A Maxwell story: 1 St act	A Maxwell story: 2 nd act	A Maxwell story: 3 rd act	A Maxwell story: Epilogue	Another problem	To conclude ⊖

How one can compute wrong eigenvalues and believe they are correct... and how to remedy

Monique DAUGE

IRMAR

Université Rennes 1 13.07.2008

A Maxwell story: 1 St act	A Maxwell story: 2 nd act	A Maxwell story: 3 rd act	A Maxwell story: Epilogue	Another problem	To conclude
●000000	0000	00000000	000	00000000	0
Title page					

A Maxwell story: 1st act

A plain Galerkin discretization

A Maxwell story: 1 St act	A Maxwell story: 2 nd act	A Maxwell story: 3 rd act	A Maxwell story: Epilogue	Another problem	To conclude
Eigenfrequency problem					
Cavity mo	odes with p	erfectly co	nducting c	ondition	S

Cavity Ω bounded domain. Permittivity ε and permeability μ .

Cavity electromagnetic mode Triple $(\omega, \boldsymbol{E}, \boldsymbol{H})$ with • Frequency $\omega \neq 0$ • Electromagnetic field $(\boldsymbol{E}, \boldsymbol{H}) \neq 0$, solution of: $\begin{cases} \operatorname{curl} \boldsymbol{E} - i\omega \,\mu \boldsymbol{H} = 0 & \text{in } \Omega \\ \operatorname{curl} \boldsymbol{H} + i\omega \,\varepsilon \boldsymbol{E} = 0 & \text{in } \Omega \end{cases}$ Maxwell equations $\begin{cases} \boldsymbol{E} \times \boldsymbol{n} = 0 \quad \text{on} \quad \partial \Omega \\ \boldsymbol{H} \cdot \boldsymbol{n} = 0 \quad \text{on} \quad \partial \Omega \end{cases}$ Perfectly Conducting conditions

To simplify, consider *homogeneous and isotropic* medium: ε , μ constant > 0. By a change of unknown, assume without restriction

 $\varepsilon = \mu = 1.$

A Maxwell story: 1 St act ○○●○○○○	A Maxwell story: 2 nd act	A Maxwell story: 3 rd act	A Maxwell story: Epilogue	Another problem	To conclude ○
Eigenfrequency problem					
Eliminate	Н				

E and *H* are searched in $H(\operatorname{curl}, \Omega)$, i.e. *E*, *H*, curl *E*, curl $H \in L^2(\Omega)$. Multiply equation curl $E - i\omega \mu H = 0$ by curl *E'* and integrate over Ω

(1)
$$\int_{\Omega} (\operatorname{curl} \boldsymbol{E} - i\omega \boldsymbol{H}) \cdot \operatorname{curl} \boldsymbol{E}' \, d\boldsymbol{x} = 0, \quad \forall \boldsymbol{E}' \in \boldsymbol{H}(\operatorname{curl}, \Omega)$$

Multiply equation curl $H + i\omega E = 0$ by $i\omega E'$ and integrate over Ω

(2)
$$\int_{\Omega} (i\omega \operatorname{curl} \boldsymbol{H} - \omega^2 \boldsymbol{E}) \cdot \boldsymbol{E}' \, d\boldsymbol{x} = 0, \quad \forall \boldsymbol{E}' \in H(\operatorname{curl}, \Omega)$$

Integrate by parts if, moreover $\mathbf{E}' \times \mathbf{n} = 0$ on $\partial \Omega$, i.e. $\mathbf{E}' \in H_0(\mathbf{curl}, \Omega)$

$$\int_{\Omega} \operatorname{\mathsf{curl}} oldsymbol{H} imes oldsymbol{E}' \; doldsymbol{x} = \int_{\Omega} oldsymbol{H} imes \operatorname{\mathsf{curl}} oldsymbol{E}' \; doldsymbol{x}$$

Add (1) and (2)

$$\int_{\Omega} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}' - \omega^2 \, \boldsymbol{E} \cdot \boldsymbol{E}' \, \, d\boldsymbol{x} = 0, \quad \forall \boldsymbol{E}' \in \mathcal{H}_0(\operatorname{curl}, \Omega)$$

