈ G and may blow up asϑ → a .

Thus, expansion (4.2) does not yield any extra regularity along the edgee .

Remark 4.2 Expansion(4.2)has the simplest possible expression due to the homogeneity
of the operatorL . If L has lower order terms, the asymptotics contains supplementary
“shadow” terms and has the more complicated form:

u =
∑

Re λ > −1/2

∑
n∈N

Re λ+n < η

cλ ρ
λ+nψn[λ](ϑ) + uη

rem , c. (4.4)

Here N is the French notation for the set of non-negative integers{0, 1, 2, . . .} and
ψ0[λ] = ψ[λ] .

†(4.3) can be differentiated with respect toρ , i.e. for any integerk ∈ N , we have

sup
ρ ∈ (0,1]

ρ−η+k
∣∣∂k

ρu
η
rem , c(ρ, ϑ)

∣∣ < ∞ .
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5. EDGE ASYMPTOTICS

First note that we may takeρ as the variable along the edgee , since z coincides
with ρ on e . We make the further hypothesis

Hypothesis 5.1We assume for simplicity that for allα ∈ A with positive real part and
all positive integern > 0 , the complex numberα + n does not belong toA .

Under Hypotheses 3.1, 4.1 and 5.1, there existfunctionsdefined one , ρ 
→ dα(ρ)
for any α ∈ A with Reα > 0 such that for anyξ > 0 there holds in the conical
neighborhoodVe :

u =
∑

Re α>0

∑
n∈N

Re α+n < ξ

∂n
ρdα(ρ) rα+nϕn[α](θ) + uξ

rem , e (5.1)

Here the angular functionsϕ0[α] are the originalϕ[α] and for n ≥ 1 , the ϕn[α]
are constructed from theϕ[α] by recurrence. On the other hand, theremainderuξ

rem , e

satisfies for allz fixed in (0, 1] ‡

sup
r∈(0,κρ]
θ∈[0,ω]

r−ξ
∣∣uξ

rem , e(x, y, z)
∣∣ < ∞ . (5.2)

The positive constantκ is that introduced in§1.

Thus, roughly,uξ
rem , e(x, y, z) is a O

(
rξ

)
depending onz ∈ e as r → 0 , but

the abovesup is a function ofz which may blow up asz → 0 , i.e. asx → c .

The coefficientsdα are the edge coefficients, orStress Intensity Factors, but the
expansion (5.1) does not yield any extra regularity at the cornerc .

Remark 5.2 The structure of the asymptotics(5.1)has the same level of complexity as the
generalized expansion(4.4), because the operatorL is not homogeneous with respect to
the only variables(x, y) . The “shadow” termsϕn[α] come from the terms containing
derivatives∂z in L .

‡(5.2) can be differentiated with respect to(x, y) , i.e. for any multi-indexβ ∈ N
2 , we have

sup
r∈(0,κρ]
θ∈[0,ω]

r−ξ+|β|∣∣∂β
x,yu

ξ
rem , e(x, y, z)

∣∣ < ∞ .
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6. EXPANSION OF THE CORNER SPHERICAL SINGULAR FUNCTIONS

The corner spherical singular functionsψ[λ] are solutions of the Dirichlet problem
in G

ψ ∈ H1
0(G), Lc(X,Y ;λ, ∂X, ∂Y )ψ = 0,

thus associated with a smooth (!) right hand side. Therefore these functionsψ[λ] can be
expanded at the angular pointa in G : there existcoefficientsγα[λ] for any α ∈ A

with Reα > 0 such that for anyξ > 0 there holds

ψ[λ](X,Y ) =
∑

Re α>0

∑
n∈N

Re α+n < ξ

γα[λ] Rα+nϕ̃n[α](θ) + ψξ
rem , a[λ] (6.1)

Here the angular functions̃ϕ0[α] coincide with the originalϕ[α] , cf Lemma 2.1, and
for n ≥ 1 , the ϕ̃n[α] are constructed from theϕ[α] by recurrence. On the other
hand, theremainderψξ

rem , a[λ] is such that§

sup
(X,Y ) ∈ Va

R−ξ
∣∣ψξ

rem , a[λ]
∣∣ < ∞ . (6.2)

Multiplying (6.1) by ρλ and using thatr = ρR , we obtain

ρλψ[λ] =
∑

Re α>0

∑
n∈N

Re α+n < ξ

ρλ−α−nγα[λ] rα+nϕ̃n[α](θ) + ρλψξ
rem , a[λ] . (6.3)

But, as a consequence of the equationMc(λ)ψ[λ] = 0 , the function v[λ](x) :=
ρλψ[λ] satisfies (4.1) withf = 0 . Therefore, we have also the edge expansion (5.1)
for v[λ] , i.e.

