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Confluence of three theories

@ | Elliptic operators and systems, covering boundary conditions.
Regularity in Sobolev spaces and in analytic classes.

Founding fathers (1957 — 1967):

AGMON, DOUGLIS, NIRENBERG, MORREY, LIONS, MAGENES...

@ | Elliptic BVP in corner domains.

Singularities and regularity in weighted Sobolev spaces.
Founding fathers (1967 — 1977):

KONDRAT'EV, MAZ’YA, PLAMENEVSKII, GRISVARD...

@ | Mathematical theory of finite element method (FEM).

Convergence analysis, h- and p-version.

Founding fathers (1967 — 1977):

BABUSKA, STRANG, FIX, BRAMBLE, ZLAMAL, ZIENKIEWICZ, CEA,
RAVIART, CIARLET, ODEN, NEDELEC...
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Boundary value problems

Elliptic boundary value problems in smooth domains

Q: smooth domain in R” (n > 2): bounded and regular boundary.
Example: Ball, Ellipsoid.

L: second order elliptic operator or system with smooth coefficients.
Example: L = A (Laplacian), L = Lamé system (elasticity)

B: operator of order k = 0 or 1 with smooth coeff. which “covers” L on 92
Example: B = Id (Dirichlet, k = 0),
B = conormal derivative associated with L (Neumann, k = 1)

Problem :
Given f, find u

Lu=f in Q
(BVP) { Bu=0 on Q.

3/33



Buundary value problems

Sobolev Regularity Shift

Sobolev spaces
H™(Q) ={ve 2'(Q): 9%vel?Q), || <m}

Theorem: [AGMON-DOUGLIS-NIRENBERG 1959, 1964]

Let m > 2. If u € H3(Q) solves (BVP) with
feH™23(Q)

then u € H™(Q2) with estimates
lullymggy < € {1l m-2qy + el sy }

If (BVP) has a coercive variational formulation in H', the above statement
holds for u € H'(2) with estimates (if the solution is unique)

Il mgy < CIfllym-z gy -
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Analytic estimates

R S e ek S e
p-version of FEM (exponential convergence)

In the coercive variational framework.
@ M: mesh, — fixed partition of Q by a finite number of elements K,

triangle or square in 2D

K afine-equivalent to { tetrahedron, cube or pentahedral prism in 3D

@ ‘U),: space of piecewise mapped polynomials of deg. < p on each K
@ up: solution of Galerkin projection on space U,

Theorem: [MORREY-NIRENBERG 1957] and [BABUSKA-GUO 1986]
Assume

@ 01 is analytic,
@ the coefficients of L and B are analytic,
@ the rhs f is analytic,
then u is analytic and there is a § > 0 independent of u and p such that

o=l gy < C&.
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Analytic estimates

Fundamental arguments for exponential convergence

@ p-version estimates. Basic estimate in reference interval A= (—1,1):

(p+1—k)!

W= 02,
< (p—|—1—|—k)! ||U HLZ(/\) 0§k§p+1

2
|\u77rpu|||_z(x)

Here 7P is the orthogonal projection on Legendre polynomials of
degree < p.

© The proof that f analytic implies u analytic.

A recent improvement is the proof of‘ analytic estimates‘
i.e. the analytic control of constants in the “standard” estimate

lullymggy < €m) {11l -2y + 1l 1y |
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Analytic estimates

Global analytic estimates

Assume

@ 01 is analytic,
@ the coefficients of L and B are analytic,
o the rhs f € H™2(Q) for some m > 2.

Then u satisfies the a priori estimates of analytic type, k =0,1,...,m
oY Wl <43 & S 1y + PRI,
|ee|=k =0 " |al=t

with a constant A independent of k, m and u.

Proof
@ Nested open sets on model problems
@ Faa di Bruno formula for local maps
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Analytic estimates

T TS T Gmei Somapeee vween e gmed
Local analytic estimates (added after the talk)

With 2/ and U’ two open sets in R? such that U/ C U, set
V=UNSQ, V' =UNQ and [:=0V NoQ

Assume that each connected component of I is an analytic curve in 052.
We still assume that the coefficients of L and B are analytic.

