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Outline / Plan / Planned contributions by MD and MC
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Part |
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o Notations
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Before stating equations, agree on notations and conventions

Slides written in English / Transparents en anglais, avec quelques traductions

Colors

@ Direction that we will follow
® Direction that we will leave
@ Important expressions
@ Emphasize or Danger

General notation

@ { € R, time variable

® O := £, time derivative
@ X, space variable
@ In 3 dimensions x = (xq, X2, X3)
@ In 2 dimensions x = (X1, x2)

® Forje{1,2,3}, 0 := 8% partial space derivative
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Operators of order 1 and 2 in 3 dimensions of space

V is the gradient operator. For scalar distribution ¢

01
VQO = azgo
O3

div is the divergence operator: For vector distributions u = (u1, Uz, Us)
dvu=V - -U=01uj + 0Us + O3U3

curl is the curl operator / rotationnel: For vector distributions u = (u1, Uz, U3)

82U3 —53U2
curlu=V x u= | 0z3u; — O1Us
(91 Uo —82U1

A is the Laplace operator (aka Laplacian). For scalar distribution ¢

Ao = o+ Do+ 05p

3/36



Important relations

divVy = Ay

diveurlu=20

curlVpo =0

curlcurlu — Vdivu = —Au
where the vector Laplacian is

AUy
Au=| Au
AU3
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o Maxwell equations
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Time dependent Maxwell equations

Unknowns are 4 vector functions (fields / champ) with 3 components each
@ & electric field
@ 7€ magnetic field
® 9 electric displacement
® % magnetic induction
Maxwell equations consist of the 4 relations

0B +curlé& =0 (1a)
div® =p (1b)
0D —curl A = — ¢ (1c)
divs =0 (1d)

) Faraday’s law

) Gauss’s law with p the scalar charge density

) Ampere’s circuital law, modified by Maxwell, with current density ¢
) tells that 98 is solenoidal

O Qo

o O
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Time harmonic Maxwell equations

By partial in time Fourier transformation, or because the data ¢ and p are
time harmonic, we assume that &, 7€, 9%, and % are time harmonic, i.e. that
there exists w € R such that

&(t,x) =e “'E(x),  #(t,x)=e "TH(x),
B(t,x)=e “'B(x), 9(t,x)=e "'D(x)

Then the 4-equation system becomes

curlE — iwB=0 (2a)
divD = p (2b)
curlH+ iwD = J (2¢)
divB =0 (2d)

Divergence constraints

@ Apply div to (2a) = iwdiv B = 0. Hence (2d) implied if w # 0

@ Apply div to (2¢c) = iwdiv D = divJ. Hence the relation iwp = divdJ
The 4-equation system is not closed.
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Constitutive equations for linear media

Then D is proportional to E and B is proportional to H
D=c<E and B=uH

with coefficients € = (x) (electric permittivity) and p = u(x) (magnetic
permeability) depending on the material property at x.
Material coefficients € and i can be matrix valued (anisotropic materials).

We consider here isotropic materials for which £ and p are scalar.
Particular materials

@ Vacuum (or free space): ¢ = o and o = o |

@ Dielectric material: € and u real, e > g and u > uo for classical
materials, possibly negative for metamaterials.

@ Conducting material: © > uo real and € complex valued, with
Ime = ow ™" where ¢ is the conductivity.

Globally in R®, € and 1 are piecewise constant depending on which material
occupies the space at each point.

'eg =8.854 x 1072 Fm~" and po = 47 x 10~/ Hm~". Speed of light ¢ = (eqp0)~'/2.
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Time harmonic Maxwell equations with constitutive laws

Putting all together we obtain

curlE — jiwuH =0 (3a)
diveE = p (3b)
curlH + iwecE = J (3c)
divuH =0 (3d)
Leaving aside the source problem we take p = 0 and J = 0:
curlE — jiwpH =0 (4a)
diveE =0 (4D)
curlH+ jiweE =0 (4¢)
divuH =0 (4d)

The problem is to find triples (w, E, H) with w € C, and (E, H) # (0,0) in
admissible function spaces
@ In R?, this is the problem of finding scattering resonances.Suitable
radiation conditions at infinity have to be imposed. In general Imw < 0.
@ In bounded domains, combined with suitable boundary conditions, this is
the problem of finding cavity resonances. In general w € R.
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The cavity problem

An electromagnetic cavity Q is a bounded region of R® that is isolated from
an electromagnetic point of view from the outside region R® \ Q.

