Abstract framework

Smooth domain

Corner domains

Polyhedral domains

Weighted analytic regularity in polyhedra

Martin Costabel, Monique Dauge, Serge Nicaise

IRMAR, Université de Rennes 1, FRANCE

Workshop High-Order Numerical Approximation for PDE Hausdorff Center for Mathematics, Bonn, February 6-10, 2012

http://perso.univ-rennes1.fr/monique.dauge

Abstract framework	Smooth domains	Corner domains	Polyhedral domains

Outline

Abstract framework	Smooth domains	Corner domains	Polyhedral domains
Outline			

Abstract framework

2 Smooth domains

3 Corner domains

Polyhedral domains

Abstract framework	Smooth domains	Corner domains	Polyhedral domains

Question of regularity

Consider a (elliptic) boundary value problem, written in compact form as

$\mathbb{P}\boldsymbol{u} = \boldsymbol{q}$

where *q* may include interior, boundary, or interface data.

For a possible numerical approximation, answering (a priori) the question of regularity for \boldsymbol{u} is of fundamental importance.

Any regularity statement takes the form

 $oldsymbol{u} \in \mathbb{U}_{ extsf{base}}$ and $oldsymbol{q} \in \mathbb{Q}_{ extsf{data}}$ \implies $oldsymbol{u} \in \mathbb{U}_{ extsf{sol}}$

Ideally

- U_{base} is a space where existence of solutions is known (e.g. variational space)
- \mathbb{U}_{sol} is optimal in the sense that \mathbb{P} is bounded $\mathbb{U}_{sol} \to \mathbb{Q}_{data}$.
- If \mathbb{Q}_{data} is a space of piecewise analytic data, \mathbb{U}_{sol} is a space of piecewise analytic solutions.

Abstract framework	
0000000	

Corner domains

Polyhedral domains

Three types of possible theorems

Type C: Existence of solutions in a space 𝒴

Coercivity or Fredholm alternative.

Type B: Basic regularity

 $\pmb{u} \in \mathbb{U}_{\mathsf{base}}$ and $\pmb{q} \in \mathbb{Q}_{\mathsf{data}} \implies \pmb{u} \in \mathbb{U}_{\mathsf{sol}}$ with

• $\mathbb{U}_{base} = \mathbb{V}$

② U_{sol} = U^B_{sol} involving estimates on a finite number of derivatives (e.g. space of strong solutions) — for suitable Q_{data}.

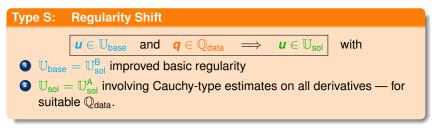
Type A: Analytic regularity

 $\boldsymbol{u} \in \mathbb{U}_{\mathsf{base}}$ and $\boldsymbol{q} \in \mathbb{Q}_{\mathsf{data}} \implies \boldsymbol{u} \in \mathbb{U}_{\mathsf{sol}}$ with

U_{sol} = U^A_{sol} involving Cauchy-type estimates on all derivatives — for suitable Q_{data}.

Polyhedral domains

A fourth type of statement and a strategy



Strategy

Find suitable "pairs" $(\mathbb{U}_{sol}^{B}, \mathbb{U}_{sol}^{A})$ so that

- Type B is known
- Type S is true (our job to prove it)

Abstract framework	Smooth domains	Corner domains	Polyhedral domains
0000000			

Families of semi-norms

The objects \mathbb{U}_{sol}^{B} and \mathbb{U}_{sol}^{A} are realized by countable sets of semi-norms

 $\left\|\cdot\right\|_{\mathbb{X}^m}, \quad m \in \mathbb{N}$

Typically, the semi-norm \mathbb{X}^m is a norm on derivatives ∂^{α} of length $|\alpha| = m$.

Several spaces are associated in a natural way:

•
$$\mathbb{X}^{k} = \{ \boldsymbol{u} : |\boldsymbol{u}|_{\mathbb{X}^{m}} < \infty, 0 \le m \le k \}$$
 and $\|\boldsymbol{u}\|_{\mathbb{X}^{k}} = \sup_{m=0}^{\infty} |\boldsymbol{u}|_{\mathbb{X}^{m}}$
• $\mathbb{X}^{\infty} = \{ \boldsymbol{u} : |\boldsymbol{u}|_{\mathbb{X}^{m}} < \infty, \forall m \in \mathbb{N} \}$
• $\mathbb{X}^{\varpi} = \{ \boldsymbol{u} \in \mathbb{X}^{\infty} : \sup_{m \in \mathbb{N}} \left(\frac{1}{m!} |\boldsymbol{u}|_{\mathbb{X}^{m}} \right)^{1/m} < \infty \}$ — analytic class
• $\{ \boldsymbol{u} \in \mathbb{X}^{\infty} : \sup_{m \in \mathbb{N}} \left(\frac{1}{(m!)^{s}} |\boldsymbol{u}|_{\mathbb{X}^{m}} \right)^{1/m} < \infty \}$ — Gevrey class

Similar definitions for right hand sides q. Denote the semi-norms by $|\cdot|_{\mathbb{W}^m}$.

1.

