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“Shell theory attempts the impossible: to provide a two-dimensional
representation of an intrinsically three-dimensional phenomenon.”

KOITER & SIMMONDS, 1972.



✬

✫

✩

✪

Outline

• Three-dimensional linear elasticity in a shell and the three related problematics:

1. “Shell theory”, 2. Asymptotic analysis, 3. Multi-scale expansions.

• Three categories of shells:

a. Plates, b. Shallow shells (a. & b. = plate-like), c. Real shells.

• Two-dimensional models for the three categories of shells and their relations

between each other.

• Limits as the thickness tends to zero. Comparison between scaled and unscaled

theories allows unification of results.

• Convergence in energy : reconstruction operators from the mean surface into the

shell and “estimates” by Koiter, compared to optimal estimates provided by the

multi-scale expansions (for plate-like domains and elliptic shells).
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✬

✫

✩

✪

What is a shell ?

Less and less inaccurately:

1. A three-dimensional body with one dimension small (h) .

2. A bounded domain Ω̂ ∈ R
3 with one dimension small (h) and its two other

characteristic lengths >> h .

3. A bounded domain Ω̂ ∈ R
3 associated with a smooth surface S and a smooth

diffeomorphism Φ : S × (−h, h) −→ Ω̂ = Φ
(
S × (−h, h)

)
. The pointwise

values of Φ and ∇Φ are bounded independently of h .

4. A bounded domain Ω̂ ∈ R
3 associated with its smooth mean surface S and with

its constant thickness (2h) . Let a unit normal field n : x→ n(x) be fixed on

S . The following mapping is a smooth diffeomorphism:

Φ : S × (−h, h) −→ Ω̂ = Φ
(
S × (−h, h)

)
(x, t) �−→ x+ tn(x)
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✬

✫

✩

✪

Three-dimensional linear elasticity for an isotropic body

Simply in cartesian coordinates

• Displacement tensor : u = (ui)

• Linearized strain tensor : e = (eij) : eij(u) = 1
2
(∂iuj + ∂jui) .

• Stress tensor : σ = (σij) : σ = Ae (Constitutive Equations)

• Elasticity tensor of the constitutive material A = (Aijkl) :

Aijkl = λ δijδkl + µ(δikδjl + δilδjk) with Lam é coeff. λ and µ

• Volume force field : f = (f j)

div σ = f (Equations of Equilibrium)

• Boundary conditions on the lower and upper surfaces : traction-free (or imposed).

• Boundary conditions on the lateral surface : here, clamped , in general.
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✬

✫

✩

✪

Problematics

Given a shell Ω̂ with mean surface S and (half-)thickness h , and a volume load f̂ ,

let û be the solution displacement. Problem (E) .

1. Shell Theory

Find a problem (P) on S (the two-dim. model) whose solution z provides, via a

reconstruction operator V̂ a good approximation V̂ z of û in energy norm on Ω̂ .

2. Asymptotic Analysis

Define a family of 3-dim problems ε �→ (Eε) s. t. (Eh) = (E) . Let ûε be the

sol. of (Eε) . Find (L) := lim
ε→0

(Eε) . The solution ζ of (L) will be lim
ε→0
ûε .

3. Multi-scale Expansions

Define a family of solutions ûε as in 2. and expand ε �→ ûε with respect to ε

ûε ∼ ∑
p ε

pup(y) with profiles up and arguments y = (x,X(ε)) . The

partial (finite) sums for p ≤ N are improved approximations of ûε as N ↗ .
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✬

✫

✩

✪

Classification

The body Ω̂ with mean surface S and half-thickness h is given once for all.

Let R be the minimal principal curvature radius of S and D its geodesic diameter.

R ≡ ∞ Plate : S is a domain ω ⊂ R
2 .

R ∼ 1 Shell : S is a manifold embedded in R
3 .

R ∼ 1/h Shallow Shell :
If R > 2D , then S can represented by only one chartΞ above a flat
surfaceω immersed inR

2 . And Ξ satisfies the estimates

|Ξ| + |∇Ξ| ≤ C
R
, with C = C(D).

[ANDREOIU-DA.-FAOU, 2000]

Factorize by h if 1/h > 2D :

Ξ = hξ.
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This definition of shallow shells is distinct from that used
- in engineering and also
- in the framework of a particular mathematical analysis.

