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Question of regularity

Consider a (elliptic) boundary value problem, written in compact form as

Pu = q

where q may include interior, boundary, or interface data.
For a possible numerical approximation, answering (a priori) the question of
regularity for u is of fundamental importance.

Any regularity statement takes the form

u ∈ Ubase and q ∈ Qdata =⇒ u ∈ Usol

Ideally

Ubase is a space where existence of solutions is known (e.g.
variational space)

Usol is optimal in the sense that P is bounded Usol → Qdata.

If Qdata is a space of piecewise analytic data,
Usol is a space of piecewise analytic solutions.
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Three types of possible theorems

Type C: Existence of solutions in a space V
Coercivity or Fredholm alternative.

Type B: Basic regularity

u ∈ Ubase and q ∈ Qdata =⇒ u ∈ Usol with
1 Ubase = V
2 Usol = UB

sol involving estimates on a finite number of derivatives (e.g.
space of strong solutions) — for suitable Qdata.

Type A: Analytic regularity

u ∈ Ubase and q ∈ Qdata =⇒ u ∈ Usol with
1 Ubase = V
2 Usol = UA

sol involving Cauchy-type estimates on all derivatives — for
suitable Qdata.
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A fourth type of statement and a strategy

Type S: Regularity Shift

u ∈ Ubase and q ∈ Qdata =⇒ u ∈ Usol with
1 Ubase = UB

sol improved basic regularity
2 Usol = UA

sol involving Cauchy-type estimates on all derivatives — for
suitable Qdata.

Strategy

Type B + Type S→ Type A

Find suitable “pairs” (UB
sol,UA

sol) so that
1 Type B is known
2 Type S is true (our job to prove it)
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Families of semi-norms

The objects UB
sol and UA

sol are realized by countable sets of semi-norms

| · |Xm , m ∈ N

Typically, the semi-norm Xm is a norm on derivatives ∂α of length |α| = m.

Several spaces are associated in a natural way:

1 Xk = {u : |u|Xm <∞, 0 ≤ m ≤ k} and ‖u‖Xk =
k

sup
m=0
|u|Xm

2 X∞ = {u : |u|Xm <∞, ∀m ∈ N}

3 X$ =
{

u ∈ X∞ : sup
m∈N

( 1
m!
|u|Xm

)1/m
<∞

}
— analytic class

4

{
u ∈ X∞ : sup

m∈N

( 1
(m!)s |u|Xm

)1/m
<∞

}
— Gevrey class

Similar definitions for right hand sides q. Denote the semi-norms by | · |Ym .
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Types B and A associated with families of semi-norms

Type B: Basic regularity

Exists m ∈ N such that

u ∈ V and q ∈ Ym =⇒ u ∈ Xm

with estimates
‖u‖Xm ≤ C

(
‖Pu‖Ym + ‖u‖V

)
Type A: Analytic regularity

u ∈ V and q ∈ Y$ =⇒ u ∈ X$
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Types S associated with families of semi-norms

Type S standard

Exists m ∈ N such that for all k > m

u ∈ Xm and q ∈ Yk =⇒ u ∈ Xk

with estimates
‖u‖Xk ≤ C

(
‖Pu‖Yk + ‖u‖Xm

)
Type S with Cauchy estimates

Exists m ∈ N such that for all k > m

u ∈ Xm and q ∈ Yk =⇒ u ∈ Xk

with estimates (constant A independent from k )

(S-Cauchy)
1
k!
|u|Xk ≤ Ak+1

( k∑
`=0

1
`!
|Pu|Y` + ‖u‖Xm

)
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A true theorem, at last

Theorem

If there exists m ∈ N such that
1 Type B is true for m
2 Type S Cauchy is true for m

then Type A is true: u ∈ V and q ∈ Y$ =⇒ u ∈ X$

Proof. (S-Cauchy) implies, after enlarging A:

1
k!
|u|Xk ≤ Ak+1

(
k

max
`=0

1
`!
|Pu|Y` + ‖u‖Xm

)
Take power 1/k( 1

k!
|u|Xk

)1/k
≤ A′

(
k

max
`=0

1
`!
|Pu|Y` + ‖u‖Xm

)1/k

≤ A′
{

k
max
`=0

( 1
`!
|Pu|Y`

)1/k
+ ‖u‖

1/k

Xm

}
�
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It suffices to realize the program

Type B + Type S

to obtain Type A

... in any situation we want
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First things first

Ω smooth domain with analytic boundary.

