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EXTRACTING GENERALIZED EDGE FLUX INTENSITY FUNCTIONS BY THE QUASIDUAL

FUNCTION METHOD ALONG CIRCULAR 3-D EDGES

SAMUEL SHANNON, ZOHAR YOSIBASH, MONIQUE DAUGE AND MARTIN COSTABEL

ABSTRACT. Explicit asymptotic series describing solutions to the Laplace equation in the vicinity of a circular
edge in a three-dimensional domain was recently provided in Yosibash et al, Int. Jour. Fracture, 168 (2011), pp. 31-
52. Utilizing it, we extend the quasidual function method (QDFM) for extracting the generalized edge flux intensity
functions (GEFIFs) along circular singular edges in the cases of axisymmetric and non-axisymmetric data.

This accurate and efficient method provides a functional approximation of the GEFIFs along the circular edge
whose order is adaptively increased so to approximate the exact GEFIFs. It is implemented as a post-solution
operation in conjunction with the p -version of the finite element method. The mathematical analysis of the QDFM
is provided, followed by numerical investigations, demonstrating the efficiency, robustness and high accuracy of
the proposed quasi-dual function method. The mathematical machinery developed in the framework of the Laplace
operator is important to realize its possible extension for the elasticity system.
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1. INTRODUCTION

Methods for computing stress intensity factors (SIFs) for crack tips and generalized SIFs (GSIFs) for V-
notch tips in two-dimensional (2-D) domains were addressed in many papers in the past five decades, starting
with [7, 8]. In realistic three-dimensional domains however, edge singularities (crack fronts and V-notch tip
curves) attracted much scarcer attention due to the complexity of the solution in the vicinity of edges (except a
pioneering work as early as 1946, by Sneddon [10], for the penny-shaped crack in an infinite domain). The SIFs
and GSIFs are variable along such edges, defining univariate functions called edge stress intensity functions
(ESIFs) and generalized edge stress intensity functions (GESIFs).

In the vicinity of straight and circular edges an explicit asymptotic series of the singular solutions was
provided [5, 9, 11, 12]. Each term of this series is characterized by:

e an exponent oy, which belongs to a discrete set {ay, k € N} of eigenvalues depending only on the
geometry and the operator, and which determines the level of non-smoothness of the singularity. Any
eigenvalue «y, is computed by solving a 1-D problem.

e a generalized eigenfunction expansion ¢y, ; () (¢ is an angular coordinate transverse to the edge)
which depends on the geometry of the domain and the operator. The terms of this expansion are
computed by solving a set of 1-D problems.

e afunction along the edge, denoted by Ay (#) (0 is acoordinate along the edge) and called “generalized
edge flux/stress intensity function” (GEFIF/GESIF) which determines the “amount of energy” residing
in each singularity.

Based on the explicit representation of the solution to the Laplace and elasticity system in the vicinity of a
circular edge in [12], here we extend the quasidual function method (QDFM) presented in the framework of
3-D straight edges in [5, 9] to circular edges. This extension is demonstrated on the basis of the the Laplace
equation. This is because it is a simpler elliptic operator that allows more transparent analytic computations and
invokes all necessary characteristics of the elasticity system. Thus, the characteristics of the QDFM for circular
edges can be more easily addressed so to be extended thereafter to the elasticity system for the computation of
ESIFs for cracks occurring usually in pipes and pressure vessels.

We construct the quasidual functions (QDF) K,(Lanﬁ) adapted to circular edges. They are the essential ingre-

dient used to define a new functional, 7+ J,, [, K ,(Laﬂl)] , which is a surface integral on a torus of minor radius
po having the singular edge as its axis. The result of this functional determines an explicit representation of
the GEFIF of the solution 7 in a certain basis of functions, as opposed to other methods providing pointwise
values along the edge. Since the GEFIF on a circular edge is a periodic function, it will be natural to construct
the QDFs in such a way that the functional determines the Fourier coefficients of the GEFIF. Furthermore, the
new method allows to extract the GEFIFs away from the singular edge, thus enables the use of coarse meshes
and alleviates the necessity of complex refined mesh generation in the vicinity of 3-D singular edges. The
obtained results are both accurate, efficient and robust.

Notation and preliminaries are introduced in section 2 and the dual-function method in 2-D domains, known
also as the contour-integral method [3, 2], is recalled. It serves as the basis to the QDFM. In section 3 we
extend the QDFM to circular domains by providing a mathematical analysis on its theoretical performance. It
is then used in section 4 to extract the GEFIFs from axisymmetric solutions along circular cracks and circular
V-notch edges. Our method can be compared with the method of the singular complement of [4]. Numerical
examples using the p -version of the finite element method are also provided to demonstrate the efficiency of
the QDFM in practical applications. Circular edges in nonaxisymmetric cases are addressed in section 5, and
we summarize our results in section 6.
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2. A PATH-INDEPENDENT INTEGRAL AROUND A CORNER IN 2-D
The Laplace equation in a 2-D domain expressed in polar coordinates (p, ) located in the singular point
P (see Figure 1) is given by
1 .
AT = P [(p8p)2 + O0pp| T=0 in (1)

with either Dirichlet or Neumann homogeneous boundary conditions (BCs) on the faces I'; and T's (¢ =
1, 2 ) intersecting at P,

7 = 0 on I'y UI'y Drichlet BCs 2
or
on

where n is the outward normal vector. Solutions to (1) with (2) or (3) expand in the vicinity of P as asymp-

=Vr-n = 0 on I'y UI's Neumann BCs 3)

FIGURE 1. 2-D domain and notations.

totic series composed of primal eigenfunctions and GFIFs

7= Arp™ () €

k>0

where both the eigenvalues «j, and eigenfunctions ¢y (@) may be, for the Laplace equation, explicitly com-

puted [6]. They can be expressed as follows

km
ap — —
w

and

L ..
o(p) = P: sin 7(80 — 1) (Dirichlet)
pe cos ET (o —¢1)  (Neumann).

Each primal eigenpair is associated with a dual eigenpair ( —ay, (@) ), that satisfies the PDE and BCs but
does not belong to the energy space (equivalent to the H'(£2) Sobolev space). For the Laplace equation
Yr(p) = ¢r(p) . These dual eigenpairs are used to construct dual singular functions

K@) = Bip= 9y (p), 5)

where: )
B; = 6
J 20&ij ( )
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with the constant D; defined as the scalar product of the angular functions:

©2 2
Dj= [ ¢i(@)i(p)dp= [ ¢3(p)dp. @)
o1 01

The dual-function method, known also as the contour-integral method, is very efficient for the extraction of
the generalized flux intensity factors (GFIFs) utilizing a path-independent integral [3, 2] along a path starting
on I'; and terminating on I's :

Jre [7’, KW} o 74 <K(aj)8p7' - TapK@')) dl' = A; . ®)
I_‘*
Here dI' = pdy . Furthermore, Jr- [T, Ko )] is path-independent.

3. THE SURFACE-INTEGRAL J,[T, K,S%)] AROUND A CIRCULAR EDGE IN 3-D

3.1. Local coordinates around a circular edge. Consider a circular singular edge in a 3-D domain, generated
by rotating the singular point P around the x3 axis as shown in Figure 2. Cylindrical coordinates are (r, 0, z3)
with the distance r to the axis and the rotation angle 6. In general, neither the domain, nor the boundary
conditions have to be axisymmetric, but for ease of presentation we consider the 3-D domain generated by the
cross-section (2. Locating a polar coordinate system (p, ) at P, we have the relations

r=R+pcosyp and x3=psine.
and the Laplace operator can be written in (p, ¢, ) coordinates as (see [12]):

1 1 ~

A =——F——= A(g; 0y, p0y, O, ith
pg (1+ %COS(,D)z ((107 w0y POp, 9) w1
~ 2
A (1 + % cos <p> [(p0)p) 2 + D] ©)
2
+ (1 + %cos cp) X (%) [cos ppd, — sin pd,] + (%) Opg
In the vicinity of the circular edge let the function 7 satisfy
AT =0, e A(p;0y,pdy, 00)7(,p,0) =0, (10)
with homogeneous Dirichlet or Neumann BCs on the re-entrant faces
7 = 0 on ¢ =¢1,p =y, Dirichlet BCs (11)
Vr-n = 0 on ¢ =pi,o =, Neumann BCs (12)

3.2. Primal singular functions and their shadows. Solutions to (10) with (11) or (12) expand as infinite

. . . . def . .
series involving primal functions ¢ x o = ¢p and a two-parameter family of shadow functions: ¢o k., for £
or ¢ greater than O as provided in [12]:

i+4
r=Y Y MO0y (F) denilo) (13)
k>0 £=0,2,4,- i>0
where Ay (6) are the generalized edge flux intensity functions (GEFIFs).

Remark 1. The explicit ODEs for the determination of ¢y ;. ; provided in [12] are written in a more abstract
form here for the purpose of mathematical proofs (where we also introduce many notations and indices local to
this section).
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FIGURE 2. 3-D domain of interest {2 and the (p,,#) coordinate system.