This other definition starts from a similar inequality D << R
but considers R as fixed and D small. This corresponds to a spatial
localization on a manifold S, concentrating around one point.
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✬

✫

✩

✪

Associated families of domains

Plate : Ω̂ε = ω × (−ε, ε) . We have S = ω .

Shell : Ω̂ε =
{
x+ tn(x), x ∈ S, t ∈ (−ε, ε)

}
.

Sh.Sh. : Ω̂ε =
{
x+ tn(x), x ∈ Sε, t ∈ (−ε, ε)

}
with Sε =

{(
x∗, εξ(x∗)

)
, x∗ ∈ ω

}
.

Normal coordinates (xα, t) on Ω̂ε , with xα local surface coordinates in S (Sε in

the case of Sh. Sh.) and t ∈ (−ε, ε) .

Extend the volume force f̂ in ε �→ f̂ε
- either by restriction f̂ε = f̂

∣∣
Ω̂ε

- or by the formula f̂ε(xα, t) = f̂(xα,
th
ε
) for |t| ≤ ε .

The problem (Eε) is posed on Ω̂ε with the same Lam´e constants λ and µ and

the volume force f̂ε .
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✬

✫

✩

✪

Plate theory: the Kirchhoff-Love models

Use the scalingũ = (uα, εu3) and f̃ = (fα, ε−1f3) in an essential step.

The two-dimensional models are written in variational form on the displacements. The

elasticity tensor Mαβσδ is that of the “plain stress model”

Mαβσδ = λ̃ δαβδσδ + µ(δασδβδ + δαδδβσ) with λ̃ =
2λµ

λ+ 2µ
.

Plate :

(ζ, ζ′) �−→
∫

ω

Mαβσδ
(
eαβ(ζ∗) eσδ(ζ′∗) +

1

3
∂αβζ3 ∂σδζ

′
3

)
dx∗

Shallow Shell (in curvilinear components) :

(ζ, ζ′) �−→
∫

ω

Mαβσδ
(
ẽαβ(ζ) ẽσδ(ζ′) +

1

3
∂αβζ3 ∂σδζ

′
3

)
dx∗

with ẽαβ(ζ) = 1
2
(∂αζβ + ∂βζα) − ∂αβξ ζ3 .
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✬

✫

✩

✪

Shell Theory: the Koiter model

“It is shown that Love’s so-called first approximation for the strain energy as the sum of
stretching or extensional energy and bending or flexural energy, is a consistent first
approximation, and that no refinement of this first approximation is justified, in general,
if the basic Love-Kirchhoff assumptions are retained.”[KOITER, 1959]

(z, z′) �−→
∫

S

Mαβσδ
(
γαβ(z) γσδ(z′) +

ε2

3
ραβ(z) ρσδ(z′)

)
dS

with the elasticity tensor (where aαβ is the 1st fundamental form on S )

Mαβσδ = λ̃ aαβaσδ + µ(aασaβδ + aαδaβσ) with λ̃ =
2λµ

λ+ 2µ
.

with the membraneor extensionalstrain tensor associated with the change of metrics

γαβ(z) =
1

2
(Dαzβ + Dβzα) − bαβz3

where Dα is the covariant derivative on S , and the bendingstrain tensor.../...
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✬

✫

✩

✪

Shell Theory: the Koiter model and its intrinsic variants

and the bendingor flexural strain tensor associated with the change of curvature

ραβ(z) = DαDβz3 − cαβz3 + bσαDβzσ + Dαb
σ
βzσ

where bαβ is the 2d fundamental form and cαβ = bσαbσβ the 3d fundamental form.

In the variants of the Koiter model the membrane strain is still γαβ .

The bending strain is modified

χαβ(z) = 1
2
(Dαθβ + Dβθα) + 1

2
(bσαωβσ + bσβωασ) [BUDIANSKI-SANDERS, 1967]

ταβ(z) = DαDβz3 (minimal model) ,

with the surface vorticity ωαβ and the transverse vorticity θα :

ωαβ(z) = 1
2
(Dαzβ − Dβzα) and θα(z) = Dαz3 + bβαzβ.

There holds

χαβ = ραβ − 1
2
(bσαγβσ + bσβγασ).

Quote non-intrinsic variants by [L OVE, 1888] [REISSNER, 1941] [NOVOZHILOV, 1959].
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✬

✫

✩

✪

Shell theory...

... gives back the plate theory in plate-like domains if the scalings are eliminated.

