orner domains Domai

Domains with edges

Polyhedral domains

References

Regularity for Corner Problems in Anisotropic Weighted Spaces Theory and Applications

Monique Dauge, with Martin Costabel (Rennes, France), Serge Nicaise (Valenciennes, France), Rob Stevenson (Amsterdam, Netherlands)

IRMAR, Université de Rennes 1, FRANCE

International Conference on Applied Analysis and Scientific Computation Shanghai Normal University, June 25-28, 2009

nooth domains	Corner domains	Polyhedral domains	References

Outline

Sm

Smooth domains

- Boundary value problems
- p-version of FEM

Corner domains

- Corners
- Weighted spaces
- hp-version of FEM
- 3 Domains with edges
 - Edges
 - Function spaces
 - hp-version of FEM

Polyhedral domains

- Polyhedral domains
- Polyhedral domains
- Weighted spaces
- Regularity and approximation in hyper-cubes

References

mooth domains	Corner domains	Polyhedral domains	References

Outline

Sn

Smooth domains

- Boundary value problems
- p-version of FEM

2 Corner domains

- Corners
- Weighted spaces
- hp-version of FEM

Domains with edges

- Edges
- Function spaces
- hp-version of FEM

Polyhedral domains

- Polyhedral domains
- Polyhedral domains
- Weighted spaces
- Regularity and approximation in hyper-cubes

References

Elliptic boundary value problems in smooth domains

Ω: smooth domain in \mathbb{R}^n ($n \ge 2$): bounded and regular boundary. Example: Ball, Ellipsoid.

L: second order elliptic operator or system with smooth coefficients. Example: $L = \Delta$ (Laplacian), L = Lamé system (elasticity)

B: operator of order k = 0 or 1 with smooth coeff. which "covers" *L* on $\partial \Omega$ Example: B = Id (Dirichlet, k = 0),

B = conormal derivative associated with L (Neumann, k = 1)

Problem :	
Given f and g , find u	
(BVP)	$\begin{cases} Lu = f & \text{in } \Omega \\ Bu = g & \text{on } \partial \Omega. \end{cases}$

Smooth domains ○●○○	Corner domains	Domains with edges	Polyhedral domains	References
Boundary value problems				
Sobolev Regularity				

Sobolev spaces

$$\mathsf{H}^m(\Omega) = \{ \mathsf{v} \in \mathscr{D}'(\Omega) : \ \partial_{\mathsf{x}}^{\boldsymbol{\alpha}} \mathsf{v} \in \mathsf{L}^2(\Omega), \ |\boldsymbol{\alpha}| \leq m \}$$

Theorem: [AGMON-DOUGLIS-NIRENBERG 1959, 1964]

Let $m \ge 2$. If $u \in H^2(\Omega)$ solves (BVP) with

$$f \in H^{m-2}(\Omega)$$
 and $g \in H^{m-k-1/2}(\partial \Omega)$

then $u \in H^m(\Omega)$ with estimates

$$\left\|u
ight\|_{\mathsf{H}^m(\Omega)} \leq C\left\{\left\|f
ight\|_{\mathsf{H}^{m-2}(\Omega)}+\left\|g
ight\|_{\mathsf{H}^{m-k-1/2}(\partial\Omega)}+\left\|u
ight\|_{\mathsf{H}^2(\Omega)}
ight\}.$$

Remark

If (BVP) has a coercive variational formulation in H¹, the above statement holds for $u \in H^1(\Omega)$ with estimates (if the solution is unique)

$$\left\|u
ight\|_{\mathsf{H}^{m}(\Omega)}\leq C\left\{\left\|f
ight\|_{\mathsf{H}^{m-2}(\Omega)}+\left\|g
ight\|_{\mathsf{H}^{m-k-1/2}(\partial\Omega)}
ight\}.$$

Smooth	domains
0000	

p-version of FEM

p-version of Finite Element Method

In the coercive variational framework.

- \widehat{K} : reference element (triangle, tetrahedron, simplexe,... square, cube, hypercube...)
- K: mesh element, mapped from a reference element
- $p \in \mathbb{N}$: degree of approximation
- \mathfrak{M} : mesh, partition of Ω by a finite number of elements K
- \mathfrak{V}_{p} : discrete space of piecewise mapped polynomials of degree $\leq p$ on each K
- p-version (or p-extension) Family $(\mathfrak{V}_{\rho})_{\rho\in\mathbb{N}}$ of discrete spaces
- u_p : solution of Galerkin projection on space \mathfrak{V}_p

Theorem

If $u \in H^m(\Omega)$, the error $u - u_p$ satisfies the estimate

$$\|u - u_{\rho}\|_{H^{1}(\Omega)} \leq C \rho^{-m+1} \|u\|_{H^{m}(\Omega)}$$

Smooth domains	Corner domains		Polyhedral domains	Refer
p-version of FEM	000000000000000000000000000000000000000	0000000	000000000	000
p-version of PEM				

Analytic regularity and exponential convergence

Theorem: [MORREY-NIRENBERG 1957] and [SCHWAB 1998]

Assume

- $\partial \Omega$ is analytic,
- the coefficients of L and B are analytic,
- the data f and g are analytic,

then *u* is analytic and there is a $\delta > 0$ independent of *u* and *p* such that

$$\|u-u_p\|_{\mathsf{H}^1(\Omega)} \leq C e^{-\delta p}.$$

But :

The number of degrees of freedom is a $\mathcal{O}(p^n)$.

This is the curse of dimensionality.