ρλψ[λ] =
∑

Re α>0

∑
n∈N

Re α+n < ξ

∂n
ρ δα[λ](ρ) rα+nϕn[α](θ) + vξ

rem , e[λ] , (6.4)

for some edge coefficientsδα[λ] . For each fixedρ , the remaindersρλψξ
rem , a[λ] and

vξ
rem , e[λ] are O

(
rξ

)
. Therefore we may identify the asymptotics (6.3) and (6.4) and

obtain that
δα[λ](ρ) = ρλ−αγα[λ] . (6.5)

§(6.2) can be differentiated with respect to(X,Y ) , i.e. for any multi-indexβ ∈ N
2 , we have

sup
(X,Y ) ∈ Va

R−ξ+|β|∣∣∂β
X,Y ψξ

rem , a[λ]
∣∣ < ∞ .
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7. EDGE EXPANSION OF THE CORNER REMAINDER

In the previous section we have obtained the edge expansion of the singular terms
ρλψ[λ] in the corner expansion (4.2). We may also expand along the edgee the re-
mainderuη

rem , c . Let η > −1
2

be fixed.

Under Hypotheses 3.1, 4.1 and 5.1, there existfunctions defined one , ρ 
→ d (η)
α (ρ)

for any α ∈ A with Reα > 0 such that for anyξ > 0 there holds in the conical
neighborhoodVe :

uη
rem , c =

∑
Re α>0

∑
n∈N

Re α+n < ξ

∂n
ρd

(η)
α (ρ) rα+nϕn[α](θ) + uη,ξ

rem , c , e (7.1)

The coefficientd (η)
α satisfies¶

sup
ρ ∈ (0,1]

ρ−η+Re α|d (η)
α (ρ)| < ∞ . (7.2)

The remainderuη,ξ
rem , c , e satisfies‖

sup
x ∈ B(c,1)

ρ−η+ξr−ξ
∣∣uη,ξ

rem , c , e(x)
∣∣ < ∞ . (7.3)

Note that the above asymptotics is like expansion (5.1). The supplementary infor-
mation is that the expansion of a term which is flat at the corner involves terms (edge
coefficients and remainder) which are also flat at the corner.

¶(7.2) can be differentiated, i.e. for any integerk ∈ N , we have

sup
ρ ∈ (0,1]

ρ−η+Re α+k
∣∣∂k

ρd
(η)
α (ρ)

∣∣ < ∞ .

‖(7.3) can be differentiated in any direction, i.e. for any multi-indexβ ∈ N
3 , we have

sup
x ∈ B(c,1)

ρ−η+ξr−ξ+|β|∣∣∂β
xu

η,ξ
rem , c , e(x)

∣∣ < ∞ .
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8. CORNER EXPANSION OF THE EDGE COEFFICIENTS

By (6.3), (6.4) and (6.5) we obtain the edge expansion of the corner singularities in
the form

ρλψ[λ] =
∑

Re α>0

∑
n∈N

Re α+n < ξ

γα[λ] ∂n
ρ (ρλ−α) rα+nϕn[α](θ) + ρλψξ

rem , e[λ] .

