“Simple” Corner-Edge Asymptotics

MoNIQUE DAUGE

Abstract. | try to describe the Corner-Edge Asymptotics in a polyhedral cone in the
simplest way possible. You may argue that this is still involved, but nature is asitis... The
French version of my title could be, with reference to a well known series of computer
books and with certain humor, “Les asymptotiques coiréstes pour les Nuls”.
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1. GEOMETRY, COORDINATES

Let C be a cone inR?® with cornerc. Let G C S? be the section ofC, i.e. the
intersection of C with the unit sphereS? centered inc. We assume that the boundary
of G is smooth, except in one poing, that we will call “the angular point” ofG .
This means that the con€ has one edge which is the ray originating irc and going
througha.



We assume that in a conical neighborhoo@gthe coneC coincides with a weddge
W , which means that there exists a neighborhdad of a in S such that in the cone
V. defined as the union of the rays originatingdnand going through any point oV, ,
there holds
CNV,=WnV,.

Let w be the opening of the wedg® .
We chooseCartesian coordinates = (x, y, z) such that:
e the point(0,0,0) is c,
e the half-line {(0,0, z), z > 0} is the edgee,
e the half-plane{(x, 0, z), = > 0, z € R} is a side of the wedgdV .

The associatedylindrical coordinatesare (r, 6, z) wherer = /22 + y? and the
angle @ is chosen such tha? = 0 is the equation of the half-lind («, 0), > 0} in
the (x,y) plane. The wedgdV is described in cylindrical coordinates as

W = {(mvyaz) | »>0,0¢€ (0,w), 2 ER}-

The associatedpherical coordinatesre (p,9) where p = /x2 + y2 + 22.
Here ¥ denotes any coordinate systemSA. In the neighborhoodV, of e, we may
define the homogeneous (with respecigd coordinatesX , Y and R by

x=2 yv=Y and R="= /x2+ V2.
p

P P
We note that in the neighborhood, of a, the couple(X,Y’) can be taken as coordi-
nate system fon .

The coneC is described in spherical coordinates as

C={(y.2)| p>0,9€C}

Finally, let K > 0 be such that the cone defined §¢x,y, z), r < kp} is
contained in the conical neighborhodd, .

We end this series of definitions by the notatiB{c, T") for the ball centered irc
with radius T .

*A wedge, or dihedron, is a three-dimensional domain which coincides with the product of an infinite
plane sector byR .



2. THE OPERATOR AND ITS REDUCED FORMS AT EDGE & CORNER

Although any strongly elliptic systenl, in AGMON-DOUGLIS-NIRENBERG sense
with constant coefficients could be considered, we treat for simplicity the case when
is a system of operators of degr@ewithout lower order terms. We write

L = L(8,,8,,d,).

The edge singularities along will be generated by the non-tangential partof i.e. the
operator obtained fronl. by removing the derivative®, which are tangential along the
edge. Thus we define

L := L(04,0,,0).

We also need to writelL, in polar coordinategr, 8) . There exists an operata?’, of
degree2 with coefficients depending smoothly &h only such that
Le(0z,0y) = r2%.(0;70,,0) .

The associated symbol 8§ 5 a —— %, (0; o, Og) , Sees3.

The corner singularities are related to the full operalothat we write in spherical
coordinates as
L(ama 8y9 8z) - P_Qiﬂc(ﬂ; papa 819) ’

with a second order operataf,, with smooth coefficients depending ah € G. We
have advantage to writeZ, in the special fitted coordinatep, X,Y") in the conical
neighborhoodV, , which yields:

L(aaz? ayv az) = p_2$C(X, Y; pap? aX’ aY) .

The associated symbol i 5 A — Z.(X,Y; A\, dx,y) , sees3.

For any complex numbeA , the operator.Z. (X, Y; A, 8x, 8y) actsonG , which
has the angular poini . The operatorM, which will determine its singularities at is
defined as

M, (9x, 8y) = principal part{.%.(0, 0; 0, dx, By) }.

There holds

Lemma 2.1 The homogeneous operators of deg2®iith constant coefficientdZ, and
L. coincide with each other.