∂sΩ for s ∈ S , connected components of ∂Ω.

P elliptic 2d order boundary value problem (system).
P = (L,Ts,Ds), operators with analytic coefficients:

L interior operator
Ts boundary operator of order 1, s ∈ SN

Ds boundary operator of order 0, s ∈ SD

Theorems of Type C, B, and A known1 in the framework of Sobolev spaces:

|u|Xm =
∑
|α|=m

‖∂αx u‖L2(Ω)

|q|Ym =
∑

|α|=m−2

‖∂αx f‖L2(Ω)
+
∑

s∈SN
|α|=m−2

‖∂αx gs‖H
1
2 (∂sΩ)

+
∑

s∈SD
|α|=m−1

‖∂αx hs‖H
1
2 (∂sΩ)

1for more than 50 years
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ADN & Morrey

Theorem (Type C) [ADN, 1959, 1964]

P : Xm → Ym is Fredholm for any m ≥ 2.

Theorem (Type B) [ADN, 1959, 1964]

For any k ≥ 2, u ∈ X2 and Pu ∈ Yk =⇒ u ∈ Xk

Theorem (Type A) [Morrey-Nirenberg, 1957]

For any k ≥ 2, u ∈ X2 and Pu ∈ Y$ =⇒ u ∈ X$

Anything to add?
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Yes: Regularity Shift with Cauchy-type estimates

Theorem (Type S) [CoDaNi, 2010]

There exists A > 0 such that for any k ≥ 2 and u ∈ X2

(S-Cauchy)
1
k!
|u|Xk ≤ Ak+1

( k∑
`=0

1
`!
|Pu|Y` + ‖u‖X2

)
Proof. Clean old proofs:

Nested open sets on model problems
Faà di Bruno formula for local maps

Coercive variational form

If P issues from a variational form coercive on V ⊂ H1(Ω), all thms adapt:

C Existence in V
B Basic regularity in X2 if Pu ∈ Y2 (var. solutions are strong solutions)

A, S Estimates with ‖u‖H1(Ω)
in the RHS.
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3D Examples

Figure: Axisymmetric domain & Cayley’s tetrahedron (M. Costabel with POV-Ray)
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Domains with conical points

Ω analytic corner domain (analytic cones and maps) with corner set C
(in 2D, piecewise analytic in 2D — polygonal domains).

P = (L,Ts,Ds) elliptic 2d order with analytic coefficients.

To simplify: coercive problems with zero boundary data (q ≡ f ).

Theorems of Type C based on Lax-Milgram, no regularity required.

Theorems of Type B and “S standard” known, starting with [Kondratev ’67].
Use of weighted Sobolev spaces:

|u|Xm =
∑
|α|=m

‖wm ∂
α
x u‖L2(Ω)

and |f |Ym =
∑

|α|=m−2

‖wm ∂
α
x f‖L2(Ω)

where w0(x), w1(x),. . . , wm(x), . . . family of weights of general type

wm(x) = r(x)m+β , r(x) = dist(x ,C ), β ∈ R.
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An old friend: The Dirichlet Laplacian on a polygon

Let ω = ωc be the largest opening angle of the polygon Ω (corner c).

Theorem (Type B) [Kondratev ’67]

Let u ∈ H1
0 (Ω) solution of ∆u = f .

Let m ≥ 2.

Let β such that 0 < −β − 1 < π
ω and w` = r `+β , 0 ≤ ` ≤ m.