Variational electric formulation

Find $\lambda \neq 0$ such that there exists non-zero $\boldsymbol{E} \in H_0(\operatorname{curl}, \Omega)$:

$$\int_{\Omega} \operatorname{curl} \boldsymbol{\textit{E}} \cdot \operatorname{curl} \boldsymbol{\textit{E}}' \; d\boldsymbol{\textit{x}} = \lambda \int_{\Omega} \boldsymbol{\textit{E}} \cdot \boldsymbol{\textit{E}}' \; d\boldsymbol{\textit{x}}, \quad \forall \boldsymbol{\textit{E}}' \in \textit{H}_{0}(\operatorname{curl}, \Omega)$$

Seems suitable for Galerkin approximation: Replace $H_0(\operatorname{curl}, \Omega)$ with a sequence of finite element subspaces W_h .

Try in 2D first: Find non-zero λ_h and non-zero $\boldsymbol{E}_h \in \boldsymbol{W}_h$:

$$\int_{\Omega} \operatorname{rot} \boldsymbol{E}_h \operatorname{rot} \boldsymbol{E}'_h d\boldsymbol{x} = \lambda_h \int_{\Omega} \boldsymbol{E}_h \cdot \boldsymbol{E}'_h d\boldsymbol{x}, \quad \forall \boldsymbol{E}'_h \in \boldsymbol{W}_h$$

Example of the square

 $\Omega = (0, \pi)^2$. Exact eigenvalues known explicitly

 $\lambda_1=\lambda_2=1,\quad \lambda_3=2,\quad \lambda_4=\lambda_5=4,\quad \lambda_6=\lambda_7=5,\quad \lambda_8=8,\ldots$

A Maxwell story: 1 St act	A Maxwell story: 2 nd act	A Maxwell story: 3 rd act	A Maxwell story: Epilogue	Another problem	To conclude
0000000	0000	00000000	000	00000000	0
Square					

Galerkin approximation: h-version of FEM

$$\Omega = (0,\pi)^2$$

Plot $k \rightarrow \lambda_{h,k}$

Q1 (bilinear) square elements
8 nodes per side
16 nodes per side

Exact values: Horizontal lines

Raté! (Doesn't work)

Galerkin approximation: p-version of FEM

Encore raté! (Correct values, but wrong multiplicity)

A Maxwell story: 1 St act ○○○○○○●	A Maxwell story: 2 nd act	A Maxwell story: 3 rd act	A Maxwell story: Epilogue	Another problem	To conclude
Square					
and the c	ulprit is				

...the infinite-dimensional kernel:

For all potential $\varphi \in H_0^1(\Omega)$

 $\mathbf{E} = \operatorname{grad} \varphi,$

belongs to $H_0(rot, \Omega)$ and belongs to the kernel of our operator.

How to get rid of it?

A Maxwell story: 1 St act	A Maxwell story: 2 nd act	A Maxwell story: 3 rd act	A Maxwell story: Epilogue	Another problem	To conclude ○
Title page					

A Maxwell story: 2nd act

Regularization

A Maxwell story: 1st act A Maxwell story: 2nd act A Maxwell story: 3rd act A Maxwell story: 2nd act A Maxwell story: Epilogue Another problem To conclude 00000000 00 Square, continued

Introducing the divergence

Take the divergence of the equation curl $H + i\omega E = 0$. Since $\omega \neq 0$:

 $\text{div}\, \boldsymbol{\textit{E}}=0 \quad \text{in} \quad \Omega$

Recall the formula

curl curl – grad div = $-\Delta$

and add the term $\int_{\Omega} \text{div} \boldsymbol{E} \text{ div } \boldsymbol{E}'$ to our bilinear form

$$\int_{\Omega} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}' \, d\boldsymbol{x} + \int_{\Omega} \operatorname{div} \boldsymbol{E} \, \operatorname{div} \boldsymbol{E}' \, d\boldsymbol{x} = \lambda \int_{\Omega} \boldsymbol{E} \cdot \boldsymbol{E}' \, d\boldsymbol{x}.$$

The variational space is now $X_N(\Omega) := H_0(\operatorname{curl}, \Omega) \cap H(\operatorname{div}, \Omega)$.