Smooth	domains

Corner domains Domain

Domains with edges

Polyhedral domains

References

Outline

Smooth doma

- Boundary value problems
- p-version of FEM

2 Corner domains

- Corners
- Weighted spaces
- hp-version of FEM

Domains with edges

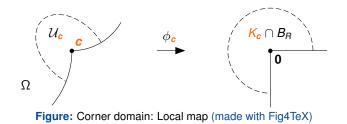
- Edges
- Function spaces
- hp-version of FEM

Polyhedral domains

- Polyhedral domains
- Polyhedral domains
- Weighted spaces
- Regularity and approximation in hyper-cubes

References

Smooth domains	Corner domains	Domains with edges	Polyhedral domains	References
Corners				
Corner domains (definition)				



 Ω has a finite set \mathscr{C} of corners *c*:

- All corners are points
- All corners ${\color{black} c}$ are in the boundary $\partial \Omega$ of Ω
- Around each boundary point $\boldsymbol{x}_0 \notin \mathscr{C}, \Omega$ is smooth
- Around each corner point $\mathbf{c} \in \mathscr{C}$, Ω is diffeomorphic to a cone $K_{\mathbf{c}}$

Corners

Corner domains

Domains with edges

Polyhedral domains

References

Corner domains (3D)

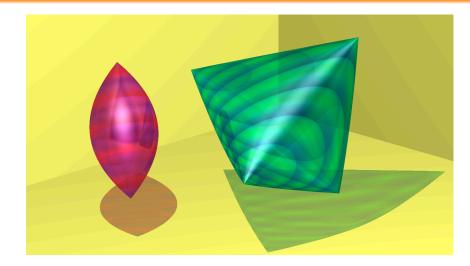


Figure: Axisymmetric domain & Cayley's tetrahedron (M. Costabel with POV-Ray)

Take smooth right hand side $f \in C^{\infty}(\overline{\Omega})$.

At any corner c, f has a Taylor expansion at any order N

$$f(\boldsymbol{x}) = \sum_{|\alpha| \le N} \frac{\partial^{\alpha} f(\boldsymbol{c})}{\alpha!} (\boldsymbol{x} - \boldsymbol{c})^{\alpha} + \mathcal{O}(|\boldsymbol{x} - \boldsymbol{c}|^{N+1})$$

Instead, u has a corner expansion with polynomial and singular parts

$$u(\mathbf{x}) = \underbrace{\sum_{|\alpha| \le N} d_{\alpha} (\mathbf{x} - \mathbf{c})^{\alpha}}_{\text{polynomial part}} + \underbrace{\sum_{\mathfrak{R} \in \lambda_{k} \le N} d_{k} |\mathbf{x} - \mathbf{c}|^{\lambda_{k}} \varphi_{k}(\theta_{c})}_{\text{singular part}} + \mathcal{O}(|\mathbf{x} - \mathbf{c}|^{N})$$

Note:

- The exponents $\lambda_k \in \mathbb{C}$ depend on Ω , *L* and *B*
- The sum is finite, and $1 \frac{n}{2} < \Re e \lambda_k$.
- The singular part may also contain log terms

Smooth domains	Corner domains	Domains with edges	Polyhedral domains	References
Weighted spaces				
Weighted	Sobolev spac	es		
Weig	ht: powers of $r(\mathbf{x}) = \mathbf{x}$	min _{c∈%} ∣ x – c		

- Exponent: $\gamma \in \mathbb{R}$.
- Homogeneous weighted Sobolev spaces KONDRAT'EV, MAZ'YA-PLAMENEVSKII, NAZAROV

 $\mathsf{K}^{m}_{\gamma}(\Omega) = \{ v \in \mathscr{D}'(\Omega) : \underbrace{r(\boldsymbol{x})^{|\boldsymbol{\alpha}|+\gamma}}_{\mathsf{Depending on } \boldsymbol{\alpha}} \partial_{\boldsymbol{x}}^{\boldsymbol{\alpha}} v \in L^{2}(\Omega), \ |\boldsymbol{\alpha}| \leq m \}$

Remainder (+ *singularities*) well described in scale $K_{\gamma}^{m}(\Omega)$.

• Non-homogeneous weighted Sobolev spaces BABUŠKA-GUO, MAZ'YA-PLAMENEVSKII, COSTABEL-DAUGE-NICAISE

$$\mathsf{J}^m_{\gamma}(\Omega) = \{ \mathsf{v} \in \mathscr{D}'(\Omega) : \quad \underbrace{\mathsf{r}(\mathbf{x})^{m+\gamma}}_{\mathcal{X}} \quad \partial^{\alpha}_{\mathbf{x}} \mathsf{v} \in L^2(\Omega), \ |\alpha| \leq m \}$$

Not depending on α

Polynomials (+ remainder, singularities) well described in scale $J_{\gamma}^{m}(\Omega)$. Scale $J_{\gamma}^{m}(\Omega)$ more versatile to describe the global regularity of *u*.

Smooth domains	Corner domains	Domains with edges	Polyhedral domains	References
Weighted spaces				
Weighted Se	obolev Regu	ılarity		

Assume: (BVP) has a coercive variational form. in H^1 and *u* variational sol.

Theorem: [KONDRAT'EV 1967]• In the Dirichlet case• or if $n \ge 3$ there exists $\gamma_{\Omega,L,B} < -1$ such that the following regularity holds.For any $m \ge 2$ and any γ , $\boxed{\gamma_{\Omega,L,B} < \gamma < -1}$ $f \in \mathsf{K}_{\gamma+2}^{m-2}(\Omega)$ and $g \in \operatorname{trace} \mathsf{K}_{\gamma+k}^{m-k}(\Omega) \implies u \in \mathsf{K}_{\gamma}^m(\Omega)$

Theorem: [Maz'ya-Plamenevskii 1984] [Costabel-Dauge-Nicaise]

There exists $\gamma_{\Omega,L,B}^* < -1$ such that the following regularity holds. For any $m \ge 2$ and any γ , $\boxed{\gamma_{\Omega,L,B}^* < \gamma < -1}$ $f \in J_{\gamma+2}^{m-2}(\Omega)$ and $g \in \operatorname{trace} J_{\gamma+k}^{m-k}(\Omega) \implies u \in J_{\gamma}^m(\Omega)$
 Smooth domains
 Corner domains
 Domains with edges
 Polyhedral domains
 References

 00000
 000000
 000000
 0000000
 0000000
 0000000

 Weighted spaces
 Three questions and three answers
 0000000
 00000000

 Why consider *γ* < −1 ? Because of compact embeddings: For *m* ≥ 2,

 $\mathsf{K}^m_\gamma(\Omega) \stackrel{\mathrm{comp}}{\hookrightarrow} \mathsf{H}^1(\Omega) \quad \Longleftrightarrow \quad \gamma < -1$

and the same for $J^m_{\gamma}(\Omega)$.