Abstract framework

Smooth domain

Corner domains

Polyhedral domains

Types B and A associated with families of semi-norms

Type B: Basic regularity

Exists $m \in \mathbb{N}$ such that

$$\boldsymbol{u} \in \mathbb{V}$$
 and $\boldsymbol{q} \in \mathbb{Y}^m \implies \boldsymbol{u} \in \mathbb{X}^m$

with estimates

$$\left\| \boldsymbol{u} \right\|_{\mathbb{X}^m} \leq C \big(\left\| \mathbb{P} \boldsymbol{u} \right\|_{\mathbb{Y}^m} + \left\| \boldsymbol{u} \right\|_{\mathbb{V}} \big)$$

Type A: Analytic regularity

$$\pmb{u} \in \mathbb{V}$$
 and $\pmb{q} \in \mathbb{Y}^{\varpi} \implies \pmb{u} \in \mathbb{X}^{\varpi}$

Polyhedral domains

Types S associated with families of semi-norms

Type S standard

Exists $m \in \mathbb{N}$ such that for all k > m

$$\boldsymbol{u} \in \mathbb{X}^m$$
 and $\boldsymbol{q} \in \mathbb{Y}^k \implies \boldsymbol{u} \in \mathbb{X}^k$

with estimates

$$\left\| \boldsymbol{u} \right\|_{\mathbb{X}^k} \leq C ig(\left\| \mathbb{P} \boldsymbol{u} \right\|_{\mathbb{Y}^k} + \left\| \boldsymbol{u} \right\|_{\mathbb{X}^m} ig)$$

Type S with Cauchy estimates

Exists $m \in \mathbb{N}$ such that for all k > m

$$\boldsymbol{u} \in \mathbb{X}^m$$
 and $\boldsymbol{q} \in \mathbb{Y}^k \implies \boldsymbol{u} \in \mathbb{X}^k$

with estimates (constant A independent from k)

(S-Cauchy)
$$\frac{1}{k!} \left| \boldsymbol{u} \right|_{\mathbb{X}^k} \le A^{k+1} \left(\sum_{\ell=0}^k \frac{1}{\ell!} \left| \mathbb{P} \boldsymbol{u} \right|_{\mathbb{Y}^\ell} + \left\| \boldsymbol{u} \right\|_{\mathbb{X}^m} \right)$$

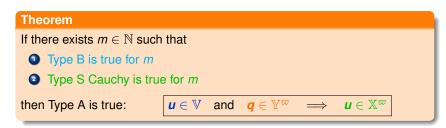
Abstract framework
00000000

Polyhedral domains

A true theorem, at last

Theorem			
If there exists $m \in \mathbb{N}$ such	ch that		
Type B is true for m			
Type S Cauchy is true	ue for <i>m</i>		
then Type A is true:	$u \in \mathbb{V}$ and $q \in \mathbb{Y}^{\varpi} \implies u \in \mathbb{X}^{\varpi}$		

A true theorem, at last



Proof. (S-Cauchy) implies, after enlarging A:

$$\frac{1}{k!} \left\| \boldsymbol{u} \right\|_{\mathbb{X}^{k}} \leq \boldsymbol{A}^{k+1} \left(\max_{\ell=0}^{k} \frac{1}{\ell!} \left\| \mathbb{P} \boldsymbol{u} \right\|_{\mathbb{Y}^{\ell}} + \left\| \boldsymbol{u} \right\|_{\mathbb{X}^{m}} \right)$$

Take power 1/k

$$\begin{aligned} \left(\frac{1}{k!} \left\|\boldsymbol{u}\right\|_{\mathbb{X}^{k}}\right)^{1/k} &\leq A' \left(\max_{\ell=0}^{k} \frac{1}{\ell!} \left\|\mathbb{P}\boldsymbol{u}\right\|_{\mathbb{Y}^{\ell}} + \left\|\boldsymbol{u}\right\|_{\mathbb{X}^{m}}\right)^{1/k} \\ &\leq A' \left\{\max_{\ell=0}^{k} \left(\frac{1}{\ell!} \left\|\mathbb{P}\boldsymbol{u}\right\|_{\mathbb{Y}^{\ell}}\right)^{1/k} + \left\|\boldsymbol{u}\right\|_{\mathbb{X}^{m}}^{1/k}\right\} \end{aligned}$$

Corner domains

Polyhedral domains

It suffices to realize the program Type B + Type S

Corner domains

Polyhedral domains

It suffices to realize the program Type B + Type S to obtain Type A ... in any situation we want

Abstract framework	Smooth domains	Corner domains	Polyhedral domains

Abstract framework	Smooth domains	Corner domains	Polyhedral domains
First things	first		

- Ω smooth domain with analytic boundary.
- $\partial_{\mathbf{s}}\Omega$ for $\mathbf{s} \in \mathscr{S}$, connected components of $\partial\Omega$.
- \mathbb{P} elliptic 2d order boundary value problem (system).
- $\mathbb{P} = (L, T_s, D_s)$, operators with analytic coefficients:
 - L interior operator
 - T_s boundary operator of order 1, $s \in \mathscr{S}_N$
 - $D_{\boldsymbol{s}}$ boundary operator of order 0, $\boldsymbol{s} \in \mathscr{S}_{D}$

