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Eigenfrequency problem

Cavity modes with perfectly conducting conditions

Cavity Ω bounded domain. Permittivity ε and permeability µ.

Cavity electromagnetic mode

Triple (ω,E,H) with

Frequency ω 6= 0

Electromagnetic field (E,H) 6= 0, solution of:

Maxwell equations
{

curl E − iω µH = 0 in Ω
curl H + iω εE = 0 in Ω

Perfectly Conducting conditions
{

E × n = 0 on ∂Ω
H · n = 0 on ∂Ω

To simplify, consider homogeneous and isotropic medium:
ε, µ constant > 0. By a change of unknown, assume without restriction

ε = µ = 1.
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Eigenfrequency problem

Eliminate H

E and H are searched in H(curl,Ω), i.e. E, H, curl E, curl H ∈ L2(Ω).

Multiply equation curl E − iω µH = 0 by curl E ′ and integrate over Ω

(1)

∫
Ω

(curl E − iω H) · curl E ′ dx = 0, ∀E ′ ∈ H(curl,Ω)

Multiply equation curl H + iω E = 0 by iωE ′ and integrate over Ω

(2)

∫
Ω

(iω curl H − ω2 E) · E ′ dx = 0, ∀E ′ ∈ H(curl,Ω)

Integrate by parts if, moreover E ′ × n = 0 on ∂Ω, i.e. E ′ ∈ H0(curl,Ω)∫
Ω

curl H × E ′ dx =

∫
Ω

H × curl E ′ dx

Add (1) and (2)∫
Ω

curl E · curl E ′ − ω2 E · E ′ dx = 0, ∀E ′ ∈ H0(curl,Ω)
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Eigenfrequency problem

Variational electric formulation

Find λ 6= 0 such that there exists non-zero E ∈ H0(curl,Ω) :∫
Ω

curl E · curl E ′ dx = λ

∫
Ω

E · E ′ dx , ∀E ′ ∈ H0(curl,Ω)

Seems suitable for Galerkin approximation: Replace H0(curl,Ω) with a
sequence of finite element subspaces W h.

Try in 2D first: Find non-zero λh and non-zero Eh ∈ W h :∫
Ω

rot Eh rot E ′
h dx = λh

∫
Ω

Eh · E ′
h dx , ∀E ′

h ∈ W h

Example of the square

Ω = (0, π)2. Exact eigenvalues known explicitly

λ1 = λ2 = 1, λ3 = 2, λ4 = λ5 = 4, λ6 = λ7 = 5, λ8 = 8, . . .
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Square

Galerkin approximation: h-version of FEM
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Raté! (Doesn’t work)
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Square

Galerkin approximation: p-version of FEM
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Encore raté! (Correct values, but wrong multiplicity)
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Square

and the culprit is...

...the infinite-dimensional kernel:

For all potential ϕ ∈ H1
0 (Ω)

E = gradϕ,

belongs to H0(rot,Ω) and belongs to the kernel of our operator.

How to get rid of it?
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Square, continued

Introducing the divergence

Take the divergence of the equation curl H + iω E = 0. Since ω 6= 0:

div E = 0 in Ω

Recall the formula
curl curl−grad div = −∆

and add the term
∫
Ω

div E div E ′ to our bilinear form∫
Ω

curl E · curl E ′ dx +

∫
Ω

div E div E ′ dx = λ

∫
Ω

E · E ′ dx .

The variational space is now X N(Ω) := H0(curl,Ω) ∩ H(div,Ω).

Introduce new variational problems, for s > 0:

Find λ 6= 0, E ∈ X N(Ω), E 6= 0∫
Ω

(
curl E · curl E ′ + s div E div E ′) dx = λ

∫
Ω

E · E ′ dx , ∀E ′ ∈ X N(Ω)
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Square, continued

FEM approximation on the square, with regularization
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There is some hope...
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Square, continued

FEM approximation on the square, with regularization
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s = 10

Plot k → λh,k .
Q1 (bilinear) square

elements
8 nodes per side

16 nodes per side

Exact values:
Horizontal lines

This is converging to the correct values with the correct multiplicity...
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Computing in L-shape

The L-shape domain

Solve the regularized variational problems, for s > 0:
Find λ 6= 0, E ∈ X N(Ω), E 6= 0∫

Ω

(
rot E · rot E ′ + s div E div E ′) dx = λ

∫
Ω

E · E ′ dx , ∀E ′ ∈ X N(Ω)

in the L-shape domain (a square minus a square)

ΩL = (−1, 1)2 \ (−1, 0)2

No analytic solution known.