- Why are J^m_γ(Ω) better than K^m_γ(Ω)? Because for any γ < -1, if *m* is large enough (m > -γ - ⁿ/₂), J^m_γ(Ω) contains all polynomials, which is not the case for K^m_γ(Ω).
- Why not consider standard spaces H^m instead? (note: $H^m = J^m_{-m}$) Because of associated spaces of analytic functions

$$\mathsf{B}_{\gamma}(\Omega) = \left\{ \boldsymbol{v} \in \bigcap_{m > -\gamma - \frac{n}{2}} \mathsf{J}_{\gamma}^{m}(\Omega) : \sum_{|\boldsymbol{\alpha}| = m} \|\boldsymbol{r}^{m+\gamma} \partial_{\boldsymbol{x}}^{\boldsymbol{\alpha}} \boldsymbol{v}\|_{L^{2}(\Omega)} \leq \boldsymbol{C}^{m+1} m! \right\}$$

here *C* is independent from *m*, for all $m > -\gamma - \frac{n}{2}$.

Smooth domains	Corner domains	Domains with edges	Polyhedral domains	References
hp-version of FEM				
Analytic regularity				

Spaces B_{γ} coincide with countably normed spaces B_{β}^{ℓ} introduced by BABUŠKA-GUO according to

$$\mathsf{B}^\ell_eta(\Omega)=\mathsf{B}_{eta-\ell}, \quad \ell=\mathsf{0},\mathsf{1},\mathsf{2},\ldots,\ eta\in(\mathsf{0},\mathsf{1}).$$

Theorem: [BABUŠKA-GUO, 1988-] and [COSTABEL-DAUGE-NICAISE]

Assume

- Ω is an analytic corner domain,
- the coefficients of L and B are analytic.

Then with the same $\gamma^*_{\Omega,L,B} < -1$ as above: For any γ , $\gamma^*_{\Omega,L,B} < \gamma < -1$

 $f\in \mathsf{B}_{\gamma+2}(\Omega) \quad ext{and} \quad g\in ext{trace }\mathsf{B}_{\gamma+k}(\Omega) \implies u\in \mathsf{B}_{\gamma}(\Omega)$

⇒ Exponential convergence of hp-version of Finite Element Method. [BABUŠKA-GUO]

The mesh is geometrically refined near corners. Contains $\mathcal{O}(p)$ elements. Discrete spaces \mathfrak{V}_p contain $\mathcal{O}(p) \cdot \mathcal{O}(p^n) = \mathcal{O}(p^{n+1})$ degrees of freedom.

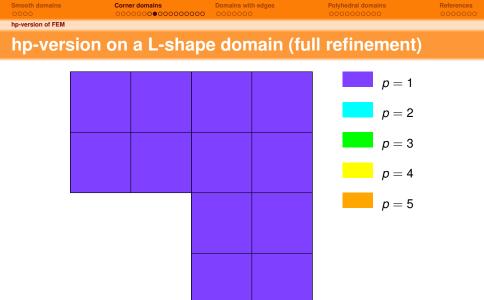
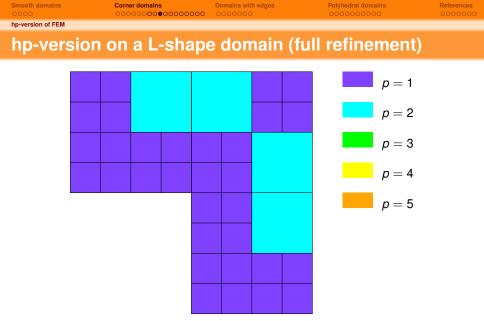
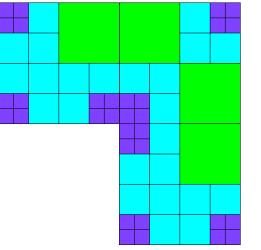
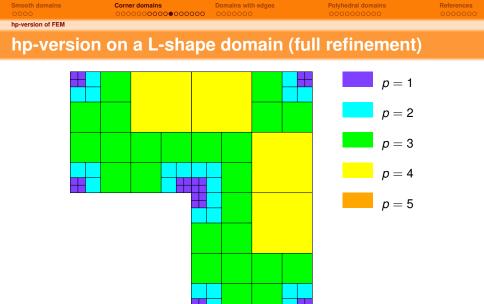


Figure: Level 1







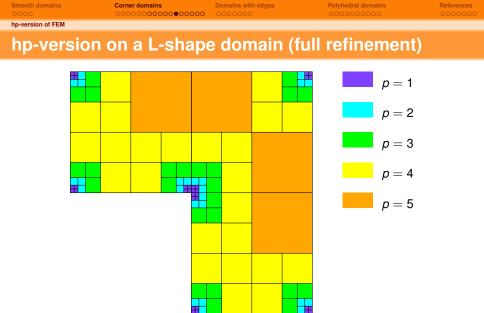
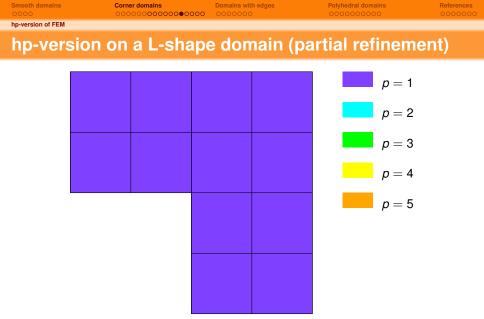
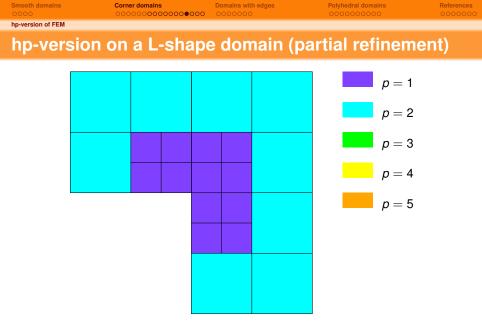