This is an idealization of a Faraday cage for which we consider that €2 is
surrounded by a layer of infinite conductivity o. Then the electric field E is
zero outside Q2 and this causes the boundary condition

Exn=0 on 02 (thetangential componentof Eis0 (D)

Here n is the unitary outward normal field to 0f2.

This can be rigorously proved by setting Maxwell equation in a region
containing €2 and its surrounding conductive medium and let ¢ tend to infinity.
Going to this limit exhibits the skin effect / effet de peau/ in conductive media.
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e Variational formulation for cavity problem
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Elimination of magnetic field

Recall equations

curlE — iwpyH =0 in Q (6a)
diveE=0 in Q (6b)
curlH+ jiweE=0 in Q (6C)
dvuH=0 in Q (6d)
Exn=0 on 0f2 (6e)
Using (6a) it is tempting to eliminate H by writing: iwH = % curl E which
yields, formally with (6c)
curl L curl E — w2cE — 0 (7)

7

Most frequently, one finds (7) in the literature, followed by an integration by
parts to find a variational formulation.

We will rather start from the system (6) to find directly the variational
formulation, which allows to find variational spaces without doubt.
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The space H(curl; Q)

Assume that E € L*(Q)° and H € L*(Q)°. Then (6c) and (6a) yields
culE € [*(Q)° and curlH ¢ [?(Q)°
This leads to introduce the space

H(curl: Q) = {U € [3(Q)®, curlU € [?(Q)°}

Lemma [Girault-Raviart, 86]
Let Q be a bounded Lipschitz domain?. Then 6°°(Q)* is dense in H(curl; Q).

2A Lipschitz domain is a domain that is (after possible rotations) the epigraph of a Lipschitz
function in the neighborhood of each of its boundary points.

Consequence: if U € H(curl; ©2), the tangential trace U x n makes sense in
H=1/2(6Q)® thanks to the identity, valid for any ¢ € H'(Q)%:

Q Q
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The space Hy(curl; Q)

Then we can introduce the H-curl space with zero tangential traces
Ho(curl; Q) = {U € H(curl;Q), wuxn| , =0}
Then

Lemma [Girault-Raviart, 86]

Let Q be a bounded Lipschitz domain. Then 65°(Q)° is dense in Hy(curl; Q).

And an important consequence

Lemma

Let Q be a bounded Lipschitz domain. Then

/U-curIde:/curIUo Vdx VYUe Hy(eurl;Q2), VV € H(curl; Q).
Q Q
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Towards variational formulation of cavity problem

Recall
curlE — iwpH =0 in £ (6a)
curlH+ jiweE=0 in Q (6c)
Exn=0 on 092 (6e)

If E ¢ [2(Q)° and H € L3(Q)%, then E € Hy(curl; Q) and H € H(curl; Q).

Pick a test function E’ € Hy(curl; Q). Multiply (6a) by 1~ on the left, take the
- product with curl E’ on the right, integrate over Q

/ (u_1 curl E - curl E' — jwH - curl E’) dx =0 (6a’)
Q
Multiply (6¢) by iw, take the - product with E’ on the right, integrate over Q
/ (iw curlH-E — w°c E- E’) dx =0 (6C)
Q

Add (6a’) and (6¢’), use the Lemma on previous slide and obtain

/ (u‘1 curl E-curl E' — w*< E - E’) dx =0
Q
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Electric spectral problem

Definition
Let ©2 be a bounded Lipschitz domain. The electric spectral problem is to find
pairs (w, E) with non-zero E € Hy(curl; ), such that

/ (/f1 curl E-curl E' — w°c E - E’) dx =0 VE' € Hy(curl;Q) (8)
Q

Many questions arise
@ Can we find solutions?
@ Do solutions correspond to solutions of the cavity problem?
@ Can we discretize (8) by Finite Element Method (Galerkin projection)

We address these questions on a simplifed two-dimensional problem which
@ Encounters the same difficulties as the original 3D problem

@ Has solutions that can be alternatively deduced by solving a scalar
equation.
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Part Il
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o Toy problem — Bench test
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From 3 to 2 dimensions

@ Take € and i constant equal to 1.
@ Take as domain Q2 a 2-dim. polygon (straight sides).

To find the Maxwell cavity problem in Q2 in its TE (Transverse Electric)
formulation we go back to the 3-dim. formulation, considered in 2 x R:

CurlE —iwH=0 in QxR (6a)
dvE=0 in QxR (6b)
curlH+ iwE=0 in QxR (6¢C)
dvH=0 in QxR (6d)
Exn=0 on 0Q2xR (6e)

and assume that
@ E and H are function of (x1, x2) only (no dependence in x3)
@ £5=0,H =H>.=0,i.e.

