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Boundary value problems

Elliptic boundary value problems in smooth domains

Ω: smooth domain in Rn (n ≥ 2): bounded and regular boundary.
Example: Ball, Ellipsoid.

L: second order elliptic operator or system with smooth coefficients.
Example: L = ∆ (Laplacian), L = Lamé system (elasticity)

B: operator of order k = 0 or 1 with smooth coeff. which “covers” L on ∂Ω
Example: B = Id (Dirichlet, k = 0),

B = conormal derivative associated with L (Neumann, k = 1)

Problem :

Given f and g, find u

(BVP)

{
Lu = f in Ω
Bu = g on ∂Ω.
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Boundary value problems

Sobolev Regularity

Sobolev spaces

Hm(Ω) = {v ∈ D ′(Ω) : ∂α
x v ∈ L2(Ω), |α| ≤ m}

Theorem: [AGMON-DOUGLIS-NIRENBERG 1959, 1964]

Let m ≥ 2. If u ∈ H2(Ω) solves (BVP) with

f ∈ Hm−2(Ω) and g ∈ Hm−k−1/2(∂Ω)

then u ∈ Hm(Ω) with estimates

‖u‖
Hm(Ω)

≤ C
{
‖f‖

Hm−2(Ω)
+ ‖g‖

Hm−k−1/2(∂Ω)
+ ‖u‖

H2(Ω)

}
.

Remark

If (BVP) has a coercive variational formulation in H1, the above statement
holds for u ∈ H1(Ω) with estimates (if the solution is unique)

‖u‖
Hm(Ω)

≤ C
{
‖f‖

Hm−2(Ω)
+ ‖g‖

Hm−k−1/2(∂Ω)

}
.
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p-version of FEM

p-version of Finite Element Method

In the coercive variational framework.

K̂ : reference element (triangle, tetrahedron, simplexe,... square, cube,
hypercube...)

K : mesh element, — mapped from a reference element

p ∈ N: degree of approximation

M: mesh, — partition of Ω by a finite number of elements K

Vp: discrete space of piecewise mapped polynomials of degree ≤ p
on each K

p-version (or p-extension) Family
(
Vp

)
p∈N of discrete spaces

up: solution of Galerkin projection on space Vp

Theorem

If u ∈ Hm(Ω), the error u − up satisfies the estimate

‖u − up‖H1(Ω)
≤ C p−m+1‖u‖

Hm(Ω)
.
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p-version of FEM

Analytic regularity and exponential convergence

Theorem: [MORREY-NIRENBERG 1957] and [SCHWAB 1998]

Assume

∂Ω is analytic,

the coefficients of L and B are analytic,

the data f and g are analytic,

then u is analytic and there is a δ > 0 independent of u and p such that

‖u − up‖H1(Ω)
≤ C e−δp.

But :

The number of degrees of freedom is a O(pn).

This is the curse of dimensionality.
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Corners

Corner domains (definition)

•
c

•
0

Uc Kc ∩ BRφc

Ω

Figure: Corner domain: Local map (made with Fig4TeX)

Ω has a finite set C of corners c:

All corners are points

All corners c are in the boundary ∂Ω of Ω

Around each boundary point x0 6∈ C , Ω is smooth

Around each corner point c ∈ C , Ω is diffeomorphic to a cone Kc
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Corners

Corner domains (3D)

Figure: Axisymmetric domain & Cayley’s tetrahedron (M. Costabel with POV-Ray)
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Corners

Corner expansion

Take smooth right hand side f ∈ C∞(Ω).
At any corner c, f has a Taylor expansion at any order N

f (x) =
∑
|α|≤N

∂αf (c)

α!
(x − c)α +O(|x − c|N+1)

Instead, u has a corner expansion with polynomial and singular parts

u(x) =
∑
|α|≤N

dα (x − c)α

︸ ︷︷ ︸
polynomial part

+
∑

Re λk≤N

dk |x − c|λk ϕk(θc)︸ ︷︷ ︸
singular part

+O(|x − c|N)

Note:

The exponents λk ∈ C depend on Ω, L and B

The sum is finite, and 1− n
2 < Re λk .