Figure: Level 5





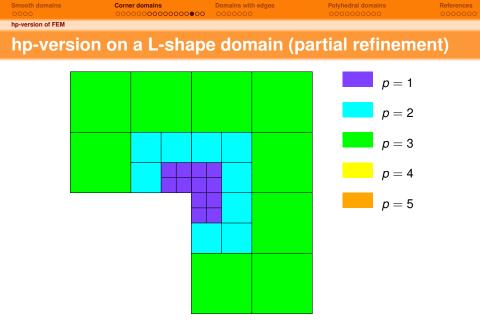




Figure: Level 4

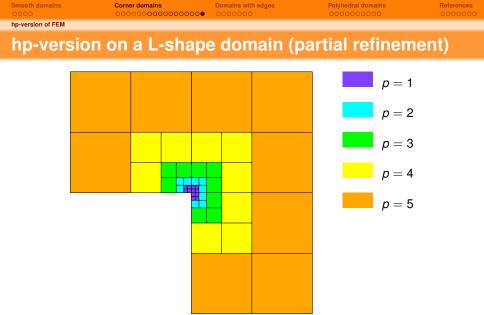


Figure: Level 5

Smooth	domains

Outline

3

Smooth dom

- Boundary value problems
- p-version of FEM

Corner domains

- Corners
- Weighted spaces
- hp-version of FEM

Domains with edges

- Edges
- Function spaces
- hp-version of FEM

Polyhedral domains

- Polyhedral domains
- Polyhedral domains
- Weighted spaces
- Regularity and approximation in hyper-cubes

References

Smooth domains	Corner domains	Domains with edges	Polyhedral domains	References
Edges				
Edge domai	ns			

Figure: Flying saucer and skew cylinder (M. Costabel with POV-Ray)

Edges

Edge domains: Definition

 $\Omega \subset \mathbb{R}^n$, $n \ge 3$. Ω has a finite set \mathscr{E} of edges e:

- All edges are closed n d manifolds, $d \ge 2$, curves if n = 3
- All edges *e* are subsets of $\partial \Omega$
- Around each boundary point $\boldsymbol{x}_0 \notin \bigcup_{\boldsymbol{e} \in \mathscr{E}} \boldsymbol{e}, \Omega$ is smooth
- Around each edge point *z* ∈ *e*, Ω is *diffeomorphic to a wedge* Γ_z × ℝ^{n-d} for a cone Γ_z ⊂ ℝ^d.

Fix an edge e and a system of coordinates x = (y, z) with

- y normal to e, and y = 0 on the edge
- z tangent to e (the variable along the edge)

Polynomial part of Edge Expansion for solution with regular rhs

 $(\mathbf{y}, \mathbf{z}) \mapsto \sum_{|\boldsymbol{lpha}_{\perp}| \leq N} d_{\boldsymbol{lpha}_{\perp}}(\mathbf{z}) \, \mathbf{y}^{\boldsymbol{lpha}_{\perp}} \quad ext{with regular coefficients } \mathbf{z} \mapsto d_{\boldsymbol{lpha}_{\perp}}(\mathbf{z})$

Simplified Singular part of Edge Expansion for solution with regular rhs

 $(\mathbf{y}, \mathbf{z}) \mapsto \sum_{\mathfrak{Re} \ \lambda_k \leq N} d_k(\mathbf{z}) \ |\mathbf{y}|^{\lambda_k} \varphi_k(\theta_{\mathbf{e}}) \quad \text{with regular coefficients } \mathbf{z} \mapsto d_k(\mathbf{z})$

But

- Terms in $\log^q |\mathbf{y}|$ may appear, and in case of finite regularity of data, coefficients d_k have finite Sobolev regularity depending on $\Re e \lambda_k$.
- In case of curved edge, varying opening or variable coefficients : Exponents $\lambda_k = \lambda_k(\mathbf{z})$ interact with each other or with polynomials \implies Crossing and Branching phenomena [COSTABEL-DAUGE], [MAZ'YA-ROSSMANN]

Function spaces

K and J, a right choice for function spaces?

Defining

$$r(\boldsymbol{x}) = \min_{\boldsymbol{e} \in \mathscr{E}} \min_{\boldsymbol{z} \in \boldsymbol{e}} |\boldsymbol{x} - \boldsymbol{z}| \simeq \min_{\boldsymbol{e} \in \mathscr{E}} |\boldsymbol{y}_{\boldsymbol{e}}|$$

 $K^m_{\gamma}(\Omega)$ and $J^m_{\gamma}(\Omega)$ can be copied from corner case. In the coercive case, Fredholm and Regularity results can be proved for a certain range of weight exponents γ around -1.

When applied to the design of hp-version, these results are useless: The spaces $\mathsf{K}^m_{\gamma}(\Omega)$ and $\mathsf{J}^m_{\gamma}(\Omega)$ are isotropic \Longrightarrow The corresponding mesh-refinement produces (very) small elements in all directions near edges \implies Exponential Blow-Up of number of degrees of freedom.

Not exactly

Domains with edges

Function spaces

Anisotropic weighted spaces

The fundamental fact is:

The regularity of edge coefficients follows exactly the regularity of data, without loss. The tangential regularity in edge variables z is not limited. Assume one edge e for simplicity, with (y, z) normal-tangential coord. to e.