E; 0
E-=|E and H=| 0
0 Hs

Note that (6d) is already satisfied. We obtain SRR
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The TE cavity problem

O1Ex — ObEy —iwHz3 =0 in Q (
O1E1 +00Es =0 in Q (
OoHz + iwEy =0 and —01Hs+iwEs =0 in (9c
Eino — Eony =0 on 0X2 (
Define the scalar curl (denoted rot) in 2 dimensions as
rotU:81 U2 —(92U1 for U= (U1,U2)
and the spaces H(rot; Q2) and Hy(rot; ©2) accordingly.

By the same method as in 3-dim. we find that U = (E4, E») is solution of the
Electric Maxwell spectral problem in 2-dim.
Find pairs (w, U) with non-zero U € Hy(rot; 2), such that

/ (rot UrotlU —w?U- U’) dx =0 VYU’ € Hy(rot; Q)
Q

Observe that (9¢) implies 91 Hz and 9> Hs are in L?(Q). Hence Hs € H'(Q). We find:
Neumann spectral problem

Find pairs (w, H3) with non-zero Hs € H'(Q), such that
/ (VHs - VH —w? HyH' ) dx =0 VH' € H'(Q)
Q
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The electric Maxwell spectral problem (rot-rot eigenmodes)

Proposition 1

Let © be a 2-dim. simply connected Lipschitz domain.
Let (w, U) € C x Hy(rot; Q) be a solution of

(%) / (rot UrotU —w*U- U’) dx =0 VYU € Hy(rot; Q)
Q

@ If w = 0, then exists a scalar potential ¢ such that
o e H)(Q) and Ve=U
Conversely, if o € H}(Q), then (0, V) solves (x).

Q Ifw # 0, then div U = 0 and exists a scalar potential® v € H'(Q) s. t.

b eH(Q) and roty = U
and (w?, 1) is an eigenpair of the Neumann problem

(%) /Q (w .V — wzw’) dx=0 V' € H'(Q)

Conversely, if (w?, ) is an eigenpair (xx), then (w, r?w) solves (x).

4 rot v is the vector curl in 2-dim. : rot« = (91, — ;1) .



QIfw=0,thenrotU=0.
@ As Q is simply connected, there exists a potential ¢ such that Vo = U.

@ Since U x n =0 o0n 909, then ¢ is constant on 01.

@ The simple connectedness implies that 92 has one component, so ¢ can be
chosen in H} (Q2).

Q If w # 0, choose as test function U’ = V', with ¢’ € Hg (2). Then (%) =
/Qu-w’ dx =0 Vo' € H)(Q)
Therefore, in the sense of duality
(divU, ")yt (q) mya) =0 7' € Hy ()
Hence div U = 0. This implies the existence of a scalar potential ¢ s.t. Gizp =U. As
rotroty = —A¢ and roty - roty’ = Vb - Vi

U € Hy(rot; Q) <= ¢ € D(AN; Q) .= {v € H'(Q), Av € [3(Q) & In|,, =0}
(%) implies ¢ € D(ANeY; Q)

(% * %) /Q (Aw Ay — WPV - wp’) dx =0 V¢’ € D(ANY; Q)
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End of proof

Integrating by parts (x * %) implies
/ (Aw AY' + WP Aw’) dx =0 vy’ € D(AN; Q)
Q
le.
/ (mp T2 w) Ay'dx =0 Vo' € D(ANeY: Q)
Q

Denote by L2(Q) the space of functions L?(Q) orthogonal to constants on Q
[2(Q) = {v e [2(Q), / vdx = o}
Q

Now, we can choose v € L2(Q), and still have rotw = U. The operator ANeu
ANev - pD(ANeY- Q) — 12(Q) is onto / surjectif
Hence
/Q (mp + w? zp) vdx =0 Vv e L2(Q)
and, since Ay + w? 1) belongs to L2(Q)
Ap+w?y =0
Finishing the proof is now easy.
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The TE cavity problem versus the rot-rot spectral problem

Corollary

Let Q2 be a 2-dim. simply connected Lipschitz domain.
The solutions (w, (Ej, Ez, H3)) of the TE cavity problem (9) are

@ w = 0 with E; = E; = 0 and Hz non-zero constant.

© w # 0 such that w? is an eigenvalue of ANéU, the positive Laplace operator with
Neumann conditions: ANeU = _ A with operator domain D(AN®Y; Q). Then

— .
(E1 )15, H3) — (rot¢, —/WTP)
with v eigenvector of AN associated with w?.