Introduce new variational problems, for s > 0: Find $\lambda \neq 0$, $\boldsymbol{E} \in \boldsymbol{X}_{N}(\Omega)$, $\boldsymbol{E} \neq 0$ $\int_{\Omega} \left(\operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}' + s \operatorname{div} \boldsymbol{E} \operatorname{div} \boldsymbol{E}' \right) d\boldsymbol{x} = \lambda \int_{\Omega} \boldsymbol{E} \cdot \boldsymbol{E}' d\boldsymbol{x}, \quad \forall \boldsymbol{E}' \in \boldsymbol{X}_{N}(\Omega)$

A Maxwell story: 1 St act	A Maxwell story: 2 nd act	A Maxwell story: 3 rd act	A Maxwell story: Epilogue	Another problem	To conclude
Square, continued					

FEM approximation on the square, with regularization

$$\Omega = (\mathbf{0}, \pi)^2.$$

Regularizing parameter s = 1

Plot $k \to \lambda_{h,k}$. \mathbb{Q}_1 (bilinear) square elements 8 nodes per side 16 nodes per side

Exact values: Horizontal lines

There is some hope ...

FEM approximation on the square, with regularization

This is converging to the correct values with the correct multiplicity...

A Maxwell story: 1 St act	A Maxwell story: 2 nd act	A Maxwell story: 3 rd act	A Maxwell story: Epilogue	Another problem	To conclude ○
Title page					

A Maxwell story: 3rd act Regularization... and corners

Solve the regularized variational problems, for s > 0: Find $\lambda \neq 0$, $\boldsymbol{E} \in \boldsymbol{X}_{N}(\Omega)$, $\boldsymbol{E} \neq 0$

$$\int_{\Omega} \left(\operatorname{rot} \boldsymbol{E} \cdot \operatorname{rot} \boldsymbol{E}' + \boldsymbol{s} \operatorname{div} \boldsymbol{E} \operatorname{div} \boldsymbol{E}' \right) d\boldsymbol{x} = \lambda \int_{\Omega} \boldsymbol{E} \cdot \boldsymbol{E}' \ d\boldsymbol{x}, \quad \forall \boldsymbol{E}' \in \boldsymbol{X}_{N}(\Omega)$$

in the L-shape domain (a square minus a square)

$$\Omega_L = (-1,1)^2 \setminus (-1,0)^2$$

No analytic solution known.

Compute error by comparing with a finer approximation (denoted by $\lambda_{0,k}$).

FEM approximation on the L, with regularization

This is converging...

FEM approximation on the L, with regularization

Convergence rate: 0.706 for λ_1 and λ_2 , 2.000 for λ_3 .

Are computed eigenvalues correct?

What did we find as numbers?

s = 1s = 10 λ_1 3.534203.53450 λ_2 3.534205.68315 λ_3 9.869609.86960

What should we expect?

The eigenvalues of the regularized formulation with parameter *s* globally depend on *s*:

 $\mathfrak{S}_{\text{regularized}}(s) = \mathfrak{S}_{\text{Maxwell}} \cup s \mathfrak{S}_{\text{Dirichlet } \Delta}$

The second eigenvalue is doubtful...

New information:

In 2D, electric Maxwell eigenvectors are the curls of Neumann Laplace eigenvectors

with $-\Delta \psi = \lambda \psi$ (in Ω) and $\partial_n \psi = 0$ (on $\partial \Omega$) $\boldsymbol{E} = \operatorname{curl} \psi$, Neumann Δ s = 1 s = 10 λ_1 3.53420 3.53450 1.47562 λ_2 3.53420 5.68315 3.53403 λ_3 9.86960 9.86960 9.86960

We missed the first one! (and caught the second one)

Why?

