Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix

Skin effect in electromagnetism

Gabriel CALOZ¹ Monique DAUGE¹ Erwan FAOU¹ Victor PÉRON² Clair POIGNARD²

¹ IRMAR, Université de Rennes 1 ² Projet MC2, INRIA Bordeaux Sud-Ouest

2010 ISFMA Symposium

(Fudan University Shanghai, July 26-29, 2010)

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix 0000
Ou	tline						

- 2 Equations
- **3D Multiscale Asymptotic Expansion**
- Axisymmetric Problems
- 5 Numerical simulations of skin effect
- 6 Exponential rates

🕜 Appendix

Title	Framework • O	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix

The Skin Effect : A 3-D Problem

- Ω_- Highly Conducting body $\subset \subset \Omega$: Conductivity $\sigma_- \equiv \sigma \gg 1$
- $\Sigma = \partial \Omega_{-}$: Interface
- Ω_+ Insulating or Dielectric body: Conductivity $\sigma_+ = 0$

The Skin Effect : rapid decay of electromagnetic fields inside the conductor. The classical Skin Depth : $\ell(\sigma) = \sqrt{2/\omega\mu_0\sigma}$

Title	Framework ○●	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix
011	r refere	nces					

- Our references
 - V. PÉRON (PhD thesis, Université Rennes 1, 2009) <u>Link</u> Modélisation mathématique de phénomènes électromagnétiques dans des matériaux à fort contraste.
 - M. DAUGE, E. FAOU, V. PÉRON (Note CRAS, 2010) Link

Comportement asymptotique à haute conductivité de l'épaisseur de peau en électromagnétisme

G. Caloz, M. Dauge, V. Péron (Article JMAA, 2010) Link

Uniform estimates for transmission problems with high contrast in heat conduction and electromagnetism

- G. CALOZ, M. DAUGE, E. FAOU, V. PÉRON (Preprint, 2010) <u>Link</u> On the influence of the geometry on skin effect in electromagnetism
- M. DAUGE, V. PÉRON, C. POIGNARD (In preparation, 2010) Asymptotic expansion for the solution of a stiff transmission problem in electromagnetism with a singular interface
 - Aim : Understanding the influence of the geometry on the skin effect.

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix 0000
Ou	tline						

Framework

2 Equations

- 3D Multiscale Asymptotic Expansion
- Axisymmetric Problems
- 5 Numerical simulations of skin effect
- 6 Exponential rates

🕜 Appendix

Title	Framework	Equations ●○	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix

Maxwell Problem

Maxwell equations with perfectly insulating exterior b.c.

$$(\mathbf{P}_{\underline{\sigma}}) \quad \begin{cases} \operatorname{curl} \mathbf{E} - i\omega\mu_0 \mathbf{H} = 0 \quad \text{and} \quad \operatorname{curl} \mathbf{H} + (i\omega\varepsilon_0 - \underline{\sigma})\mathbf{E} = \mathbf{J} \\ \mathbf{E} \cdot \mathbf{n} = 0 \quad \text{and} \quad \mathbf{H} \times \mathbf{n} = 0 \quad \text{on} \quad \partial\Omega \end{cases}$$

with the piecewise constant conductivity

$$\underline{\sigma} = (\sigma_+, \sigma_-) = (\mathbf{0}, \sigma \gg \mathbf{1})$$

and the rhs

 $\textbf{J}\in \textit{H}_0(\textrm{div},\Omega)=\{\textbf{u}\in\textit{L}^2(\Omega)^3\mid \textrm{div}\,\textbf{u}\in\textit{L}^2(\Omega), \, \textbf{u}\cdot\textbf{n}=0 \text{ on } \partial\Omega\}$

Title	Framework	Equations ○●	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix
Exi	stence	of sol	utions				

Hypothesis (SH)