Then u satisfies the local a priori estimates of analytic type, k = 0,1,..., m

1

= D 192 ull 2y Ak“{z > 108l 2y + 2 105 ull 2 }
"=k £=0 |ax|=¢ || <1

with a constant A independent of k, m and u.
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Boundary value problems
Analytic estimates

o Polygonal domains
@ Weighted spaces and analytic estimates

... in 10 steps

Dirichlet
Neumann

Anisotropic spaces and analytic estimates
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Corner domains (definition)

Figure: Corner domain: Local map (made with FigdTeX)

Q has a finite set ¢ of corners c:
@ All corners are points
@ All corners c are in the boundary 912 of Q2
@ Around each boundary point xo, & ¢, Q is smooth
@ Around each corner point ¢ € ¢, Q is diffeomorphic to a cone K.
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Corner singularities

Our boundary value problem,
{Lu:finQ

(BVP) Bu=0 on 0Q.

has non-smooth solutions u, even with a very smooth rhs f € C*°(Q).
Solutions contain singular types at each corner ¢

Ix — M pr(0s), k=1,2,...
Here
@ (|x —cl,0.) are polar coordinates at ¢
@ )\, € C are singular exponents
® o : 0 — wk(0.) are angular functions

Example : | = A, with Dirichlet or Neumann BC'’s
o k=12,
We

® o (0) = sin A0 for Dirichlet, ¢x(f) = cos A6 for Neumann.
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Weighted spaces and analytic estimates

Weighted Sobolev spaces

@ Weight := powers of r(x) = mingee
@ Weight exponent := 3 € R

@ Homogeneous weighted Sobolev spaces
KONDRAT’EV, MAZ'YA-PLAMENEVSKII, NAZAROV, ROSSMANN

KD(Q) = {ve 2/(Q): r(x)*7 a2v el?(Q), |a| < m}

depending on o

x —c|

Solutions (including singularities) well described in scale Kg’(Q).
@ Analytic limit

As(Q) = {v € KBQ: D 0™ 08Vl 2 < cm+1m!}

meN lov|=m

If S — |x — ¢|*¢(0.) is a singular function, then ¢ is analytic. Hence

B+Red>—-1 = SeKj(Q) = SecAsQ)
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Weighted spaces and analytic estimates

Theorem: [COSTABEL-DAUGE-NICAISE 2010]

f
@ Q is an analytic corner domain (e.g., a polygon),

@ L and B have analytic coefficients (e.g., constant coefficients),
@ u solution of (BVP)

there exists a constant C > 1 indep. of u such that for all k € N,

k—2
1 B3+ |ax 1 16, o
= Yozl < o {3 & ST I Elag

|| =k =0 = |a|=¢

+ > ozl b

|| <1

| A\

Corollary

ueKj(Q) and feAz(Q) = uecAs(Q)
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Boundary value problems
Analytic estimates

Weighted spaces and analytic estimates

o Proof of analytic estimates by dyadic partition
@ ...in 10 steps

Dirichlet
Neumann

Anisotropic spaces and analytic estimates
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... in 10 steps

G SR S Uaehane camean I G
Proof of weighted analytic estimates

@ For simplicity:
Q polygon and L, B homogeneous with constant coeff.

@ Localization near a corner c. Set ¢ = 0. We have r = r(x) = |x|
Proof on a plane sector K.

© Regular reference configuration
V={xek, I-e<r<i1} & V' ={xek, I-2c<r<1+e}.

_ -
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... in 10 steps

Proof of weighted analytic estimates

@ Reference estimate

k—2

Z 15Tl 55 <Ak+‘{ AR ||8;’“ﬁ||9/}

: |ex|=k £=0 |ax|=¢ || <1

=] =

@ Insert the weight (r ~ 1 on V')

Z Hrﬁ-&-\a\aaun < Ak+1{z Z || 6+2+\a\8af||A

.|a|k EO-|a|Z

+ Y 1ol )

Jee|<1
© Locally finite covering VV,, = 2 1Y and YV, = oMY forp=1,2,...

V:=KnB0,1) =[]V, and V' :=KnBO,1+¢)= ]V

neN pneN
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... in 10 steps

Proof of weighted analytic estimates

@ ScaleonV, =2"#VandV, =27V  forp=1,...
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... in 10 steps

Proof of weighted analytic estimates

@ ScaleonV, =2"#VandV, =27V  forp=2,...
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... in 10 steps

Proof of weighted analytic estimates

@ ScaleonV, =2""VandV, =27V  foru=3,...