¹ for more than 50 years

Abstract framework	Smooth domains ●○○	Corner domains	Polyhedral domains
First things	first		

- Ω smooth domain with analytic boundary.
- $\partial_{\mathbf{s}}\Omega$ for $\mathbf{s} \in \mathscr{S}$, connected components of $\partial\Omega$.
- \mathbb{P} elliptic 2d order boundary value problem (system).
- $\mathbb{P} = (L, T_s, D_s)$, operators with analytic coefficients:
 - L interior operator
 - T_s boundary operator of order 1, $s \in \mathscr{S}_N$
 - D_{s} boundary operator of order 0, $s \in \mathscr{S}_{D}$

Theorems of Type C, B, and A known¹ in the framework of Sobolev spaces:

$$\left\|\boldsymbol{u}\right\|_{\mathbb{X}^{m}}=\sum_{|\alpha|=m}\left\|\partial_{\boldsymbol{x}}^{\alpha}\boldsymbol{u}\right\|_{L^{2}(\Omega)}$$

$$\|\boldsymbol{q}\|_{\mathbb{Y}^m} = \sum_{|\alpha|=m-2} \|\partial_{\boldsymbol{x}}^{\alpha}\boldsymbol{f}\|_{L^2(\Omega)} + \sum_{\substack{\boldsymbol{s}\in\mathscr{S}_N\\|\alpha|=m-2}} \|\partial_{\boldsymbol{x}}^{\alpha}\boldsymbol{g}_{\boldsymbol{s}}\|_{H^{\frac{1}{2}}(\partial_{\boldsymbol{s}}\Omega)} + \sum_{\substack{\boldsymbol{s}\in\mathscr{S}_D\\|\alpha|=m-1}} \|\partial_{\boldsymbol{x}}^{\alpha}\boldsymbol{h}_{\boldsymbol{s}}\|_{H^{\frac{1}{2}}(\partial_{\boldsymbol{s}}\Omega)}$$

¹ for more than 50 years

Abstract framework	Smooth domains	Corner domains	Polyhedral domains

ADN & Morrey

Theorem (Type C) [ADN, 1959, 1964]

 $\mathbb{P}: \mathbb{X}^m \to \mathbb{Y}^m$ is Fredholm for any $m \geq 2$.

Anything to add?

Polyhedral domains

Yes: Regularity Shift with Cauchy-type estimates

Theorem (Type S) [CoDaNi, 2010]

There exists A > 0 such that for any $k \ge 2$ and $\boldsymbol{u} \in \mathbb{X}^2$

(S-Cauchy)
$$\frac{1}{k!} \left| \boldsymbol{u} \right|_{\mathbb{X}^k} \leq A^{k+1} \left(\sum_{\ell=0}^k \frac{1}{\ell!} \left\| \mathbb{P} \boldsymbol{u} \right\|_{\mathbb{Y}^\ell} + \left\| \boldsymbol{u} \right\|_{\mathbb{X}^2} \right)$$

Proof. Clean old proofs:

- Nested open sets on model problems
- Faà di Bruno formula for local maps

Coercive variational form

If \mathbb{P} issues from a variational form coercive on $\mathbb{V} \subset \boldsymbol{H}^1(\Omega)$, all thms adapt:

- C Existence in $\mathbb V$
- **B** Basic regularity in \mathbb{X}^2 if $\mathbb{P} \boldsymbol{u} \in \mathbb{Y}^2$ (var. solutions are strong solutions)
- **A**, **S** Estimates with $\|\boldsymbol{u}\|_{H^1(\Omega)}$ in the RHS.

Abstract framework	Smooth domains	Corner domains	Polyhedral domains

Outline

Abstract framework

2 Smooth domains

Abs	trac	t fran	nework

Corner domains

Polyhedral domains

3D Examples

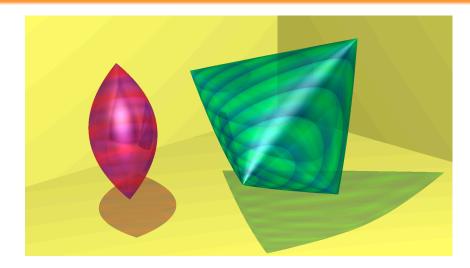


Figure: Axisymmetric domain & Cayley's tetrahedron (M. Costabel with POV-Ray)

A	os	tr	ac	t	fra	an	ıe	w	0	rk	
			0				0				

Corner domains

Polyhedral domains

Domains with conical points

- Ω analytic corner domain (analytic cones and maps) with corner set *C* (in 2D, piecewise analytic in 2D polygonal domains).
- $\mathbb{P} = (L, T_s, D_s)$ elliptic 2d order with analytic coefficients.
- To simplify: coercive problems with zero boundary data ($q \equiv f$).

Domains with conical points

- Ω analytic corner domain (analytic cones and maps) with corner set *C* (in 2D, piecewise analytic in 2D polygonal domains).
- $\mathbb{P} = (L, T_s, D_s)$ elliptic 2d order with analytic coefficients.
- To simplify: coercive problems with zero boundary data ($q \equiv f$).

Theorems of Type C based on Lax-Milgram, no regularity required.