The singular part may also contain log terms
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Weighted spaces

Weighted Sobolev spaces

Weight: powers of r(x) = minc∈C |x − c|
Exponent: γ ∈ R.
Homogeneous weighted Sobolev spaces
KONDRAT’EV, MAZ’YA-PLAMENEVSKII, NAZAROV

Km
γ (Ω) = {v ∈ D ′(Ω) : r(x)|α|+γ︸ ︷︷ ︸

Depending on α

∂α
x v ∈ L2(Ω), |α| ≤ m}

Remainder (+ singularities) well described in scale Km
γ (Ω).

Non-homogeneous weighted Sobolev spaces
BABUŠKA-GUO, MAZ’YA-PLAMENEVSKII, COSTABEL-DAUGE-NICAISE

Jm
γ (Ω) = {v ∈ D ′(Ω) : r(x)m+γ︸ ︷︷ ︸

Not depending on α

∂α
x v ∈ L2(Ω), |α| ≤ m}

Polynomials (+ remainder, singularities) well described in scale Jm
γ (Ω).

Scale Jm
γ (Ω) more versatile to describe the global regularity of u.
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Weighted spaces

Weighted Sobolev Regularity

Assume: (BVP) has a coercive variational form. in H1 and u variational sol.

Theorem: [KONDRAT’EV 1967]

In the Dirichlet case

or if n ≥ 3

there exists γΩ,L,B < −1 such that the following regularity holds.
For any m ≥ 2 and any γ, γΩ,L,B < γ < −1

f ∈ Km−2
γ+2 (Ω) and g ∈ trace Km−k

γ+k (Ω) =⇒ u ∈ Km
γ (Ω)

Theorem: [MAZ’YA-PLAMENEVSKII 1984] [COSTABEL-DAUGE-NICAISE]

There exists γ∗Ω,L,B < −1 such that the following regularity holds.

For any m ≥ 2 and any γ, γ∗Ω,L,B < γ < −1

f ∈ Jm−2
γ+2 (Ω) and g ∈ trace Jm−k

γ+k (Ω) =⇒ u ∈ Jm
γ (Ω)
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Weighted spaces

Three questions and three answers

1 Why consider γ < −1 ?
Because of compact embeddings: For m ≥ 2,

Km
γ (Ω)

comp
↪→ H1(Ω) ⇐⇒ γ < −1

and the same for Jm
γ (Ω).

2 Why are Jm
γ (Ω) better than Km

γ (Ω)?
Because for any γ < −1, if m is large enough (m > −γ − n

2 ),
Jm
γ (Ω) contains all polynomials, which is not the case for Km

γ (Ω).
3 Why not consider standard spaces Hm instead? (note: Hm = Jm

−m)
Because of associated spaces of analytic functions

Bγ(Ω) =
{

v ∈
⋂

m>−γ− n
2

Jm
γ (Ω) :

∑
|α|=m

‖rm+γ∂α
x v‖

L2(Ω)
≤ Cm+1m!

}
here C is independent from m, for all m > −γ − n

2 .
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hp-version of FEM

Analytic regularity

Spaces Bγ coincide with countably normed spaces B`
β introduced by

BABUŠKA-GUO according to

B`
β(Ω) = Bβ−`, ` = 0, 1, 2, . . . , β ∈ (0, 1)

Theorem: [BABUŠKA-GUO, 1988-] and [COSTABEL-DAUGE-NICAISE]

Assume

Ω is an analytic corner domain,

the coefficients of L and B are analytic.

Then with the same γ∗Ω,L,B < −1 as above: For any γ, γ∗Ω,L,B < γ < −1

f ∈ Bγ+2(Ω) and g ∈ trace Bγ+k(Ω) =⇒ u ∈ Bγ(Ω)

=⇒ Exponential convergence of hp-version of Finite Element Method.
[BABUŠKA-GUO]

