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Cavity modes with perfectly conducting conditions

Cavity Ω bounded polygonal domain in R2 or polyhedral in R3.
Functional spaces for electric formulation

1 For plain curl-curl formulation

H0(curl,Ω) = {u ∈ L2(Ω)3, curl u ∈ L2(Ω)3, u × n = 0 on ∂Ω}
2 For regularized formulation

X N(Ω) = {u ∈ H0(curl,Ω), div u ∈ L2(Ω)}

And corresponding variational formulations
1 Find non-zero E ∈ H0(curl,Ω) and non-zero λ:∫

Ω

curl E · curl E ′ dx = λ

∫
Ω

E · E ′ dx , ∀E ′ ∈ H0(curl,Ω)

2 Find non-zero E ∈ X N(Ω) and non-zero λ:∫
Ω

(
curl E · curl E ′ + s div E div E ′) dx = λ

∫
Ω

E · E ′ dx , ∀E ′ ∈ X N(Ω)

with a (free) positive parameter s.
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Two methods

Recall from previous talk
1 The plain curl-curl formulation provides an approximation of the infinite

dimensional kernel (the gradients), and nothing else, in general.
2 The regularized formulation works in a square, on not in a L-shape.

We reverse the (natural) order and investigate
1 A modification of regularized formulation, introducing a weight.
2 Special finite elements which contain exactly the right amount of

gradients.
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Theory

A density issue

Let
H1

N(Ω) = H1(Ω)2 ∩ X N(Ω).

FE spaces W p which are curl and div conforming satisfy W p⊂ H1
N(Ω).

1 H1
N(Ω) is closed in X N(Ω) for the norm of X N(Ω).

2 If Ω has non-convex corners, the embedding H1
N(Ω) ⊂ X N(Ω) is strict.

For Properties (1) and (2) one can consider gradient fields u = gradϕ
only, and obtain equivalent statements phrased in ϕ: Introduce

D(∆dir(Ω)) = {ϕ ∈ H1
0 (Ω), ∆ϕ ∈ L2(Ω)}

Then, we have the gradient correspondance principle :
1 H2 ∩ H1

0 (Ω) is closed in D(∆dir(Ω)).
2 If Ω has non-convex corners, the embedding

H2 ∩ H1
0 (Ω) ⊂ D(∆dir(Ω)) is strict.
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Theory

Introducing a weight in the divergence term

Let x 7→ ρ(x) be the distance function to the set of non-convex corners or
edges of Ω. For s > 0 and γ ∈ R we introduce the bilinear form

aγ,s(E,E ′) =

∫
Ω

curl E · curl E ′ + s
∫

Ω

ργ div E ργ div E ′ dx

defined on its natural space — here L2
γ(Ω) = {v , ργv ∈ L2(Ω)}

Xγ,N(Ω) = {u ∈ H0(curl,Ω), div u ∈ L2
γ(Ω)}

Define the Laplace-Dirichlet operator ∆dir
γ as

∆dir
γ : D(∆dir

γ (Ω)) :=
{
ϕ ∈ H1

0 (Ω) | ∆ϕ ∈ L2
γ(Ω)

}
−→ L2

γ(Ω)

ϕ 7−→ ∆ϕ.

Theorem COSTABEL-DAUGE

If H2 ∩ H1
0 (Ω) is dense in D(∆dir

γ (Ω)), then H1
N(Ω) is dense in Xγ,N(Ω)
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Theory

Finding a suitable weight

Theorem

Ω polygonal or polyhedral domain. There exists γ0 = γ0(Ω) < 1 such that

∀γ, γ0 < γ ≤ 1, H2 ∩ H1
0 (Ω) is dense in D(∆dir

γ (Ω))

and, therefore

∀γ, γ0 < γ ≤ 1, H1
N(Ω) is dense in Xγ,N(Ω)

γ0 is explicit in function of

the largest opening ω of Ω in 2D: γ0 = 1− π/ω

the largest edge opening, and the corner solid angles in 3D

Example of the L-shape:

γ0 =
1
3
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Practice

Plain regularization
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Ω = L-shape.

Regularizing parameter
0 < s ≤ 5

Plot s → λs,k .

Q10 elements on a
9-element mesh
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Horizontal lines

Sorted by ratio of curl energy / div energy
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Practice

Weighted regularization with γ = 0.35
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Regularizing parameter
0 < s ≤ 10

Plot s → λs,k .

Q10 elements on a
9-element mesh
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Sorted by ratio of curl energy / div energy
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Practice

Weighted regularization with γ = 0.5
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Practice

Weighted regularization with γ = 1
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Regularizing parameter
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Plot s → λs,k .
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Principles

Mimicking the kernel: edge elements

Sequence of discretizations

Vp ⊂ V ⊂ H1
0 (Ω) and W p ⊂ W ⊂ H0(curl,Ω)

with projection operators πV
p and πW

p satisfying the commuting diagram:

V
grad−→ WyπV

p

yπW
p

Vp
grad−→ W p

Any u ∈ H0(curl,Ω) satisfies

∀ϕ ∈ H1
0 (Ω), 〈u,gradϕ〉

Ω
= 0 ⇐⇒ div u = 0

Definition: up ∈ W p is discrete divergence free if

∀ϕp ∈ Vp, 〈up,gradϕp〉Ω = 0

Such a up is not divergence free, in general. Nevertheless...
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Principles

Spectral correctness if 3 conditions are satisfied

(CAS) Completeness of the Approximating Subspace

∀v ∈ H0(curl,Ω), lim
p

inf
vp∈W p

‖v − vp‖H(curl,Ω)
= 0.

