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Question of regularity

Consider a (elliptic) boundary value problem, written in compact form as
Pu=gq

where g may include interior, boundary, or interface data.
For a possible numerical approximation, answering (a priori) the question of
regularity for u is of fundamental importance.

Any regularity statement takes the form

’ uc Ubase and qc Qdata — uc Usol ‘

Ideally

@ Upase is a space where existence of solutions is known (e.g.
variational space)

@ U, is optimal in the sense that P is bounded Ugoy — Qgata-

@ If Qqata is @ space of piecewise analytic data,
Usq is a space of piecewise analytic solutions.
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Three types of possible theorems

Type C: Existence of solutions in a space V

Coercivity or Fredholm alternative.

Type B: Basic regularity

| UEUpmse and g€ Quan => u€ Ug, | with

° Ubase =V
@ U, = UE, involving estimates on a finite number of derivatives (e.g.
space of strong solutions) — for suitable Qgata-

Type A: Analytic regularity

| UEUpase and g€ Quan => u€ Uy | with

0 Ubase =V

@ U, = UL, involving Cauchy-type estimates on all derivatives — for

suitable Qgata-

3/30




e Eem RS SRR
A fourth type of statement and a strategy

Type S: Regularity Shift

| UEUpe and q € Quaa = u € Uy | with

@ U,... — U2, improved basic regularity
Q U, = UL, involving Cauchy-type estimates on all derivatives — for
suitable Qyata-

Strategy

Type B + Type S — Type A

Find suitable “pairs” (U, UZ) so that

@ Type B is known
@ Type S is true (our job to prove it)
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Families of semi-norms

The objects [UZ, and U, are realized by countable sets of semi-norms
|+Igm, mMEN

Typically, the semi-norm X™ is a norm on derivatives 0* of length |a| = m.

Several spaces are associated in a natural way:

k
Q X ={u: lulg¢m <00, 0<m<k} and ||u||Xk=supo|u|Xm
m=

Q@ X* ={u: |u[gym < oo, Vme N}

1/m

1
9 X~ — {u € X : sup (7 |u| m) < oo} — analytic class
meN \m! «

1 1/m
Q {ue X : su (— u m) < oo} — Gevrey class
meFI\)I (m!)s | |X /

Similar definitions for right hand sides q. Denote the semi-norms by | - \Ym.
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Types B and A associated with families of semi-norms

Type B: Basic regularity

Exists m € N such that

|u€V and g V" — ueX’"|

with estimates
lull¢m < C([[Pullym + [lully,)

Type A: Analytic regularity

|u€V and gec VY — ueXw|
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Types S associated with families of semi-norms

Type S standard

Exists m € N such that for all Kk > m

|ueX”’ and ge Y — ueX“|

with estimates
lull g« < C(I[Pullyx + llullxm)

Type S with Cauchy estimates
Exists m € N such that for all kK > m

|u€X’” and ge Y — ueX“|

with estimates (constant A independent from k)

k
1 1
(S-Cauchy) o Ul < Al (LZ 71 [Pulye + “””X’")
=0
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A true theorem, at last

If there exists m € N such that

@ Type Bis true for m
© Type S Cauchy is true for m

then Type A is true: ueV and gV’ — wuvueX¥
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A true theorem, at last

If there exists m € N such that

@ Type Bis true for m
© Type S Cauchy is true for m

then Type A is true: lucV and geV® = ueX"|

Proof. (S-Cauchy) implies, after enlarging A:
1 kit ko1
Sl <A (ijwu\ywuuuxm)

Take power 1/k

1 1/k K1 1/k
(i lule) ™ < A (g 2ulye + )

k1 1/k 1/k
<a{max (g Puly) "+ lulzn}
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It suffices to realize the program

Type B + Type S
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It suffices to realize the program

Type B + Type S
to obtain Type A

... in any situation we want
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a Smooth domains
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@  smooth domain with analytic boundary.
@ 050 for s € .7, connected components of 9S).
@ P elliptic 2d order boundary value problem (system).

e P = (L, T, Ds), operators with analytic coefficients:

o L interior operator
o Ts boundary operator of order 1, s € Sy
e Ds boundary operator of order 0, s € .%p

Tfor more than 50 years
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@  smooth domain with analytic boundary.
@ 050 for s € .7, connected components of 9S).
@ P elliptic 2d order boundary value problem (system).

e P = (L, T, Ds), operators with analytic coefficients:

o L interior operator
o Ts boundary operator of order 1, s € Sy
e Ds boundary operator of order 0, s € .%p

Theorems of Type C, B, and A known' in the framework of Sobolev spaces:

Ulym = 3 105l 2

|a]=m
|a|=m—2 se SN sc€.p
|a|=m—2 | ] =m—1

Tfor more than 50 years
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ADN & Morrey

Theorem (Type C) [ADN, 1959, 1964]
P : X™ — Y™ is Fredholm for any m > 2.