 Homogeneous anisotropic weighted Sobolev spaces **BUFFA-COSTABEL-DAUGE**

$$\mathsf{M}_{\gamma}^{m}(\Omega) = \{ \mathbf{v} \in \mathscr{D}'(\Omega) : \underbrace{|\mathbf{y}|^{|\boldsymbol{\alpha}_{\perp}|+\gamma}}_{\mathsf{Depending on } \boldsymbol{\alpha}_{\perp}} \partial_{\mathbf{y}}^{\boldsymbol{\alpha}_{\perp}} \partial_{\mathbf{z}}^{\boldsymbol{\alpha}_{\parallel}} \mathbf{v} \in L^{2}(\Omega), \underbrace{|\boldsymbol{\alpha}_{\perp}| + |\boldsymbol{\alpha}_{\parallel}|}_{= |\boldsymbol{\alpha}|} \leq m \}$$

 Non-homogeneous weighted Sobolev spaces Something like:

 $\mathsf{N}^{m}_{\gamma}(\Omega) = \{ \mathbf{v} \in \mathscr{D}'(\Omega) : \| \mathbf{y} \|^{\max\{|\boldsymbol{\alpha}_{\perp}| + \gamma, \mathbf{0}\}} \partial_{\mathbf{v}}^{\boldsymbol{\alpha}_{\perp}} \partial_{\mathbf{z}}^{\boldsymbol{\alpha}_{\parallel}} \mathbf{v} \in L^{2}(\Omega), \| \boldsymbol{\alpha} \| \leq m \}$

No Fredholm theorems in these spaces.

Valuable for their \mathcal{C}^{∞} and analytic limits. Compatible with GUO's definitions.

Smooth domains	Corner domains	Domains with edges	Polyhedral domains	References		
Function spaces						
Tensor product structure						

Locally near the edge e, $\Omega \simeq S \times \mathbb{T}^{n-d}$ where *S* is a bounded cone in \mathbb{R}^d and \mathbb{T}^{n-d} is the n-d dimensional torus.

$$m{y}\inm{S},\ m{z}\in\mathbb{T}^{n-d}$$

The corner of *S* is the origin y = 0. Recall

 $\mathsf{K}^{m}_{\gamma}(S) = \{ \mathsf{v} \in \mathscr{D}'(S) : \quad |\mathbf{y}|^{|\boldsymbol{\alpha}_{\perp}| + \gamma} \partial_{\mathbf{y}}^{\boldsymbol{\alpha}_{\perp}} \mathsf{v} \in L^{2}(S), \; |\boldsymbol{\alpha}_{\perp}| \leq m \}$

Then

$$\mathsf{M}^{2m}_{\gamma}(S\times\mathbb{T}^{n-d})\subset\mathsf{K}^m_{\gamma}(S)\otimes\mathsf{H}^m(\mathbb{T}^{n-d})\subset\mathsf{M}^m_{\gamma}(S\times\mathbb{T}^{n-d})$$

Similarly, for *m* large enough

 $\mathsf{N}^{2m}_{\gamma}(S\times\mathbb{T}^{n-d})\,\hookrightarrow\,\mathsf{J}^m_{\gamma}(S)\otimes\mathsf{H}^m(\mathbb{T}^{n-d})\,\hookrightarrow\,\mathsf{N}^m_{\gamma}(S\times\mathbb{T}^{n-d})$

Hence, for analytic classes:

$$\mathsf{B}_{\gamma}(S\times\mathbb{T}^{n-d})=\mathsf{B}_{\gamma}(S)\otimes\mathsf{A}(\mathbb{T}^{n-d})$$

Smooth domains	Corner domains	Domains with edges	Polyhedral domains	References		
hp-version of FEM						
Tensor product hp-version						

If the solution $u \in B_{\gamma}(S) \otimes A(\mathbb{T}^{n-d})$ with suitable $\gamma < -1$, we expect exponential convergence for a tensor mesh:

Geometrically refined in *S* and finite in \mathbb{T}^{n-d} .

Number of degrees of freedom

$$\mathcal{O}(p^{d+1}) \cdot \mathcal{O}(p^{n-d}) = \mathcal{O}(p^{n+1}).$$

Smooth	domains

Corner domains Do

Domains with edges

Polyhedral domains

References

Outline

Smooth doma

- Boundary value problems
- p-version of FEM

Corner domain

- Corners
- Weighted spaces
- hp-version of FEM

B Domains with edges

- Edges
- Function spaces
- hp-version of FEM

Polyhedral domains

- Polyhedral domains
- Polyhedral domains
- Weighted spaces
- Regularity and approximation in hyper-cubes

References

Smooth domains	Corner domains	Domains with edges	Polyhedral domains	References	
Polyhedral domains					
Polyhedral domains					

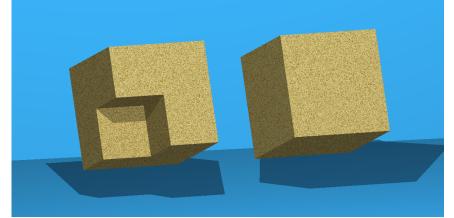


Figure: Fichera corner and cube (M. Costabel with POV-Ray)

Smooth domains

Corner domains

Domains with edges

Polyhedral domains

References

Polyhedral domains

A local example

Smooth domains	Corner domains	Domains with edges	Polyhedral domains	References
Polyhedral domains				
Polyhedral of	domains: De	finition		

 $\Omega \subset \mathbb{R}^3.$

 Ω has a finite set \mathscr{E} of edges **e** and a finite set \mathscr{C} of corners **c**:

- All edges are segments
- All edge tips $c \in \overline{e} \setminus e$ are corners
- All edges **e** and corners **c** are subsets of $\partial \Omega$
- Around each...
 - Boundary point $\mathbf{x}_0 \notin \cup_{\overline{\mathbf{e}} \in \mathscr{E}} \mathbf{e}, \Omega$ is affine diffeomorphic to $\mathbb{R}_+ \times \mathbb{R}^2$
 - Edge point $z \in e$, Ω is affine diffeomorphic to a wedge $\Gamma_e \times \mathbb{R}$
 - Corner point $c \in \mathscr{C}$, Ω is affine diffeomorphic to a polyhedral cone K_c

As a consequence, the regular part of the boundary

$$\partial \Omega \setminus \left\{ \bigcup_{\boldsymbol{e} \in \mathscr{E}} \overline{\boldsymbol{e}} \right\}$$

is a finite union of plane faces which are polygonal.