The generalized relations satisfied by all ¢, ; may be described with the help of the expansion of the
Laplace operator A defined in (9) with respect to powers of }% :

2 2 .
B=3"5"(8)" 0 Muits:0,00,) (14)

where the M ; are partial differential operators of order < 2, with coefficients independent of p . Explicitly
we have

Mo, = (Pap) 2+ agogm

Mo =2cosg [(p0,) 2+ 5 (p0,) + Opy| — sinp 9,

Moz = cos’¢ [(p9p) > + (p0p) + Dy — 55in 200,

My;=0,1:=0,1,2, Myg=1, My =0, Mao=0.
For each k, the equations that ¢, ; satisfy are found relying on the fact that the double series in ¢ and 7 in
(13) is a formal solution of (10), for any coefficient Ay, i.e.,

15)

2

2 . Lo
S5 ()" 0 Meali 0,00 S S Afan0) (£) urate) =0 a6

£=0 i=0 ¢>04'>0

Using the relation

(e} p Z'/+Z/ (% p il+£l / -/
My (@3 0y, p0,) p* <E> = p** (E) My (o + 0 +1)

where M, ;(/3) is a shorthand for M, ;(¢;0,, 3) , equation (16) becomes

AT Y (L)

0=0 i=0 £/>0i'>0

T P
0y " AR(0) Myi(ou + €' + 1)y 1, () = 0. (17)

Setting A = ¢+ ¢ and p =1+, we find the equivalent relation
2

> > > > (%) " 9DA6) Moo+ A — 0+ i i)Pa—t,ku—i(0) = 0. (18)

2
A>0 p>0 £=0 i=0
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This relation holds for any function Ay (#) and for all p > 0 if and only if

2 2
DY Muar+ A=+ p—i) ¢rrhpi() =0, ¥Au>0 (19)
(=0 i=0

Equation (19) is the key for the recursive construction of the shadow terms (the explicit recursive equations
are given in [12]). In Appendix A we provide formulas for the first of the functions ¢, ;(¢) in the case of a

crack! with Neumann BCs.

3.3. Dual singular functions, their shadows, and the surface-integral. To extract the generalized edge flux

intensity functions Ay (6), we extend the path independent-integral presented in the previous section.

Similar to the primal functions and their shadows, for any j > 1, we introduce the dual function g ;o def

1 and its shadows 1)y, ; r so that same relations as (19) are satisfied

2 2
DN Myi(—aj+ A=+ p—i)¥arpilp) =0, VAu>0 (20)

Explicit instances of equation (20) are provided in sections 4 and 5. Formulas for the first functions )y 1, i(¢)
are given in Appendix B in the case of a Neumann crack.

Quasidual functions (QDF) are defined as the sum of a dual eigenfunction and a finite number of its dual
shadows. To each QDF is associated an exponent «; , two non-negative cut-off integers n and m and a (test)

function B; = B;(#) , defining the function K,(f?n) [B;] as:

a; def “ . - p h+f
Kia B =Y B0 Y (%) vnas@) @1
h=0,2,4,-- =0

The angular functions B; are not specified at this stage and will be later chosen as trigonometric functions.
When no confusion is possible, the mention of B; will be omitted in the notation of the QDF.

Multiplying A7 = 0 by KT(LQ,?@) , then integrating over the subdomain Q* and applying Green’s theorem
one obtains,

0= / (KYa)Nr — VK - ivdl + / AR d9. (22)
89* *

The Laplace operator applied on K,(Lanﬁ) ,l.e. AK,(L?‘T,Q) is zero only when n,m — oo . For a finite n and m

AK,(L?‘T,Q) = 0, thus the last term in (22) does not vanish in general.
On the two flat surfaces I'y and I's homogeneous boundary conditions are prescribed thus either 7 = 0

and Kf(LaﬁL) =0,o0r 037 =0 and anKﬁﬁ,iB = 0, for a circular closed edge thus (22) reduces to:

T () (a5)
0 = / / (KCvr —rvE))
0 ©1

5o (I po cos @) podipdd (23)

2T 1
+ / / (KA Vr = TVESH) - (B + picos p)prdpdd + / TAKY) dQ.
0 P2

*

Since V - ﬁ‘po =0, and V - ﬁ‘pl = —0, , we obtain:

(o)) (o)
/ / (Kn,% 9,7 — Ta,,Kn,M (R + pocos @) podypdd 24)
0 ©1 PO

e _ _ _
= / / ( 7(37%)807' — T(‘)pKy(ﬁ,iD (R + p1 cos p)prdpdd — / TAK&#L) dQ.
0 P1 p1

*

IThe formulas for the dek,i(¢) and the 1 x,:(¢) fora V-notch with Neumann BCs can be found in [1].
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Definition 2. For p > 0 small enough, we define the surface-integral J,[r, K,(Lanﬁ)] over the torus of minor

radius p and major radius R that surrounds the circular edge by:

J,, Ky def / / K,S%HT Tapmm) (R + pcos @)p dpdf. (25)
o1 p

With the new notation, (24) becomes

Jpo {77 Kr(f,yﬁi)] —Jpy [T, Ky(fﬂlb)] = —/ TAK,(%) Q. (26)
To evaluate AK}LQ%) , we consider ﬁKy(LOEL) . Applying (14), and in similarity with (17) we find

RESH) = pm Z Z Y (2)" " 0 Moy + b ) s @7

=0 i=0 h=0 f=0
m+2 n+2 min{2,m+2—A} min{2,n+2—pu}

DI Z 3 (%)W ) B; (28)

A=0 p=0 i=0
Myi(—aj + A =L+ p—1i) Yrju—i-

Using (20) we observe that the terms involving values of A and g such that min{2,m 4+ 2 — A\} = 2 and
min{2,n + 2 — p} = 2 cancel in the sum (28), so it becomes

m+2 m42—\ n+2 min{2n+2—u} P\ Mo
AR =p70 3 Z Z Z (E) 0B >

A=m+1 (=0
Mé (o + XN =l =) Yrg
2 nt2 nt2—p

Y Y Y (2 s,

A=0 (=0 p=n+1 =0 .
Myi(—aj + A =€+ p—1) Ya—pjp—i-
Inserting (29) in (26) we find that in contrast with the homogeneous 2D case (7), the integral .J, |:T, K,(Lanﬁ)]
is (mildly) surface-dependent:

Lemma 3. For any chosen 7 satisfying AT = 0 and zero BC'’s in a neighborhood of the circular edge, for
any chosen positive integers j, n and m, for any smooth chosen function Bj, there holds for py > p1 > 0

small enough
PO
) (30)
p1

This formula is a straightforward consequence of the expansion (13) of 7, and of the identities (9), (29) and
(26).

Remark 4. In the general case, taking m = n optimizes the number of shadow functions with respect to m
and n so that (30) becomes

Ty [r BN = I [ KSR = O (p“l‘%‘*mm{m’"}“
o

) ) P
Ipo [7’, Kff#z)] = Jn [T, Kfﬁ?%?] =0 <p‘“‘af+ i O) : (31)
po—0 1
In fact, when m is even we have K,S“m> = K,ga%) 11> thus n = m + 1 is optimal.

Equation (31) shows that J, [7’ K9 ] is pseudo-surface-independent, i.e., the difference in the integral

m+1 m
value between two surfaces tends to zero as the number of shadow functions n = m + 1 is increased, or the
radius p decreases.
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Remark 5. In the axisymmetric case, all functions A are constant along the edge. Thus we choose B5; as
constant functions. This corresponds to the angular mode of order 0. Hence the associated QDFs satisfy

Kﬁ({)[Bj] = Kﬁ”ﬁ)[Bj] for all m .

3.4. Extracting circular GEFIFs using the quasidual-function method. We show in this section that prop-
erly chosen functions B; in the quasi-dual functions (21) in association with suitable values of the integers n
and m allow an accurate extraction of the coefficient A; for & = j in the expansion (13).