Recall APlate the bilinear form on plates

(ζ, ζ′) �−→
∫

ω

Mαβσδ
(
eαβ(ζ∗) eσδ(ζ′∗) +

1

3
∂αβζ3 ∂σδζ

′
3

)
dx∗

Set z = (zα, z3) := (ζα, ε−1ζ3)

Written in unscaled unknowns, the bilinear form become :

(z, z′) �−→
∫

ω

Mαβσδ
(
eαβ(z∗) eσδ(z′

∗) +
ε2

3
∂αβz3 ∂σδz

′
3

)
dx∗.

We have eαβ(z∗) = γαβ(z) and ∂αβz3 = ραβ(z) = χαβ(z) = ταβ(z) on S .

Works similarly for shallow shells.
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✬

✫

✩

✪

Limits in scaled variables, references

For plate-like domains, find the limit as ε→ 0 of the scaleddisplacements ũ(ε)
written in scaled variables. Convergence in H1(Ω)3 with Ω = ω × (−1, 1) .

[CIARLET-DESTUYNDER, 1979] for Plates.

[BUSSE-CIARLET-MIARA, 1997] for Sh.Sh.

For shells, find the limit as ε→ 0 of ε2u(ε) with u(ε) the unscaleddisplacement

written in scaled variables. Convergence in H1(Ω)3 with Ω = S × (−1, 1) .

[CIARLET-LODS-MIARA, 1996].

Similar result for the solution z(ε) of Koiter model. [C IARLET-LODS, 1996].

If moreover, S is elliptic, find the limit as ε→ 0 of u(ε) with u(ε) the unscaled
displacement written in scaled variables. Convergence in H1(Ω)2 × L2(Ω) .

[CIARLET-LODS, 1996].

Similar result for the solution z(ε) of Koiter model. [C IARLET-LODS, 1996].
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✬

✫

✩

✪

Limits in scaled variables

For plate-like domains, define the scaled Kirchoff-Love displacement Ṽ KLζ by

Ṽ KLζ = (ζα −X3∂αζ3, ζ3) on Ω := ω × (−1, 1) and X3 = t/ε.

If f3 = O(ε) , ũ(ε)
H1(Ω)3−→ Ṽ KLζ̃0 with ζ̃0 sol. of Dirichlet pb for P and rhs g̃0 .

Shells . Inextensional disp. VF :=
{
ζ ∈ H1

0 × H1
0 × H2

0(S) ; γαβ(ζ) = 0
}

.

If f = O(1) , ε2u(ε)
H1(Ω)3−→ ζ−2 with ζ−2 ∈ VF the solution of

∀ζ′ ∈ VF,
1

3

∫
S

Mαβσδραβ(ζ) ρσδ(ζ′) dS =
∫

S

ζ g0 dS.

If S is elliptic, VF = {0} and u(ε)
H1×H1×L2

−→ ζ0 with ζ0 ∈ H1
0 × H1

0 × L2 sol

∀ζ′ ∈ H1
0 × H1

0 × L2(S),
∫

S

Mαβσδγαβ(ζ) γσδ(ζ′) dS =
∫

S

ζ g0 dS.
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Here g0 is the first momentum of forces across the thick shell
S × (−1, 1)

g0(xα) =

∫ 1

−1

f(xα, X3) dX3.
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✬

✫

✩

✪

Plates seen as shells

Consider f = O(1) on plates. Split f in ε−1(0, εf3) + (fα, 0) . Plate limit yields

that ũ(ε) � Ṽ KL(ε−1ζ̃−1 + ζ̃0) with ζ̃−1 ∈ H1
0 × H1

0 × H2
0(ω) solution of

∀ζ′ ∈ H1
0 × H1

0 × H2
0(ω), APlate(ζ̃−1, ζ′) =

1

2

∫ 1

−1

∫
ω

f3 ζ′3 dx∗ dX3.

=⇒ ζ̃−1 = (0, ζ̃−1
3 ) and the unscaleddisplacement u(ε) then satisfies

u(ε) � ε−2(0, ζ̃−1
3 ) + ε−1(0, ζ̃03) + O(1).

On a plate VF =
{
(0, ζ3) ; ζ3 ∈ H2

0(ω)
}

. Shell limit is u(ε) � ε−2ζ−2 with

ζ−2 ∈ VF the solution of

∀ζ′ ∈ VF,
1

3

∫
S

Mαβσδραβ(ζ) ρσδ(ζ′) dS =
1

2

∫ 1

−1

∫
S

f j ζ′j dS dX3

=⇒ ζ−2 = (0, ζ−2
3 ) .