Theorems of Type B and "S standard" known, starting with [Kondratev '67]. Use of weighted Sobolev spaces:

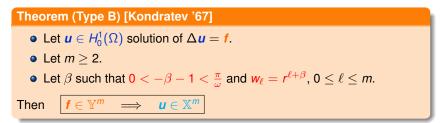
$$\left|\boldsymbol{u}\right|_{\mathbb{X}^{m}}=\sum_{|\alpha|=m}\left\|\boldsymbol{w}_{m}\,\partial_{\boldsymbol{x}}^{\alpha}\boldsymbol{u}\right\|_{L^{2}(\Omega)}\quad\text{and}\quad\left|\boldsymbol{f}\right|_{\mathbb{Y}^{m}}=\sum_{|\alpha|=m-2}\left\|\boldsymbol{w}_{m}\,\partial_{\boldsymbol{x}}^{\alpha}\boldsymbol{f}\right\|_{L^{2}(\Omega)}$$

where $w_0(\mathbf{x}), w_1(\mathbf{x}), \dots, w_m(\mathbf{x}), \dots$ family of weights of general type

$$w_m(\mathbf{x}) = r(\mathbf{x})^{m+\beta}, \quad r(\mathbf{x}) = dist(\mathbf{x}, \mathscr{C}), \quad \beta \in \mathbb{R}.$$

An old friend: The Dirichlet Laplacian on a polygon

Let $\omega = \omega_c$ be the largest opening angle of the polygon Ω (corner c).



- Why 0 < −β − 1, i.e. β < −1? ⇒ w₁ unbounded. Because this condition implies X² compactly embedded in H¹(Ω).
- Why -β 1 < π/ω? Because under this condition the strongest singularity</p>

$$m{x}\longmapsto r_{m{c}}^{\pi/\omega}\sinrac{\pi heta_{m{c}}}{\omega_{m{c}}}$$

belongs to \mathbb{X}^m for all *m*.

A	os	tr	ac	t	fra	an	ıe	W	0	rk	
0	0				0		0				

What about the Neumann Laplacian on a polygon?

- The previous functional setting is unpleasant for the Neumann Δ .
- Independent pointwise values arise at each corner.
- The constant function 1 ∉ X² if 0 < −β − 1 because w₀ = r^β. But no problem for derivatives...

Remedy: modify the first weights. Take

$$W_{\ell} = r^{\max\{0, \ell+\beta\}} \simeq \min\{1, r^{\ell+\beta}\}, \quad \ell \in \mathbb{N}$$

Example: If $\beta = -\frac{3}{2}$, $w_0 = w_1 = 1$, and $w_\ell = r^{\ell+\beta}$ as before if $\ell \ge 2$.

Theorem (Type B) [Mazya-Plamenevskii, 1984]

- Let $\boldsymbol{u} \in H^1(\Omega)$ solution of $\Delta \boldsymbol{u} = \boldsymbol{f}$ with $\partial_n \boldsymbol{u} = 0$.
- Let *m* ≥ 2.
- Let β such that $0 < -\beta 1 < \frac{\pi}{\omega}$ and $w_{\ell} = r^{\max\{0, \ell+\beta\}}$, $0 \le \ell \le m$.

Then $\boldsymbol{f} \in \mathbb{Y}^m \implies \boldsymbol{u} \in \mathbb{X}^m$

Abstract framework	Smooth domains	Corner domains	Polyhedral domains
		000000000	

General case, Type B in corner domains

- $\Omega \subset \mathbb{R}^d$. Dimension $d \geq 2$.
- Coercive variational formulation in $\mathbb{V} \subset \boldsymbol{H}^1(\Omega)$
- Smooth coefficients

Theorem (Type B)

Exists an optimal number $b^*(\Omega, \mathbb{P}) > 1 - \frac{d}{2}$ such that the following holds.

- Let *m* ≥ 2.
- Let $\beta < -1$ such that $-\beta \frac{d}{2} < b^*(\Omega, \mathbb{P})$
- Choose the weights $w_{\ell} = r^{\max\{0, \ell+\beta\}}$ (non-homogeneous norms).

Then $\boldsymbol{u} \in \mathbb{V}$ and $\mathbb{P}\boldsymbol{u} \in \mathbb{Y}^m \implies \boldsymbol{u} \in \mathbb{X}^m$

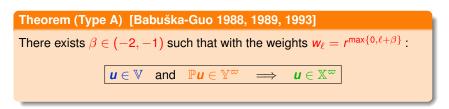
Remark.

Weights $w_{\ell} = r^{\ell+\beta}$ (homogeneous norms) suitable if $\boldsymbol{u} \in \mathbb{V} \Rightarrow \frac{\boldsymbol{u}}{r} \in L^2(\Omega)$. There holds a similar statement involving another positive number $\boldsymbol{b}(\Omega, \mathbb{P})$ determined by Mellin corner spectra $\sigma(\mathfrak{A}_c), \boldsymbol{c} \in \mathscr{C}$.

Polyhedral domains

Type A for Δ , Lamé in polygonal domains

Weighted analytic regularity has been invented by Babuška and Guo, and proved for model operators in polygonal domains.



Exponential convergence [Babuška-Guo 1988, 1989, 1993]

This weighted analytic regularity allows to prove the exponential convergence of the h-p method of finite elements.