First we investigate the surface-integral .J,[7, K 7(%2 | when 7 is replaced by finite sums of primal functions
with their shadows. Recall definition (21)

m n
. o p h+f
Kl Bl = Y 0iBi0) Y (%) Yhasle): (32)
h=0,2,4,- f=0
Likewise we define finite singular expansions
n

A0S a0 Y (B) T et (33)

-
0=0,2,4, =0

Although in the expansion (13) the series associated with the eigenvalue ¢y includes an infinite number
of terms, for the mathematical analysis we first consider a finite sum. We investigate the surface integrals

J, [7’7(;”;1), [Ag], KT(LQ,?@) [Bj]} . Instead of (26), we have

n’,m’ ’ n’,m’

Too [ el A) KSR BI| = Ty [nh (4] KB

JA) AKS (B d. (34)

n’, n’,m

- / KB, ArG 14,] — 760

Since AT(?%)

e [Aj] satisfies mutatis mutandis (29), one obtains that

n+m+n'+m/+4
KB ArS) (A — 7S (A AR B = p= Y pPF(e.0).  (39)
v=1+min{n,m,n’,m’'}

where the functions £, do not depend on p, but depend on all other data. Taking the relation (9) between A
and A into account and the fact that dQ) = p(R+ p cos p)dpdpdf we find a sequence of real coefficients G,
such that

/ K3 (Bj] AT (A - ) LA AKL)[B] A0

,m/ n’,m’

’“) G, (36)

_ —a+
_ Z <pak a; l/p

v=1+min{n,m,n’,m’}

The series in the right hand side of (36) is convergent for py small enough. We combine (34) with (36) for
po=p and py =¢€:

n-,m )
00 00
- Y PTG, — 3 R, (37)
v=1+min{n,m,n’,m’} v=1+min{n,m,n’,m'}

We consider p as fixed and let € tend to 0. We can write

Jo 7l (4, KB = € + 3 cor—as v 38)
v=14min{n,m,n’,m’}
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where C' is a constant independent of ¢ .
Now, using (25) and expressions (32)-(33), we find coefficients H ,’f 3 [ mm,n’m [A, Bj] given by
Hlljy.] | n,m,n’,m’ [Ak7 B]] =
m n m n o ©2
RV Z Z Z Z </ 95 A (0) 9 B (0) d9> (g +aj+L+i—h— f)/ Gek,i(P) Ynj,p () dp
0 P1

h=0,2, f=0£=0,2, i=0

hA-fHl+i=v

m n m n o 2
+RTVY NN (/0 95 A (0) 9 B; (0) d9> (g +aj+L+i—h—f) / G0k, () n,j, 5 (10) cos @ dp
®1

h=0,2, f=0£=0,2, i=0

htf+l+i=v—1

(39)
such that for any p small enough
n+m+n’'+m/+1 '
Jp [Té?ii"b)’ [Ak], Ky(f;%) [Bj]] = Z pak—aj—l—quljJ\n,m,n ,m [Ak7 Bj]. (40)
v=0
Using this for p = ¢ and combining with (38) we obtain
n+m—+n'+m’+1 ()
Z €Oék:_aj+l/Hlljyj|nymyn’,m/ (A, Bj] —Cx Z cw—aitr ey A1)
v=0 v=14min{n,m,n’,m’'}

We note that by definition, the coefficient H l]f g mmon’m! [Aj, Bj] does not depend on n,m,n’,m’ as soon as
v < min{n,m,n’,m'} . We denote it by H”[Ay, B;].
Thus, identifying the powers of ¢ in (41), we find that

HFM[A, B;] =0, Vv <min{n,m,n’,m'} suchthat oy — o +v # 0. (42)

In contrast, when o, —aj+v = 0, the factor HEI [Ag, Bj] does not need to be zero. Typically oy, —a;j+v =0
for k =j and v = 0. In this case, (39) yields

Itk =j, HYI[A, Bj] = Hy"[Ay, Byl =

< /0 T A O)B0) d0> (2%3 /@ “D 52(0) d(p) )

From (40) and (42) we deduce for m’ > m and n’ > n

O (pak —aj+1+min{n,m}

—0
(@) ’ if o — oy, & {0, ..., min{n, m}}
T |7 1A, K 18] = ()
) H,]f’j[Aka Bj] + 0 (pak—aj-i-l—i-min{n,m})
—0
ifo[;j — o =v € {0,...,min{n,m}}

By linearity we deduce from (13) and (44) (considering the entire solution 7, so that we can take n’ > n and
m' >m)
JP |:7_’ Kf(l?;]ﬂ) [BJ]] =

min{n,m}

Z P Z pqulfJ [Aka Bj] + p(_?o (pl—i-min{n,m}) (45)
k v=0
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In particular, if 5 = 1 the only non-zero coefficient HE s for k = j =1 and v = 0. Combining
(42)—(45), we have proved the following theorem.

Theorem 6. Let the function T satisfy (10) with boundary conditions (11) or (12). With Ky(La,%) defined by
(21) and Dj in (7), there hold the following formulas for the extraction of the GEFIF A;, of 7, cf (13):
(i) Concerning the first GEFIF Ay, we have:

2
J, [T, Ko [Bl]] - 2a1RD1( A1 B, d9> +O (p”mm{"vm}) (46)
0

(ii) This formula generalizes to the next GEFIF A;, j = 2,3,... if there are no resonances (i.e. in the case

when oy, —aj; +v =0 onlyif v =0 for v < min{n,m} ):

2
J, [T, K [Bj]} - 2ajRDj( A;B; d9> +0 (pal—%“mn{”’m}) (47)
0

Combining (25) with (47) results in the required practical method for the extraction of the GEFIFs along
circular edges by the QDFM when combined with a proper choice of the QDF K, 7(%2 [B;] :

() (ey)
/ / (KA B0y — 70, KR B)]) (R+ peosp)pdpds
0 Jer ’ 48)

In the following we consider axisymmetric as well as non-axisymmetric solutions in domains with circular
edges to demonstrate the use of (48) for the extraction of GEFIFs from numerical solutions. We even extend
the method to the important case of a Neumann crack, for which oy, — «; are integers (“resonant” case).

4. EXTRACTING CIRCULAR GEFIFS FOR AXISYMMETRIC SOLUTIONS BY THE QDFM

In the axisymmetric case the coefficients Ay are 6 independent, so the solution 7 may be expressed as

follows ‘
() = DA™ Y (£) donale). (49)

k>0 i>0

Thus, for the QDFs K,gad) [B;] in the axisymmetric case, we take B; being # independent (a constant) and
m=0:
(a;) e " o\
Ky (0. 0)[Bi] = Bip™ Y (%) o). (50)
=0
The explicit equations for the dual eigenfunctions and their shadows g ; r(¢) are obtained from (20) and
[12]:

oS0+ Y50 = O (51)
(—oj + 1) 1+ v0 ;0 = — (—ojcosp oo —sing ¥ ), (52)
(—oj + i) oy p+ 00,5 = —l(—a;+ f)(—a;+f—1)cosp g1 (53)

—sing g ;1 +cosg ¢g,j,f—1] , 22
for 1 < ¢ < g, completed by homogeneous BCs

o5,y = 0 on ¢1,p2 homogeneous Drichlet BCs (54)
Op0.5,f = 0 on ¢1,p2 homogeneous Neumann BCs. (55)
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Since Bj is constant, the QDF Kflaoj ) [B;] coincides with KT(LQ,{) [B;] . Taking into account that f027r A;B;df =
27w A;B; , we find that formula (47) becomes in the axisymmetric case:

Jp [T K B)]| = Ama  RD; A; By + O (pm o4+, (56)
Therefore, choosing B; as:
1
B, — - 57
J 47TOéjRDj ( )

equations (56) and (58) result in A; alone with a remainder dependent on p .
We illustrate this formula by several particular examples. We even find an improvement for a circular crack
with Neumann BC’s: For a certain finite set of integers j and n we have found that, with B; given by (57)

Jo [ K BS]] = 454+ 0 (pHermostnin) (58)

Remark 7. In the general situation of non-axisymmetric data, the use of constant Bj; given by (57) provides
an approximation of the mean value of the GESIF

1 2w

2 ) A,

with the same rates (56) or (58).

4.1. A circular crack with homogenous Neumann BCs - Axisymmetric case. For an axisymmetric solution
of a circular crack with homogenous Neumann BCs, w = 27, (p; = —m,po = 7) the eigenvalues are
ap=0,2,1,2,233....

We represent 7 up to O(p'!) as follows (the explicit expressions for ¢o,k,; are provided in Appendix A):

10 . 10 .
T o= Ao+ Ap'?) <%> Go.1i + A2p Y (%) $0,2,i (59)
=0 1=0

+ Agp®? 29: (%)Z b0 3.0 + Asp? 29: (%)Z $0,4,i +
=0 =0

+ A21021/2¢0,21,0 +0(p").

Remark 8. Knowing the explicit expansion (59) is not required to implement the QDFM. We provide it for
two reasons: First to investigate the cancelations leading to the super convergence rate (58), and second to
implement boundary data in numerical models, so that the exact solution is close to (59).

Remark 9. The eigenfunctions and shadows associated with the integer eigenvalues are orthogonal to the dual
eigenfunctions and dual shadows associated with half-integer eigenvalues under the .J, integral. This is the
reason that the terms associated with Ag, Ao, Ay, - -- are absent from formulas (64) and sequel.

Because (59) is independent of ¢, the first terms ¢g ;0 = ¢; and ;0 = v; of the primal and dual
singular functions are given by

cosd2 j=0,2,4,---
. — 2 - 2 i € (—m,m). 60
¢j (%) = ¥ (#) {Sin% i—1.35.. ¢ (—m,m) (60)
Thus according to (7) D; = m and we choose as in (57)
1 1
(61)

B; = = :
7 An?0;R 2jm2R
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4.1.1. Extracting A;. To extract A;, according to (61) we take By = 1/ (2712R). In order to simplify

notations, we write
1

212R’
have a particular simple form (when compared to other ones, see

)

KU OB i B, =

1/2
KO

(62)

For a crack the quasi-dual functions
Appendix B). We find

n

12 _ 1 g it Dy
K6? = 5omp Z;( 1 isin ==

p
= (63)

with the constants (3; given in Table 1.