Theorem (Type B) [ADN, 1959, 1964]

Foranyk>2, |ueX? and PucV: = ucxt]|

Theorem (Type A) [Morrey-Nirenberg, 1957]

Foranyk>2, |ueX? and PucV® — wueX”|

Anything to add?
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Yes: Regularity Shift with Cauchy-type estimates

Theorem (Type S) [CoDaNi, 2010]

There exists A > 0 such that for any k > 2 and u € X2

k
1 1
(S-Cauchy) o |l < A (Z 71 [Pulye + HUHXz)
£=0

Proof. Clean old proofs:
@ Nested open sets on model problems
@ Faa di Bruno formula for local maps

Coercive variational form

If P issues from a variational form coercive on V  H'(Q), all thms adapt:
C Existence in V

B Basic regularity in X2 if Pu € Y2 (var. solutions are strong solutions)
A, S Estimates with ”"”H‘(Q) in the RHS.
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e Corner domains
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e =
3D Examples

a

Figure: Axisymmetric domain & Cayley’s tetrahedron (M. Costabel with POV-Ray)
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Domains with conical points

@ (2 analytic corner domain (analytic cones and maps) with corner set ¢’
(in 2D, piecewise analytic in 2D — polygonal domains).

o P = (L, Ts, Ds) elliptic 2d order with analytic coefficients.
@ To simplify: coercive problems with zero boundary data (q = f).
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Domains with conical points

@ (2 analytic corner domain (analytic cones and maps) with corner set ¢’
(in 2D, piecewise analytic in 2D — polygonal domains).

o P = (L, Ts, Ds) elliptic 2d order with analytic coefficients.
@ To simplify: coercive problems with zero boundary data (q = f).

Theorems of Type C based on Lax-Milgram, no regularity required.

Theorems of Type B and “S standard” known, starting with [Kondratev '67].
Use of weighted Sobolev spaces:

Ulgm = 3 w05l 2ig) and [flyn = 3 (w051l 2

|a]=m |a|=m—2
where wo(x), wi(X),..., wn(x), ... family of weights of general type

Wn(Xx) = r(x)™P, r(x) = dist(x, %), BeR.
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An old friend: The Dirichlet Laplacian on a polygon

Let w = w, be the largest opening angle of the polygon Q2 (corner c).

Theorem (Type B) [Kondratev '67]

@ Let u € H}(Q) solution of Au = f.
@ Letm > 2.
o Let3suchthat0 < —f—1 < Zandw, =7, 0< ¢ <m.

Then [feY" — ucX"|

@ Whyo< —-3—1,ie. 3<—-1? = w; unbounded.
Because this condition implies X2 compactly embedded in H' ().
© Why —3 — 1 < I? Because under this condition the strongest
singularity
T/w 0
X+—rg/ " sin—
We
belongs to X for all m.
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What about the Neumann Laplacian on a polygon?

@ The previous functional setting is unpleasant for the Neumann A.
@ Independent pointwise values arise at each corner.

@ The constant function 1 ¢ X?if 0 < —/3 — 1 because wy = r”.
But no problem for derivatives...

Remedy: modify the first weights. Take
wp = rm OB~ min{1, P, reN

Example: If 3 = —2, wo = wy =1, and wy = r**# as before if £ > 2.

Theorem (Type B) [Mazya-Plamenevskii, 1984]

@ Let u € H'(Q) solution of Au = f with ,u = 0.
@ Letm> 2.
o LetBsuchthat0 < —3 —1 < Z and w, = rm{0448) 0 < ¢ < m.

Then [feY" — ueX"|
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General case, Type B in corner domains

e Q c R?. Dimension d > 2.
@ Coercive variational formulation in V. C H'(Q)
@ Smooth coefficients

Theorem (Type B)

Exists an optimal number b*(2, ) > 1 — ¢ such that the following holds.
@ Letm> 2.
@ Let3 < —1suchthat —3 — ¢ < b*(Q,P)

@ Choose the weights w, = r™{%£+5} (non-homogeneous norms).

Then |uecV and PucY” = uecX"|

Remark.