Corner domains

Polyhedral domains

This is not the end of the story for corner domains

Theorem (Type S standard) [Kondratev 1967]

With homogeneous weights $w_{\ell} = r^{\ell+\beta}$:

For all $k \ge 2$ and all $\beta \in \mathbb{R}$

$$\boldsymbol{u} \in \mathbb{X}^2$$
 and $\boldsymbol{q} \in \mathbb{Y}^k \implies \boldsymbol{u} \in \mathbb{X}^k$

with estimates (C depends on β and k)

$$\left\| oldsymbol{u}
ight\|_{\mathbb{X}^k} \leq oldsymbol{C} ig(\left\| \mathbb{P} oldsymbol{u}
ight\|_{\mathbb{Y}^k} + \left\| oldsymbol{u}
ight\|_{\mathbb{X}^2} ig)$$

In other words :

For any β , if $r^{|\alpha|+\beta} \boldsymbol{u} \in L^2(\Omega)$ for $|\alpha| \leq 1$, then $r^{|\alpha|+\beta} \boldsymbol{u} \in L^2(\Omega)$ for $|\alpha| \leq k$ if the rhs has the corresponding regularity.

This is an unconditional elliptic regularity shift for corner domains.

Corner domains

Polyhedral domains

Regularity Shift with Cauchy-type estimates

Theorem (Type S) [CoDaNi, 2010]

 With homogeneous weights w_ℓ = r^{ℓ+β}: For all β ∈ ℝ exists A > 0 such that for any k ≥ 2 and u ∈ X²

$$\frac{1}{k!} \left| \boldsymbol{u} \right|_{\mathbb{X}^k} \le A^{k+1} \left(\sum_{\ell=0}^k \frac{1}{\ell!} \left\| \mathbb{P} \boldsymbol{u} \right\|_{\mathbb{Y}^\ell} + \left\| \boldsymbol{u} \right\|_{\mathbb{X}^1} \right)$$

With non-homogeneous weights $w_{\ell} = r^{\max\{0, \ell+\beta\}}$: For all $\beta \in \mathbb{R}$ and $m \ge \max\{-\beta, 2\}$ exists A > 0 such that for any $k \ge m$ and $u \in \mathbb{X}^m$

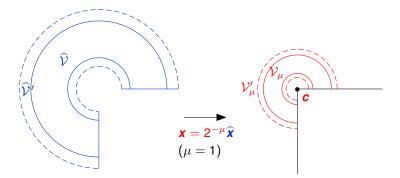
$$\frac{1}{k!} \left| \boldsymbol{u} \right|_{\mathbb{X}^{k}} \leq A^{k+1} \left(\sum_{\ell=m+1}^{k} \frac{1}{\ell!} \left| \mathbb{P} \boldsymbol{u} \right|_{\mathbb{Y}^{\ell}} + \left| \boldsymbol{u} \right|_{\mathbb{X}^{m}} \right)$$

Proof

- Unweighted estimates (S-Cauchy) in fixed annulus far from corner c
- Scale estimates to closer annuli. Weight appears.
- Sum over a dyadic partition of a neighborhood of c

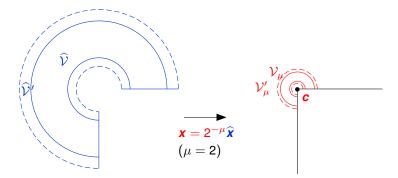
Abstract framework	Smooth domains	Corner domains	Polyhedral domains

Scale on
$$\mathcal{V}_{\mu} = 2^{-\mu} \mathcal{V}$$
 and $\mathcal{V}'_{\mu} = 2^{-\mu} \mathcal{V}'$, for $\mu = 1$



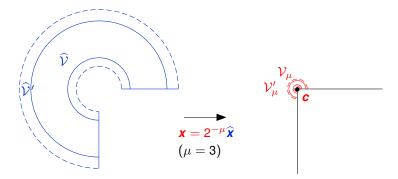
Abstract framework	Smooth domains	Corner domains	Polyhedral domains

Scale on
$$\mathcal{V}_{\mu} = 2^{-\mu} \mathcal{V}$$
 and $\mathcal{V}'_{\mu} = 2^{-\mu} \mathcal{V}'$, for $\mu = 2$



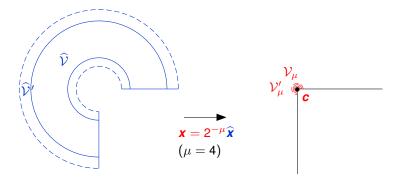
Abstract framework	Smooth domains	Corner domains	Polyhedral domains

Scale on
$$\mathcal{V}_{\mu} = 2^{-\mu} \mathcal{V}$$
 and $\mathcal{V}'_{\mu} = 2^{-\mu} \mathcal{V}'$, for $\mu = 3$



Abstract framework	Smooth domains	Corner domains	Polyhedral domains

Scale on
$$\mathcal{V}_{\mu} = 2^{-\mu} \mathcal{V}$$
 and $\mathcal{V}'_{\mu} = 2^{-\mu} \mathcal{V}'$, for $\mu = 4, \dots$



As a corollary of B & S: Type A in corner domains

General case sine dolore

- $\Omega \subset \mathbb{R}^d$. Dimension $d \geq 2$.
- Coercive variational formulation in $\mathbb{V} \subset \boldsymbol{H}^1(\Omega)$
- Analytic coefficients

Theorem (Type A) [CoDaNi, 2010]

With the same optimal number $b^*(\Omega, \mathbb{P})$ as in Theorem B, there holds.

