Harmonic Maxwell equations and their Finite Element discretization
 Les équations de Maxwell harmoniques et leurs discrétisations par éléments finis

Monique Dauge \& Martin Costabel

IRMAR, Université de Rennes 1, FRANCE

Cours Doctoral IRMAR 2019
25 \& 26 février 2029
http://perso.univ-rennes1.fr/monique.dauge

Outine / Plan / Planned contributions by MD and MC

Part I. Introduction to Maxwell equations [MD]
(1) Notations
(2) Maxwell equations

3 Variational formulation for cavity problem
Part II. Traps in Finite element discretization / Quelques pièges [MD]
(4) Toy problem - Bench test
(5) Numerical test / Rien ne va plus

Part III. Elliptic regularization: bad and good methods [MD]
6 Standard regularization
(7) Non-convex corners
(8) Weighted regularization

Part IV. Edge element techniques [MC]

Part I

Introduction to Maxwell equations

Outline

(1) Notations
(2) Maxwell equations
(3) Variational formulation for cavity problem

Before stating equations, agree on notations and conventions

Slides written in English / Transparents en anglais, avec quelques traductions Colors

- Direction that we will follow
- Direction that we will leave
- Important expressions
- Emphasize or Danger

General notation

- $t \in \mathbb{R}$, time variable
- $\partial_{t}:=\frac{\partial}{\partial t}$, time derivative
- x, space variable
- In 3 dimensions $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)$
- In 2 dimensions $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$
- For $j \in\{1,2,3\}, \partial_{j}:=\frac{\partial}{\partial x_{j}}$ partial space derivative

Operators of order 1 and 2 in 3 dimensions of space

∇ is the gradient operator. For scalar distribution φ

$$
\nabla \varphi=\left(\begin{array}{l}
\partial_{1} \varphi \\
\partial_{2} \varphi \\
\partial_{3} \varphi
\end{array}\right)
$$

div is the divergence operator: For vector distributions $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)$

$$
\operatorname{div} \boldsymbol{u}=\nabla \cdot \boldsymbol{u}=\partial_{1} u_{1}+\partial_{2} u_{2}+\partial_{3} u_{3}
$$

curl is the curl operator / rotationnel: For vector distributions $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)$

$$
\operatorname{curl} \boldsymbol{u}=\nabla \times \boldsymbol{u}=\left(\begin{array}{l}
\partial_{2} u_{3}-\partial_{3} u_{2} \\
\partial_{3} u_{1}-\partial_{1} u_{3} \\
\partial_{1} u_{2}-\partial_{2} u_{1}
\end{array}\right)
$$

Δ is the Laplace operator (aka Laplacian). For scalar distribution φ

$$
\Delta \varphi=\partial_{1}^{2} \varphi+\partial_{2}^{2} \varphi+\partial_{3}^{2} \varphi
$$

Important relations

$$
\begin{aligned}
& \operatorname{div} \nabla \varphi=\Delta \varphi \\
& \operatorname{div} \operatorname{curl} \boldsymbol{u}=0 \\
& \operatorname{curl} \nabla \varphi=0 \\
& \operatorname{curl} \operatorname{curl} \boldsymbol{u}-\nabla \operatorname{div} \boldsymbol{u}=-\Delta \boldsymbol{u}
\end{aligned}
$$

where the vector Laplacian is

$$
\boldsymbol{\Delta} \boldsymbol{u}=\left(\begin{array}{l}
\Delta u_{1} \\
\Delta u_{2} \\
\Delta u_{3}
\end{array}\right)
$$

Outline

Notations
(2) Maxwell equations

3 Variational formulation for cavity problem

Time dependent Maxwell equations

Unknowns are 4 vector functions (fields / champ) with 3 components each

- E® electric field
- He magnetic field
- D electric displacement
- \mathscr{B} magnetic induction

Maxwell equations consist of the 4 relations

$$
\begin{align*}
\partial_{t} \mathscr{B}+\operatorname{curl} \mathscr{E} & =0 \tag{1a}\\
\operatorname{div} \mathscr{D} & =\rho \tag{1b}\\
\partial_{t} \mathscr{D}-\operatorname{curl} \mathscr{H} & =-\mathscr{F} \tag{1c}\\
\operatorname{div} \mathscr{B} & =0 \tag{1d}
\end{align*}
$$

- (1a) Faraday's law
- (1b) Gauss's law with ρ the scalar charge density
- (1c) Ampère's circuital law, modified by Maxwell, with current density \mathscr{F}
- (1d) tells that \mathscr{B} is solenoidal