The angular frequency ω is not an eigenfrequency of the problem

$\operatorname{curl} \mathbf{E} - i\omega\mu_0 \mathbf{H} = 0$ and $\operatorname{curl} \mathbf{H} + i\omega\varepsilon_0 \mathbf{E} = 0$	in	Ω_+
$\mathbf{E} \times \mathbf{n} = 0$ and $\mathbf{H} \cdot \mathbf{n} = 0$	on	Σ
$\mathbf{E} \cdot \mathbf{n} = 0$ and $\mathbf{H} \times \mathbf{n} = 0$	on	$\partial \Omega$

Theorem (CALOZ, DAUGE, PÉRON, 2009)

If the surface Σ is Lipschitz, under Hypothesis (SH), there exist σ_0 and C > 0, such that for all $\sigma \ge \sigma_0$, ($\mathbf{P}_{\underline{\sigma}}$) with B.C. and $\mathbf{J} \in H_0(\operatorname{div}, \Omega)$ has a unique solution (\mathbf{E}, \mathbf{H}) in $L^2(\Omega)^6$, and

 $\|\mathbf{E}\|_{0,\Omega} + \|\mathbf{H}\|_{0,\Omega} + \sqrt{\sigma} \, \|\mathbf{E}\|_{0,\Omega_{-}} \leqslant C \, \|\mathbf{J}\|_{\mathcal{H}(\operatorname{div},\Omega)}$

Application: Convergence of asymptotic expansion for large conductivity.

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix 0000
Ou	tline						

2 Equations

3D Multiscale Asymptotic Expansion

- Axisymmetric Problems
- 5 Numerical simulations of skin effect
- 6 Exponential rates

🕜 Appendix

Earlier related references for asymptotics when $\sigma ightarrow \infty$

Calcul du skin effect par la méthodes des perturbations.

Journal of Physics (1940)

E. STEPHAN.

Solution procedures for interface problems in [...] electromagnetics.

CISM Courses and Lectures, 277, 291–348 (1983).

R. C. MACCAMY, E. STEPHAN.

Solution procedures for three-dimensional eddy current problems.

J. Math. Anal. Appl. 101(2) (1984) 348-379.

R. C. MACCAMY, E. STEPHAN.

A skin effect approximation for eddy current problems.

Arch. Rational Mech. Anal. 90(1) (1985) 87-98.

H. Haddar, P. Joly, H.-M. Nguyen.

Generalized impedance [...] for strongly absorbing obstacles [...]

Math. Models Methods Appl. Sci. 18(10) (2008) 1787–1827.

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix
A o	umptoi	lio Eve	onoion				

Asymptotic Expansion

Hypothesis

- Σ is a smooth surface, with (y_{β}, y_3) "normal coordinates" to Σ
- 2 ω satisfies the Spectral Hypothesis (SH)
- **3** J is smooth and J = 0 in Ω_{-}

Small parameter

$$\delta \mathrel{\mathop:}= \sqrt{\omega \varepsilon_0 / \sigma} \longrightarrow 0 \quad \text{as} \quad \sigma \to \infty$$

Pb $(\mathbf{P}_{\underline{\sigma}})$ has a unique sol. $\mathbf{H}_{(\delta)}$ for δ small enough. Expansion:

$$\begin{aligned} \mathbf{H}_{(\delta)}^{+}(\mathbf{x}) &= \mathbf{H}_{0}^{+}(\mathbf{x}) + \delta \mathbf{H}_{1}^{+}(\mathbf{x}) + \delta^{2}\mathbf{H}_{2}^{+}(\mathbf{x}) + \dots + \mathcal{O}(\delta^{N}) \text{ in } \Omega_{+} \\ \mathbf{H}_{(\delta)}^{-}(\mathbf{x}) &= \mathfrak{H}_{0}(y_{\beta}, \frac{y_{3}}{\delta}) + \delta \mathfrak{H}_{1}(y_{\beta}, \frac{y_{3}}{\delta}) + \delta^{2} \mathfrak{H}_{2}(y_{\beta}, \frac{y_{3}}{\delta}) + \dots + \mathcal{O}(\delta^{N}) \text{ in } \Omega_{-} \end{aligned}$$