(8.1)

Inputting edge expansions (8.1) and (7.1) into the corner expansion (4.2) and identi-
fying with the edge expansion (5.1) we obtain that for anyα ∈ A with Reα > 0 the
edge coefficientdα expands asρ → 0 , for any η > −1

2
:

dα(ρ) =
∑

−1
2

< Re λ < η

cλ γα[λ] ρλ−α + d (η)
α (ρ) (8.2)

with d (η)
α (ρ) = O

(
ρη−Re α

)
.
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9. CORNER-EDGE AND EDGE-CORNER EXPANSIONS OF SOLUTION

Neither the corner expansion (4.2) nor the edge expansion (5.1) have a remainder
which is smooth at the corner and the edge at the same time. The “good” remainder is
that of (7.1). Combining (4.2) and (7.1) we obtain the corner-edge asymptotics for anyη
and ξ :

u =
∑

−1
2

< Re λ < η

cλ ρ
λψ[λ] +

∑
Re α>0

∑
n∈N

Re α+n < ξ

∂n
ρd

(η)
α rα+nϕn[α] + uη,ξ

rem , c , e (9.1)

The edge-corner expansion is obtained by a re-combination of terms in (9.1) using
(8.1) and (8.2): for anyξ and η ,

u =
∑

Re α>0

∑
n∈N

Re α+n < ξ

∂n
ρdα rα+nϕn[α] +

∑
−1

2
< Re λ < η

cλ ρ
λψξ

rem , e[λ] + uη,ξ
rem , c , e (9.2)

Remark 9.1 Note that expansion(9.1)is “canonical” from the point of view of the Mellin
symbolsMc and Me , since the original basesψ[λ] and ϕ[α] are present there. On
the contrary, only the remainder terms of the basesψ[λ] are present in expansion(9.2).
But expansion(9.2) has the full edge coefficients, and not only their remainders as in
expansion(9.1).
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10. WHAT IS THE STRONGEST SINGULARITY ?

This question is somewhat illusive concerning expansions (9.1) and (9.2), since both
corner andedge singularityhave to be present in order to obtain a regular remainder.
But concerning the expansion (8.2) of the edge coefficients, it makes sense to know if
Reλ − Reα is ≥ 0 or not.

We first remark thatthe weaker is the edge singularity, the larger isReα and the
smaller is Reλ − Reα , which is an expression of the loss of regularity of the edge
coefficient asReα increases (in finite regularity theories).

But, in general, one is interested bythe edge coefficients associated with the lowest
value of Reα . We will give examples in crack theory, where the edge coefficients are
of particular importance.

For γ ∈ (0, 2π) let the coneCγ be defined asR3 \ Γγ where Γγ is the plane
sector of openingγ contained in the planey = 0 and with one of its sides equal to the
line {(0, 0, z), z > 0} . Let Gγ be the section ofCγ on the sphereS2 . The cone
Cγ has two (similar) edges, and the coefficients along each of its edges have a similar
asymptotics (8.2).

The edge exponentsα are the half-integers(general result from [4]),therefore the
first one is 1

2
. Let λ1(γ) be the first corner exponent, that isλ ∈ L such thatReλ >

−1
2

with least real part.

Case whenL = ∆ .

Then λ1(γ) = −1
2

+
√
µ(γ) + 1

4
where µ(γ) is the first eigenvalue of the

Laplace-Beltrami operator onGγ with Dirichlet conditions. By the monotonicity of
Dirichlet eigenvalues,γ 
→ µ(γ) is an increasing function, thereforeγ 
→ λ1(γ) is
also increasing.

On the other hand, we know the values ofλ1(γ) for particular values of the opening
γ . For γ = π , Cπ is the wedge of openingω = 2π , andλ1(π) coincides with the
least edge exponent, i.e.λ1(π) = 1

2
. We remark that, in this case the asymptotics (8.2)

is degenerated (it is but a Taylor expansion) since the “corner” is now artificial.

As γ → 0 , the domainGγ tends to the whole sphereS2 and λ1(γ) tends to0 .
As γ → 2π , the domainGγ tends to the union of two disjoint half-spheres andλ1(γ)
tends to1 .

As a conclusion,

λ1(γ) − 1
2

is < 0 if 0 < γ < π and is> 0 if π < γ < 2π . (10.1)

Case whenL is the elasticity operator.

Then, we still have (for similar reasons) thatλ1(π) = 1
2

, that λ1(γ) tends to0 as
γ → 0 and thatλ1(γ) tends to1 as γ → 2π (the same still holds forλ2 and λ3 ).
The monotonicity is known for isotropic materials in the region−1

2
≤ λ ≤ 1

2
.
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11. NEUMANN BOUNDARY CONDITIONS

The definitions and results of sections 3.-9. can be extended to any boundary condition
which covers the operatorL . The Neumann condition is of particular interest in fracture
mechanics and has special features.