The mesh is geometrically refined near corners. Contains O(p) elements.
Discrete spaces Vp contain O(p) · O(pn) = O(pn+1) degrees of freedom.
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hp-version of FEM

hp-version on a L-shape domain (full refinement)

p = 1

p = 2

p = 3

p = 4

p = 5

Figure: Level 1
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hp-version of FEM

hp-version on a L-shape domain (full refinement)

p = 1

p = 2

p = 3

p = 4

p = 5

Figure: Level 2
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hp-version of FEM

hp-version on a L-shape domain (full refinement)

p = 1

p = 2

p = 3

p = 4

p = 5

Figure: Level 3
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hp-version of FEM

hp-version on a L-shape domain (full refinement)

p = 1

p = 2

p = 3

p = 4

p = 5

Figure: Level 4
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hp-version of FEM

hp-version on a L-shape domain (full refinement)

p = 1

p = 2

p = 3

p = 4

p = 5

Figure: Level 5
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hp-version of FEM

hp-version on a L-shape domain (partial refinement)

p = 1

p = 2

p = 3

p = 4

p = 5

Figure: Level 1
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hp-version of FEM

hp-version on a L-shape domain (partial refinement)

p = 1

p = 2

p = 3

p = 4

p = 5

Figure: Level 2
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hp-version of FEM

hp-version on a L-shape domain (partial refinement)

p = 1

p = 2

p = 3

p = 4

p = 5

Figure: Level 3
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hp-version of FEM

hp-version on a L-shape domain (partial refinement)

p = 1

p = 2

p = 3

p = 4

p = 5

Figure: Level 4
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hp-version of FEM

hp-version on a L-shape domain (partial refinement)

p = 1

p = 2

p = 3

p = 4

p = 5

Figure: Level 5
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Edges

Edge domains

Figure: Flying saucer and skew cylinder (M. Costabel with POV-Ray)
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Edges

Edge domains: Definition

Ω ⊂ Rn, n ≥ 3.
Ω has a finite set E of edges e:

All edges are closed n − d manifolds, d ≥ 2, – curves if n = 3

All edges e are subsets of ∂Ω

Around each boundary point x0 6∈ ∪e∈E e, Ω is smooth

Around each edge point z ∈ e, Ω is diffeomorphic to a wedge
Γz × Rn−d for a cone Γz ⊂ Rd .
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Edges

Edge expansions

Fix an edge e and a system of coordinates x = (y , z) with
y normal to e, and y = 0 on the edge
z tangent to e (the variable along the edge)

Polynomial part of Edge Expansion for solution with regular rhs

(y , z) 7→
∑

|α⊥|≤N

dα⊥(z) yα⊥ with regular coefficients z 7→ dα⊥(z)

Simplified Singular part of Edge Expansion for solution with regular rhs

(y , z) 7→
∑

Re λk≤N

dk(z) |y |λk ϕk(θe) with regular coefficients z 7→ dk(z)

But
Terms in logq |y | may appear, and in case of finite regularity of data,
coefficients dk have finite Sobolev regularity depending on Re λk .
In case of curved edge, varying opening or variable coefficients :
Exponents λk = λk(z) interact with each other or with polynomials
=⇒ Crossing and Branching phenomena [COSTABEL-DAUGE],
[MAZ’YA-ROSSMANN]
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Function spaces

K and J, a right choice for function spaces?

1 Defining
r(x) = min

e∈E
min
z∈e

|x − z| ' min
e∈E

|ye|

Km
γ (Ω) and Jm

γ (Ω) can be copied from corner case.
In the coercive case, Fredholm and Regularity results can be proved
for a certain range of weight exponents γ around −1.

2 When applied to the design of hp-version, these results are useless:
The spaces Km

γ (Ω) and Jm
γ (Ω) are isotropic =⇒ The corresponding

mesh-refinement produces (very) small elements in all directions near
edges =⇒ Exponential Blow-Up of number of degrees of freedom.

Not exactly
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Function spaces

Anisotropic weighted spaces

The fundamental fact is:
The regularity of edge coefficients follows exactly the regularity of data,
without loss. The tangential regularity in edge variables z is not limited.
Assume one edge e for simplicity, with (y , z) normal-tangential coord. to e.