Singular and regular eigenvectors

For *k* = 1, 2, 3, 4

$$m{E}_k = {f curl}\,\psi_k^{
m neu}, \quad {
m with} \quad -\Delta\psi_k^{
m neu} = \lambda_k^{
m neu}\psi_k^{
m neu} \quad {
m and} \quad \partial_n\psi_k^{
m neu} = 0$$

ψ^{neu}₁, the first non-constant eigenvector, is odd with respect to the diagonal x = y of Ω_L. It does not belong to H²(Ω_L)

$$\psi_1^{\mathsf{neu}} = u + c \, r^{2/3} \cos rac{2 heta}{3}, \quad u \in H^2(\Omega_{\mathsf{L}}), \ c
eq 0.$$

Therefore $\boldsymbol{E}_1 \notin H^1(\Omega_L)^2$.

ψ^{neu}₂, is even with respect to the diagonal x = y. It belongs to H²(Ω_L)
 One can take

 $\psi_3^{\text{neu}}(x,y) = \cos(\pi x)$ and $\psi_4^{\text{neu}}(x,y) = \cos(\pi y)$

and $\lambda_{3}^{neu} = \lambda_{4}^{neu} = \pi^2 \simeq 9.86960.$

A Maxwell story: 1 St act	A Maxwell story: 2 nd act	A Maxwell story: 3 rd act ○○○○○○●○	A Maxwell story: Epilogue	Another problem	To conclude ○
Obstruction					
A density	issue				

- Recall that W_h are the discrete spaces.
- Let $\boldsymbol{H}_{N}^{m}(\Omega) = H^{m}(\Omega)^{2} \cap \boldsymbol{X}_{N}(\Omega), \quad m = 1, 2, \dots$
- Any u_h ∈ W_h is piecewise polynomial and continuous across inter-element boundaries. Therefore

 $oldsymbol{W}_h\subsetoldsymbol{H}^1_N(\Omega)$

On the other hand, there holds

Theorem COSTABEL-DAUGE

(i) For any
$$\boldsymbol{u} \in \boldsymbol{H}_{N}^{2}(\Omega)$$
, $\int_{\Omega} |\operatorname{rot} \boldsymbol{u}|^{2} + |\operatorname{div} \boldsymbol{u}|^{2} d\boldsymbol{x} = \int_{\Omega} |\operatorname{grad} \boldsymbol{u}|^{2} d\boldsymbol{x}$.
(ii) $\boldsymbol{H}_{N}^{2}(\Omega)$ is dense in $\boldsymbol{H}_{N}^{1}(\Omega)$.
(iii) $\boldsymbol{H}_{N}^{1}(\Omega)$ is closed in $\boldsymbol{X}_{N}(\Omega)$ for the norm of $\boldsymbol{X}_{N}(\Omega)$.

Solution If Ω has non-convex corners, the embedding $H^1_N(\Omega) \subset X_N(\Omega)$ is strict.

Convergence does not imply consistency

Conclusion

If Ω has non-convex corners, there exists $\delta > 0$ such that any nodal conforming finite element subspace W_h of $X_N(\Omega)$ satisfies

 $\operatorname{dist}(\boldsymbol{X}_{N}(\Omega), \boldsymbol{W}_{h}) \geq \operatorname{dist}(\boldsymbol{X}_{N}(\Omega), \boldsymbol{H}_{N}^{1}(\Omega)) > \delta.$

But the first Maxwell eigenvector \boldsymbol{E}_1 does not belong to $\boldsymbol{H}_N^1(\Omega)$.

Therefore E_1 cannot be approached by nodal Finite Element spaces W_h .

A Maxwell story: 1 St act	A Maxwell story: 2 nd act	A Maxwell story: 3 rd act	A Maxwell story: Epilogue	Another problem	To conclude ○
Title page					

A Maxwell story: Epilogue

Weighted Regularization... and other methods

• Weighted regularization: introduce a positive exponent γ and the weighted integral

$$s \int_{\Omega} r^{2\gamma} \operatorname{div} \boldsymbol{E} \operatorname{div} \boldsymbol{E}' \, d\boldsymbol{x}$$

COSTABEL-DAUGE

- Singular Function Methods: Add non- H^1 singularities to the FEM spaces W_h . LOHREHGEL et al., CIARLET JR et al.
- Edge elements, which are curl-conforming but not div conforming, and part of a discrete commuting diagram. NÉDÉLEC, KIKUCHI, and many others.