The lemma results from the formula
(0x,0y, p0y) = p(0y, 0y, 0;) + O (r), 7T —0,

where &' (r) means operators of first order i@, , 9,, 9. with coefficients a;(x)
such thatr—1+18198q;(x) is bounded for anyj and 3.
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3. MELLIN SYMBOLS AT EDGE AND CORNER

Let us consider the Dirichlet boundary conditions fbr.

The associated Mellin symbdt. at the edgee is the operator valued function
C 35 a— M.(a) where Mi.(a) is defined as

Me(a) : Hi(0,w) — H'(0,w)
P iﬂe(‘g;a,ae)w- (31)

The associated Mellin symbadbt. at the cornerc is the operator valued function
C 3 A — M (A) where Mt (A) is defined as

M.(N\) : HY(G) — HYG)
77b = gc(XaY;AaaXaaY)w' (32)

The operator valued functiona — M.(a)~! and A — M. (A)~! are mero-
morphic in C with finite dimensional polar part. Le2l and £ be respectively the sets
of their poles. As a consequence of the ellipticity bf any stripRe a € [&g, &1] con-
tains at most a finite number of elementsf and any stripRe A € [ne, n1] contains
at most a finite number of elements &f.

Hypothesis 3.1 We assume for simplicity that the poles@f— 9t.(a)~! and A —
M. (A)~ are simple.

The index of the operator®i. () and Mi.(A) is independent oix and A, thus
is 0. ThereforeMt.(a) and Mi.(A) areinvertible if and only if their kernels arf0} .

Definition 3.2 For a € A, we call multiplicity of o« the dimension ofker 9. ()
and we make the convention thaé repeata in 21 according to its multiplicitywhich
allows for defining bases oker Mt.(a) by simply indexing them bya € 2, and
similarly for A € £. We denote these bases

plal, a € 2 and P[A], A € L.



4. CORNER ASYMPTOTICS

We are interested in the structure of anysatisfying
vT > 0, uw € H'(CN B(0,T)), 0, Lu=f with f € ¥>=(C).
(4.1)
Any solution u of (4.1) is €>°(C), i.e. € inside C, and we are interested in its
structure asx — c, and in particular in the neighborhood of the edge

u’ac =

Hypothesis 4.1 We assume for simplicity thaf = 0 in B(c, 1).

Under Hypotheses 3.1 and 4.1, there exist forany A € £ with

ReX > —3 such thatu ~ Z_% <Rex €2 P P[A](9) in the sense of asymptotic

expansions ag — 0, which means that for any > —% there holds

u o= ) PYNW) + ul,, . (4.2)
—1<ReX<n
Here theremainderu, = =l (p,?) satisfied forall 9 fixedin G
sup p_"}ufem,c(p, ¥)| < oo. 4.3)
p € (0,1]

This means that, roughly”.  .(p, ) isa & (p") as p — 0, but be careful about

the fact that thesup in (4.3) depends ony € G and may blow up as¥ — a.
Thus, expansion (4.2) does not yield any extra regularity along the edge
Remark 4.2 Expansior(4.2)has the simplest possible expression due to the homogeneity

of the operatorL . If L has lower order terms, the asymptotics contains supplementary
“shadow” terms and has the more complicated form:

w o= > D e N + ul, . (4.4)

ReA>—1/2 mneN
ReXd4+n<n

Here N is the French notation for the set of non-negative integfs 1,2, ...} and

Yo[A] = p[A].

(4.3) can be differentiated with respect to, i.e. for any integerk € N, we have

sup p_"+k|8’;u;’em’c(p, 9)| < co.
pPE (011]



5. EDGE ASYMPTOTICS

First note that we may take as the variable along the edgg since z coincides
with p on e. We make the further hypothesis

Hypothesis 5.1 We assume for simplicity that for atk € 21 with positive real part and
all positive integern > 0, the complex numbetx + n does not belong t&( .

Under Hypotheses 3.1, 4.1 and 5.1, there existtionsdefined one, p — d.(p)
forany a € A with Rea > 0 such that for any¢ > 0 there holds in the conical
neighborhoodV, :

u o= > Y 3da(p) T Ten[a](0) + ul, . (5.1)

Rea>0 neN
Rea+n<¢g

Here the angular functiong,[a] are the originalp[a] and for n > 1, the ¢, [a]
are constructed from theo[a] by recurrence. On the other hand, teenainderu$

satisfies for allz fixed in (0,1]*

sup r_slufem e(sc,y,z)| < o0o. (5.2)
7€ (0,kp] ’
6€[0,w]

The positive constank is that introduced ifg1.