• Let $\beta < -1$ such that $-\beta - \frac{d}{2} < b^*(\Omega, \mathbb{P})$

• Choose the weights
$$w_{\ell} = r^{\max\{0, \ell+\beta\}}, \ell \in \mathbb{N}$$
.

Then $\boldsymbol{u} \in \mathbb{V}$ and $\mathbb{P}\boldsymbol{u} \in \mathbb{Y}^{\varpi} \implies \boldsymbol{u} \in \mathbb{X}^{\varpi}$

Remark.

Homogeneous weights $w_{\ell} = r^{\ell+\beta}$ can be used instead if

$$\boldsymbol{u} \in \mathbb{V} \Longrightarrow \frac{\boldsymbol{u}}{r} \in L^{2}(\Omega).$$

If $\beta < -1 \& -\beta - \frac{d}{2} < \boldsymbol{b}(\Omega, \mathbb{P}), \quad \overline{\boldsymbol{u} \in \mathbb{V} \text{ and } \mathbb{P}\boldsymbol{u} \in \mathbb{Y}^{\varpi} \implies \boldsymbol{u} \in \mathbb{X}^{\varpi}}$

Abstract framework	Smooth domains	Corner domains	Polyhedral domains

Outline

Abstract framework

2 Smooth domains

3 Corner domains

Abs	tract	frame	work

Polyhedral domains

Corners, edges, distance functions and weights

- Ω polyhedral domain in \mathbb{R}^3 . Distance to singular points: $\mathbf{x} \mapsto r(\mathbf{x})$
- Corners c, set of corners \mathscr{C} , distance functions: r_c to c, $r_{\mathscr{C}}$ to \mathscr{C} ,
- Edges *e*, set of edges *&*, distance functions: *r_e* to *e*.

Two ways of generating weights

() A simple way: choose $\beta \in \mathbb{R}$ and use powers of *r*

$$w_{\ell} = r^{\ell+\beta}$$
 or $w_{\ell} = r^{\max\{0,\ell+\beta\}}$

3 A finer tool: choose a multi- β , i.e. $\beta = (\beta_c, \beta_e)$

$$W_{\ell} = \prod_{\boldsymbol{c} \in \mathscr{C}} r_{\boldsymbol{c}}^{\ell+\beta_{\boldsymbol{c}}} \times \prod_{\boldsymbol{e} \in \mathscr{E}} \left(\frac{r_{\boldsymbol{e}}}{r_{\mathscr{C}}}\right)^{\ell+\beta_{\boldsymbol{e}}} \text{ or } w_{\ell} = \prod_{\boldsymbol{c} \in \mathscr{C}} r_{\boldsymbol{c}}^{\max\{0,\ell+\beta_{\boldsymbol{c}}\}} \times \prod_{\boldsymbol{e} \in \mathscr{E}} \left(\frac{r_{\boldsymbol{e}}}{r_{\mathscr{C}}}\right)^{\max\{0,\ell+\beta_{\boldsymbol{e}}\}}$$

Note: If $\beta_{\boldsymbol{c}} \equiv \beta$, then $\prod_{\boldsymbol{c} \in \mathscr{C}} r_{\boldsymbol{c}}^{\ell+\beta_{\boldsymbol{c}}} \simeq r_{\mathscr{C}}^{\ell+\beta}$ If $\beta_{\boldsymbol{c}} \equiv \beta_{\boldsymbol{e}} \equiv \beta$, then $\prod_{\boldsymbol{c} \in \mathscr{C}} r_{\boldsymbol{c}}^{\ell+\beta_{\boldsymbol{c}}} \times \prod_{\boldsymbol{e} \in \mathscr{E}} \left(\frac{r_{\boldsymbol{e}}}{r_{\mathscr{C}}}\right)^{\ell+\beta_{\boldsymbol{e}}} \simeq r^{\ell+\beta}$.

Abs	tract	frame	work

Corner domains

Polyhedral domains

Type B in polyhedral domains

- Coercive variational formulation in $\mathbb{V} \subset \boldsymbol{H}^1(\Omega)$
- Smooth coefficients

Theorem (Type B) [Mazya-Rossmann 2003] [CoDaNi, 2012]

For optimal numbers $b_c^*(\Omega, \mathbb{P}) > -\frac{1}{2}$ and $b_e(\Omega, \mathbb{P}) > 0$ depending on Mellin corner and edge spectra $\sigma(\mathfrak{A}_c)$ and $\sigma(\mathfrak{A}_e)$, the following holds.