Then f ∈ Ym =⇒ u ∈ Xm

1 Why 0 < −β − 1, i.e. β < −1? =⇒ w1 unbounded.
Because this condition implies X2 compactly embedded in H1(Ω).

2 Why −β − 1 < π
ω? Because under this condition the strongest

singularity

x 7−→ rπ/ωc sin
πθc

ωc

belongs to Xm for all m.
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What about the Neumann Laplacian on a polygon?

The previous functional setting is unpleasant for the Neumann ∆.
Independent pointwise values arise at each corner.
The constant function 1 6∈ X2 if 0 < −β − 1 because w0 = rβ .
But no problem for derivatives...

Remedy: modify the first weights. Take

w` = rmax{0,`+β} ' min{1, r `+β}, ` ∈ N

Example : If β = − 3
2 , w0 = w1 = 1, and w` = r `+β as before if ` ≥ 2.

Theorem (Type B) [Mazya-Plamenevskii, 1984]

Let u ∈ H1(Ω) solution of ∆u = f with ∂nu = 0.

Let m ≥ 2.

Let β such that 0 < −β − 1 < π
ω and w` = rmax{0,`+β}, 0 ≤ ` ≤ m.

Then f ∈ Ym =⇒ u ∈ Xm
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General case, Type B in corner domains

Ω ⊂ Rd . Dimension d ≥ 2.
Coercive variational formulation in V ⊂ H1(Ω)

Smooth coefficients

Theorem (Type B)

Exists an optimal number b∗(Ω,P) > 1− d
2 such that the following holds.

Let m ≥ 2.

Let β < −1 such that −β − d
2 < b∗(Ω,P)

Choose the weights w` = rmax{0,`+β} (non-homogeneous norms).

Then u ∈ V and Pu ∈ Ym =⇒ u ∈ Xm

Remark.

Weights w` = r `+β (homogeneous norms) suitable if u ∈ V⇒ u
r ∈ L2(Ω).

There holds a similar statement involving another positive number b(Ω,P)
determined by Mellin corner spectra σ(Ac), c ∈ C .
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Type A for ∆, Lamé in polygonal domains

Weighted analytic regularity has been invented by Babuška and Guo, and
proved for model operators in polygonal domains.

Theorem (Type A) [Babuška-Guo 1988, 1989, 1993]

There exists β ∈ (−2,−1) such that with the weights w` = rmax{0,`+β} :

u ∈ V and Pu ∈ Y$ =⇒ u ∈ X$

Exponential convergence [Babuška-Guo 1988, 1989, 1993]

This weighted analytic regularity allows to prove the exponential
convergence of the h-p method of finite elements.
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This is not the end of the story for corner domains

Theorem (Type S standard) [Kondratev 1967]

With homogeneous weights w` = r `+β :

For all k ≥ 2 and all β ∈ R

u ∈ X2 and q ∈ Yk =⇒ u ∈ Xk

with estimates (C depends on β and k )

‖u‖Xk ≤ C
(
‖Pu‖Yk + ‖u‖X2

)

In other words :

For any β, if r |α|+βu ∈ L2(Ω) for |α| ≤ 1, then r |α|+βu ∈ L2(Ω) for |α| ≤ k
if the rhs has the corresponding regularity.

This is an unconditional elliptic regularity shift for corner domains.
19/30



Abstract framework Smooth domains Corner domains Polyhedral domains

Regularity Shift with Cauchy-type estimates

Theorem (Type S) [CoDaNi, 2010]

1 With homogeneous weights w` = r `+β :
For all β ∈ R exists A > 0 such that for any k ≥ 2 and u ∈ X2

1
k!
|u|Xk ≤ Ak+1

( k∑
`=0

1
`!
|Pu|Y` + ‖u‖X1

)
2 With non-homogeneous weights w` = rmax{0,`+β} :

For all β ∈ R and m ≥ max{−β, 2} exists A > 0 such that for any
k ≥ m and u ∈ Xm

1
k!
|u|Xk ≤ Ak+1

( k∑
`=m+1

1
`!
|Pu|Y` + |u|Xm

)
Proof

Unweighted estimates (S-Cauchy) in fixed annulus far from corner c
Scale estimates to closer annuli. Weight appears.
Sum over a dyadic partition of a neighborhood of c
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Proof of weighted analytic estimates