Weights w;, = r" (homogeneous norms) suitable if u € V = ¥ € [*(Q).
There holds a similar statement involving another positive number b(£2, P)
determined by Mellin corner spectra o(2l¢), ¢ € %
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Type A for A, Lamé in polygonal domains

Weighted analytic regularity has been invented by Babuska and Guo, and
proved for model operators in polygonal domains.

Theorem (Type A) [Babuska-Guo 1988, 1989, 1993]

There exists 3 € (—2, —1) such that with the weights w, = rma{0.t+5} .

lucV and PucY® = uecX”|

Exponential convergence [Babuska-Guo 1988, 1989, 1993]

This weighted analytic regularity allows to prove the exponential
convergence of the h-p method of finite elements.

18/30



This is not the end of the story for corner domains
Theorem (Type S standard) [Kondratev 1967]

With homogeneous weights w, = r‘+”:

Forallk > 2and|all § € R

|ueX2 and ge Y — ueX“|

with estimates (C depends on § and k)

lull g < C(IBull e + ull 52)

In other words :
Forany 3, if rl®"Pu e [2(Q) for |a| < 1, then rleltFPu e [2(Q) for |a] < k
if the rhs has the corresponding regularity.

This is an unconditional elliptic regularity shift for corner domains.
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Regularity Shift with Cauchy-type estimates

@ With homogeneous weights w, = r*7:
For all 3 € R exists A > 0 such that for any kK > 2 and u € X?

k

1 1

Nl < AT (S0 2 Pul e + ul 1)
£=0

@ With non-homogeneous weights w;, = rmax{0.£+6}
Forall 8 € R and m > max{—0, 2} exists A > 0 such that for any
k> mand u € X"
K

1 1
=l < A (> 7 [Pulye + ul g )
£=m-+1

Proof
@ Unweighted estimates (S-Cauchy) in fixed annulus far from corner ¢
@ Scale estimates to closer annuli. Weight appears.
@ Sum over a dyadic partition of a neighborhood of ¢
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Proof of weighted analytic estimates

ScaleonV, =2"#Vand V/, =2"#Y’ foru =1
w B

— -
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Proof of weighted analytic estimates

ScaleonV, =2"#Vand V!, = 27"V’ foru =2
w B
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Proof of weighted analytic estimates

ScaleonV, =2"#Vand V/, = 27"V’ foru =3
w B

[T
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Proof of weighted analytic estimates

ScaleonV, =2"#Vand V!, =271V foru=4,...
W n
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As a corollary of B & S: Type A in corner domains

General case sine dolore
o Q c RY. Dimension d > 2.
@ Coercive variational formulation in V ¢ H'(Q)
@ Analytic coefficients

Theorem (Type A) [CoDaNi, 2010]

With the same optimal number b*(£2, I?) as in Theorem B, there holds.
@ Let 3 < —1suchthat —3 — ¢ < b*(Q,P)
@ Choose the weights w, = rm{0.+5} ¢ e N,

Then |uEV and Puc V¥ = ueX’”|

Remark.
Homogeneous weights w; = r*# can be used instead if

ueV:geLz(Q).

< -18&-3-9<bQP), lueV and PucV® = uecX”
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o Polyhedral domains
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Corners, edges, distance functions and weights

@ () polyhedral domain in IR®. Distance to singular points: x — r(x)
@ Corners ¢, set of corners ¢, distance functions: r. to ¢, r, to €,
@ Edges e, set of edges &, distance functions: re to e.
Two ways of generating weights
@ A simple way: choose 5 € R and use powers of r

| wp = ri+8 | or | Wy = rmax{O,Z+B} |

© A finer tool: choose a multi-g, i.e. 8 = (0e, fe)

wy = H riHie H (E)“ﬁ’ or|w, = H pma{0.bet o H (rj)max{o’”ﬁe}

I. I,
ce€ ecs ¢ ce€ ece ¢

Note: If 3. = 3, then [, re 7 ~ ri™”

£+
|fﬁc5ﬁezﬁathennce<€rﬁ+CXHeeé”(re)+B o rHe,
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RmmeT e e, RS
Type B in polyhedral domains

@ Coercive variational formulation in V c H'(Q)
@ Smooth coefficients

Theorem (Type B) [Mazya-Rossmann 2003] [CoDaNi, 2012]

For optimal numbers b (€2, IP) > —1 and be(€2,I?) > 0 depending on
Mellin corner and edge spectra o(2(;) and o(2l,), the following holds.

@ Letm> 2.