Homogeneous anisotropic weighted Sobolev spaces
BUFFA-COSTABEL-DAUGE

Mm
γ (Ω) = {v ∈ D ′(Ω) : |y ||α⊥|+γ︸ ︷︷ ︸

Depending on α⊥

∂
α⊥
y ∂

α‖
z v ∈ L2(Ω), |α⊥|+ |α‖|︸ ︷︷ ︸

= |α|

≤ m}

Non-homogeneous weighted Sobolev spaces
Something like:

Nm
γ (Ω) = {v ∈ D ′(Ω) : |y |max{|α⊥|+γ,0}∂

α⊥
y ∂

α‖
z v ∈ L2(Ω), |α| ≤ m}

No Fredholm theorems in these spaces.
Valuable for their C∞ and analytic limits. Compatible with GUO’s definitions.
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Function spaces

Tensor product structure

Locally near the edge e, Ω ' S × Tn−d where S is a bounded cone in Rd

and Tn−d is the n − d dimensional torus.

y ∈ S, z ∈ Tn−d

The corner of S is the origin y = 0. Recall

Km
γ (S) = {v ∈ D ′(S) : |y ||α⊥|+γ∂

α⊥
y v ∈ L2(S), |α⊥| ≤ m}

Then

M2m
γ (S × Tn−d) ⊂ Km

γ (S)⊗ Hm(Tn−d) ⊂ Mm
γ (S × Tn−d)

Similarly, for m large enough

N2m
γ (S × Tn−d) ↪→ Jm

γ (S)⊗ Hm(Tn−d) ↪→ Nm
γ (S × Tn−d)

Hence, for analytic classes:

Bγ(S × Tn−d) = Bγ(S)⊗ A(Tn−d)
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hp-version of FEM

Tensor product hp-version

If the solution u ∈ Bγ(S)⊗ A(Tn−d) with suitable γ < −1, we expect
exponential convergence for a tensor mesh:

Geometrically refined in S and finite in Tn−d .

Number of degrees of freedom

O(pd+1) · O(pn−d) = O(pn+1).
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Polyhedral domains

Polyhedral domains

Figure: Fichera corner and cube (M. Costabel with POV-Ray)
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Polyhedral domains

A local example

Figure:
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Polyhedral domains

Polyhedral domains: Definition

Ω ⊂ R3.
Ω has a finite set E of edges e and a finite set C of corners c:

All edges are segments

All edge tips c ∈ e \ e are corners

All edges e and corners c are subsets of ∂Ω

Around each...
Boundary point x0 6∈ ∪e∈E e, Ω is affine diffeomorphic to R+ × R2

Edge point z ∈ e, Ω is affine diffeomorphic to a wedge Γe × R
Corner point c ∈ C , Ω is affine diffeomorphic to a polyhedral cone Kc

As a consequence, the regular part of the boundary

∂Ω \
{ ⋃

e∈E

e
}

is a finite union of plane faces which are polygonal.
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Weighted spaces

Anisotropic (homogeneous) weighted spaces

Weight multi-exponent γ = {γe, γc}c∈C , e∈E

Mm
γ (Ω) defined as set of v ∈ D ′(Ω) such that

In smooth region Ωsmo : v ∈ Hm(Ωsmo)

In pure edge region Ωe

|ye||α⊥|+γe ∂
α⊥
y ∂

α‖
z v ∈ L2(Ωe), |α⊥|+ |α‖| ≤ m

In pure corner region Ωc

|x − c||α|+γc ∂α
x v ∈ L2(Ωc), |α| ≤ m

In corner-edge region Ωc,e

|x − c||α|+γc

( |ye|
|x − c|

)|α⊥|+γe

∂
α⊥
y ∂

α‖
z v ∈ L2(Ωc,e), |α⊥|+ |α‖| ≤ m

[GUO,1995]’s definitions amount to the non-homogeneous version of this.
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Weighted spaces

Anisotropic weighted spaces in a cube

Unit cube Ω = I3 with I = (0, 1). Coordinates x1, x2, x3.
Isolate corner c = 0 by considering Ω∗

0 = (0, 1
2 )3.

Split Ω∗
0 in 6 parts Ωj

0, j = 1, . . . , 6, by ordering coordinates: E.g.

Ω1
0 := {x = (x1, x2, x3) : x1 < x2 < x3}

The only edge such that e ∩ Ω
1
0 6= ∅ is x1 = x2 = 0, and

ye = (x1, x2), z = x3, hence |y | ' x2, |x − c| = |x | ' x3.