Smooth domains	Corner domains	Domains with edges	Polyhedral domains	References
Weighted spaces				

Anisotropic (homogeneous) weighted spaces

Weight multi-exponent $\gamma = \{\gamma_e, \gamma_c\}_{c \in \mathscr{C}, e \in \mathscr{E}}$ $\mathsf{M}^m_{\gamma}(\Omega)$ defined as set of $v \in \mathscr{D}'(\Omega)$ such that

- In smooth region $\Omega_{\sf smo}$: $v \in H^m(\Omega_{\sf smo})$
- In pure edge region Ω_e

$$|\boldsymbol{y}_{\boldsymbol{e}}|^{|\boldsymbol{\alpha}_{\perp}|+\gamma_{\boldsymbol{e}}}\partial_{\boldsymbol{y}}^{\boldsymbol{\alpha}_{\perp}}\partial_{\boldsymbol{z}}^{\boldsymbol{\alpha}_{\parallel}}\boldsymbol{v}\in L^{2}(\Omega_{\boldsymbol{e}}),\;|\boldsymbol{\alpha}_{\perp}|+|\boldsymbol{\alpha}_{\parallel}|\leq m$$

• In pure corner region Ω_c

$$|oldsymbol{x}-oldsymbol{c}|^{|oldsymbol{lpha}|+\gamma_{oldsymbol{c}}}\partial^{oldsymbol{lpha}}_{oldsymbol{x}}v\in L^2(\Omega_{oldsymbol{c}}),\;|oldsymbol{lpha}|\leq m$$

In corner-edge region Ω_{c,e}

$$|\mathbf{x} - \mathbf{c}|^{|\boldsymbol{\alpha}| + \gamma_{c}} \Big(\frac{|\mathbf{y}_{e}|}{|\mathbf{x} - \mathbf{c}|} \Big)^{|\boldsymbol{\alpha}_{\perp}| + \gamma_{e}} \partial_{\mathbf{y}}^{\boldsymbol{\alpha}_{\perp}} \partial_{\mathbf{z}}^{\boldsymbol{\alpha}_{\parallel}} v \in L^{2}(\Omega_{c,e}), \ |\boldsymbol{\alpha}_{\perp}| + |\boldsymbol{\alpha}_{\parallel}| \leq m$$

[GUO,1995]'s definitions amount to the non-homogeneous version of this.

Smooth domains	Corner domains	Domains with edges	Polyhedral domains	References
			0000000000	0000000
Weighted spaces				

Anisotropic weighted spaces in a cube

Unit cube $\Omega = I^3$ with I = (0, 1). Coordinates x_1, x_2, x_3 . Isolate corner c = 0 by considering $\Omega_0^* = (0, \frac{1}{2})^3$. Split Ω_0^* in 6 parts Ω_0^j , j = 1, ..., 6, by ordering coordinates: E.g.

$$\Omega^1_{m 0} := \{ m x = (x_1, x_2, x_3) : \ x_1 < x_2 < x_3 \}$$

The only edge such that $\mathbf{e} \cap \overline{\Omega}_{\mathbf{0}}^1 \neq \emptyset$ is $x_1 = x_2 = \mathbf{0}$, and

$$y_e = (x_1, x_2), \ z = x_3, \ \text{hence} \ |y| \simeq x_2, \ |x - c| = |x| \simeq x_3.$$

Then

$$\begin{split} \mathsf{M}^{m}_{\gamma}(\Omega^{1}_{\mathbf{0}}) &= \{ \mathbf{v} : \ \mathsf{x}^{\alpha_{1}+\alpha_{2}+\alpha_{3}+\gamma_{c}}_{3} \Big(\frac{\mathsf{x}_{2}}{\mathsf{x}_{3}} \Big)^{\alpha_{1}+\alpha_{2}+\gamma_{e}} \partial^{\alpha_{1}}_{\mathsf{x}_{1}} \partial^{\alpha_{2}}_{\mathsf{x}_{2}} \partial^{\alpha_{3}}_{\mathsf{x}_{3}} \mathbf{v} \in \mathsf{L}^{2}(\Omega^{1}_{\mathbf{0}}), \ |\boldsymbol{\alpha}| \leq s \} \\ &= \{ \mathbf{v} : \ \mathsf{x}^{\alpha_{3}+\gamma_{c}-\gamma_{e}}_{3} \mathsf{x}^{\alpha_{1}+\alpha_{2}+\gamma_{e}}_{2} \partial^{\alpha_{1}}_{\mathsf{x}_{1}} \partial^{\alpha_{2}}_{\mathsf{x}_{2}} \partial^{\alpha_{3}}_{\mathsf{x}_{3}} \mathbf{v} \in \mathsf{L}^{2}(\Omega^{1}_{\mathbf{0}}), \ |\boldsymbol{\alpha}| \leq s \} \end{split}$$

Note

 $\boldsymbol{x} \in \Omega_{\boldsymbol{0}}^{1} \cap \Omega_{\boldsymbol{c}} \Longleftrightarrow x_{2} \simeq x_{3}$ and $\boldsymbol{x} \in \Omega_{\boldsymbol{0}}^{1} \cap \Omega_{\boldsymbol{e}} \Longleftrightarrow x_{3} > \boldsymbol{c} > \boldsymbol{0}$