More about (1) and (3) in my next talk.

Computing with Weighted Regularization Method

Compared with "exact eigenvalues" ($\lambda_{0,k}$ = Laplace-Neumann λ_k^{neu})_{k=1,2,3} Convergence rate 0.707 for λ_1 , 1.37 for λ_2 , and 2.00 for λ_3 .

A Maxwell story: 1 St act	A Maxwell story: 2 nd act	A Maxwell story: 3 rd act	A Maxwell story: Epilogue	Another problem	To conclude
Title page					

Another example of...

... dangerous eigenvalue computations

The Schrödinger operator with magnetic potential

 \mathcal{A} magnetic potential $\frac{1}{2}(-y, x)$. Schrödinger operator $-(\varepsilon \nabla - i\mathcal{A})^2$ with **small** ε , and Neumann BC. Variational space $H^1(\Omega)$ (classical).

Square $\Omega = (-1, 1)^2$. $\varepsilon = 1/50$. Eigenvalues $\lambda_k(\varepsilon)$. Discretize by FEM and compute the first two eigenpairs.

 $\lambda_{h,1}(\varepsilon) = 0.020032$ $\lambda_{h,2}(\varepsilon) = 0.020092$

Figure: Modulus and phase of modes 1 and 2, $\mathbb{Q}_1\text{-}approximation$ on 63×63 mesh

A Maxwell story: 1 St act	A Maxwell story: 2 nd act	A Maxwell story: 3 rd act	A Maxwell story: Epilogue	Another problem	To conclude O	
Schrödinger operator						
Converge	nce					

If we are not very curious, and know little about this problem, we shall be satisfied with the result. We recognize Landau modes in the eigenvectors...

$$(x,y) \rightarrow (X+iY)^{k-1} \exp(-\frac{1}{4}(X^2+Y^2)), \quad X=\frac{x}{\sqrt{\varepsilon}}, \ Y=\frac{y}{\sqrt{\varepsilon}}.$$

- If we are more curious, we keep decreasing *h*, and suddenly the convergence to 0.02 disappears, λ_{h,k}(ε) starts to decrease below 0.02, very slowly.
- If we know more (BONNAILLIE-DAUGE), we expect the asymptotic behavior

$$\lambda_k(\varepsilon) = \varepsilon \times \Lambda_1(\frac{\pi}{2}), \quad k = 1, 2, 3, 4$$

where $\Lambda_1(\frac{\pi}{2}) \sim 0.507$ is the first eigenvalue of the Schrödinger operator with $\varepsilon = 1$ in an infinite sector of opening π .

True convergence: h-version

It is desperate to perform precise computations using low degree elements.

Use *p*-version of FEM instead.

A Maxwell story: 1 st act	A Maxwell story: 2 nd act	A Maxwell story: 3 rd act	A Maxwell story: Epilogue	Another problem	To conclude
Schrödinger operator					

True convergence: p-version

Figure: Relative errors for first eigenvalue, vs. number of Dof per side *Semi-logarithmic scale from* 10^{-9} *to* 10 *for errors. Integers mark polynomial degree.*

Why it is difficult to compute

 $\lambda_{h,1}(\varepsilon) = 0.0101454 \qquad \qquad \lambda_{h,2}(\varepsilon) = 0.0101726$

Figure: Modulus and phase of modes 1 and 2, \mathbb{Q}_{10} -approximation on 8 \times 8 mesh

The eigenmodes have two-scale boundary layer structure, in $\sqrt{\varepsilon}$ (corner layers) and ε (oscillations), which causes...

A Maxwell story: 1 st act	A Maxwell story: 2 nd act	A Maxwell story: 3 rd act	A Maxwell story: Epilogue	Another problem	To conclude
Schrödinger operator					

... intertwining eigenvalues

A Maxwell story: 1st act

Title page

A Maxwell story: 2nd act

A Maxwell story: 3rd act

A Maxwell story: Epilogue

Another problem To conclude

To conclude

Common features of non reliable eigenvalue approximations:

- Essential spectrum
- Corners
- Both
- and... ignorance, leading to hazard computations