Then

Mm
γ (Ω1

0) = {v : xα1+α2+α3+γc
3

(x2

x3

)α1+α2+γe

∂α1
x1

∂α2
x2

∂α3
x3

v ∈ L2(Ω1
0), |α| ≤ s}

= {v : xα3+γc−γe
3 xα1+α2+γe

2 ∂α1
x1

∂α2
x2

∂α3
x3

v ∈ L2(Ω1
0), |α| ≤ s}

Note

x ∈ Ω1
0 ∩ Ωc ⇐⇒ x2 ' x3 and x ∈ Ω1

0 ∩ Ωe ⇐⇒ x3 > c > 0
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Weighted spaces

Tensor weighted spaces in a cube

Recall: On interval I:

Mm
ω(I)

∣∣
(0, 1

2 )
= Km

ω(I)
∣∣
(0, 1

2 )
= {v : xα+ω∂α

x v ∈ L2((0,
1
2
)), α ≤ m}

Weight multi-exponent ω = (ω1, ω2, ω3). Define new M space so that

⊗
Mm

ω(I3)
∣∣
Ω∗0

= {v : xα1+ω1
1 xα2+ω2

2 xα3+ω3
3 ∂α

x v ∈ L2(Ω∗0), |α| ≤ m}

Two remarks
1 Relation with tensor product spaces

⊗
M3m

ω (I3) ↪→ Mm
ω1

(I)⊗Mm
ω2

(I)⊗Mm
ω3

(I) ↪→
⊗
Mm

ω(I3)

2 Relation with corner-edge weighted spaces (N-version): if

γc ≤ ω1 + ω2 + ω3 and γe ≤ ωi + ωj (with e ‖ xi = xj = 0)

=⇒ Mm
γ (I3) ↪→ Nm

γ (I3) ↪→
⊗
Nm

ω(I3)
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Regularity and approximation in hyper-cubes

Anisotropic weighted regularity in hyper-cubes

Ω = In unit cube in Rn, n ≥ 2.
Dirichlet problem for Laplace operator

(DLP)

{
∆u = f in Ω
u = 0 on ∂Ω.

Theorem: [DAUGE-STEVENSON, 2009]

Let ω = (ω1, . . . , ωn) such that

− 3
2 < ωi < 0 (i = 1, . . . , n) and ω1 + · · ·+ ωn > −2.

Let m ≥ 2. Then u solution of (DLP) satisfies

f ∈
⊗
Mm+2n−4

0 (In) =⇒ u ∈
⊗
Mm

ω(In)

In particular, if f ∈ C∞(In), then

u ∈ M∞
ω1

(I)⊗ · · · ⊗M∞
ωn

(I).
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Regularity and approximation in hyper-cubes

Toward analytic estimates

Ω = In unit cube in Rn, n ≥ 2, and Dirichlet problem for Laplace operator

(DLP)

{
∆u = f in Ω
u = 0 on ∂Ω.

The proof of [DAUGE-STEVENSON, 2009] seems to adapt to analytic
anisotropic weighted spaces – by a combination of nested a priori
estimates with the n + 1-level two-step recurrence of [DS09].

Almost-Theorem:

Let ω = (ω1, . . . , ωn) such that

− 3
2 < ωi < 0 (i = 1, . . . , n) and ω1 + · · ·+ ωn > −2.

Then u solution of (DLP) satisfies

f ∈ A0(I)⊗ · · · ⊗ A0(I) =⇒ u ∈ Aω1(I)⊗ · · · ⊗ Aωn(I).

Here Aγ(I) = {v : ‖(1− x2)α+γ∂α
x v‖

L2(I)
≤ Cα+1α!, α ∈ N}
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Regularity and approximation in hyper-cubes

Conclusions: Approximation properties

1

Finite degree approximation (h-version type of degree d). The sparse
tensor wavelet approximation of [DS09] yields the following error
estimate between u solution of (DLP) and uL the Galerkin
approximation of level L

‖u − uL‖H1(In)
≤ Cn(u) 2−L(d−1) where #(DOF) =: N = O(2L)

Note that the standard approximation in h-version would yield

O(N−(d−1)/n) instead of O(N−(d−1))

2

If Almost-Theorem is true, tensor hp-version will yield exponential
convergence: For n = 2, similar approximation properties are proved
by [MAISCHAK-STEPHAN] in relation with a Boundary Integral Method.

3

For n = 3, if the regularity in analytic spaces with edge-corner weights
is true, then exponential convergence in edge-corner hp-version will
hold (approximation properties proved by GUO).
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Regularity and approximation in hyper-cubes

The end

Thank you for your attention
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