Bo Br P2 B3 Bs Bs B B7 B8 Bo B1o
1 3

1 1L 3 5 3 63 231 429 6435 12155 46189
4 32 T28 2048 3192 65536 262144 8388608 33554432 268435456

TABLE 1. Coefficients in the expansion (63) of the QDF K 7(562) .

One may extrapolate from the values in Table 1 an explicit expression for K (;1)/ 02 ) as shown in Appendix C.
We extract A; by (48) using Ké}o/ 2), e ’K?E,lo/ 2 The expected convergence rates as p — 0 are given in

(44). Here, relying on the explicit expressions of the primal singular and shadow angular functions ¢ ; and
their dual analogues g ; ; provided in Appendices A and B, we calculate J,, |:T, Kf:om)] for n=20,...,3

and obtain the following.

3 2
127 Po Lo
Jpo[TaKo,o ] = A1<1—64R3+"'>+A3<E+“'> (64)
Po o o5
+ As<—32R2+~'>+A7<128R3+~'>+---=A1+(9<E>
7l k2] = 4 (1o 30 4 (200 65
PO[T’ 1’0} - A T ) T o T ©)
3p s 90
+ A5<—32R2+--->+A7<64R3+--- + Ao (~ gt
4
+ =4 +O<p—%>
(1/2) 7504 I
I Ba? ] = A (1 g ) A (e (66)
504 508 1505
A [ — _ .
i 5( P7RS T ) 7(128R3+ o\ Tatipr T
6
+ :A1+O<—%>
121 2450} P’
Jpo|:7',K370 ] _— (1—221R9+--- + 45  gupas 67)
508 350" 3504
oA (—2933R8+ A goggrr T ) T\ ompr T
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One may observe from formulas (64)-(67) that for a circular crack in an axisymmetric case, the first GEFIF A;
may be extracted by the QDFM, using K 7(110/ %) with an improved remainder as in (58) when compared to (56):

Joo | KN = i+ 0 (p(f“ (@)"H) (68)

R

The remainder corresponds to the contribution of As, 3 if it is non-zero. When compared with the proved
generic rates of convergence, cf (44), which particularize as

A+ 0 (b)) ifk=1,
p—0

OO (p(k‘—l)/2+1+n) if k > 3’
p—

7o [842 140, K0 = (©9)

we observe that a coincidence of the rates occurs when k& = 2n + 3 and a practical improvement otherwise.

4.1.2. Extracting As - the problem of resonance and its remedy. By same methods presented, we aim at
computi (@3=3/2)1 i
puting Jp, [T, K, | with

3/2) def . .(3/2 . 1
K5 E KOP(By] with By = e (70)
Since a3 > a1, according to the general principles, cf (56), one should use a QDF which has at least one
shadow, i.e., K ﬁ{ 2 or one with a larger n . More precisely, the proved generic convergence rates, cf (44),
particularize as
o (p") if k=1andn =0,
p—0

741+ O (p") ifk=1andn > 1,
p—0

T (/2 Ay ,K(3/2)] _ (71)
e P LT
p—0
O (p(k—3)/2+1+’n) lfk’ 2 5’
p—0
where the constant «y is a shorthand for the coefficient [ 11 ’3[A1 =1,Bs].
But since the remainders have de facto better decay properties, we may use K, (g?o/ 2 as well. With
/2 _ 1 _gp . 30
KO,O = 67T2Rp / Sln7, (72)
we find
1 508 3p3
J 7K(3/2) = A, | — 0 A [ 1= 0 73
pol7 Koo artrespr ) P8\ seors T (73)
2 2
Po 1 Po
As |2+ | =A1—+A3+0 | = ]|.
+ 5<4R+ ) 13R+ 3+ (R)
We encounter a “resonance” when trying to extract A; associated with «; = a3 + v, so that 7 > k and

, which extracts exactly A, see (64).

. . . . 1/2
v € N. This “resonance” can be easily removed if we consider K| ( 0/ )

)

Instead of K, 0(?0/ 2) only, we choose the extraction function:
(3/2) def 1-(3/2) (1/2)
Koo~ = Koo~ +cKgp

with ¢ = —ﬁ SO one obtains
2

JoolT K3 = A3+ 0 <”—]§> , (74)

which leads to the lowest order extraction formula for As .
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If we try to use the QDF:
M« e i - L' (3)
then computing J,,[7, K (3/ 2)] with (59) results:
I [r K] = A <3;+ 19’;3;%4 +> + 4y <1— 1513%2 +> (76)
+ As <96p]°%3 +> + Ay <—9%p}§2 +> +oe

2
= —A1+A3+O< >

3R R2
In view of (76) due to the resonance we construct again the modified QDF:
K{?Oﬂ) def K(3/2) _ ﬁK(l/z) (77)

S SHOEE S OEEEHORS 3

This leads to the extraction formula for As :

-(3/2) P8
Jpo T, K71 ]:A3+O<R—g>, (78)
In a similar manner we may construct:
[‘iv2(?0/2) dof K(3/2)_EK(1/2) (79)
= L e |ga3_L(e Slande 3™
= R’ [s 2 4(R) ( ) Sy Fggsiny
P\ in® 1 1 2. 3o 3 rp\3 . By
(R) > "1 (R) DI (R) sin 2}

and obtain that: 4
Joo [ KEP] = A5+ 0 < R3> (80)
2)

As one notices, the remedy to the “resonance” problem is to calculate K 7(130/
with a7 into account. Then the modified QDF is defined

~(3/2) def -(3/2) 1 o .(1/2)
Kn,O - Kn,O 3RKn,O

without taking the resonance

that extracts Az forany n .

Remark 10. In the case of As , two resonances occur (a5 = a1 +2 = ag + 1), then we construct the modified
QDF by addition of the two QDFs associated with a7 and as , multiplied by two constants:

(5/2) def 1 -(5/2) _ 2 1(3/2) 2 2
K KW _ 2K = _gW2
T U T 2

Using this formula for j = 5, we can demonstrate by analytic computations the validity of the following
estimate for j =5 and n =0,1,2,3:

A+O<Rn+1) n<oaj— o
Aj+0 < 2(ap —aj)+n+1 (R)"+1) n>a;—a

Formulas (74), (78), (80) show the same estimate for j =3 and n=10,1,2.

T [T, z%;%ﬂ] - (81)



hal-00725928, version 1 - 28 Aug 2012

EXTRACTING EDGE FLUX INTENSITY FUNCTIONS BY THE QUASIDUAL FUNCTION METHOD ALONG CIRCULAR EDGES 15

In the general case of resonance, for j = 2¢ + 1, the modified QFM takes the form:
KD = K9 4 e K70 k().

4.2. Axisymmetric solution of a 37/2 V-notch with homogeneous Neumann BCs. We apply the QDFM
for the extraction of the GEFIFs associated with a circular 37/2 V-Notch (w = 37/2, p1 = —7, @2 = 7/2)
and homogenous Neumann BCs. In this case the eigenvalues are «aj = 0, %, %, g, % .-+, and the solution T

can be expressed as follows (see [1] for the expressions of ¢y 1 ; ):

8 . 8 . .
— 425 (LY b1 43N (LY g 2N (LY 4oaa
T o= A ;( £) G0+ Azp ;( £) 6025+ 439> Y (%) d0s. (82

7
1=0

6 .
(2
+ APy (%) o, + -+ + A1ap™ P do.140 + O(p"0)
i=0
The first terms ¢q jo = ¢; and g jo = 2; of the primal and dual singular functions are:
2je (=1 2j¢

@((p):zbj(cp):SlnT— \/g COSTa j:17274757"" (83)

Thus the quantity D; in (7) is equal to 7.

4.2.1. Extracting Ay . We first construct the QDF KéZO/ 3) def K?(’ZO/ 3) [B1] with By = ﬁ according to (57):

2/3 3 20 1 2
K?(’70/ ) — mp 2/3 |:Sln ? + % COS ? (84)
+ > CoS — — —8 p_ 1 co L 4 (ﬁ)
4/3 3 43 43 3 4 3 R
3 2 2 3 8 3 8 2
L[V 3 % VB Be 3 L 8p (2)
8 3 8 3 32 3 32 3 R
1 21
+ —5\/30088——5$in£+—7ﬁcos5—¢+—sin5—w
128 3 128 3 128 3 128 3
128v/3 3 128 3 128v/3 3 128 3 R '

Of course that Ké?o/ 3) , K 520/ ) and K. 520/ %) are obtained if one neglects the corresponding dual shadows in

(84).
We extract A; by the pseudo-surface independent integral (48) using K (?({ 3 ,eoos K (?({ . Combining (84)
with the expansion (82), we check that in the V-notch case there is no improvement of the general convergence

result (56). We obtain:

T [7', K,%g)] — A+ O (%)"H . n=01,23 (85)

the main contribution to the remainder being that of A; .
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4.2.2. Extracting As. For extraction of Ay we construct Ké /3) as follows

4/3 3 L4 1 4
K3(,0/ ) = 167T2Rp 43 |:Sll’l— o (86)

32 3 3273 128 3 1283
5 13¢ 5 . 130 7 sin 5<,0 7 5<,0 P\3
T s 3 Ts™s T1eM3 T e @ (R)

The QDFs K0(4/ VK 54/ % and K2(40/ % are obtained if one neglects the corresponding dual shadows in (86).