— -

(T

-0

15/33



... in 10 steps

Proof of weighted analytic estimates

@ ScaleonV, =2"#VandV, =27V forp=4,...

— -~
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Proof of weighted analytic estimates

© Toestimate uon )V, by Lu = fon V], we set
U(X) = u(x) and f(X):= LU whichimplies F(X)=2 2"f(x),

The reference estimate

kl Z || 6+|a|aa

loe|=k

< AR {

<>

-2

=

1
. a [P e gl g S0 I logal g, )

“M

al=¢ || <1
becomes
Z 207 ogul, < At
|oz| k
k—2
Z >R eeielgpeany) 4 T 2oz, |
|| <1

=0 |a|=¢
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... in 10 steps

G SR O Soanansaamean M G
Proof of weighted analytic estimates

© Eliminate the common factor 2/ and square:

2
1 2
(H) |Z|:’(|,ﬁ+oc|3)t{xu||vM SAik+2{
T ke 1\? 2 2
> (5) Sz, + 3 1ozl )
=0 o al=t |a|<1

@ Sum ;€ N and use the finite covering property
1\? 2
(ﬁ) Z Hrﬁﬂala;xunv < CAik+2{

=k
“ 2 71\? 2 2
> (5) Zirereognle 3 1 =logull, )
=0

lo|=¢ la| <t

@ QED
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Boundary value problems
Analytic estimates

Weighted spaces and analytic estimates

... in 10 steps

e Corner analytic regularity
@ Dirichlet
@ Neumann

Anisotropic spaces and analytic estimates
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Dirichlet

@ Assume: (BVP) has a coercive variational formulation.
@ NB:Hardy ineq. = H'(Q) c K", _(Q) Ve > 0butH'(Q) ¢ K" (Q)
@ NB: Poincaré ineq. = H}(Q) € K',(Q)

Theorem: [KONDRAT’EV 1967]
@ In the Dirichlet case
there exists bg,;, > 0 such that the following regularity holds.

UEH)(Q) and feK"L(Q) = uveK™,(Q)

| \

Corollary: [Co-DA-Ni 2010]

UucH)(Q) and fEeA ,1(Q = ucA , 1(Q)
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Neumann

Weighted analytic regularity in polygons (Neumann)

For —2 < 3 < —1and m > 1, replace in the definition of Kg and Ag

Pucl?(Q) by r’ucl?(Q)

thus defining the new space J7/((2) and new analytic class B ().

Theorem: [MAZ’YA-PLAMENEVSKII 1984]

There exists bg ;g > 0 such that the following regularity holds.

Vb, Vm > 1, variational sol. u of (BVP) satisfy

fedmi(Q = ued™'(Q)

Theorem: [Co-DA-NI 2010] Cf. [BABUSKA-GUO 1988, 1989, 1993]

Vb, variational sol. u of (BVP) satisfy

fe B—b—H (Q) — uc B_b_1(Q)
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Neumann

IR e S
The trick for the proof...

Replace the estimate in the smooth case

u satisfies the a priori estimates of analytic type, k = 0,1,2,. ..

k—2

& Y logulg < A S S logtlg+ Y Iogulg)

Cal=k £=0 |ex|=¢ || <1

with a constant A independent of k and v.
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Neumann

.. by

u satisfies the a priori estimates of analytic type, K = 1,2, ...

k—2
& logulg < A & S 1ogtlg+ Y 10gullg )

C lal=k £=0 |ex|=¢ |ax|=1

with a constant A independent of k and w.
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Mathematical outcome

@ The proof is much simpler than in original papers by BABUSKA-GUO

because it clearly separates

e the issue of basic regularity (e.g. in K5(Q) or J3(%))

e the issue of analytic regularity (natural regularity shift)

These two independent modules can be assembled.

The proof can be adapted without much effort to

e homogeneous multi-degree elliptic systems with constant coeff.
e.g. Stokes,

e transmission problems
e.g. diva(x)V, with x — a(x) piecewise constant on a polygonal
decomposition of Q

The generalization to non-zero boundary conditions, variable

(analytic) coefficients, non-homogeneous operators is feasible with the

same arguments.
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Neumann

Numerical outcome

@ The regularity in analytic classes A_,_; or B_,_4 fora b > 0 ensures
exponential convergence of hp version of FEM [BABUSKA-GUO
1986].