- Let *m* ≥ 2.
- Let $\underline{\beta} < -1$ such that $-\beta_{\mathbf{c}} \frac{3}{2} < b_{\mathbf{c}}^*(\Omega, \mathbb{P})$ and $-\beta_{\mathbf{e}} 1 < b_{\mathbf{e}}(\Omega, \mathbb{P})$
- Choose the weights $w_{\ell} = \prod_{\boldsymbol{c} \in \mathscr{C}} r_{\boldsymbol{c}}^{\max\{0,\ell+\beta_{\boldsymbol{c}}\}} \times \prod_{\boldsymbol{e} \in \mathscr{E}} \left(\frac{r_{\boldsymbol{e}}}{r_{\mathscr{C}}}\right)^{\max\{0,\ell+\beta_{\boldsymbol{e}}\}}.$ Then $\boldsymbol{u} \in \mathbb{V}$ and $\mathbb{P}\boldsymbol{u} \in \mathbb{Y}^m \implies \boldsymbol{u} \in \mathbb{X}^m$

Example. For Dirichlet Laplacian,

$$\boldsymbol{b_e}(\Omega,\mathbb{P}) = \frac{\pi}{\omega_{\boldsymbol{e}}}, \quad \boldsymbol{b_c}(\Omega,\mathbb{P}) = -\frac{1}{2} + \sqrt{\mu_{\boldsymbol{c},1}^{\text{Dir}} + \frac{1}{4}}, \quad \boldsymbol{b_c^*}(\Omega,\mathbb{P}) = \min\{2, \boldsymbol{b_c}\}$$

Polyhedral domains

The edge issue (without the corners)

Theorems of type S and, hence, of type A, can be proved without difficulty. But in connection with h-p version of finite elements, this would not help.

Polyhedral domains

The edge issue (without the corners)

Theorems of type S and, hence, of type A, can be proved without difficulty. But in connection with *h-p* version of finite elements, this would not help.

The 3D *h-p* FEM takes anisotropy into account and results in exponential convergence only if improved regularity along edges is used for design.

Polyhedral domains

The edge issue (without the corners)

Theorems of type S and, hence, of type A, can be proved without difficulty. But in connection with h-p version of finite elements, this would not help.

The 3D *h-p* FEM takes anisotropy into account and results in exponential convergence only if improved regularity along edges is used for design.

Weights w_{ℓ} providing isotropic semi-norms $\sum_{|\alpha|=\ell} \|w_{\ell} \partial_{\mathbf{x}}^{\alpha} \mathbf{u}\|_{L^{2}(\Omega)}$ will be replaced by weights $w_{\mathbf{e},\alpha}$ defined in neighborhoods $\mathcal{V}_{\mathbf{e}}$ of edges:

$$|\boldsymbol{u}|_{\mathbb{X}^{\ell}} = \sum_{\boldsymbol{e} \in \mathscr{E}} \sum_{|\alpha| = \ell} \|\boldsymbol{w}_{\boldsymbol{e},\alpha} \partial_{\boldsymbol{x}}^{\alpha} \boldsymbol{u}\|_{L^{2}(\mathcal{V}_{\boldsymbol{e}})}$$

Polyhedral domains

The edge issue (without the corners)

Theorems of type S and, hence, of type A, can be proved without difficulty. But in connection with h-p version of finite elements, this would not help.

The 3D *h-p* FEM takes anisotropy into account and results in exponential convergence only if improved regularity along edges is used for design.

Weights w_{ℓ} providing isotropic semi-norms $\sum_{|\alpha|=\ell} \|w_{\ell} \partial_{\mathbf{x}}^{\alpha} \mathbf{u}\|_{L^{2}(\Omega)}$ will be replaced by weights $w_{\mathbf{e},\alpha}$ defined in neighborhoods $\mathcal{V}_{\mathbf{e}}$ of edges:

$$\left|\boldsymbol{u}\right|_{\mathbb{X}^{\ell}} = \sum_{\boldsymbol{e} \in \mathscr{E}} \sum_{|\alpha| = \ell} \left\| \boldsymbol{w}_{\boldsymbol{e},\alpha} \partial_{\boldsymbol{x}}^{\alpha} \boldsymbol{u} \right\|_{L^{2}(\mathcal{V}_{\boldsymbol{e}})}$$

Choose tubular coordinates $\boldsymbol{x}_{\boldsymbol{e}} = (\boldsymbol{x}_{\boldsymbol{e}}^{\perp}, \boldsymbol{x}_{\boldsymbol{e}}^{\parallel})$ and corresponding multi-indices $\alpha_{\boldsymbol{e}} = (\alpha_{\boldsymbol{e}}^{\perp}, \alpha_{\boldsymbol{e}}^{\parallel}),$ — perpendicular and parallel to \boldsymbol{e} . Typically

$$\mathbf{W}_{\mathbf{e},\alpha} = \mathbf{r}_{\mathbf{e}}^{\beta_{\mathbf{e}} + |\alpha_{\mathbf{e}}^{\perp}|}$$

independent of derivatives $\partial_{\mathbf{x}}^{\alpha_{\mathbf{e}}^{\parallel}}$ along \mathbf{e} .