The fields $\mathfrak{H}_j \in H(\operatorname{curl}, \Sigma \times \mathbb{R}_+)$ are exponentially decreasing profiles

Title Framework Equations Multiscale Expansion Axisymmetric Problems Simulations Exponential rates Appendix 00 00 00 000000 000000 000000 000000 000000

Profiles of the Magnetic Field

Exponential decrease rate λ in coordinate Y_3 with $Y_3 = \frac{y_3}{\delta}$

 $\lambda = \omega \sqrt{\varepsilon_0 \mu_0} \, \mathrm{e}^{-i\pi/4}$

• Denote $\mathbf{h}_0(y_\beta) := (\mathbf{n} \times \mathbf{H}_0^+) \times \mathbf{n}(y_\beta, \mathbf{0})$. Profile \mathfrak{H}_0 is *tangential*:

$$\mathfrak{H}_0(y_eta, rac{\gamma_3}{3}) = \mathbf{h}_0(y_eta) \, \mathrm{e}^{-\lambda \, Y_3}$$

2 Denote by \mathfrak{H}_1^{α} and \mathfrak{H}_1^{β} the *tangential and normal components* of \mathfrak{H}_1 .

$$\begin{split} \mathfrak{H}_{1}^{\alpha}(y_{\beta}, \frac{Y_{3}}{Y_{3}}) &= \Big[h_{1}^{\alpha} + \frac{Y_{3}}{(\mathcal{H} h_{0}^{\alpha} + \frac{b_{\sigma}^{\alpha}}{\sigma} h_{0}^{\sigma})} \Big](y_{\beta}) \, \mathrm{e}^{-\lambda Y_{3}} \\ \mathfrak{H}_{1}^{3}(y_{\beta}, \frac{Y_{3}}{Y_{3}}) &= \lambda^{-1} \, D_{\alpha} \, h_{0}^{\alpha}(y_{\beta}) \, \mathrm{e}^{-\lambda Y_{3}} \end{split}$$

Here, b_{σ}^{α} is the symmetric <u>curvature tensor</u> of Σ , and $\mathcal{H} = \frac{1}{2}b_{\alpha}^{\alpha}$ its <u>mean curvature</u>, and D_{α} is the covariant derivative. Finally,

$$\mathsf{h}_{j}^{lpha}(y_{eta}) \mathrel{\mathop:}= (\mathsf{H}_{j}^{+})^{lpha}(y_{eta}, \mathsf{0}) \hspace{0.1 in} ext{(tangential traces).}$$

A new definition of the skin depth (smooth interface Σ)

Denote $\mathfrak{H}_{(\delta)}(y_{\alpha}, y_{3}) := \mathbf{H}_{(\delta)}^{-}(\mathbf{x})$, for $y_{\alpha} \in \Sigma$ and $0 \leq y_{3}$ small enough.

Recall the relation $\delta = \sqrt{\omega \varepsilon_0 / \sigma}$.

Definition

Let $y_{\alpha} \in \Sigma$ and $\sigma \geq \sigma_0$. Assume $\mathfrak{H}_{(\delta)}(y_{\alpha}, 0) \neq 0$.

The *skin depth* $\mathcal{L}(\sigma, y_{\alpha})$ is the smallest length s.t.

$$\|\mathfrak{H}_{(\delta)}(y_{lpha},\mathcal{L}(\sigma,y_{lpha}))\| = \|\mathfrak{H}_{(\delta)}(y_{lpha},0)\| \operatorname{e}^{-1}$$

Theorem (DAUGE, FAOU, PÉRON, 2010)

Recall: \mathcal{H} mean curvature and $\ell(\sigma) = \sqrt{2/\omega\mu_0\sigma}$ the classical skin depth. Assume $\mathbf{h}_0(y_\alpha) \neq 0$.

$$\mathcal{L}(\sigma, y_{\alpha}) = \ell(\sigma) \Big(1 + \mathcal{H}(y_{\alpha}) \, \ell(\sigma) + \mathcal{O}(\sigma^{-1}) \Big), \quad \sigma \to \infty$$