Thus, roughly,uf, .. . (z,y,2) isa ¢ (r*) dependingonz € e asr — 0, but

the abovesup is a function of z which may blowupaszs — 0,i.e. asx — c.

The coefficientsd, are the edge coefficients, &tress Intensity Factordut the
expansion (5.1) does not yield any extra regularity at the coener

Remark 5.2 The structure of the asymptotit& 1) has the same level of complexity as the
generalized expansiqd.4), because the operataE is not homogeneous with respect to
the only variables(x, y) . The “shadow” termse,,[«] come from the terms containing
derivativesd, in L.

%(5.2) can be differentiated with respect (e, y) , i.e. for any multi-index3 € N? , we have

sup T_£+|ﬁ|’8£,yu§em,e(m’ Y, Z)‘ < oo.
r€(0,kp]
6€[0,w]



6. EXPANSION OF THE CORNER SPHERICAL SINGULAR FUNCTIONS

The corner spherical singular functiong[A] are solutions of the Dirichlet problem
in G
¢ S H(l)(G)a gc(XaY;Aa aXa aY)'l/’ - O,
thus associated with a smooth (!) right hand side. Therefore these funetipxjscan be
expanded at the angular poiatin G : there existoefficients~,[A] forany a € A
with Re a > 0 such that for any¢ > 0 there holds

PAUX,Y) = D ) valA RET@L[a](0) + i, WA | (6.0)
Rea>0 neN
Rea+n <€

Here the angular functiong[«] coincide with the originakp[a] , cf Lemma 2.1, and
for n > 1, the ¢,[a] are constructed from thep[a] by recurrence. On the other
hand, theemainder«é_ [A] is such thék

rem,a

sup  R7¢[yf, Al < oo. (6.2)
(X,Y) €Va ’

Multiplying (6.1) by p* and using thatr = p R, we obtain

PP = > > P T A T ea[al(0) + p e, WA - (6.3)
Rea>0 neN
Rea4+n<é¢

But, as a consequence of the equatt. (M) [A] = 0, the functionv[A](x) :=
prp[] satisfies (4.1) withf = 0. Therefore, we have also the edge expansion (5.1)
for v[A], i.e.

PPl = ) Y 3T8aN(p) T Tealal(80) + v, AL, (6.4)
Rfieacx>+0 n ZEgN

for some edge coefficientd,[A] . For each fixedp, the remainderg*y%, | [A] and

vrg'em,e[A] are 0 (rﬁ) . Therefore we may identify the asymptotics (6.3) and (6.4) and

obtain that
8a[A(p) = PP valA]. (6.5)

§(6.2) can be differentiated with respect (&, Y) , i.e. for any multi-index3 € N2, we have

sup R_£+|ﬁ| |8§3( leg'em a[)‘” < o0o.
(X,Y)€Va ’ ’



/. EDGE EXPANSION OF THE CORNER REMAINDER

In the previous section we have obtained the edge expansion of the singular terms
p*p[A] in the corner expansion (4.2). We may also expand along the edthe re-
mainderu?, = .Letn > —3 be fixed.

Under Hypotheses 3.1, 4.1 and 5.1, there éxisttions defined o, p — d 7 (p)
forany a € 24 with Rea > 0 such that for any¢ > 0 there holds in the conical

neighborhoodVy, :

u! = Z Z B"d(”) o [a](0) (7.2)

rem,c
Rea>0 neN
Reat+n <€

The coefficientd (” satisfie§

su —ntRea)q(n) < 00. 7.2
P p o \P

pE (071]

Note that the above asymptotics is like expansion (5.1). The supplementary infor-
mation is that the expansion of a term which is flat at the corner involves terms (edge
coefficients and remainder) which are also flat at the corner.