We extract Az by the QDFM (48) using K| (4/ 3) (4/ 3 . According to (86) and (82) we find the same
orders of convergence as in the general case (56)

o [7’ K(4/3>} Ay +0[ 2/3<R)"+1]. 87)

Remark 11. We checked by several computations that for a circular 37/2 V-notch in an axisymmetric case,
the GEFIFs A; may be extracted by the QDFM using K 7(;»8 ) according to the theoretical estimate (48).

Remark 12. For extracting A, associated with ay = 8/3 = 1 + 2 the resonance situation occurs and the
modified QDF must be used instead of the “regular” one. In this case of resonance we still obtain the theoretical
estimate using the modified QDF for n > a; — o :

2
A;j+0O %) n < aoj— o

A;+0 (s (8)") nzay -

T [T, fcgf*gq = (88)

4.3. Extracting A; from p-FE solutions. Using the QDFM we extract A; from p -FE solutions because
in general the exact solution 7 is not known, but only its approximation 7gg. A Visual Basic program was
created for extracting the GEFIF’s from the FE solution.

As an example, an axisymmetric FE model of a body with a circular singular edge is considered. Here the
exact solution 7gx is approximated by the finite element solution 7rg , and the integral J,,[7rg, K flog)] is
computed numerically. 7rg is extracted on a torus surface which surrounds the circular singular edge (see

Figure 3) and K, 7(;»8 ) s computed analytically.
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FIGURE 3. Domain with a circular singular edge and the integral surface.

Because the extracted values of 7rg are discrete, we compute the integral J,, [TEE, Kr(lag )] by a Gauss

quadrature:
Tpolree, K5 =
$p2
- 277/ [Kﬁ?d)(po,w) x 9,7re(po, ) — TFE(P0, ) X 3pKﬁ?S)(po,s&)} poRk (1 + p—Pf cosw) dep
%)

1

_ 1
= 2P [ R (0, 0(6)) % 0yrre(0,0(6) — 0, £16) % K15 (0, 0(6))]

xpoRt (1 + 55 cos(p(€)) ) de

nGp

= ez =) D Wi [KAG (0,0 (€0)) x By7ee (po, 0 (€0)) = e (po, 2 (6)) X DKL (oo 0 (6))]

1=1
xpoR (14 % cos (¢ () (89)
with n
ol&) = 2 ) 801& i 2 . 901’ (90)

and & and W, being abscissas and weights of the Gauss quadrature, and ngp is the number of the Gauss
points used for the numerical integration.

4.3.1. Sources of error in A; when extracted by J,, |Trg, Kr(log )] . Extraction of A; by J,,[7Fg, Kiag )] in-
volves three sources of errors:

(1) The error due to the truncation of K 7(108 ) :

Computing A; with n being a finite number, a truncation error is introduced according to (56) and
(58).

(2) The numerical error using 7¢g instead of 7gx :

Using FE solutions for approximating 7gx , a numerical error is included in our computations. We
may estimate the numerical error by estimating the FE error. We expect that the error in the extracted
GEFIFs is smaller than the error in the energy norm.

(3) The numerical integration error:

The values of 7¢g are discrete therefore we use a Gauss quadrature for the evaluation of the integral

(89). The Gaussian quadrature order ngp determines the numerical integration error.
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4.3.2. A specific example: a torus with a circular crack and axisymmetric Neumann BCs. The accuracy of the
numerical procedure based on p -FE methods is firstly demonstrated on a simple problem of an inner cracked
torus. Consider a torus with an axis (which is a circle) of a radius R = 1, and a minor radius of 1/2, i.e. the
torus is defined by Q = {(p,»,0)|0 < p < 1/2, =7 < o < 7, 0 < 6 < 27 } . The radial coordinate 7 is
bounded by 1/2 = r; < r < rg < 3/2. A crack is inserted in the torus defined by » < R = 1,23 = 0 (see
Figure 4, Left). On the crack surfaces homogeneous Neumann boundary conditions are prescribed, whereas on

FIGURE 4. A torus with a circular crack and the axisymmetric finite element model.

the outer surface of the torus, p = 1/2,0 < § < 27 the trace of the exact solution (59) up to O(p'%?) is
prescribed as Dirichlet BCs, with Ag = Ay = Ay = Ag = A7 =---=0,and Ay = A3 = A5 = 1. Because
an axisymmetric case is considered, we perform an axisymmetric FE analysis, using the mesh shown in Figure
4-Right. The analytic formula for the boundary conditions coincides with the exact solution up to an order of
(p/R)*5 due to the truncation of series with respect to the index i .

The integral J,, is computed using a quadrature of order 90(= ngp) and 7rg is extracted from a FE
solution at p = 8 having an error of 0.02% in energy norm.

We extract the first three EFIFs Aq, A3, A5 for different values of pg and consider an increasing number of

dual shadow functions for the QDF K,gog ) . For A3 and As; the modified QDFs Iu(iag ) are of course utilized.
The relative error as percentage of the “extracted AgE ” is defined as:
FE _ AExact
J

ea; % =100 x | Y (28]
J

Figures 5-7 present the convergence of the extracted A]FE . The convergence rates of the extracted A]FE
match the convergence rates according to the estimates in (58).
As expected, the error in the extracted EFIFs is smaller than the errors in the FE solution. To quantify the

integration error we monitor the relative error as percentage of A, A3, A5 extracted by .J,, [TFE, KQ(%I)] and
Jpo[TFE, K’éoaj )] when j = 3,5 for different quadrature orders ngp . Table 2 presents a summary of these

relative errors (percentage). One may observe that for ngp > 32 the error due to the Gauss quadrature is
negligible.

4.3.3. A specific example: a penny shaped crack in a finite cylinder with axisymmetric Dirichlet BCs on the
outer surface. Consider an axisymmetric FE model of a cylinder with a penny shaped crack. Homogeneous
Neumann BCs are prescribed on the surface of the crack. On cylinder’s outer surface Dirichlet BCs are pre-
scribed, shown in Figure 8, given by

Ti(r,z3 = 1,0) = —155.4 + 3.055r + 181.872 — 34.82r3 + 6.43r" — 1.27r° 4 0.22¢° (92)
To(r,x3 = —1,6) = 155.4 — 3.055r — 181.872 + 34.82r3 — 6.43r" + 1.27r° — 0.22¢° (93)
m3(r = 2,3,0) = 375.1x3 (94)
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TABLE 2. % Relative error in A; for different quadrature orders for a circular crack with
homogeneous Neumann BCs.

po/R=1/2 po/R=1/4 po/R =1/10

ngp = 10 ‘ negp = 32 ‘ ngp =90 | ngp = 10 ‘ ngp = 32 ‘ ngp =90 | ngp = 10 ‘ negp = 32 ‘ ngp = 90

ea, % || 452E+00 | 9.24E-02 | 5.68E-02 1.84E-01 1.77E-02 | 2.78E-03 1.99E-02 | 2.67E-03 1.24E-03

ea;% || 1.30E+01 | 4.73E-01 4.28E-01 1.74E+00 | 5.89E-02 | 2.38E-02 | 2.80E-O1 1.38E-02 | 6.94E-04

eas% || 438E+01 | 1.I5E+00 | 1.10E+00 | 1.88E+01 1.60E-01 2.34E-01 | 8.57E+00 | 7.89E-02 | 4.20E-02

|
|
[
<
T

S

T4(r=2,x3,6)

2H=2
LA

R=1

FIGURE 8. A cylinder with a penny-shaped crack and BCs.

Because the domain and the boundary conditions (92)-(94) are 6 independent, axisymmetric FE models
were considered. To compute “benchmark values” of A; (because the exact values are unknown) we con-
structed a refined FE model as shown in Figure 9(a). These “benchmark A; * are extracted from the refined FE
models by the pointwise contour integral method [2] implemented in StressCheck” using 20 terms and a path
radius of 0.01. The error in the energy norm in the refined FE model is 0.05% . In comparison, a coarse FE
mesh shown in Figure 9(b) (the error in the energy norm is 0.35% ) was used for the extraction of the EFIFs
by the QDFM. This is to demonstrate that no special refinements are required and a path away from the crack
tip can be used for the QDFM. The benchmark values of the first three EFIFs extracted by the SC algorithm at
po = 0.01 are Ay =30.15, A3 = 116.41, A5 = 91.02.