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix 0000
Ou	tline						

Framework

- 2 Equations
- 3D Multiscale Asymptotic Expansion
- Axisymmetric Problems
- 5 Numerical simulations of skin effect
- 6 Exponential rates

🕖 Appendix

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix 0000		
Axisymmetric domains									

The meridian domain

Figure: The meridian domain $\Omega^{m}=\Omega^{m}_{-}\cup\Omega^{m}_{+}\cup\Sigma^{m}$

 Title
 Framework
 Equations
 Multiscale Expansion
 Axisymmetric Problems
 Simulations
 Exponential rates
 Appendix

 00
 000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

Case of orthoradial data: a scalar problem

The curl in cylindrical coordinates:

$$\begin{cases} (\operatorname{curl} \mathbf{H})_r = \frac{1}{r} \partial_{\theta} H_z - \partial_z H_{\theta} ,\\ (\operatorname{curl} \mathbf{H})_{\theta} = \partial_z H_r - \partial_r H_z ,\\ (\operatorname{curl} \mathbf{H})_z = \frac{1}{r} (\partial_r (rH_{\theta}) - \partial_{\theta} H_r) . \end{cases}$$

The Maxwell problem is axisymmetric.

H is axisymmetric iff $\breve{\mathbf{H}} := (H_r, H_\theta, H_z)$ does not depend on θ . **H** is orthoradial iff $\breve{\mathbf{H}} = (0, H_\theta, 0)$.

Assume that the right-hand side is axisymmetric and orthoradial

Then, $\mathbf{H}_{(\delta)}$ is axisymmetric and orthoradial

$$\breve{\mathbf{H}}_{(\delta)}(r,\theta,z) = (0,\mathsf{h}_{\theta(\delta)}(r,z),0).$$

Figure: The meridian domain Ω^m in configuration A

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix
Me Cont	shes	۱.					

Figure: Meshes \mathfrak{M}_2 , and \mathfrak{M}_3 in configuration A

 Title
 Framework on the second sec

Figure: The meridian domain Ω^m in configuration B

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix 0000
Me	shes						
Conf	iguration E						

Figure: The meshes \mathfrak{M}_3 and \mathfrak{M}_6

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix 0000
Ou	tline						

Framework

- 2 Equations
- 3D Multiscale Asymptotic Expansion
- Axisymmetric Problems
- **5** Numerical simulations of skin effect
- 6 Exponential rates

Appendix

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations •00000	Exponential rates	Appendix
Fin	ite Fle	ment N	/lethod				

In FEM computations, we use

- the angular frequency $\omega = 3.10^7$.
- 2 the rhs g = r (trace on Γ^m). It is real.
- the high order quadrangular elements available in the finite element library MÉLINA

We compute $h_{\theta(\delta)}$. Denote the discrete solution by

$$\tilde{h}_{\theta(\delta)} =: \tilde{h}_{\theta,\sigma}$$
 with $\delta = \sqrt{\omega \varepsilon_0 / \sigma}$.

We note that

- The first term $h_{\theta,0}^+$ of the asymptotics of $h_{\theta(\delta)}$ is real.
- ² Hence, the imaginary part Im $h_{\theta(\delta)}$ is $\mathcal{O}(\delta)$ in the dielectric Ω_+^{m} .
- Therefore the imaginary part of the computed field is expected to be larger in the conductor and to show the skin effect.

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix
Ski	n effec	t in co	nfiguration	В			

Figure: Configuration B. $|\operatorname{Im} \tilde{h}_{\theta,\sigma}|$ when $\sigma = 5$ and $\sigma = 80$

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix
Ski	n effec	et in co	nfiguration	Α			

Figure: Configuration A. $|\operatorname{Im} \tilde{h}_{\theta,\sigma}|$ when $\sigma = 5$ and $\sigma = 80$

 Title
 Framework oo
 Equations oo
 Multiscale Expansion ooo
 Axisymmetric Problems ooo
 Simulations ooo
 Exponential rates ooo
 Appendix ooo