Time harmonic Maxwell equations

By partial in time Fourier transformation, or because the data $\mathscr{\mathscr { F }}$ and ρ are time harmonic, we assume that $\mathscr{E}, \mathscr{H}, \mathscr{D}$, and \mathscr{B} are time harmonic, i.e. that there exists $\omega \in \mathbb{R}$ such that

$$
\begin{aligned}
\mathscr{E}(t, \boldsymbol{x}) & =e^{-i \omega t} \boldsymbol{E}(\boldsymbol{x}), & & \mathscr{H}(t, \boldsymbol{x})=e^{-i \omega t} \boldsymbol{H}(\boldsymbol{x}), \\
\mathscr{B}(t, \boldsymbol{x}) & =e^{-i \omega t} \boldsymbol{B}(\boldsymbol{x}), & & \mathscr{D}(t, \boldsymbol{x})=e^{-i \omega t} \boldsymbol{D}(\boldsymbol{x})
\end{aligned}
$$

Then the 4-equation system becomes

$$
\begin{align*}
\operatorname{curl} \boldsymbol{E}-i \omega \boldsymbol{B} & =0 \tag{2a}\\
\operatorname{div} \boldsymbol{D} & =\rho \tag{2b}\\
\operatorname{curl} \boldsymbol{H}+i \omega \boldsymbol{D} & =\boldsymbol{J} \tag{2c}\\
\operatorname{div} \boldsymbol{B} & =0 \tag{2d}
\end{align*}
$$

Divergence constraints

- Apply div to (2a) $\Longrightarrow i \omega \operatorname{div} \boldsymbol{B}=0$. Hence (2d) implied if $\omega \neq 0$
- Apply div to $(2 \mathrm{c}) \Longrightarrow i \omega \operatorname{div} \boldsymbol{D}=\operatorname{div} \boldsymbol{J}$. Hence the relation $i \omega \rho=\operatorname{div} \boldsymbol{J}$

The 4-equation system is not closed.

Constitutive equations for linear media

Then \boldsymbol{D} is proportional to \boldsymbol{E} and \boldsymbol{B} is proportional to \boldsymbol{H}

$$
\boldsymbol{D}=\varepsilon \boldsymbol{E} \quad \text { and } \quad \boldsymbol{B}=\mu \boldsymbol{H}
$$

with coefficients $\varepsilon=\varepsilon(\boldsymbol{x})$ (electric permittivity) and $\mu=\mu(\boldsymbol{x})$ (magnetic permeability) depending on the material property at \boldsymbol{x}.
Material coefficients ε and μ can be matrix valued (anisotropic materials).
We consider here isotropic materials for which ε and μ are scalar.
Particular materials

- Vacuum (or free space): $\varepsilon=\varepsilon_{0}$ and $\mu=\mu_{0}{ }^{1}$
- Dielectric material: ε and μ real, $\varepsilon \geq \varepsilon_{0}$ and $\mu \geq \mu_{0}$ for classical materials, possibly negative for metamaterials.
- Conducting material: $\mu \geq \mu_{0}$ real and ε complex valued, with $\operatorname{Im} \varepsilon=\sigma \omega^{-1}$ where σ is the conductivity.
Globally in $\mathbb{R}^{3}, \varepsilon$ and μ are piecewise constant depending on which material occupies the space at each point.

[^0]
Time harmonic Maxwell equations with constitutive laws

Putting all together we obtain

$$
\begin{align*}
\text { curl } \boldsymbol{E}-i \omega \mu \boldsymbol{H} & =0 \tag{3a}\\
\operatorname{div} \varepsilon \boldsymbol{E} & =\rho \tag{3b}\\
\text { curl } \boldsymbol{H}+i \omega \varepsilon \boldsymbol{E} & =\boldsymbol{J} \tag{3c}\\
\operatorname{div} \mu \boldsymbol{H} & =0 \tag{3d}
\end{align*}
$$

Leaving aside the source problem we take $\rho=0$ and $\boldsymbol{J}=0$:

$$
\begin{align*}
\operatorname{curl} \boldsymbol{E}-i \omega \mu \boldsymbol{H} & =0 \tag{4a}\\
\operatorname{div} \varepsilon \boldsymbol{E} & =0 \tag{4b}\\
\operatorname{curl} \boldsymbol{H}+i \omega \varepsilon \boldsymbol{E} & =0 \tag{4c}\\
\operatorname{div} \mu \boldsymbol{H} & =0 \tag{4d}
\end{align*}
$$

The problem is to find triples $(\omega, \boldsymbol{E}, \boldsymbol{H})$ with $\omega \in \mathbb{C}$, and $(\boldsymbol{E}, \boldsymbol{H}) \neq(0,0)$ in admissible function spaces

- In \mathbb{R}^{3}, this is the problem of finding scattering resonances. Suitable radiation conditions at infinity have to be imposed. In general $\operatorname{Im} \omega<0$.
- In bounded domains, combined with suitable boundary conditions, this is the problem of finding cavity resonances. In general $\omega \in \mathbb{R}$.