@ hp version of FEM consists in, simultaneously
e Increase the degree
e Add a layer of elements with geometrical refinement near corners
@ Next page: Example of hp FEM with refinement at the origin (intended
for the checker board transmission problem)
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Boundary value problems
Analytic estimates

Weighted spaces and analytic estimates
... in 10 steps

Dirichlet
Neumann

o hp mesh

Anisotropic spaces and analytic estimates
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hhp mesh for a 2x2 checker board
-
- p=2
- p=3

p=4

" p=5

Figure: Level 1
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ST SR G SR Smemw v msaE
hp mesh for a 2x2 checker board - ratio 2

-
L p=2
B p=3

p=4

" p=5

Figure: Level 2
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hp mesh for a 2x2 checker board — ratio 2
- p=1
- p=2
- p=3

p=4

" p=5

Figure: Level 3
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hp mesh for a 2x2 checker board — ratio 2
- p=1
- p=2
- p=3

p=4

" p=5

Figure: Level 4
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ST SR G SR Smemw v msaE
hp mesh for a 2x2 checker board - ratio 2

LR
L p=2
B p=3

p=4

" p=5

Figure: Level 5
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ST SR G SR Smemw v msaE
hp mesh for a 2x2 checker board - ratio 4

-
L p=2
B p=3

p=4

" p=5

Figure: Level 2
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ST SR G SR Smemw v msaE
hp mesh for a 2x2 checker board - ratio 4

-
L p=2
B p=3

p=4

" p=5

Figure: Level 3
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ST SR G SR Smemw v msaE
hp mesh for a 2x2 checker board - ratio 8

-
L p=2
B p=3

p=4

" p=5

Figure: Level 2
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ST SR G SR Smemw v msaE
hp mesh for a 2x2 checker board - ratio 8

-
L p=2
B p=3

p=4

" p=5

Figure: Level 3

24/33



Boundary value problems
Analytic estimates
Weighted spaces and analytic estimates

... in 10 steps

Dirichlet
Neumann

o Numerical intermezzo

Anisotropic spaces and analytic estimates
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k Smooth i yge Dyadic partition Corner analytic regularity hp mesh y
oo 000000 0000 00000000 000000 00000000

We compute Neumann eigenvalues of — div A(x)V on the square (—1,1)2

| —divA(x)Vu = Au

with

A= Ayon(—1,0)2U(0,1)2

for Ay = 2, 10, 100, 108
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Error plots for more and more singular eigenvectors

Contrast 2. Mode 2. Exponent 0.78365
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Abcissa = log 10(#DOF)  Ordinate = log 10(rel. error for eigenvalue)
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Error plots for more and more singular eigenvectors

Contrast 10. Mode 2. Exponent 0.38996
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Error plots for more and more singular eigenvectors

Contrast 100. Mode 3. Exponent 0.1269
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Error plots for more and more singular eigenvectors

Contrast 100000000. Mode 3. Exponent 0.00012732
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Error plots for more and more regular eigenvectors

Contrast 2. Mode 1. Exponent 1.2163
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Error plots for more and more regular eigenvectors

Contrast 100. Mode 1. Exponent 1.8731
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Error plots for more and more regular eigenvectors

Contrast 100. Mode 4. Smooth.
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Boundary value problems
Analytic estimates

Weighted spaces and analytic estimates
... in 10 steps

Dirichlet
Neumann

° Polyhedral domains
@ Anisotropic spaces and analytic estimates
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e
Polyhedral domains

Figure: Fichera corner and cube (M. Costabel with POV-Ray)




T SR TR i G v e qmmEn
Weighted spaces

Weight multi-exponent 5 = { e, Jc }ecs, cew With & edge set, @ corner set
KZ () defined as space of v € () such that

@ In smooth region Qgmo : vV € H™(Qsmo)
@ In pure edge region €2, with re distance to e

g2y € 12(Q,), lal < m
@ In pure corner region Q.
x e a2y e L2(QL), lal < m
@ In corner-edge region . ¢