 Influence of the geometry on the skin effect

 Configuration B and swaped configuration B

$\mathcal{H} >$ 0 on the left, and $\mathcal{H} <$ 0 on the right

Figure: $|\operatorname{Im} \tilde{h}_{\theta,\sigma}|, \sigma = 5$

 Title
 Framework
 Equations
 Multiscale Expansion
 Axisymmetric Problems
 Simulations
 Exponential rates
 Appendix

 Influence of the geometry on the skin effect
 Configuration B2 and swaped configuration B2
 B
 B
 B
 B

$\mathcal{H}>$ 0 on the left, and $\mathcal{H}<$ 0 on the right, and more prolate ellipsoids

Figure: $|\operatorname{Im} \tilde{h}_{\theta,\sigma}|, \sigma = 5$

 Title
 Framework
 Equations
 Multiscale Expansion
 Axisymmetric Problems
 Simulations
 Exponential rates
 Appendix

 Influence of the geometry on the skin effect
 Configuration B2 and swaped configuration B2
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 <td

Zoom of the previous figures.

Figure: $|\operatorname{Im} \tilde{h}_{\theta,\sigma}|, \sigma = 5$

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix 0000
Ou	tline						

Tramework

- 2 Equations
- 3D Multiscale Asymptotic Expansion
- Axisymmetric Problems
- 5 Numerical simulations of skin effect

6 Exponential rates

Appendix

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix
Qu	antitati	ve info	ormation				

- The qualitative behavior of skin effect is visible on previous figs.
- We want now to *measure* the exponential rate, if relevant.

We extract point values of computed solution $|\tilde{h}_{\theta,\sigma}|$ in Ω^{m}_{-} along a line *D* crossing Σ and calculate *slope* $\tilde{s}(\sigma)$ of the line close to

 $D
i d \mapsto \log_{10} | \tilde{h}_{ heta,\sigma}(r(d),z(d)) |.$

 Title
 Framework
 Equations
 Multiscale Expansion
 Axisymmetric Problems
 Simulations
 Exponential rates
 Appendix

 00
 000
 0000
 00000
 00000
 00000
 00000
 00000

Theoretical value of the slope

• Recall the *actual* skin depth $\mathcal{L}(\sigma, y_{\alpha})$. The theoretical slope $s(\sigma, y_{\alpha})$ is such that

$$s(\sigma, y_{lpha}) = rac{1}{\log 10} rac{1}{\mathcal{L}(\sigma, y_{lpha})}$$

2 Recall the asymptotics

$$\mathcal{L}(\sigma, y_{\alpha}) = \ell(\sigma) \Big(1 + \mathcal{H}(y_{\alpha}) \ell(\sigma) + \mathcal{O}(\sigma^{-1}) \Big), \quad \sigma \to \infty$$

with \mathcal{H} mean curvature and $\ell(\sigma) = \sqrt{2/\omega\mu_0\sigma}$ classical skin depth.

Solution Therefore theoretical slope $s(\sigma, y_{\alpha})$ satisfies

$$s(\sigma, y_{\alpha}) = \frac{1}{\log 10} \left(\frac{1}{\ell(\sigma)} - \mathcal{H}(y_{\alpha}) \right) + \mathcal{O}(\sigma^{-1/2})$$

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix 0000					

Numerical results

Config. B, line z = 0. $\mathcal{H} = \frac{5}{4}$.

$$\operatorname{curv_ratio}(\sigma) := \frac{\frac{5}{4}}{\frac{1}{\ell(\sigma)} - \frac{5}{4}}$$
$$\operatorname{err}(\sigma) := \left| \frac{s(\sigma) - \tilde{s}(\sigma)}{s(\sigma)} \right|$$

σ	5	20	80
$\ell(\sigma)$	0.103	0.0515	0.0258
$s(\sigma)$	3.67332	7.88951	16.32188
$\operatorname{curv}_{\operatorname{ratio}}(\sigma)$	0.148	0.069	0.033
$\tilde{s}(\sigma)$	3.64686	7.87347	16.308279
$\operatorname{err}(\sigma)$	0.0072	0.002	0.0008

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix
Co	nfigura	tion A					

We extract values of $\log_{10} |\tilde{h}_{\theta,\sigma}|$ in $\Omega^{\rm m}_{-}$ along the diagonal axis r = z

Figure: On the left $\sigma = 20$. On the right, $\sigma = 80$.