Compute error by comparing with a finer approximation (denoted by λ0,k ).
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Computing in L-shape

FEM approximation on the L, with regularization
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Regularizing parameter
s = 1

Plot relative errors

h → λh,k − λ0,k

λ0,k

k = 1, 2 and k = 3

Q1 nodal squares
(h goes from 1

2 to 1
64 )

This is converging...
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Computing in L-shape

FEM approximation on the L, with regularization
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Ω = ΩL.

Regularizing parameter
s = 10

Plot relative errors

h → λh,k − λ0,k

λ0,k

k = 1, k = 2 and k = 3

Q1 nodal squares
(h goes from 1

2 to 1
64 )

Convergence rate: 0.706 for λ1 and λ2, 2.000 for λ3.
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Discussion

Are computed eigenvalues correct?

What did we find as numbers?

s = 1 s = 10
λ1 3.53420 3.53450
λ2 3.53420 5.68315
λ3 9.86960 9.86960

What should we expect?
The eigenvalues of the regularized formulation with parameter s globally
depend on s:

Sregularized(s) = SMaxwell ∪ s SDirichlet ∆

The second eigenvalue is doubtful...
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Discussion

And, worse...

New information:
In 2D, electric Maxwell eigenvectors are the curls of Neumann Laplace
eigenvectors

E = curlψ, with −∆ψ = λψ (in Ω) and ∂nψ = 0 (on ∂Ω)

s = 1 s = 10 Neumann ∆

λ1 3.53420 3.53450 1.47562
λ2 3.53420 5.68315 3.53403
λ3 9.86960 9.86960 9.86960

We missed the first one! (and caught the second one)

Why?
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Obstruction

Singular and regular eigenvectors

For k = 1, 2, 3, 4

Ek = curlψneu
k , with −∆ψneu

k = λneu
k ψneu

k and ∂nψ
neu
k = 0

1 ψneu
1 , the first non-constant eigenvector, is odd with respect to the

diagonal x = y of ΩL. It does not belong to H2(ΩL)

ψneu
1 = u + c r2/3 cos 2θ

3 , u ∈ H2(ΩL), c 6= 0.

Thererfore E1 6∈ H1(ΩL)
2.

2 ψneu
2 , is even with respect to the diagonal x = y . It belongs to H2(ΩL)

3 One can take

ψneu
3 (x , y) = cos(πx) and ψneu

4 (x , y) = cos(πy)

and λneu
3 = λneu

4 = π2 ' 9.86960.
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Obstruction

A density issue

Recall that W h are the discrete spaces.

Let Hm
N (Ω) = Hm(Ω)2 ∩ X N(Ω), m = 1, 2, . . .

1 Any uh ∈ W h is piecewise polynomial and continuous across
inter-element boundaries. Therefore

W h ⊂ H1
N(Ω)

2 On the other hand, there holds

Theorem COSTABEL-DAUGE

(i) For any u ∈ H 2
N(Ω),

∫
Ω

| rot u|2 + | div u|2 dx =

∫
Ω

|grad u|2 dx .

(ii) H 2
N(Ω) is dense in H1

N(Ω).

(iii) H1
N(Ω) is closed in X N(Ω) for the norm of X N(Ω).

3 If Ω has non-convex corners, the embedding H1
N(Ω) ⊂ X N(Ω) is strict.
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Obstruction

Convergence does not imply consistency

Conclusion

If Ω has non-convex corners, there exists δ > 0 such that any nodal
conforming finite element subspace W h of X N(Ω) satisfies

dist(X N(Ω),W h) ≥ dist(X N(Ω),H1
N(Ω)) > δ.

But the first Maxwell eigenvector E1 does not belong to H1
N(Ω).