Scale on Vµ = 2−µV and V ′µ = 2−µV ′, for µ = 1

•
c

x = 2−µx̂
(µ = 1)

V̂

V̂ ′
Vµ

V ′µ
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Proof of weighted analytic estimates

Scale on Vµ = 2−µV and V ′µ = 2−µV ′, for µ = 2

•
c

x = 2−µx̂
(µ = 2)

V̂
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Vµ
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Proof of weighted analytic estimates

Scale on Vµ = 2−µV and V ′µ = 2−µV ′, for µ = 3

•
c

x = 2−µx̂
(µ = 3)

V̂

V̂ ′
Vµ

V ′µ
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Proof of weighted analytic estimates

Scale on Vµ = 2−µV and V ′µ = 2−µV ′, for µ = 4, . . .

•
c

x = 2−µx̂
(µ = 4)

V̂

V̂ ′
Vµ

V ′µ
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As a corollary of B & S: Type A in corner domains

General case sine dolore
Ω ⊂ Rd . Dimension d ≥ 2.
Coercive variational formulation in V ⊂ H1(Ω)
Analytic coefficients

Theorem (Type A) [CoDaNi, 2010]

With the same optimal number b∗(Ω,P) as in Theorem B, there holds.

Let β < −1 such that −β − d
2 < b∗(Ω,P)

Choose the weights w` = rmax{0,`+β}, ` ∈ N.

Then u ∈ V and Pu ∈ Y$ =⇒ u ∈ X$

Remark.
Homogeneous weights w` = r `+β can be used instead if

u ∈ V =⇒ u
r
∈ L2(Ω).

If β < −1 & −β− d
2 < b(Ω,P), u ∈ V and Pu ∈ Y$ =⇒ u ∈ X$
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Corners, edges, distance functions and weights

Ω polyhedral domain in R3. Distance to singular points: x 7→ r(x)

Corners c, set of corners C , distance functions: rc to c, rC to C ,
Edges e, set of edges E , distance functions: re to e.

Two ways of generating weights
1 A simple way: choose β ∈ R and use powers of r

w` = r `+β or w` = rmax{0,`+β}

2 A finer tool: choose a multi-β, i.e. β = (βc, βe)

w` =
∏
c∈C

r `+βc
c ×

∏
e∈E

( re

rC

)`+βe or w` =
∏
c∈C

rmax{0,`+βc}
c ×

∏
e∈E

( re

rC

)max{0,`+βe}

Note: If βc ≡ β, then
∏

c∈C r `+βc
c ' r `+βC

If βc ≡ βe ≡ β, then
∏

c∈C r `+βc
c ×

∏
e∈E

( re
rC

)`+βe ' r `+β .
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Type B in polyhedral domains

Coercive variational formulation in V ⊂ H1(Ω)
Smooth coefficients

Theorem (Type B) [Mazya-Rossmann 2003] [CoDaNi, 2012]

For optimal numbers b∗c (Ω,P) > − 1
2 and be(Ω,P) > 0 depending on

Mellin corner and edge spectra σ(Ac) and σ(Ae), the following holds.

Let m ≥ 2.

Let β < −1 such that −βc − 3
2 < b∗c (Ω,P) and −βe − 1 < be(Ω,P)

Choose the weights w` =
∏
c∈C

rmax{0,`+βc}
c ×

∏
e∈E

( re

rC

)max{0,`+βe}.

Then u ∈ V and Pu ∈ Ym =⇒ u ∈ Xm

Example. For Dirichlet Laplacian,

be(Ω,P) =
π

ωe
, bc(Ω,P) = −1

2
+

√
µDir

c,1 +
1
4
, b∗c (Ω,P) = min{2, bc}
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The edge issue (without the corners)

Theorems of type S and, hence, of type A, can be proved without difficulty.
But in connection with h-p version of finite elements, this would not help.