Smooth domains	Corner domains	Domains with edges	Polyhedral domains	References
			000 00 0000	0000000
Weighted spaces				

Tensor weighted spaces in a cube

Recall: On interval I:

$$\mathsf{M}_{\omega}^{m}(\mathrm{I})\big|_{(0,\frac{1}{2})}=\mathsf{K}_{\omega}^{m}(\mathrm{I})\big|_{(0,\frac{1}{2})}=\{v:\ x^{\alpha+\omega}\partial_{x}^{\alpha}v\in L^{2}((0,\frac{1}{2})),\ \alpha\leq m\}$$

Weight multi-exponent $\boldsymbol{\omega} = (\omega_1, \omega_2, \omega_3)$. Define new M space so that

$$\overset{\otimes}{M}^m_{\boldsymbol{\omega}}(\mathrm{I}^3)\big|_{\Omega^*_{\boldsymbol{0}}} = \{ \boldsymbol{v}: \ \boldsymbol{x}_1^{\alpha_1+\omega_1}\boldsymbol{x}_2^{\alpha_2+\omega_2}\boldsymbol{x}_3^{\alpha_3+\omega_3}\partial_{\boldsymbol{x}}^{\boldsymbol{\alpha}}\boldsymbol{v} \in L^2(\Omega^*\boldsymbol{0}), \ |\boldsymbol{\alpha}| \leq m \}$$

Two remarks

Relation with tensor product spaces

$$\overset{\otimes}{M}^{3m}_{\boldsymbol{\omega}}(\mathrm{I}^3) \ \hookrightarrow \ \mathsf{M}^m_{\omega_1}(\mathrm{I}) \otimes \mathsf{M}^m_{\omega_2}(\mathrm{I}) \otimes \mathsf{M}^m_{\omega_3}(\mathrm{I}) \ \hookrightarrow \ \overset{\otimes}{M}^m_{\boldsymbol{\omega}}(\mathrm{I}^3)$$

Relation with corner-edge weighted spaces (N-version): if

$$\gamma_{c} \leq \omega_{1} + \omega_{2} + \omega_{3}$$
 and $\gamma_{e} \leq \omega_{i} + \omega_{j}$ (with $e \parallel x_{i} = x_{j} = 0$)
 $\implies \mathsf{M}_{\gamma}^{m}(\mathrm{I}^{3}) \hookrightarrow \mathsf{N}_{\gamma}^{m}(\mathrm{I}^{3}) \hookrightarrow \overset{\otimes}{\mathsf{N}_{\omega}^{m}}(\mathrm{I}^{3})$

Polyhedral domains Regularity and approximation in hyper-cubes

Anisotropic weighted regularity in hyper-cubes

 $\Omega = I^n$ unit cube in \mathbb{R}^n , n > 2. Dirichlet problem for Laplace operator

$$(DLP) \qquad \begin{cases} \Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

Theorem: [DAUGE-STEVENSON, 2009]

Let $\boldsymbol{\omega} = (\omega_1, \ldots, \omega_n)$ such that

$$-rac{3}{2}<\omega_i< 0 \ (i=1,\ldots,n) \quad ext{and} \quad \omega_1+\cdots+\omega_n>-2.$$

Let $m \ge 2$. Then *u* solution of (DLP) satisfies

$$f \in \stackrel{\otimes}{M_{\mathbf{0}}}{}^{m+2n-4}(\mathrm{I}^n) \implies u \in \stackrel{\otimes}{M_{\boldsymbol{\omega}}}{}^m(\mathrm{I}^n)$$

In particular, if $f \in \mathcal{C}^{\infty}(\overline{I}^n)$, then

 $u \in \mathsf{M}^{\infty}_{\omega_1}(\mathrm{I}) \otimes \cdots \otimes \mathsf{M}^{\infty}_{\omega_n}(\mathrm{I}).$

Smooth domains	Corner domains	Domains with edges	Polyhedral domains	References
Regularity and approximation in hyper-cubes				
Toward analytic estimates				

 $\Omega = I^n$ unit cube in \mathbb{R}^n , $n \ge 2$, and Dirichlet problem for Laplace operator

$$(DLP) \qquad \begin{cases} \Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

The proof of [DAUGE-STEVENSON, 2009] seems to adapt to analytic anisotropic weighted spaces – by a combination of nested a priori estimates with the n + 1-level two-step recurrence of [DS09].

Almost-Theorem:

Let $\boldsymbol{\omega} = (\omega_1, \ldots, \omega_n)$ such that

$$-rac{3}{2} < \omega_i < 0 \ (i=1,\ldots,n)$$
 and $\omega_1+\cdots+\omega_n > -2$

Then u solution of (DLP) satisfies

$$f \in A_0(I) \otimes \cdots \otimes A_0(I) \implies u \in A_{\omega_1}(I) \otimes \cdots \otimes A_{\omega_n}(I)$$

Here
$$\mathsf{A}_{\gamma}(\mathrm{I}) = \{ \mathsf{v} : \| (1-\mathsf{x}^2)^{\alpha+\gamma} \partial_{\mathsf{x}}^{\alpha} \mathsf{v} \|_{L^2(\mathrm{I})} \leq \mathcal{C}^{\alpha+1} \alpha!, \ \alpha \in \mathbb{N} \}$$

Smooth domains

Corner domains

Domains with edges

Polyhedral domains

References

Regularity and approximation in hyper-cubes

Conclusions: Approximation properties

Finite degree approximation (h-version type of degree *d*). The sparse tensor wavelet approximation of [DS09] yields the following error estimate between *u* solution of (DLP) and u_L the Galerkin approximation of level *L*

 $\|u - u_L\|_{H^1(I^n)} \le C_n(u) 2^{-L(d-1)}$ where $\#(DOF) =: N = O(2^L)$

Note that the standard approximation in h-version would yield $\mathcal{O}(N^{-(d-1)/n})$ instead of $\mathcal{O}(N^{-(d-1)})$

If Almost-Theorem is true, tensor hp-version will yield exponential convergence: For n = 2, similar approximation properties are proved by [MAISCHAK-STEPHAN] in relation with a Boundary Integral Method.