9(7.2) can be differentiated, i.e. for any integlere N, we have

sup p n+Rea+k|3kd(n)(p)| < 0o.
p € (0,1]

1(7.3) can be differentiated in any direction, i.e. for any multi-ing@x N3 , we have

sup p—n+£r—£+lﬁl|3ﬁuge§n . e(X)| < 0o.
x € B(c,1)



8. CORNER EXPANSION OF THE EDGE COEFFICIENTS

By (6.3), (6.4) and (6.5) we obtain the edge expansion of the corner singularities in
the form

PPl = Y > AT (pN) r en[a](0) + P, WA
Rfiea;fnzegN
(8.1)

Inputting edge expansions (8.1) and (7.1) into the corner expansion (4.2) and identi-
fying with the edge expansion (5.1) we obtain that for amye 2 with Re o > 0 the
edge coefficientd, expandsap — 0,foranyn > —1:

da(p) = D TalA P27 + a7 (p) (8.2)
—1<ReX<n

with d{”(p) = & (p"~Ree) .
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9. CORNER-EDGE AND EDGE-CORNER EXPANSIONS OF SOLUTION

Neither the corner expansion (4.2) nor the edge expansion (5.1) have a remainder
which is smooth at the corner and the edge at the same time. The “good” remainder is
that of (7.1). Combining (4.2) and (7.1) we obtain the corner-edge asymptotics fay any
and¢:

u= > PP + > > ardm rtrp,[al (9.1)

—%<Re>\<ﬂ Rea>0 neN
Rea+n<¢g

The edge-corner expansion is obtained by a re-combination of terms in (9.1) using
(8.1) and (8.2): for any and n,

= 2 2 dar™enlal + 3 cxp i, oA 9:2)
Rea>0 neN _% <ReA<n
Rea+n <€

Remark 9.1 Note that expansiof®.1)is “canonical” from the point of view of the Mellin
symbols9t. and 9t., since the original baseg)[\] and ¢[a] are present there. On
the contrary, only the remainder terms of the baggs\] are present in expansia®.2).

But expansion(9.2) has the full edge coefficients, and not only their remainders as in
expansion9.1).
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10. WHAT IS THE STRONGEST SINGULARITY ?

This question is somewhat illusive concerning expansions (9.1) and (9.2), since both
corner andedge singularityhave to be present in order to obtain a regular remainder.
But concerning the expansion (8.2) of the edge coefficients, it makes sense to know if
ReA — Rea« is > 0 ornot.

We first remark thathe weaker is the edge singularity, the largefie o« and the
smaller is Re A — Re «, which is an expression of the loss of regularity of the edge
coefficient asRe a increases (in finite regularity theories).

But, in general, one is interested by edge coefficients associated with the lowest
value of Re a«. We will give examples in crack theory, where the edge coefficients are
of particular importance.

For v € (0,2m) let the coneC,, be defined asR® \ I', where I, is the plane
sector of openingy contained in the plangg = 0 and with one of its sides equal to the
line {(0,0,2), z > 0}. Let G, be the section ofC, on the sphereS?. The cone
C, has two (similar) edges, and the coefficients along each of its edges have a similar
asymptotics (8.2).

The edge exponenta are the half-integerégeneral result from [4])therefore the
first one is% . Let A1 () be the first corner exponent, thatdss€ £ such thatRe A >
— 2 Wwith least real part.

CasewhenL = A.

Then A\i(v) = —1 + /u(y) +  where u(y) is the first eigenvalue of the
Laplace-Beltrami operator oitx, with Dirichlet conditions By the monotonicity of
Dirichlet eigenvalues;y — () is an increasing function, thereforg — A;(7) is
also increasing.

On the other hand, we know the valuesXf(~) for particular values of the opening
~.For v = =, C, is the wedge of openingg = 27, and A\, (7) coincides with the
least edge exponent, i.\; () = % . We remark that, in this case the asymptotics (8.2)
is degenerated (it is but a Taylor expansion) since the “corner” is now artificial.

As v — 0, the domainG., tends to the whole sphei®* and A\;(v) tends to0.
As v — 27, the domainG,, tends to the union of two disjoint half-spheres akg(-y)
tends tol.

As a conclusion,

AM(y)—tis<oifo<y<mandis>0if 7 <~ <2w. (10.1)

Case whenL is the elasticity operator.