When Neumann conditions are imposed, the corresponding edge and corner spectra
A and L always containα = 0 and λ = 0 respectively corresponding to constant
ϕ[α] andψ[λ] . The associated “singularities”rαϕ[α] and ρλψ[λ] are then constant
too, therefore are regular.

Therefore, we may exclude theseϕ[α] and ψ[λ] from the basis of singular func-
tions. Then anything in expansions of§3.-9. goes in the same wayexceptconcerning the
conditions on the different remainders. The Neumann remainders are the sum of a part
which satisfies exactly the same “flatness” conditions than in (4.3), (5.2), (6.2) and (7.3),
and a smooth part.

We may also discuss, like for Dirichlet conditions, what is the smallest between the
first “useful” α andλ . Let us consider the same example of the family of cracked cones
Cγ for γ ∈ (0, 2π) and L = ∆ .

The first edge exponent is still1
2

. As for the first corner exponents,λ1(γ) , it is still
given by the formula

λ1(γ) = −1
2

+
√
µ(γ) + 1

4

where µ(γ) is now the firstnon-zeroeigenvalue of the Laplace-Beltrami operator on
Gγ with Neumann conditions.

Thanks to the special structure of the familyγ 
→ Gγ (the variation of the domains
concern zero-measure sets), we still have a monotonicity property for Neumann eigenval-
ues, but in the converse direction than for Dirichlet:γ 
→ µ(γ) is a decreasing function,
thereforeγ 
→ λ1(γ) is also decreasing.

For the Neumann case, we also have thatλ1(π) = 1
2

.

As γ → 0 , the domainGγ tends to the whole sphereS2 and, as we have to remove
the first (zero) Neumann eigenvalue,λ1(γ) tends to1 . As γ → 2π , the domainGγ

tends to the union of two disjoint half-spheres. The bottom of the limit spectrum is double
zero, corresponding to two (possibly different) constants on each half-sphere. Only one
of them has to be removed, corresponding to equal constants. Thereforeλ1(γ) tends to
0 .

The situation is then inverted with respect to Dirichlet conditions:

λ1(γ) − 1
2

is < 0 if π < γ < 2π and is> 0 if 0 < γ < π . (11.1)
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12. WITHOUT SIMPLIFICATIONS

1. If we do not assume hypotheses 3.1 and 5.1 any more, then we have to add a level
of summation in all asymptotics for logarithmic termsrα logj r and ρλ logk ρ .

2. If we assume only that the right hand sidef is C∞(C) but without being zero
near the cornerc , thenthere are minor changes concerning the edge asymptotics
(extra rα logj r terms appear forα ∈ N ∩ A ). As for the corner asymptotics,
in general it is necessary to considerN ∪ L insteadL , corresponding to homo-
geneous singular solutionρ|β|+2ψβ to problem (4.1) with right hand sidexβ for
any β ∈ N

3 . And the remainders will be the sum of a flat part satisfying (4.3),
(5.2), (6.2) and (7.3), and of a smooth part.

3. If f has a finite Sobolev regularityHs , then the expansions are finite, the edge
coefficientsdα have finite Sobolev regularity depending onα and s , and in order
to have remainders with the correct regularityHs+2 , it is necessary to use special
regularization of edge coefficients which act as lifting of traces from the edge to the
cone.

4. If L has lower order terms but still constant coefficients,the structure of edge
asymptotics requires a new level of summation since the order of derivationn of
the edge coefficientdα is only ≤ than the exponent shift (in the power ofr )
and no more equal.As for corner asymptotics, we have to add “shadow” terms
ρλ+nψn[λ] .

5. If L has a multi-order, the powers ofr and ρ are multi-powers.

6. If L has variable coefficients, the corner expansion (4.2) still holds with the intro-
duction of shadow terms, but the edge exponents will depend in general onρ and
they may cross each other or have branching points, which cause changes in the
structure in edge asymptotics., see [2, 1, 3].

Endo-references for corner-edge asymptotics [6, Ch.16-17], exposed anew in [5, 7].

See also [9] and [8].
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