IX—c\Ialwc( fe )""'*ﬁ’

T 0%V € L2(Qe), ol < m
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Anisotropic spaces and analytic estimates

R
Anisotropic weighted spaces

Weight multi-exponent 8 = {fe, Jc}cev ece
M7(£2) defined as space of v € 2'({2) such that

@ In smooth region Qsmo : v € H™(Qsmo)
@ In pure edge region 2 with coord. y transverse and z aligned with e

A0 € (@), e + ey < m
@ In pure corner region Q¢
X el gy e (0L, ol < m

@ In corner-edge region Q. ¢

I |°‘L|+ﬁe
|x — C|‘a‘+ﬁ°(|x—_ec|> Oy 07 v € L2(Qee), o |+ oy <m

Using semi-norms, define the corresponding analytic class Ag(<2).
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Anisotropic spaces and analytic estimates

Anisotropy: Why? How?

NB:
But:

Fact:

Assumption A(e, 3)
Along the edge e, closed range estimates are valid in isotropic spaces

with 7, = HUHK},H(Q;)

Could prove analytic estimates like before in KJ'(<2).

Exponential convergence of FEM based on such a result would require
refinement towards edges in all directions. Too many elements.

For C*° data, solutions are more regular in the direction of edges

< /
lullz(qq) < Cof ILulls () + 74}

Proposition 1: Under assumption A(e, 3), solution u € K3(SQ) satisfies

k!

1
= DM agulg, Ck+1{2 >l Eog Ll g+ )

|a|=k £=0 |a|=¢
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Anisotropic spaces and analytic estimates

ST Sas™ GRS GSSRNue Cosee MM e
Elements of proof

Step 1. By dyadic partition, proof of isotropic estimate

' Z ||r\°4|+ﬂaau” Ck+1{2 Z ” |0¢|+ﬁ+280¢Lu”Q/e +'Yu}

|a|=k £=0 |ax|=¢

Step 2. By differential quotients on estimate of Assumption .A(e, 3) in
nested open sets, proof of tangential estimates

k

148 mo +B+2 qa
Z ”r|ou| /38 u”QeS Ck+1{Ze Z ” |a¢| B 8 LUHQ’ +’Yu}

|a| k £=0 |a|=¢
loer <2 lei |=0

Step 3. Combine steps 1 and 2 to obtain

k| Z ” |0u.|+ﬁaau” Ck+1{Z Z ” |0u.|+5+28aLu”Qle + 7u}

|| =k £=0 |a|=£
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Anisotropic spaces and analytic estimates

Anisotropic analytic regularity...

Homogeneous constant coefficient case

Theorem 1: Under assumption A(e, e) for all e € &

ueKy(Q) and feAzL(Q) = ueAyQ)

Proof
@ Proposition 1 gives suitable estimates in pure edge region Qe

@ This estimate is scaled and transported in a corner dyadic partition.
Hence suitable estimates in corner-edge region Q. ¢

@ The estimate in smooth domains is scaled and transported in a corner
dyadic partition of €.
Hence suitable estimates in pure corner region €2,
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Anlsotroplc spaces and analytic estimates

... Non-homogeneous version

Assumption 5(e, j3)

Along the edge e, closed range estimates are valid in isotropic spaces

< / ’
”u”J%(Qe) = CO{||LU||J%+2(Qe) + ||u||J}3+1(Qe)}

Theorem 2 : Under assumption 15(e, 3¢) for alle € &

ueJh(Q) and feBg(Q?) = wueBy(Q)
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Anisotropic spaces and analytic estimates

Conclusion

Combine Theorem 1 or Theorem 2 with regularity and a priori estimates in
K3 (€2) or J5(€2) proved by [MAZ'YA-ROSSMANN 2003].

Hence Anisotropic Analytic Regularity holds for variational solutions with
sufficiently smooth RHS.

Thank you for your attention!

33/33



	Framework
	

	Smooth domains
	Boundary value problems
	Analytic estimates

	Polygonal domains
	
	Weighted spaces and analytic estimates

	Proof of analytic estimates by dyadic partition
	... in 10 steps

	Corner analytic regularity
	Dirichlet
	Neumann

	hp mesh
	Numerical intermezzo
	Polyhedral domains
	
	Anisotropic spaces and analytic estimates