We see that ζ̃−1
3 and ζ−2

3 solve the same bending equation, thus coincide.
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✬

✫

✩

✪

Reconstruction operators

Canonical injections Î : S → Ω̂ε , (Îz)(xα, t) = z(xα) .

Note that the scaled-variable version I of Î was understood in S.13.

Kirchhoff-Love V̂ KL for shells (gives back standard KL in the case of plates)

V̂ KL(z) :=



zσ − t

(
Dσz3 + 2bασzα

)
,

z3 .

Modified Kirchhoff V̂ modKL for shells [K OITER, 1970]

V̂ modKL(z) :=



zσ − t

(
Dσz3 + 2bασzα

)
,

z3 − λ
λ+2µ

(
tγα

α(z) − 1
2
t2ρα

α(z)
)
.

Formal series of reconstruction operators S → S × (−1, 1) in scaled var. t
ε

V [ε] = V 0 + εV 1 + ε2V 2 + · · · [FAOU, 2000].
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✬

✫

✩

✪

Convergence in energy

Let E(Ω̂) be the three-dimensional strain energy norm

‖û‖
E(Ω̂)

=
( ∫

Ω̂

|eij(û)|2 dx
)1/2

.

Wanted : a reconstruction operator V̂ and a two-dimensional model such that, if z is

the solution of the 2D model there holds an estimate

‖û− V̂ (z)‖2

E(Ω̂)
≤ δ‖û‖2

E(Ω̂)
, with “small” δ .

Hope for “universal” constants δ tending to 0 as h→ 0 involving only

h the thickness of the shell Ω̂ ,

R the minimal principal radius of curvature of S

L the wave length associated with z , i.e. the largest constant such that the following

pointwise estimates hold everywhere in S , for - = 1, 2

|D�γαβ(z)| ≤ L−�
∑
σδ

|γσδ(z)| and |D�ραβ(z)| ≤ L−�
∑
σδ

|ρσδ(z)|.
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✬

✫

✩

✪

Convergence in energy: Koiter’s estimates

Let z the solution of the Koiter model for thickness h and L its wave length.

The paper [K OITER, 1970] yields the formula

δ =
h2

L2
+
h

R
.

But, in the paper [K OITER-SIMMONDS, 1972] we read : “The somewhat depressing
conclusion for most shell problems is, similar to the earlier conclusions of
GOL’DENWEIZER, that no better accuracy of the solutions can be expected than of order

δ∗ =
h

L
+
h

R
,

even if the equations of first-approximation shell theory would permit, in principle, an
accuracy of orderδ .”
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✬

✫

✩

✪

The obstruction in Koiter’s estimates

The obstruction comes from the three-dimensional boundary layers, which cannot be

described by any two-dimensional model. In the ’60, a correct multi-scale analysis was

seemingly out of reach.

“Concentrating on the interior we sidestep all kinds of delicate questions, with an
attendant gain in certainty and generality. The information about the interior behavior
can be obtained much more cheaply (in the mathematical sense) than that required for
the discussion of boundary value problems, which form a more “transcendental” stage.”

[JOHN, 1965]

We are going to revisit Koiter’s estimates in the light of recent results involving

multi-scale expansions.
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✬

✫

✩

✪

Multi-scale expansions: references

t normal coordinate, r distance to the edge, s tangential coordinate along ∂S .

Clamped plates, 2-scale expansion : [NAZAROV-ZORIN, 1989] and [D A.-GRUAIS, 1996].

Simply supported and free plates, 2-scale expansion : [DA.-GRUAIS-RÖSSLE, 2000].

Clamped and free shallow shells, 2-scale expansion : [ANDREOIU-DA.-FAOU, 2000].

εk, k ∈ N, scales (xα,
t
ε
) and (s, r

ε
, t

ε
).

Clamped elliptic surfaces, 2-scale expansion for the Koiter model : [FAOU, 2000].

εk/2, k ∈ N, scales (xα) and (s, r√
ε
).

Clamped elliptic shells, 3-scale expansion : [FAOU, 2000].