(CDK) Completeness of the Discrete Kernel

∀ϕ ∈ H1
0 (Ω), lim

p
inf

ϕp∈Vp

‖ϕ− ϕp‖H1(Ω)
= 0.

(DCP) Discrete Compactness Property (KIKUCHI)
For any sequence {up} of discrete divergence free fields bounded in
H(curl,Ω), there exists a subsequence {up′} and a limit u ∈ L2(Ω)3

lim
p′
‖up′ − u‖

L2(Ω)
= 0.

(CAORSI-FERNANDES-RAFFETTO)
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Principles

Discrete Compactness Property

For the h-version of Finite Elements:

Proof for uniform meshes (MONK, DEMKOWICZ)

Proof for certain anisotropically refined meshes
(NICAISE, BUFFA-COSTABEL-DAUGE)

For the p-version of Finite Elements:

An incomplete proof for 2D triangular meshes
(BOFFI-DEMKOWICZ-COSTABEL)

Proof for 2D rectangular elements
(BOFFI-COSTABEL-DAUGE-DEMKOWICZ).

General proof for 2D and 3D meshes ... /...
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Discrete compactness for the p-version of FEM

Result for the p-version: The Four Assumptions

1 All spaces and operators are defined Element-wise, e.g.

∀u ∈ W , (πW
p u)

∣∣
K

= πW
p,K (u

∣∣
K
)

and the basic commuting diagram is a cell of a larger exact sequence

R −→ V
grad−→ W curl−→ curl W −→ 0yπV

p

yπW
p

yπY
p

R −→ Vp
grad−→ W p

curl−→ curl W p −→ 0

2 Compact Embedding W ⊂⊂ L2(Ω) and Regularity Result :

u ∈ H0(curl,Ω) and div u ∈ L2(Ω) =⇒ u ∈ W .

3 Local scalar approximation property: exists δ > 0,

∀ϕ ∈ V , ∀p ∈ N, ‖ϕ− πV
p ϕ‖H1(K )

≤ C p−δ‖ϕ‖
V(K )

.

4 ∃ Poincaré operator K lifting the curl: ∀f ∈ curl W (K ), curl Kf = f

K continuous curl W
∣∣
L2(K )

→ W and curl W p → W p
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Discrete compactness for the p-version of FEM

Step 0 of the proof of the discrete compactness

Theorem (BOFFI-COSTABEL-DAUGE-DEMKOWICZ 2008)

Under the Four Assumptions, the Discrete Compactness Property holds.

Step 0 : (Kikuchi)

(up ∈ W p)p
sequ. bounded in H0(curl,Ω) and discrete divergence free.

For each p ∈ N, let up be such that

curl up = curl up, up × n
∣∣
∂Ω

= 0 and div up = 0.

The continuity assumption (2) yields

‖up‖
W
≤ C‖up‖H(curl,Ω)

,

and the compact embedding yields W ⊂⊂ L2(Ω) that up converges.
It remains to estimate

‖up − up‖H(curl,Ω)
= ‖up − up‖L2(Ω)

We are going to prove that this tends to 0.
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Discrete compactness for the p-version of FEM

Step 1 of the proof of the discrete compactness

Step 1: Known as “Nédélec’s trick”

‖up − up‖L2(Ω)
≤ ‖up − πW

p up‖
L2(Ω)

.

Essentially based on

The discrete divergence free property of up

The divergence free property of up
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Discrete compactness for the p-version of FEM

Step 2 of the proof of the discrete compactness

Step 2 : The innovative one.

For each element K of the mesh, ∃ potential ψp ∈ V (K ) satisfying{
‖ψp‖

V(K )
≤ C‖up‖

X(K )

‖up − πW
p up‖

L2(K )
≤ C‖ψp − πV

p ψ
p‖

H1(K )

Proof. Reduction to scalar potentials thanks to the Poincaré operator:
∃ potential ψp ∈ H1(K ) such that

up = K(curl up) + gradψp (1)

By continuity of K, we have gradψp ∈ W (K ), hence ψp ∈ V (K )

Since curl up ∈ W p(K ), ∃ potential ψp ∈ W p(K ) such that

πW
p up = K(curl up) + gradψp (2)

(1) – (2) and commuting diagram:

up − πW
p up = gradψp − gradψp = gradψp − gradπV

p ψ
p
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Discrete compactness for the p-version of FEM

Step 3 of the proof of the discrete compactness

Step 3 : The conclusion.

We use the scalar local approximation

‖ψp − πV
p ψ

p‖
H1(K )

≤ C p−δ‖ψp‖
V(K )

≤ C p−δ‖up‖
X(K )

Hence, coming back to up − up

‖up − πW
p up‖

L2(K )
≤ C p−δ‖up‖

X(K )

Sum squares of estimates over mesh elements K , and rely on Steps 0 & 1

‖up − up‖L2(Ω)
≤ ‖up − πW

p up‖
L2(Ω)

≤ C p−δ‖up‖H(curl,Ω)

Hence the convergence. QED
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Conclusion

To conclude
Two methods are proved to be spectrally correct in many
configurations

Weighted Regularization Method
Edge Elements in the framework of exact sequences and
commuting diagrams

See on the benchmark page
http://perso.univ-rennes1.fr/monique.dauge/benchmax.html

computations by both methods, with the codes

Mélina (IRMAR Rennes)
Concepts (ETH Zürich)
Montjoie (INRIA Rocquencourt)
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