The behavior is not exactly linear...

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix
Dei			ntial decay				

Rates of exponential decay

We plot the *slopes* in the 4 previous figures.

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix		
0	Conclusion								

Conclusion

- In config. B, slopes tend to positive limits as y₃ → 0 (exponential decay).
- The values of the slopes are very close to theoretical ones.
- In config. A, slopes tend to 0 as $\rho \rightarrow$ 0 (no exponential decay at corner **a**).
- But exponential decay is restored further away from **a**.
- The principal asymptotic contribution inside the conductor is a profile v_0 globally defined on a sector S solving the model Dirichlet pb

$$\left\{ \begin{array}{lll} (\partial_X^2 + \partial_Y^2) \mathsf{v}_0 - \lambda^2 \mathsf{v}_0 &= & \mathsf{0} & \quad \text{in} \quad \mathcal{S} \;, \\ \mathsf{v}_0 &= & \mathsf{h}_0^+(\mathbf{a}) \quad \text{on} \quad \partial \mathcal{S} \;, \end{array} \right.$$

instead the 1D problem in configuration B

$$\begin{array}{rcl} \partial_Y^2 v_0 - \lambda^2 v_0 &= & 0 & \mbox{ for } & 0 < Y < +\infty \ , \\ v_0 &= & h_0^+ & \mbox{ for } & Y = 0 \ . \end{array}$$

Title

Multiscale Expansion

Axisymmetric Problems

-

招

Exponential rates 000000

谢谢

Thank you.

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix
Ou	tline						

Framework

- **3D Multiscale Asymptotic Expansion** 3
- **Axisymmetric Problems**
- 6 Numerical simulations of skin effect

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix
							0000

Magnetic global formulation

$$\begin{aligned} & \left(\begin{array}{c} \operatorname{curl}\operatorname{curl} \mathbf{H}_{(\delta)}^{+} - \kappa^{2}\mathbf{H}_{(\delta)}^{+} = \operatorname{curl} \mathbf{J} & \text{in } \Omega_{+} \\ & \operatorname{curl}\operatorname{curl} \mathbf{H}_{(\delta)}^{-} - \kappa^{2}(1 + \frac{i}{\delta^{2}})\mathbf{H}_{(\delta)}^{-} = 0 & \text{in } \Omega_{-} \\ & \operatorname{curl} \mathbf{H}_{(\delta)}^{+} \times \mathbf{n} = (1 + \frac{i}{\delta^{2}})^{-1}\operatorname{curl} \mathbf{H}_{(\delta)}^{-} \times \mathbf{n} & \text{on } \Sigma \\ & \mathbf{H}_{(\delta)}^{+} \times \mathbf{n} = \mathbf{H}_{(\delta)}^{-} \times \mathbf{n} & \text{on } \Sigma \\ & \mathbf{H}_{(\delta)}^{+} \cdot \mathbf{n} = \mathbf{H}_{(\delta)}^{-} \cdot \mathbf{n} & \text{on } \Sigma \\ & \mathbf{H}_{(\delta)}^{+} \times \mathbf{n} = 0 & \text{on } \Sigma \end{aligned}$$

 Title
 Framework
 Equations
 Multiscale Expansion
 Axisymmetric Problems
 Simulations
 Exponential rates
 Appendix