εk/2, k ∈ N, scales (xα,
t
ε
), (s, r√

ε
, t

ε
) and (s, r

ε
, t

ε
).
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✬

✫

✩

✪

Strain-energy andH1-norm of the different “objects”

Name Type of displacement Scale ‖û‖2

E(Ω̂)
‖û‖2

H1(Ω̂)

uKL,b bending KL on plates (xα, t) O(h3) O(h)

uKL,m membrane KL on plates (xα, t) O(h) O(h)

uKL general KL on shells (xα, t) O(h) O(h)

v non-KL (xα,
t
h
) O(h−1) O(h−1)

Φ 3D boundary layer (s, r
h
, t

h
) O(h0) O(h0)

Z 2D boundary layer (s, r√
h
) O(h1/2) O(h1/2)

ZKL 2D boundary layer KL (s, r√
h
, t) O(h3/2) O(h1/2)

W 2D-3D boundary layer (s, r√
h
, t

h
) O(h−1/2) O(h−1/2)
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The above Table gives the behavior with respect to h of the
strain-energy of typical profiles (which could also be called “ob-
jects”) regardless of any particular asymptotics. This means for v
for example that we fix a profile V on S× (−1, 1) and evaluate the
energy of v(xα, t) := V (xα, t

h
) on S × (−h, h) as a function of h,

and similarly for the others: the profile is fixed and only h varies.

The object type ZKL is specific to shells and is a KL displace-
ment generated by a 2D boundary layer profile of the form(

0, 0, Z3(s,
r√
h

)
)
.

In Slides 21 and 23 this is applied to real asymptotics with the
aim of evaluating the asymptotic behavior of the relative error in
energy norm with respect to h, in the “generic” case when the first
terms u−2 and u0 in plates and shells respectively, are not zero. In
Slide.22 we do a similar procedure in squared H1-norm.
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✬

✫

✩

✪

Reappraisal of Koiter’s estimates: plate-like domains

In plate-like domains:

û = h−2u−2
KL,b + h−1u−1

KL + h0(u0
KL + v0 + Φ0 ) + · · ·

Energy h−1 h−1 h1 h−1 h0

Note that z = h−2(0, ζ−2
3 ) + h−1(ζ−1

α , 0) .

It is necessary to include h0v0 in the reconstruction operator. We have

V modKL(z) = h−2u−2
KL,b + h−1u−1

KL,m + h0v0.

Hence

‖û− V̂ modKL(z)‖2

E(Ω̂)
≤ ch‖û‖2

E(Ω̂)
.

The wave-length L = O(1) , for plates R = ∞ and for sh.sh R = 1/h .

Hence δ � h2 and δ∗ � h .

Koiter’s estimate holds for δ∗ and not δ .
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✬

✫

✩

✪

Relative squaredH1 -norm estimates for clamped elliptic shells

Expansion:

û = u0
KL +Z0 + h1/2(u1/2

KL + Z1/2 +W 1/2) + h(u1
KL + W 1 + v1 + Φ1) + · · ·

h h1/2 h2 h3/2 h1/2 h3 h3/2 h h2

The most energetic part in H1 -norm is the two-dimensional boundary layer Z0 of

the Koiter model.

The solution of the Koiter model expands as

z = ζ0 + Z0 + h1/2(ζ1/2 + Z̄1/2) + O(h), with Z̄1/2 �= Z1/2 .

The reconstruction operator V modKL includes W 1/2 .There holds the expansion :

V modKL(z) = u0
KL + Z0 + h1/2(u1/2

KL + Z̄1/2 +W 1/2) + hv1 + · · ·

Error estimate :

‖û− V̂ modKL(z)‖2

H1(Ω̂)
≤ ch‖û‖2

H1(Ω̂)
.
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✬

✫

✩

✪

Reappraisal of Koiter’s estimates: clamped elliptic shells

Expansion:

û = u0
KL +Z0

KL + h1/2(u1/2
KL +Z1/2

KL +Z1/2
surf ) + h(W 1 + v1 + Φ1 + · · ·)

h h3/2 h2 h5/2 h3/2 h3/2 h h2

The solution of the Koiter model expands as

z = ζ0 + Z0 + h1/2(ζ1/2 + Z̄1/2) + O(h), with Z̄1/2
σ = Z1/2

σ .

The reconstruction operator V modKL includes W 1 .There holds the expansion :

V modKL(z) = u0
KL + Z0

KL + h1/2(u1/2
KL + Z̄1/2

KL + Z1/2
surf + h(W 1 + v1 + · · ·)

Error estimate (still due to the 3D boundary layer like in plates!):

‖û− V̂ modKL(z)‖2

E(Ω̂)
≤ ch‖û‖2

E(Ω̂)
.