Remarks on 3-dim. domains
If 2 is a 3-dim. simply connected Lipschitz domain, the solutions of

(%) / (curl U-curlU —w?U- U’) dx =0 VU’ € Hy(curl; Q)
Q

are related to the cavity problem in a similar way:
w=0=dvU#0 and w#0=—divU=0

and the solutions of the cavity problem can be deduced from those of (x) when w # 0.

But, in 3-dim. there is no scalar potential in general.
The 2-dim. serves as a bench test / banc d’essai / for 3-dim.
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o Numerical test / Rien ne va plus
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Consider Q = (0, 7) x (0, m).
By separation of variables, we find that the eigenpairs of AN®" are

{w2 =i+

: . for any integers i, o €{0,1,2,...
Y(X1, X2) = COS(J1X1) COS(j2X2) y g J1, o €4 }

Using Proposition 1, this implies that the solutions of the electric Maxwell
spectral problem

(%) / rotU rotU’ dx = w2/ U-U dx VU € Ho(rot; Q)
Q Q

correspond to eigenvalues w? equal to
@ 0 (with infinite multiplicity)

Q1,1,2 4,4, 55 8 9, 9 10, 10, 13, 13, ...
(with repetition according to multiplicity)
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Finite element method

Q Let a be bilinear (or sesquilinear) form well defined on a product space

VxV
auv)=> > Y S:/(aagaau,-aﬁvj) dx

J e <1 B[

Spectral problem associated with a: Find pairs (A, u), with 0 # u € V s. 1.
(1) a(u,v) = AU, V)22 YVeEV

Q Let V be a finite dimensional subspace of V. N
Galerkin projection of problem (1): Find pairs (\, ), with0 # U € V s. t.

(1) a(u,v) = \u, v>L2(Q)|L2(Q) vveV

O The Finite Element Method LFEM] consists in constructing and

implementing suitable spaces V. In general, they are based on a mesh of €2
(subdivision into triangular or quadrilateral elements in 2-dim.) and piecewise
(mapped-)polynomials in each element of the mesh.

Analysis of FEM: proving (or disproving) convergence when dim V — .

23/36



Let'sgo/ Onyva

1 4 T T T T T T [e)

&
S
12¢ ; -
0 e Triangular mesh
@@9 ~ 450 elements of degree 1
8 &
&39 Sort computed eigenvalues
6f f 1 by increasing order
fi< e <o

@ Abscissa: rank of computed eigenvalue 1 < n < 140
@ Ordinates: value of \,
@ Horizontal lines = exact values for A,
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Another try / Un autre essai

« Mesh with one square element
1ol | of degree 8 :
u= (i, )
10 00— .
00 with
8 ° uy, Uz € Qg =Pg ® Pg
6_ | [
o0 Sort computed eigenvalues
4 0000 by increasing order
Ko< e <o
2 o
000
Qlesssseccocccccocccccccecncoe oo oonmconanccnnee ' Il'y a encore un probléme
0 10 20 30 40 50 60 70

@ Abscissa: rank of computed eigenvalue 1 < n <70
@ Ordinates: value of \,
@ Horizontal lines = exact values for A,
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Another try / Un autre essai

« Mesh with one square element
1ol | of degree 8 :
u= (i, )
10 00— .
oo | With
8 ° uy, Uz € Qg =Pg ® Pg
6_ | [
o0 Sort computed eigenvalues
4 ocs by increasing order
Ko< e <o
2 o
oo
Qlesssseccocccccocccccccecncoe oo oonmconanccnnee ' Il'y a encore un probléme
0 10 20 30 40 50 60 70

@ Abscissa: rank of computed eigenvalue 1 < n <70
@ Ordinates: value of \,
@ Horizontal lines = exact values for A,
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Try something else (breaking identity between components)

14

s Mesh with one square element
12k 1 of mixed degrees 7&8 :
u= (i, o)
10 o _
o~ with
8 © U €eP7@Ps U € Pg® Py

| Sort computed eigenvalues
by increasing order

0O
’ . fi<he<
5 o Il n’y a plus de probleme
o This is an “edge element”
0 Losoncessascennoccentessemaaainaasemoatencmaeces! . cf lecture by Martin.
0 10 20 30 40 50 60 70

@ Abscissa: rank of computed eigenvalue 1 < n <70
@ Ordinates: value of \,
@ Horizontal lines = exact values for A,
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