3

2

For n = 3, if the regularity in analytic spaces with edge-corner weights is true, then exponential convergence in edge-corner hp-version will hold (approximation properties proved by Guo).

Smooth domains

Corner domains

Domains with edges

Polyhedral domains

References

Regularity and approximation in hyper-cubes

The end

Thank you for your attention

Smooth	domains

Corner domains Doma

Domains with edges

Polyhedral domains

References

Outline

Smooth doma

- Boundary value problems
- p-version of FEM

Corner domain

- Corners
- Weighted spaces
- hp-version of FEM

Domains with edges

- Edges
- Function spaces
- hp-version of FEM

Polyhedral domains

- Polyhedral domains
- Polyhedral domains
- Weighted spaces
- Regularity and approximation in hyper-cubes

References

References on smooth domains

C. B. MORREY, JR. AND L. NIRENBERG.

On the analyticity of the solutions of linear elliptic systems of partial differential equations.

Comm. Pure Appl. Math., 10:271–290 (1957).

S. Agmon, A. Douglis, and L. Nirenberg.

Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I.

Comm. Pure Appl. Math., 12:623-727 (1959).

S. Agmon, A. Douglis, and L. Nirenberg.

Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II.

Comm. Pure Appl. Math., 17:35–92 (1964).

References for corner domains

V. A. KONDRAT'EV.

Boundary-value problems for elliptic equations in domains with conical or angular points.

Trans. Moscow Math. Soc. 16:227-313 (1967).

V. G. MAZ'YA AND B. A. PLAMENEVSKII.

Weighted spaces with nonhomogeneous norms and boundary value problems in domains with conical points.

Amer. Math. Soc. Transl. (2), 123:89-107 (1984).

V. A. KOZLOV, V. G. MAZ'YA, J. ROSSMANN. *Elliptic boundary value problems in domains with point singularities.* Mathematical Surveys and Monographs **52** (1997).

References for edge domains

V. G. MAZ'YA, J. ROSSMANN.

Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten *Math. Nachr.* **138**:27–53 (1988).

T. VON PETERSDORFF, E. P. STEPHAN.

Regularity of mixed boundary value problems in \mathbb{R}^3 and boundary element methods on graded meshes.

Math. Meth. Appl. Sci. 12:229-249 (1990).

M. COSTABEL, M. DAUGE.

General Edge Asymptotics of Solutions of Second Order Elliptic Boundary Value Problems I & II.

Proc. Royal Soc. Edinburgh 123A:109–155 & 157–184 (1993).

Our references for polyhedral domains

M. DAUGE.

Elliptic Boundary Value Problems in Corner Domains – Smoothness and Asymptotics of Solutions.

Lecture Notes in Mathematics, Vol. 1341. Springer-Verlag (1988).

M. DAUGE.

"Simple" Corner-Edge Asymptotics.

Rennes, December 2000.

perso.univ-rennes1.fr/monique.dauge/publis/corneredge.html

M. DAUGE AND R. STEVENSON.

Sparse tensor product wavelet approximation of singular functions. Preprint 09-23, Université de Rennes 1, (2009).

perso.univ-rennes1.fr/monique.dauge/publis/DaStev.html

M. COSTABEL, M. DAUGE, AND S. NICAISE.

Corner Singularties and Analytic Regularity for Linear Elliptic Systems In preparation.

References

Other references for polyhedral domains

V. G. MAZ'YA AND J. ROSSMANN.

On the Agmon-Miranda maximum principle for solutions of elliptic equations in polyhedral and polygonal domains.

Ann. Global Anal. Geom., 9(3):253-303 (1991).

V. G. MAZ'YA AND J. ROSSMANN.

Weighted L_p estimates of solutions to boundary value problems for second order elliptic systems in polyhedral domains. ZAMM Z. Angew. Math. Mech., 83(7):435–467 (2003).

S. A. NAZAROV AND B. A. PLAMENEVSKII. Elliptic Problems in Domains with Piecewise Smooth Boundaries. Expositions in Mathematics 13. Walter de Gruyter, Berlin, (1994).

References for approximation theory

I. Babuška and B. Q. Guo.

Regularity of the solution of elliptic problems with piecewise analytic data. I & II.

SIAM J. Math. Anal., 19(1):172–203 (1988) & 20(4):763–781 (1989).

B. Q. GUO.

The *h-p* version of the finite element method for solving boundary value problems in polyhedral domains.

In M. Costabel, M. Dauge, and S. Nicaise, editors, *Boundary value problems and integral equations in nonsmooth domains (Luminy, 1993)*, pages 101–120. Dekker, New York, 1995.

B. Q. GUO AND I. BABUŠKA.

Regularity of the solutions for elliptic problems on nonsmooth domains in \mathbb{R}^3 . I. Countably normed spaces on polyhedral domains. *Proc. Roy. Soc. Edinburgh Sect. A*, 127(1):77–126 (1997).

References for approximation theory

T. APEL AND S. NICAISE.

The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges.

Math. Methods Appl. Sci., 21(6):519-549 (1998).

A. Buffa, M. Costabel, and M. Dauge.

Anisotropic regularity results for Laplace and Maxwell operators in a polyhedron.

C. R. Acad. Sc. Paris, Série I, 336:565–570 (2003).

P.-A. NITSCHE.

Sparse approximation of singularity functions. *Constr. Approx.*, 21(1):63–81 (2005).

M. MAISCHAK AND E. P. STEPHAN.

The hp-version of the Boundary Element Method in *R*³. Part II: Approximation in countably normed spaces. Technical report, University of Hannover (2009).