The wave-length L = O(h1/2) and R = O(1) . Hence δ � δ∗ � h .
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For plates the same as Slide.21 holds if the forces have the mem-
brane parity and non-vanishing first momenta across the thickness.

With free lateral edge, the same holds for plates with bending
load having a non-vanishing first momentum across the thickness.
But if the load has the membrane parity and still non-vanishing
first momenta across the thickness, the constant is now h2, i.e. the
“nice” δ !

Thus for clamped and free plates, for clamped elliptic plates, we
obtain an asymptotic Koiter-like relative estimate in energy norm
if the first momenta g0 of forces are not vanishing. Of course if it
happens that g0 ≡ 0, this estimate is definitely wrong.
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✬

✫

✩

✪

Towards universal models, a motivation

Until now we have seen

1. Reduced operators acting between tensors on the mean surface S , in the form

P (ε) = P 0 + εP 1 + ε2P 2 , namely the Koiter operator,

2. Reconstruction operators transforming tensors on the mean surface S into

tensors in the scaled shell S × (−1, 1) (or in the shell Ω̂ε ) in the form

V (ε) = V 0 + εV 1 + ε2V 2

so that, if z(ε) solves a problem of the type P (ε)z(ε) = g then V (ε)z(ε) is a

good approximation of the three-dimensional shell solution u(ε) .

Here the edge boundary conditions are discarded, and the above statement is almost

meaningless...

A correct statement in this direction is... given on the next slide.
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✬

✫

✩

✪

Formal series approach, case without loading

Consider the equations inside the scaled shell Ω and the boundary conditions on

lower and upper surfaces in the form a formal series equation

(F)



L[ε]w[ε] = f [ε]

B[ε]w[ε] = 0,

(and compute the coefficients Lk and Bk ). There exist

1. A formal series of reduction operators A[ε] =
∑

k ε
kAk ,

2. A formal series of reconstruction operators V [ε] =
∑

k ε
kV k ,

so that if f ≡ 0 (i) For any sol of w[ε] of (F) , the f. s. z[ε] := w[ε]
∣∣
S

satisfies

(1) A[ε]z[ε] = 0,

(2) w[ε] = V [ε]z[ε].

(ii) For any z[ε] sol of (1) , the formal series w[ε] defined by (2) solves (F) .
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✬

✫

✩

✪

Formal series approach, general case

For general right hand side f [ε] in (F) , prove the existence of two extra formal series

acting on f [ε] :

1. A reduction series G[ε] from S × (−1, 1) to S ,

2. A solution series Q[ε] from S to S × (−1, 1)

so that if (i) For any sol of w[ε] of (F) , the f. s. z[ε] := w[ε]
∣∣
S

satisfies

(1′) A[ε]z[ε] = G[ε]f [ε],

(2′) w[ε] = V [ε]z[ε] +Q[ε]f [ε].

(ii) For any z[ε] sol of (1′) , the formal series w[ε] defined by (2′) solves (F) .

A0 classical membrane operator. A1 = 0 (in relation with the isotropy).

A2 = F +B where F is Koiter’s flexural operator and B
∣∣
VF

≡ 0 .

G0 first tranverse momentum operator. [FAOU, 2000].
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✬

✫

✩

✪

Towards universal models

1. When ∂S = ∅ : If eq. A[ε]z[ε] = G[ε]f [ε] can be solved (such is the case for

elliptic arches and elliptic shells), then the reconstruction equation gives back the

complete asymptotics of u(ε) .

2. When S is a manifold with boundary, the reconstruction equation does not yield

in general a displacement satisfying the edge boundary condition: this would

require infinitely many boundary conditions on the two-dimensional series z[ε] .

Equation (1’) completed with all these boundary conditions is never solvable.

But eq. A[ε]z[ε] = G[ε]f [ε] is completed by the only 4 Dirichlet boundary

conditions of the space H1
0 × H1

0 × H2
0(S) . These are just the right conditions

so that the adjunction of plate-type 3 dimensional boundary layers yield the full

clamped boundary condition on the edge of the shell.
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Open problems

• Is asymptotic Koiter-like estimate valid in a more general
framework (subject to g0 is not zero)?

• Can we find a more universal error indicator between the 3D
solution and a 3D displacement reconstructed from the solu-
tion of a 2D problem?

• Do the 3D solution always admits a multi-scale expansion,
when the data are smooth, piecewise-smooth,... Probably not
in any case.

• Special attention within these approaches to lateral boundary
conditions, which may change dramatically the nature of the
solutions.
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