The difference between the benchmark first three EFIFs and these computed by the QDFM at py = 1/2

using 32 integration point is summarized in Table 3. A; for j = 3,5 are extracted by J,, |7, [u(éad)] .

2StressCheck is a trademark of ESRD, St. Louis, USA
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(a) (b)

\J/

iR hR

FIGURE 9. (a) A refined FE model, (b) A coarse FE model.

TABLE 3. Relative error (percentage) between A, extracted by SC using the refined mesh at
po = 0.01 and these extracted by the QDFM at py = 1/2 using the coarse mesh, for different
number of dual shadow functions.

Number of dual shadow functions
n=>0 ‘nzl‘n:2‘n:3‘n:4
% errorin Ay || 23.723 | 1.729 | 0.070 | 0.063 | 0.061
% errorin As || 2.901 | 1.900 | 0.316 | 0.008 | 0.010
% errorin As || 1.122 | 1.452 | 0.964 | 0.178 | 0.055

Remark 13. One may observe that extracting A; using the coarse FE mesh by J, _; o[7FE, K fg )] results
in very accurate values. The relative error in the extracted A; s is smaller than the FE relative error in energy
norm.
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————— % relative errorin A

———=——— % relative errorin A3

———<+—— % relative errorin A

———— Numerical error=.3 %

d A

% relative error in extracte

Number of dual shadow functions

FIGURE 10. Relative error (percentage) between A; extracted by SC and by the QDFM ver-
sus the number of dual shadow functions in the QDF.

hal-00725928, version 1 - 28 Aug 2012
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5. NONAXISYMMETRIC SOLUTIONS

For nonaxisymmetric cases, the solution 7 can be expressed as follows [12]:

M) =Y 3 a0 S (5) " dunate), 95)

k>00=0,2,4--- i>0
and the QDFs will also depend on 6 because of the functions B;(6):
(o) e P\t
K3 (0, ,0 Z AB, 00 S (2) tnisle). (96)
h=0,2,4-- f=0

The explicit ODEs for the determination of the dual eigenfunctions and dual shadow functions, ¥y, ; r(¢) ,
are obtained from (20):

Forh=0: Equations (51)-(53) for the axisymmetric case hold.
Forh =2,4,6---, f>0:
(—ag + [+ D) P+ = 97)

—(htf—a; =D [2(h+ f — ;) = L cosp Yy p-1) + s U ;5 (51
—2cos ¢Z7f,(f—l) —(h—aj+f=2)(h—a;+f—1) cos” Vh,j,(f-2)
+ cos  sin ¢;L’j7(f_2) — cos? o 1/1Z7j’(f_2) — Y(h=2),5.f
with homogeneous BCs,
Ynjf(p) = 0, ong=¢1,p2, Homogeneous Drichlet BCs, (98)
Op¥njf(p) = 0, ongp = 1,92, Homogeneous Neumann BCs. (99)

For a circular closed edge (0 € [0,27]), by elliptic regularity along the edge So they can be expanded as a
convergent Fourier series:

o0 o0
A(0) = ag, + Z Ay, COS(PO) + Z Ay, SIN(PO). (100)
p=1 p=1
In this case the QDFM amounts to extract a finite number of the coefficients ay, withg = 0,...,Q and to
approximate Ay by its truncated Fourier series
A[Q}(H) ety o+ Z Ay, COS(PY) + Z Ay, SIN(PO). (101)
1<2p—1<Q 2<2p<Q

5.1. B;(0) for a nonaxisymmetric case. For extracting the coefficients a;, , we choose B;, (f) orthogonal
to all functions in (101) except the one that multiplies a;, ,i.e., Bj,(0) is chosen as

B;,(0) = bj, cos(qf)) foreven ¢ or B;j (0) = bj, sin(qf) forodd q. (102)
Substituting in (48) one obtains:

v 2 P2 .
Tnlr KRB, = (| Ay, d0) <2ajR | e d«ﬁ) + 0 (pramesiminrm))
0 P1
— Cqu + O (pal —ocj+l+min{n,m}> (103)
where for a circular closed edge of radius R, b;, is given by:
1
o —— = 104
Jo 404]772R I q O ( )
1
q#0 (105)

Ja 2()éj7T2R ’
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5.2. A circular crack with homogeneous Neumann BCs. Following section 4.1, we represent 7 up to a
power of p?!/2 (the explicit expressions for ¢u ki are provided in Appendix A):

r o= A1<e>p1/2§j(p) doi+ 0 A1(0)0"? (£) 2:( ) é21s (106)
- o (5)'3(5) ouss o o0 (5) s
+ Az(e)p;(p) G2+ 03 A2(0)p (%) 2:( ) 622
+ 8§A2(9)p(%)4§%(%)i¢4,2,i 402220000 (2) " dr020

+ o A p? o010

To extract any of the coefficients ay, of the first GSIF A;(¢), a special quasi-dual function K,glff ) (B1,]
needs to be employed. For n =1 and m = 2 we have calculated

KY2[B = By 0)p [sinf—

1 p
21 Eﬂ (107
2
_|_

For example for Bj,(0) = by, , the QDF in (107) is:

1/2 _ . 1 3(70 p
K£,2/ )[Blo] = 610(9)/) 1/2 |:S1n§ — ZSIH7 <E>:| ,

which coincides with K {12/ 2 given by (63).
For By, (0) = by, cos(#) the QDF in (107) is:

1/2 _ . 1 3p/p
Kfz/ )[Bh] = by, cos(f)p 1/2 |:SIH§ — 58— (Eﬂ (108)
1 2 1 3 3 3
—by, cos(0)p~/? [—5 sing (%) + <_Z sing + 3 sin %’D) (%) }
and so on for ¢ = 2,--- (in the sequel, for our FE computations, we go up to ¢ = 8, approximating nine

coefficients).
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Substituting (106) and (107) in (48) we calculate:

Tl KB = (109)
/O%wR . {[(1 a 10261(5}25 +> A0)+ <11?;/())ij5 +> A3(6)
+ <4p—£3 . +> 44(0) (—4‘2’26)4 +> Ag(9)+---] < By, (0)

4 55
1(9)+<—ﬂ+32—f£4+”‘>143(9)

A
4 6
Po " Po "

I [T Br)| = a1y + 0 (p% (%)2> : (110)

which is coherent with (65) in the axisymmetric case.

For a;, weneed By, (0) = by, cos(f) = # cos(#) , so (109) becomes,

T [T, KUY? [Bh]} —a, + O <p3 (%)2> . (111)

Similarly, we extract aj, by computing J,, [T, K,(Lanﬁ) [B1,]] for different n and m with different By, (6)

and summarize the remainder of .J,[7, KT(LO‘,}@) [B1,]] in Appendix D in Tables 13-15.
Based on the results in Tables 13-15 and similar calculations we conclude that:

Too |7 KA By = aj, + 0 {pﬁ(“l_%)”+1 (%)n+1 oot (%>m+2} ' (112

Observing that the second term in the right hand side is larger compared to the first term, then for the optimal
remainder, m = n — 1, and (112) gives back the estimate in (48).
In the case of resonance, a modified QDF should be used, and instead of (112) one has:

(113)

2
_ i al a4 (po)m+2 P —
) aj, + O | o (R) n<o;— o
Jpo T, n,m [qu] o

2 + +1 +1 —_— +2
ajq+o po(al aj) n (%)n )_’_pgl aj (%)m }7 n>a;— o
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5.3. A 37/2 V-notch with homogeneous Neumann BCs. For a V-Notch ¢ € [—m,7/2] with a general
BCs, the solution 7 can be presented as (see [1] for the explicit functions ¢; ; x ):

T = A1(9)P2/3_120( )¢01z+39 2/32( )2+i¢2,1,z'+- O141 2/3(
(

10
) G000 (14)

+ )pt/? Z ( ) Bo.2.i + 03 Az(6) 4/3 )QH booi+ -+ 030 Ax(0)p*?

[

oyl RS

+ pzi( ) 600+ 3345(6) pzi(
=0

1=0 =0

> (4
)ZH B30+ -+ 05 As(0)p° ) (%)8+i $8,3,i
(7

P )2+ boai+ -+ O5AL(0)p%3 Z (%)8+ ?10,4,i
i=0

Mm

_8
b @Y (L) boai + 340
=0

=0 R
The quasi-dual function KSZQ/ 3) ,for n =0 and m = 2, for example is,
2cp 1 24,0
K@B)  _ po(),2/3 — - 115
0,2 1,(0)p~ n—o-+ \/3 3 (115)
2 1 2 3 2
+8gqu(0)p_2/3 (%) <_Z\/§COS ?(’D ~1 sin g)
Following the same procedure as in subsection 5.2, for extracting a;, for example, By, (f) is chosen to be
6
311(9) = M cos 0 (116)
and (114), (115) and (116) are used
5/3
10po 2p
K(2/3)B ] = 1 0 117
oo [T (B, TomR T )M\ Bar T ) (1
15/3p7/ 2 1003
+< TR )\ TR T ) M

- o (2)

Likewise, we compute J,, [T, Kn i (2/ 2 [B1,]] for different n and m using (114) and (115) for different
Bi1,(0) . The remainder is presented i in Tables 4-6.