The 3D h-p FEM takes anisotropy into account and results in exponential
convergence only if improved regularity along edges is used for design.

Weights w` providing isotropic semi-norms
∑
|α|=` ‖w`∂αx u‖L2(Ω)

will be

replaced by weights we,α defined in neighborhoods Ve of edges:

|u|X` =
∑
e∈E

∑
|α|=`

‖we,α∂
α
x u‖L2(Ve)

Choose tubular coordinates xe = (x⊥e , x
‖
e ) and corresponding multi-indices

αe = (α⊥e , α
‖
e), — perpendicular and parallel to e. Typically

we,α = rβe+|α⊥e |
e

independent of derivatives ∂α
‖
e

x along e.
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Anisotropic weights (edges & corners)

To simplify, assume that all edges are parallel to coordinate axes.
The non-homogeneous version of anisotropic weights is

wα =
∏
c∈C

rmax{0,βc+|α|}
c ×

∏
e∈E

( re

rC

)max{0,βe+|α⊥e |}

Theorem (Type S) [CoDaNi, 2010]

Let β = (βc, βe) such that

∀e ∈ E , 0 < −βe − 1 and −βe − 1 6∈ Reσ(Ae)

Let m ≥ 1 and ≥ max{−βe,−βc}
Then for any k ≥ m and u ∈ Xm

1
k!
|u|Xk ≤ Ak+1

( k∑
`=0

1
`!
|Pu|Y` + |u|Xm

)

Example. For Dirichlet Laplacian, σ(Ae) = { kπ
ωe

: k ∈ Z∗}.
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Corollary of B & S: Type AA in polyhedral domains

Ω ⊂ R3 polyhedron
Coercive variational formulation in V ⊂ H1(Ω)
Homogeneous constant coefficients (Analytic coefficients possible)

Theorem (Type AA) [CoDaNi, 2010]

With the same numbers b∗c (Ω,P) and be(Ω,P) as in Theorem B:

Let β < −1 such that −βc − 3
2 < b∗c (Ω,P) and −βe − 1 < be(Ω,P)

Choose the weights w` =
∏
c∈C

rmax{0,`+βc}
c ×

∏
e∈E

( re

rC

)max{0,`+βe}

Then u ∈ V and Pu ∈ Y$ =⇒ u ∈ X$

Remark.
Homogeneous weights w` =

∏
c∈C

r `+βc
c ×

∏
e∈E

( re

rC

)`+βe can be used if

u ∈ V =⇒ u
r
∈ L2(Ω)
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Numbers b for ∆ on examples

Domain Ω be(Ω) bc(Ω) b∗c (Ω)

Cube, Dirichlet 2 3 2

Cube, Neumann 2 0 2

Thick L, Dirichlet 0.66666 1.66666 1.66666

Thick L, Neumann 0.66666 0 1.66666

Fichera corner, Dirichlet 0.66666 0.45418 0.45418

Fichera corner, Neumann 0.66666 0 0.84001

Thick L :
{

(−1, 1)2 \ (0, 1)2
}
× (−1, 1)

Fichera corner : (−1, 1)3 \ (0, 1)3
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Sources

M. COSTABEL, M. DAUGE, S. NICAISE

Analytic Regularity for Linear Elliptic Systems in Polygons and Polyhedra
Math. Models Methods Appl. Sci. 08(22) (2012), 59 p.
DOI: 10.1142/S0218202512500157

M. COSTABEL, M. DAUGE, S. NICAISE

Book project:
Corner Singularities and Analytic Regularity for Linear Elliptic Systems
Part I: Smooth domains. HAL: hal-00453934 (2010), 211 pages

3D Lexicon
Type Homogeneous norms Non-homogeneous norms

Isotropic K k
β(Ω) Jk

β(Ω)

Anisotropic Mk
β(Ω) Nk

β(Ω)

Anisotropic Analytic Ak
β(Ω) Bk

β(Ω)
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Conclusion

Our method to prove functional framework
for exponential convergence of h-p

can be summarized as

Augmented Anisotropic Analyticity

AAA

Thank you for your attention
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