Abstract framework

Smooth domains

Corner domains

Polyhedral domains

Anisotropic weights (edges & corners)

To simplify, assume that all edges are parallel to coordinate axes. The non-homogeneous version of anisotropic weights is

$$W_{\alpha} = \prod_{\boldsymbol{c} \in \mathscr{C}} r_{\boldsymbol{c}}^{\max\{0,\beta_{\boldsymbol{c}}+|\alpha|\}} \times \prod_{\boldsymbol{e} \in \mathscr{E}} \left(\frac{r_{\boldsymbol{e}}}{r_{\mathscr{C}}}\right)^{\max\{0,\beta_{\boldsymbol{e}}+|\alpha_{\boldsymbol{e}}^{\perp}|\}}$$

Theorem (Type S) [CoDaNi, 2010]

• Let $\underline{\beta} = (\beta_c, \beta_e)$ such that

 $\forall \boldsymbol{e} \in \mathscr{E}, \quad 0 < -\beta_{\boldsymbol{e}} - 1 \text{ and } -\beta_{\boldsymbol{e}} - 1 \notin \operatorname{Re} \sigma(\mathfrak{A}_{\boldsymbol{e}})$

• Let $m \ge 1$ and $\ge \max\{-\beta_{e}, -\beta_{c}\}$

Then for any $k \ge m$ and $\boldsymbol{u} \in \mathbb{X}^m$

$$\frac{1}{k!} \left| \boldsymbol{u} \right|_{\mathbb{X}^{k}} \leq A^{k+1} \Big(\sum_{\ell=0}^{k} \frac{1}{\ell!} \left| \mathbb{P} \boldsymbol{u} \right|_{\mathbb{Y}^{\ell}} + \left| \boldsymbol{u} \right|_{\mathbb{X}^{m}} \Big)$$

Example. For Dirichlet Laplacian, $\sigma(\mathfrak{A}_{e}) = \{\frac{k\pi}{\omega_{e}} : k \in \mathbb{Z}^{*}\}.$

Ab	str	act	frar	nev	vork	

Corollary of B & S: Type AA in polyhedral domains

- $\Omega \subset \mathbb{R}^3$ polyhedron
- Coercive variational formulation in $\mathbb{V} \subset \boldsymbol{H}^1(\Omega)$
- Homogeneous constant coefficients (Analytic coefficients possible)

Theorem (Type AA) [CoDaNi, 2010]

With the same numbers $b_{c}^{*}(\Omega, \mathbb{P})$ and $b_{e}(\Omega, \mathbb{P})$ as in Theorem B:

- Let $\underline{\beta} < -1$ such that $-\beta_c \frac{3}{2} < b_c^*(\Omega, \mathbb{P})$ and $-\beta_e 1 < b_e(\Omega, \mathbb{P})$
- Choose the weights $w_{\ell} = \prod_{c \in \mathscr{C}} r_c^{\max\{0, \ell+\beta_c\}} \times \prod_{e \in \mathscr{E}} \left(\frac{r_e}{r_{\mathscr{C}}}\right)^{\max\{0, \ell+\beta_e\}}$

Then $\boldsymbol{u} \in \mathbb{V}$ and $\mathbb{P}\boldsymbol{u} \in \mathbb{Y}^{\varpi} \implies \boldsymbol{u} \in \mathbb{X}^{\varpi}$

Remark.

Homogeneous weights
$$w_{\ell} = \prod_{c \in \mathscr{C}} r_c^{\ell+\beta_c} \times \prod_{e \in \mathscr{E}} \left(\frac{r_e}{r_{\mathscr{C}}}\right)^{\ell+\beta_e}$$
 can be used if
 $u \in \mathbb{V} \Longrightarrow \frac{u}{r} \in L^2(\Omega)$

Numbers *b* for \triangle on examples

Domain Ω	$b_{e}(\Omega)$	$b_{\boldsymbol{c}}(\Omega)$	$b^*_{m{c}}(\Omega)$
Cube, Dirichlet	2	3	2
Cube, Neumann	2	0	2
Thick L, Dirichlet	0.66666	1.66666	1.66666
Thick L, Neumann	0.66666	0	1.66666
Fichera corner, Dirichlet	0.66666	0.45418	0.45418
Fichera corner, Neumann	0.66666	0	0.84001

$$\begin{split} \text{Thick } L &: \left\{(-1,1)^2 \setminus (0,1)^2\right\} \times (-1,1) \\ \text{Fichera corner} &: (-1,1)^3 \setminus (0,1)^3 \end{split}$$

Abstract framework	Smooth domains	Corner domains	Polyhedral domains
Sources			

M. COSTABEL, M. DAUGE, S. NICAISE Analytic Regularity for Linear Elliptic Systems in Polygons and Polyhedra Math. Models Methods Appl. Sci. 08(22) (2012), 59 p. DOI: 10.1142/S0218202512500157

M. Costabel, M. Dauge, S. Nicaise

Book project:

Corner Singularities and Analytic Regularity for Linear Elliptic Systems Part I: Smooth domains. *HAL: hal-00453934* (2010), 211 pages

3D Lexicon

Туре	Homogeneous norms	Non-homogeneous norms
Isotropic	$\mathcal{K}^k_eta(\Omega)$	$J^k_eta(\Omega)$
Anisotropic	$M^k_eta(\Omega)$	${\it N}^k_eta(\Omega)$
Anisotropic Analytic	${\it A}^k_eta(\Omega)$	$\textit{B}^{\textit{k}}_{\beta}(\Omega)$

can be summarized as

can be summarized as

Augmented Anisotropic Analyticity

can be summarized as

Augmented Anisotropic Analyticity

AAA

can be summarized as

Augmented Anisotropic Analyticity

AAA

Thank you for your attention