TABLE 4. The remainder of J,,[7, K(2/3) [B1,]]

8m2R
m =20 m=2 m=4
n=20 alo(’)(% alOO (%) alOO (%0)

n = alOO(
n=2 a0 (
n = alOO(

(
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TABLE 5. The remainder of J,,[7, Ky(?,/n?’ ) [B1,]]

By, (0) =0b1, = ﬁ cos 0

m =20 m =2 m =4
n=0 a,0 (%) a,0(%) a,0(%)
n=1 a,0(%)" a1,0 (%)2 a1-00 (%)2
n=2 a,0 %0) a1,0 (p_RO)3 a1,0 (p_RO)3
n=3 a,0($)" a1,0 (%)4 ‘1100(%0)4
n=4 a,0(%)" a1,0 (p—RO)4 a1,0 (p_RO)5

TABLE 6. The remainder of J,, [7, Ky(?,/i’ ) [B1,]]

By, (0) = by, = <5+ cos 20

87?R
m =20 m =2 m =4
n=>0 alOO(p—Ig 0100(%) alOO(%)
n=1 a0 (%) alOO(%O)2 alo@(%o)2
n=2 a,0(%)° a1,0(2)° a,0 (%)’
n=3 a,0 (%) alOO(%)4 aloo(%)4
n=4 a,0 (%) a,0(%)" @,0(%)

The results in Tables 4-6 follow the estimate in (48):
;i 1 — O n+1 m+2
JooT, Kﬁ,ﬁ@)[qu]] =a;, +0 {pol 7 [(%) + (%) ] } (118)

5.4. Extracting a;, () from p -FE nonaxisymmetric solutions. The use of the QDFM in conjunction with
p -FE nonaxisymmetric models for extracting A;(6) is examined. Consider a 3-D FE model of a body with

a circular singular edge (for example: a penny shaped crack). We compute .J, [7FE, KT(LQ,?@) [B;,]] where g
is extracted from the FE solution over a torus surface which surrounds the circular singular edge. K,(Lanﬁ) is
computed analytically. Because the values of 7rg are discrete we compute the integral J,,[TFg, KT(LQ,?@) (B, 1]

by a Gauss quadrature.
(119)

Jolre KB = [ [T ke B;, (0)) x 8 0) — 0) x 9, K3 B;. (0
poTFE, Knyim [ Byl = o o n,m (P0, @; Bj, (0)) X OpTrE(P0, 5 0) — TrE(P0, 05 0) X Op K ima (0, ¢, By, (0))
1= P1

XpoR (1 + %) cos 4,0) dpdf

— 1 rl )
= w22 [ R 00 0060, By (00n) x By (0. £(6).0()

v (p0. 9(€). 6(n)) x Dp I (po, 9(€), By, (0(m))] x po R (1 + T2 cos(ip(€))) dedn

_ nGp NGP o
= w BB TS W [K3 (oo, (€ By, (0ny)) X Bymee (oo, 0 (€0) 60 (ny)
j=1i=1

—re (0,0 (&) ,0.(1))) X B K% (o, (60), By, (0n))] x poFt (1+ 52 cos (i ()
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with ¢(&;) computed by (90), and 0(n;) = 92591 n; + % =7(n;+1).

5.4.1. A 3-D torus with a circular crack. Consider the simple case of an inner cracked torus discussed in
subsection 4.3.2 and showed in Figure 4. Here, a 3-D FE model is constructed as shown in Fig 11.

FIGURE 11. The 3-D FE model and the mesh.

First we check a simple axisymmetric case by applying the axisymmetric crack solution (59) on the torus’s
outer boundary with A;(0) = 1, A2(0) = A3(f) = --- = 0 and R = 1. We extract the first nine terms
of 1211(9) , expecting that it is independent of 6. The integral .J,, is computed by a Gauss quadrature with
ngp = 90 and using the FE solution at p = 8 having a relative error in energy norm of 1.32% .

In Table 7 we summarize the results of the computation .J,,—o.5[7FE, K,glff ) [B1,]] for various n & m . As

TABLE 7. Extracted ay, for different m and n in the case of a circular crack with homoge-
neous Neumann BCs

Extracted a1, by J,,—1/2[T, KfllmQ) [B1,]]

a, | a, | a, | ai a, | a, | a, | a, [ ai
m=n=20 | 099768 | -1.78E-06 | -3.36E-11 | -1.08E-06 | 4.29E-12 | 1.20E-05 | 4.60E-11 | -1.78E-03 | -7.73E-11
m =mn =2 | 1.00005 | -8.22E-07 | -3.83E-11 | 7.69E-07 | 6.77E-12 | -3.05E-06 | 1.08E-10 | 2.49E-03 | -2.65E-10
m=n=41 099988 | -5.02E-07 | -3.87E-11 | 1.71E-06 | 7.17E-12 | -1.43E-05 | 1.29E-10 | 1.02E-02 | -3.65E-10

expected, the extracted A; (#) is independent of # and nicely converged to 1.
Next, we consider a nonaxisymmetric case for which
A1(0) =1+ 2cosf + 3sinf + 4 cos 20 + 5sin 20 + 6 cos 360 + 7sin 360 + 8 cos 46 + 9 sin 40 (120)

and Ayg = A9(f) = A3(f) = --- = 0. Applying on the outer surface of the torus the solution (106) with
the single nonzero A;(f), the FE solution is obtained at p = 8 with a relative error in the energy norm of
0.98% . In Table 8 we present the % relative error in ay, extracted by J, _;4[7FE, K(g’lo/ 2) [B1,]] for different

quadrature orders ngp .
One may notice that beyond 32 integration points the integration error is already negligible.

Convergence of extracted a;, for different n and m :

We compute J,)—1 /4[7FE, K,(L%Z ) [B1,]] with ngp = 32 for different n and m and summarize the results
in Table 9.
The error in extracted a;, does not decrease if m is not high enough in the extraction function K. T(Lafﬁ) .
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TABLE 8. % Relative error in extracted a1, for different Gauss quadrature orders in the case
of a circular crack with homogeneous Neumann BCs

% Relative error in extracted a1, by J,,—1/4[T, Kélo ?) (B1,]]

ai, | ai, | a1, | aig | ai, aiy (45 | ai, | aig

ngp = 10 || 4.35 | 71.79 | 23.09 | 146.83 | 280.13 | 603.73 | 175.98 | 351.58 | 546.34
negp = 15 || 0.18 | 17.50 | 17.87 | 78.42 | 78.18 | 204.54 | 207.11 | 464.26 | 437.55
ngp =32 || 0.25 | 17.65 | 17.60 | 78.24 | 78.25 | 205.85 | 205.84 | 450.87 | 450.86
ngp = 54 || 0.23 | 17.61 | 17.61 | 78.24 | 78.25 | 205.85 | 205.85 | 450.87 | 450.88
ngp =90 || 0.22 | 17.62 | 17.61 | 78.25 | 78.24 | 205.84 | 205.84 | 450.86 | 450.87

TABLE 9. % Relative error in extracted ay, for different n and m in the case of a circular
crack with homogeneous Neumann BCs

% Relative error in extracted a1, by J, —1/4[T, K,(me ) [B1,]]

a, | a1, | a, | a, | a, | ay, | ay, | a, | a

n =01 0.004 | 3.610 | 3.593 | 14.670 | 14.671 | 33.921 | 33.920 | 62.495 | 62.491
n =2 0.023 | 3.659 | 3.642 | 14.787 | 14.789 | 34.161 | 34.160 | 62.920 | 62.917
n =41 0.023 | 3.659 | 3.642 | 14.787 | 14.789 | 34.161 | 34.160 | 62.921 | 62.917
n =01 0.004 | 0.939 | 0.922 | 4.528 | 4.530 | 13.321 | 13.321 | 32.056 | 32.051
0.023 | 0.166 | 0.148 | 1.382 | 1.385 | 6.345 | 6.345 | 20.090 | 20.084
n =41 0.023 | 0.095| 0.077 | 1.092 | 1.095 | 5.675 | 5.674 | 18.858 | 18.852
n =201 0.004|0.894 | 0.877 | 3.807 | 3.809 | 9.624 | 9.624 | 20.212 | 20.207
n =21 0.023]0.102 | 0.084 | 0.345 | 0.348 | 1.004 | 1.004 | 2.868 | 2.862
n =41 0.023]0.028 | 0.011 | 0.016 | 0.019 | 0.127 | 0.126 | 0.946 | 0.940

SBEEEREERE
%%%M!DI\DOOO
3
o

As an example, we also extracted ag, which is the constant value associated with As(f) so to make sure
that it is practically zero. Indeed the extracted value is a3, = 1074,

Convergence as a function of pg :

We fix n =m = 4 and compute J,, [7rg, K il4/ 2 [B1,]] with ngp = 32 for different pg s and summarize
the results in Table 10.