@ Let3 < —1suchthat —fc — 3 < b3(Q,P) and —3, — 1 < be(£2, P)

@ Choose the weights w; = | [ re® ("% x <T] (
cEC ecs

Then |ueV and PucY" — ueX"|

E ) max{0,£+3e }

I

Example. For Dirichlet Laplacian,

1
De(QP) = -, bo(QP) = —5 +1/ulf + z b3(Q,P) = min{2, b}
e
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e =
The edge issue (without the corners)

Theorems of type S and, hence, of type A, can be proved without difficulty.
But in connection with h-p version of finite elements, this would not help.
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But in connection with h-p version of finite elements, this would not help.

The 3D h-p FEM takes anisotropy into account and results in exponential
convergence only if improved regularity along edges is used for design.

Weights w; providing isotropic semi-norms >, _, [[wedx u|| 12(Q) will be
replaced by weights we , defined in neighborhoods V. of edges:
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The edge issue (without the corners)

Theorems of type S and, hence, of type A, can be proved without difficulty.
But in connection with h-p version of finite elements, this would not help.

The 3D h-p FEM takes anisotropy into account and results in exponential
convergence only if improved regularity along edges is used for design.

Weights w; providing isotropic semi-norms >, _, [[wedx u|| 12(Q) will be
replaced by weights we , defined in neighborhoods V. of edges:

|U|X¢’ = Z Z ||We,aa;c(¥uHL2(ye)

ecé |a|=t

Choose tubular coordinates xe = (xj, xl.l) and corresponding multi-indices

ae = (ag, aﬂ), — perpendicular and parallel to e. Typically

I
independent of derivatives dx° along e. w50



e =
Anisotropic weights (edges & corners)

To simplify, assume that all edges are parallel to coordinate axes.
The non-homogeneous version of anisotropic weights is

W, = HrrgaX{O,ﬂcHal} % H (E)max{oﬂeﬂail}
r.
ce? ec& ¢

Theorem (Type S) [CoDaNi, 2010]

o Let 8 = (0, Be) such that
Vee &, 0< —fo—1and—[(3—1¢&Rec(Ae)
@ Letm > 1and > max{—/e, —c}
Then for any k > mand u € X"

k

1 1

|l < A (S0 7 IPul e + Julxn )
=0

Example. For Dirichlet Laplacian, o(2le) = {’;—7: ckeZ .
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e ==
Corollary of B & S: Type AA in polyhedral domains

@ Q C R® polyhedron
@ Coercive variational formulation in V C H'(Q)
@ Homogeneous constant coefficients (Analytic coefficients possible)

Theorem (Type AA) [CoDaNi, 2010]
With the same numbers b (€2, P) and be(2, P) as in Theorem B:

@ Let3 < —1suchthat —fc — 3 < b3(Q,P) and — 3, — 1 < be(£2, P)

r
@ Choose the weights w; = H rpad0.bBel o H (—e)maX{o’Hﬁ o
le
ce? ecés

Then |ueV and Puec V¥ = ueXw|

Remark. ot
Homogeneous weights w, = [ | rc*% x [T (32)"” can be used if
I
cEC ecs
u
uevV— —¢ L3(Q)
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e omee s Ee
Numbers b for A on examples

Domain Q be(2) be(Q)  bi(Q)
Cube, Dirichlet 2 3 2
Cube, Neumann 2 0 2
Thick L, Dirichlet 0.66666 1.66666 1.66666
Thick L, Neumann 0.66666 0 1.66666
Fichera corner, Dirichlet 0.66666 0.45418 0.45418
Fichera corner, Neumann | 0.66666 0 0.84001

Thick L : {(—1,1)2\ (0,1)2} x (—1,1)
Fichera corner : (—1,1)3\ (0,1)3
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M. COSTABEL, M. DAUGE, S. NICAISE

Analytic Regularity for Linear Elliptic Systems in Polygons and Polyhedra
Math. Models Methods Appl. Sci. 08(22) (2012), 59 p.

DOI: 10.1142/S50218202512500157

M. COSTABEL, M. DAUGE, S. NICAISE

Book project:
Corner Singularities and Analytic Regularity for Linear Elliptic Systems

Part I: Smooth domains. HAL: hal-00453934 (2010), 211 pages

m |

3D Lexicon
Type Homogeneous norms  Non-homogeneous norms
Isotropic KE(Q) J5(Q)
Anisotropic M5(Q) N5(Q)
Anisotropic Analytic A%(Q) B(Q)
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Conclusion

Our method to prove functional framework
for exponential convergence of h-p
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Conclusion
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AAA

Thank you for your attention
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