Therefore E1 cannot be approached by nodal Finite Element spaces W h.
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Weighted Regularization

Consistent methods

1 Weighted regularization: introduce a positive exponent γ and the
weighted integral

s
∫

Ω

r2γ div E div E ′ dx

COSTABEL-DAUGE

2 Singular Function Methods: Add non-H1 singularities to the FEM
spaces W h. LOHREHGEL et al., CIARLET JR et al.

3 Edge elements, which are curl-conforming but not div conforming,
and part of a discrete commuting diagram. NÉDÉLEC, KIKUCHI, and
many others.

More about (1) and (3) in my next talk.
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Weighted Regularization

Computing with Weighted Regularization Method
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Ω = ΩL.

Regularizing parameters
γ = 1 and s = 10

Plot relative errors

h → λh,k − λ0,k

λ0,k

Q1 nodal squares
(h goes from 1

2 to 1
64 )

Compared with “exact eigenvalues” (λ0,k = Laplace-Neumann λneu
k )

k=1,2,3

Convergence rate 0.707 for λ1, 1.37 for λ2, and 2.00 for λ3.
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Schrödinger operator

The Schrödinger operator with magnetic potential

A magnetic potential 1
2 (−y , x).

Schrödinger operator −(ε∇− iA)2 with small ε, and Neumann BC.
Variational space H1(Ω) (classical).

Square Ω = (−1, 1)2. ε = 1/50. Eigenvalues λk(ε).
Discretize by FEM and compute the first two eigenpairs.

λh,1(ε) = 0.020032 λh,2(ε) = 0.020092

Figure: Modulus and phase of modes 1 and 2, Q1-approximation on 63× 63 mesh
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Schrödinger operator

Convergence

101 102
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100
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Q1
Q2 Ω = (−1, 1)2.

Apparent limiting value
λ0,1(ε) = ε = 0.02.

Plot relative errors

1
h
→ λh,1(ε)− λ0,1(ε)

λ0,1(ε)

in loglog scale.
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Schrödinger operator

Is it correct?

If we are not very curious, and know little about this problem, we shall be
satisfied with the result. We recognize Landau modes in the eigenvectors...

(x , y) → (X + iY )k−1 exp(−1
4
(X 2 + Y 2)), X =

x√
ε
, Y =

y√
ε
.

If we are more curious, we keep decreasing h, and suddenly the
convergence to 0.02 disappears, λh,k(ε) starts to decrease below
0.02, very slowly.

If we know more (BONNAILLIE-DAUGE), we expect the asymptotic
behavior

λk(ε) = ε× Λ1(
π
2 ), k = 1, 2, 3, 4

where Λ1(
π
2 ) ∼ 0.507 is the first eigenvalue of the Schrödinger

operator with ε = 1 in an infinite sector of opening π.
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Schrödinger operator

True convergence: h-version
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Q2

Ω = (−1, 1)2.

Actual limiting value
λ0,1(ε) = ε× 0.5072662 =

0.01145324.

Plot relative errors

1
h
→ λh,1(ε)− λ0,1(ε)

λ0,1(ε)

in loglog scale.

It is desperate to perform precise computations using low degree elements.

Use p-version of FEM instead.
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Schrödinger operator

True convergence: p-version
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Figure: Relative errors for first eigenvalue, vs. number of Dof per side

Semi-logarithmic scale from 10−9 to 10 for errors. Integers mark polynomial degree.
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Schrödinger operator

Why it is difficult to compute

λh,1(ε) = 0.0101454 λh,2(ε) = 0.0101726

Figure: Modulus and phase of modes 1 and 2, Q10-approximation on 8× 8 mesh

The eigenmodes have two-scale boundary layer structure,
in
√
ε (corner layers) and ε (oscillations), which causes...
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Schrödinger operator

... intertwining eigenvalues
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1
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ε
, for k = 1, . . . , 4
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To conclude
Common features of non reliable
eigenvalue approximations:

Essential spectrum

Corners

Both

and... ignorance, leading to hazard
computations

33/33


	A Maxwell story: 1st act
	Title page
	Eigenfrequency problem
	Square

	A Maxwell story: 2nd act
	Title page
	Square, continued

	A Maxwell story: 3rd act
	Title page
	Computing in L-shape
	Discussion
	Obstruction

	A Maxwell story: Epilogue
	Title page
	Weighted Regularization

	Another problem
	Title page
	Schrödinger operator

	To conclude
	Title page