TABLE 10. % Relative error in extracted a;, for different path radii po in the case of a
circular crack with homogeneous Neumann BCs.

% Relative error in extracted a1, by J,, [T, K il4 ?) [B1,]]
ay, [ ay, [a, [y, [a, [ aiy [ g [ ar, | ayy
po=0.5]0.014 | 1.033 | 0.985 | 9.463 | 9.496 | 71.832 | 71.813 | 433.227 | 433.180
po=0.41]0.011|0.206 | 0.180 | 1.462 | 1.468 | 10.004 | 10.001 | 54.463 | 54.450
po=0.3]0.018 | 0.039 | 0.035 | 0.142 | 0.138 | 0.914 | 0914 | 5.003 5.003
po=0.21]0.013 | 0.011 | 0.012 | 0.017 | 0.019 | 0.101 | 0.101 0.205 0.206
po =0.1] 0.014 | 0.008 | 0.007 | 0.026 | 0.030 | 0.160 | 0.162 | 0.511 0.511

As expected, the error in the extracted aj, decreases as py decreases.

The numerical experiments confirm that the convergence rates of the extracted aqu match the convergence
rates according to the estimates in (48).
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One may also notice that the relative error in the extracted a;, by J,,—0.5[7rg, K Lioéj ) [Bj,]] is smaller than
the relative error in energy norm.

5.4.2. A general problem: a penny shaped crack in a cylinder. Consider again the cylinder with a penny shaped
crack shown in Figure 8 with Dirichlet boundary conditions on its outer surface and homogeneous Neumann
BCs on crack surfaces. Specifically, the following BCs are applied:

mn(rzs=1,0) = r6?(0—2n)? on the upper surface (121)
To(r s =—1,0) = —rf%(0—2r)? on the lower surface (122)
T3(r=2,23,0) = 0 on the outer surface (123)

Because the BCs (121)-(123) are 6 -depend a 3-D FE model is constructed as shown in Fig. 12.

FIGURE 12. A penny shaped crack in a cylinder: 3-D FE model and a slice showing the crack.

Because an analytic solution to this problem is not available, we compute the first GEFIF A; (the most im-
portant one because it is associated with the singular flux) by the QDFM and also use the CIM [2] implemented
in the commercial FE code to obtain pointwise values of A; along the circular singular edge. For the CIM
the extraction path radius is 0.0035 , thus requiring a refined mesh in the vicinity of the crack edge. The FE
relative error in energy norm is 1.33% .

Extracted a1, by J,[7rE, KAE%Z) [B1,]] for p=0.35 and py = 1/4 using a Gauss quadrature of order 32
are given in Table 11. One may notice the fast convergence of the extracted coefficients a1, as ¢ increases.

TABLE 11. Extracted ay, forextracted at pp = 0.35,0.25 for a cylinder with a penny shaped
crack with homogeneous Neumann BCs.

Extracted a1, by J,,[r, K/ (B1,)]

a1y | ar, | a1, | a1, | a1, | a1, | Q1g | ai, | aig

po = 0.35 || 44.0984 | -27.6679 | 7.249E-09 | -0.9867 | 1.0735E-08 | -0.1028 | 8.8255E-09 | -1.7016E-02 | -6.2489E-09

po = 0.25 || 44.0975 | -27.6584 | 7.038E-09 | -0.9845 | -4.7541E-09 | -0.1015 | 1.2545E-09 | -1.5772E-02 | -3.6742E-09

The extracted a;, are used in (101) to compute 211(9) which is shown in Fig 13 as a smooth curve compared
to the pointwise values extracted by the CIM at pg = 0.0035 .

One observes that the extracted 1211(9) at po = 0.25 and at pp = 0.35 by the QDFM match closely each
other and the pointwise values extract by the CIM at pg = 0.0035 . This demonstrates that the QDFM does not
require a refined mesh in the vicinity of a circular crack tip which is a major advantage in 3-D domains, and at
the same time produces a smooth and continuous GEFIF along the crack edge.
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FIGURE 13. Extracted A;(8) by J,,_1/[r, Ki{” [B1,]] at po = 1/4 and by the CIM at
po = 0.0035 .

6. SUMMARY AND CONCLUSIONS

We extended the QDFM for extracting generalized edge flux intensity functions in the vicinity of a circular
singular edge for axisymmetric as well as non-axisymmetric solutions. The formulation and performance of the
method is demonstrated on the simplified Laplace equation. Although the QDFM is a mildly-surface-dependent
integral, we demonstrated that by using a proper quasi-dual function K,(ﬁ{q) and proper extraction functions
B;(8) , one may extract the functional representation of the GEFIFs Ay () accurately and efficiently.

Because in general only a FE approximation or the solution is available, we demonstrated that the QDFM in
conjunction with p -FE methods provide highly accurate GEFIFs. These were obtained as a function along the
circular edge, and are much more accurate compared to the FE solution (superconvergence property). Another
major advantage is the possibility to use the FE solution on a torus away from the singular edge, thus it is not
necessary to have a refined FE mesh in the vicinity of the singularity (which is a complicated and tedious task
in 3-D domains).

Following the successful formulation of the QDFM and its efficiency it is extended to the elasticity set of
equations following the same methodology presented herein. A straight-forward extension is possible with only
technical challenges but no conceptual difficulties.

Acknowledgements: The first two authors gratefully acknowledge the support of this work by the Israel
Science Foundation (grant No. 444/10).
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APPENDIX A. PRIMAL FUNCTIONS AND SHADOWS FOR A CRACK —7 < ¢ < m, NEUMANN BCs
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APPENDIX B. DUAL SINGULAR FUNCTIONS AND SHADOWS FOR A CRACK —7 < ¢ < 7, NEUMANN
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APPENDIX C. AN EXPLICIT EXPRESSION FOR K (1/2) FOR A CIRCULAR CRACK

00,0

If we evaluate the successive ratios of the 3; ’s in Table 1 we find a simple hypergeometric law

Br P2 Pz Pa Bs B Bz Ps Po P
Bo B1 B2 B3 PBa PBs Be Br Bs Do
1 3 5 7 9 11 13 15 17 19

4 8§ 12 16 20 24 28 32 36 40
TABLE 12. Successive ratios between coefficients in the expansion (63) of the QDF Kfllo/2) .

One can prove that the sequence K (10/2) [B;] is converging and compute its limit, as follows. Setting Z =

n,
pe'? , we have
o2 gin WTU“O — gz =01, ..
Hence N | iy
> (7)

=0

a2 1 e
K, 0 _27T2pR\s <Z

and since 2 gl = 2itl_ (Table 12), we find the limit

— 2(2i+2)
—1/2
a2 _ L e Z
Koo,o 27T2pR\S <Z <1 + R .
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APPENDIX D. TABLES WITH THE RESULTS OF J, [T, Ky, (C”) m [Bj,]] FOR A CIRCULAR CRACK WITH
HOMOGENEOUS NEUMANN BCS IN A NON-AXISYMMETRIC CASE

TABLE 13. The remainder of J,,[7, K(1/2) [Bi,]]

310(9) = blo - ﬁ

m =0
n=0 a30(9{p (®

2) )
n=1 a0 p (%)2 as,O 3 P (%)2 a5,0 1 7§ (%)2
n=2 ar,0qpp (%0)3 a7,0 { Pp (%0)3 az,O 1 Py (%)3
n=3 ag0 P% (%0)4 agy O P% (%)4 ag, O Pé (%)4
po

n=4 a,0 {Po (

)’} a0 {sd (8)°} a0 {e (%))

=

TABLE 14. The remainder of J,[7, K(l/z) [B1,]]

Bi, (0) = b1, cos(8) = R cos(6)
m =0 —2 m=4
n=0 a,0{(%)"} +a5,0{p0 (%)} a,0{(5) ] +a5,0{p0 (%)} a1,0{(5)°} +a5,0{p0 (%)}
n=1 a1, O (%)2 allo{(%‘) }+a510{p0(p° 2} a11(9{ %0 }+a51(9{p0( 0)2}
n=2 a1, O (%0)2 a1, O (%)4 a1, O (?)
n=3 a1,0{(%)* a1,0{(%)" a1,0{(4)°
n=4 a, O (%)2 a1, 0 (%)4 a1, O (%0)6
TABLE 15. The remainder of J,[7, K(1/2) [B1,]]
Bi1,(0) = b1, cos(9) = ﬁ 0s(20)
m =0 m =2 m =4
n=0 a1,0{(%)°} +a3.0{p0 (5)} @, 0{(5)°} +a3,0{p0 (%)} @1,0{(%)°} +as,0 {po (5)}
n=1 a1,0{ (%) a1, 0{(8)" } +a5,0{p3 (%)%} a1, 0{(2)"} +as,0 {03 ()7}
n=2 a1,0 {(%9)* a1,0 {(%)" a1,0 { (%)’
n=3 a1,0 (%’)2 a1,0 (%’)4 a1,0 (@)6
n=4 aiz O (%0)2 a130 (%0)4 a130 (?0)6
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