Then, we still have (for similar reasons) thaf () = 1, that A; () tends to0 as
~ — 0 and that\;(vy) tendstol asy — 2m (the same still holds fol\, and A3 ).
The monotonicity is known for isotropic materials in the regie@ <AL % .
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11. NEUMANN BOUNDARY CONDITIONS

The definitions and results of sections 3.-9. can be extended to any boundary condition
which covers the operatak. . The Neumann condition is of particular interest in fracture
mechanics and has special features.

When Neumann conditions are imposed, the corresponding edge and corner spectra
20 and £ always containce = 0 and A = 0 respectively corresponding to constant
w[a] and [A] . The associated “singularities**p[a] and p*v[\] are then constant
too, therefore are regular.

Therefore, we may exclude thesg/«| and ¢/[A] from the basis of singular func-
tions. Then anything in expansions§H#.-9. goes in the same wayxceptconcerning the
conditions on the different remainders. The Neumann remainders are the sum of a part
which satisfies exactly the same “flatness” conditions than in (4.3), (5.2), (6.2) and (7.3),
and a smooth part.

We may also discuss, like for Dirichlet conditions, what is the smallest between the
first “useful” o and X\ . Let us consider the same example of the family of cracked cones
C, for v € (0,27) andL = A..

The first edge exponent is stig . As for the first corner exponentsy; () , it is still

given by the formula
M(Y) =—2+/p(v)+1

where p(v) is now the firstnon-zeroeigenvalue of the Laplace-Beltrami operator on
G, with Neumann conditions.

Thanks to the special structure of the famijy— G, (the variation of the domains
concern zero-measure sets), we still have a monotonicity property for Neumann eigenval-
ues, but in the converse direction than for Dirichleti— () is a decreasing function,
thereforey — A;(«) is also decreasing.

For the Neumann case, we also have thafm) = 1.

As v — 0, the domainG., tends to the whole sphef& and, as we have to remove
the first (zero) Neumann eigenvalug, (v) tends tol. As v — 27, the domainG,
tends to the union of two disjoint half-spheres. The bottom of the limit spectrum is double
zero, corresponding to two (possibly different) constants on each half-sphere. Only one
of them has to be removed, corresponding to equal constants. Thepefptg tends to
0.

The situation is then inverted with respect to Dirichlet conditions:

AM(y) —3is<0if r<y<2mandis>0if 0 <y <. (11.1)
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. WITHOUT SIMPLIFICATIONS

1. If we do not assume hypotheses 3.1 and 5.1 any more, then we have to add a level
of summation in all asymptotics for logarithmic terms log? » and p* log” p.

2. If we assume only that the right hand sigieis ©*>°(C) but without being zero
near the cornek, thenthere are minor changes concerning the edge asymptotics
(extra r>log? r terms appear forx € N N ). As for the corner asymptotics,

in general it is necessary to considiru £ instead £, corresponding to homo-
geneous singular solutiop!®+2455 to problem (4.1) with right hand side?® for

any B3 € N®. And the remainders will be the sum of a flat part satisfying (4.3),
(5.2), (6.2) and (7.3), and of a smooth part.

3. If f has a finite Sobolev regularit§* , then the expansions are finite, the edge
coefficientsd,, have finite Sobolev regularity depending enand s, and in order

to have remainders with the correct regularfty*+2 , it is necessary to use special
regularization of edge coefficients which act as lifting of traces from the edge to the
cone.

4. If L has lower order terms but still constant coefficieritss structure of edge
asymptotics requires a new level of summation since the order of derivatioh

the edge coefficientl,, is only < than the exponent shift (in the power of)
and no more equalAs for corner asymptotics, we have to add “shadow” terms
p>\+n'¢n[A] .

5. If L has a multi-order, the powers af and p are multi-powers.

6. If L has variable coefficients, the corner expansion (4.2) still holds with the intro-
duction of shadow terms, but the edge exponents will depend in geneyaland
they may cross each other or have branching points, which cause changes in the
structure in edge asymptotics., see [2, 1, 3].

Endo-references for corner-edge asymptotics [6, Ch.16-17], exposed anew in [5, 7].

See also [9] and [8].
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