 00
 000
 000000
 000000
 000000
 000000
 000000
 000000

Magnetic power series identification

System of equations, for all $m \ge 0$

(1)
$$-\lambda^{2}\mathfrak{H}_{m,3} = \sum_{j=0}^{m-1} L_{3}^{m-j}(\mathfrak{H}_{j})$$
 in $\Sigma \times I$
(3a) $\partial_{3}^{2}\mathfrak{H}_{m,\alpha} - \lambda^{2}\mathfrak{H}_{m,\alpha} = \sum_{j=0}^{m-1} L_{\alpha}^{m-j}(\mathfrak{H}_{j})$ in $\Sigma \times I$
(3b) $\mathfrak{H}_{m,\alpha} = \mathbf{H}_{m,\alpha}^{+}$ on Σ
(2a) $\operatorname{curl}\operatorname{curl}\mathbf{H}_{m}^{+} - \kappa^{2}\mathbf{H}_{m}^{+} = (\operatorname{if} m = 0) \cdot \operatorname{curl} \mathbf{J}$ in Ω_{+}
(2b) $\mathbf{H}_{m}^{+} \cdot \mathbf{n} = \mathfrak{H}_{m,3}$ on Σ

(2c)
$$\operatorname{curl} \mathbf{H}_m^+ \times \mathbf{n} = \sum_{j=0}^{m-1} \mathsf{T}^{m-j} \mathfrak{H}_j$$
 on Σ

(2d)
$$\mathbf{H}_m^+ imes \mathbf{n} = 0$$
 on Γ

Title	Framework	Equations	Multiscale Expansion	Axisymmetric Problems	Simulations	Exponential rates	Appendix ○○●○

Electric global formulation

$$\begin{array}{lll} \left(\begin{array}{c} \operatorname{curl}\operatorname{curl} \mathbf{E}^+_{(\delta)} - \kappa^2 \mathbf{E}^+_{(\delta)} = i\omega\mu_0 \mathbf{J} & \text{in } \Omega_+ \\ \\ \operatorname{curl}\operatorname{curl} \mathbf{E}^-_{(\delta)} - \kappa^2 (1 + \frac{i}{\delta^2}) \mathbf{E}^-_{(\delta)} = 0 & \text{in } \Omega_- \\ \\ \operatorname{curl} \mathbf{E}^+_{(\delta)} \times \mathbf{n} = \operatorname{curl} \mathbf{E}^-_{(\delta)} \times \mathbf{n} & \text{on } \Sigma \\ \\ \mathbf{E}^+_{(\delta)} \times \mathbf{n} = \mathbf{E}^-_{(\delta)} \times \mathbf{n} & \text{on } \Sigma \\ \\ \mathbf{E}^+_{(\delta)} \cdot \mathbf{n} = 0 & \text{and } \operatorname{curl} \mathbf{E}^+_{(\delta)} \times \mathbf{n} = 0 & \text{on } \Gamma. \end{array}$$

Electric power series identification

System of equations, for all $m \ge 0$

(1)
$$-\lambda^2 \mathfrak{E}_{m,3} = \sum_{j=0}^{m-1} L_3^{m-j}(\mathfrak{E}_j)$$
 in $\Sigma \times I$

(2a)
$$\partial_3^2 \mathfrak{E}_{m,\alpha} - \lambda^2 \mathfrak{E}_{m,\alpha} = \sum_{j=0}^{m-1} L_{\alpha}^{m-j}(\mathfrak{E}_j)$$
 in $\Sigma \times I$

(2b)
$$\partial_3 \mathfrak{E}_{m,\alpha} = D_\alpha \mathfrak{E}_{m-1,3} + \left(\operatorname{curl} \mathbf{E}_{m-1}^+ \times \mathbf{n}\right)_\alpha$$
 on Σ

(3a) curl curl
$$\mathbf{E}_m^+ - \kappa^2 \mathbf{E}_m^+ = (\text{if } m = 0) \cdot i\omega \mu_0 \mathbf{J}$$
 in Ω_+

(3b)
$$\mathbf{E}_m^+ \times \mathbf{n} = \mathfrak{E}_m \times \mathbf{n}$$
 on Σ

(3c)
$$\mathbf{E}_m^+ \cdot \mathbf{n} = 0$$
 and $\operatorname{curl} \mathbf{E}_m^+ \times \mathbf{n} = 0$ on Γ .