The cavity problem

An electromagnetic cavity Ω is a bounded region of \mathbb{R}^{3} that is isolated from an electromagnetic point of view from the outside region $\mathbb{R}^{3} \backslash \Omega$.
This is an idealization of a Faraday cage for which we consider that Ω is surrounded by a layer of infinite conductivity σ. Then the electric field \boldsymbol{E} is zero outside Ω and this causes the boundary condition

$$
\begin{equation*}
\boldsymbol{E} \times \boldsymbol{n}=0 \quad \text { on } \quad \partial \Omega \quad \text { (the tangential component of } \boldsymbol{E} \text { is } 0 \tag{5}
\end{equation*}
$$

Here \boldsymbol{n} is the unitary outward normal field to $\partial \Omega$.
This can be rigorously proved by setting Maxwell equation in a region containing Ω and its surrounding conductive medium and let σ tend to infinity. Going to this limit exhibits the skin effect / effet de peau / in conductive media.

Outline

NotationsMaxwell equations
(3) Variational formulation for cavity problem

Elimination of magnetic field

Recall equations

$$
\begin{align*}
& \operatorname{curl} \boldsymbol{E}-i \omega \mu \boldsymbol{H}=0 \text { in } \tag{6a}\\
& \operatorname{div} \varepsilon \boldsymbol{E}=0 \text { in } \tag{6b}\\
& \operatorname{curl} \boldsymbol{H}+i \omega \varepsilon \boldsymbol{E}=0 \text { in } \tag{6c}\\
& \operatorname{div} \mu \boldsymbol{H}=0 \text { in } \tag{6d}\\
& \boldsymbol{E} \times \boldsymbol{n}=0 \text { on } \tag{6e}\\
& \hline \Omega
\end{align*}
$$

Using (6a) it is tempting to eliminate \boldsymbol{H} by writing: $i \omega \boldsymbol{H}=\frac{1}{\mu}$ curl \boldsymbol{E} which yields, formally with (6c)

$$
\begin{equation*}
\operatorname{curl} \frac{1}{\mu} \operatorname{curl} E-\omega^{2} \varepsilon E=0 \tag{7}
\end{equation*}
$$

Most frequently, one finds (7) in the literature, followed by an integration by parts to find a variational formulation.
We will rather start from the system (6) to find directly the variational formulation, which allows to find variational spaces without doubt.

The space $H($ curl; Ω)

Assume that $\boldsymbol{E} \in L^{2}(\Omega)^{3}$ and $\boldsymbol{H} \in L^{2}(\Omega)^{3}$. Then (6c) and (6a) yields

$$
\text { curl } \boldsymbol{E} \in L^{2}(\Omega)^{3} \quad \text { and } \quad \text { curl } \boldsymbol{H} \in L^{2}(\Omega)^{3}
$$

This leads to introduce the space

$$
H(\text { curl } ; \Omega)=\left\{\boldsymbol{U} \in L^{2}(\Omega)^{3}, \quad \text { curl } \boldsymbol{U} \in L^{2}(\Omega)^{3}\right\}
$$

Lemma [Girault-Raviart, 86]

Let Ω be a bounded Lipschitz domain ${ }^{a}$. Then $\mathscr{C}^{\infty}(\bar{\Omega})^{3}$ is dense in $H($ curl; $\Omega)$.

[^1]Consequence: if $\boldsymbol{U} \in H($ curl; $\Omega)$, the tangential trace $\boldsymbol{U} \times \boldsymbol{n}$ makes sense in $H^{-1 / 2}(\partial \Omega)^{3}$ thanks to the identity, valid for any $\Phi \in H^{1}(\Omega)^{3}$:

$$
\langle\boldsymbol{U} \times \boldsymbol{n}, \Phi\rangle_{H^{-1 / 2}(\partial \Omega)^{3} \mid H^{1 / 2}(\partial \Omega)^{3}}=\int_{\Omega} \boldsymbol{U} \cdot \operatorname{curl} \Phi \mathrm{d} \boldsymbol{x}-\int_{\Omega} \operatorname{curl} \boldsymbol{U} \cdot \Phi \mathrm{d} \boldsymbol{x}
$$

The space $H_{0}($ curl; Ω)

Then we can introduce the H -curl space with zero tangential traces

$$
H_{0}(\text { curl } ; \Omega)=\left\{\boldsymbol{U} \in H(\text { curl } ; \Omega), \quad \boldsymbol{u} \times\left.\boldsymbol{n}\right|_{\partial \Omega}=0\right\}
$$

Then

Lemma [Girault-Raviart, 86]

Let Ω be a bounded Lipschitz domain. Then $\mathscr{C}_{0}^{\infty}(\Omega)^{3}$ is dense in $H_{0}($ curl; $\Omega)$.
And an important consequence

Lemma

Let Ω be a bounded Lipschitz domain. Then

$$
\int_{\Omega} \boldsymbol{U} \cdot \operatorname{curl} \boldsymbol{V} \mathrm{d} \boldsymbol{x}=\int_{\Omega} \operatorname{curl} \boldsymbol{U} \cdot \boldsymbol{V} \mathrm{d} \boldsymbol{x} \quad \forall \boldsymbol{U} \in H_{0}(\operatorname{curl} ; \Omega), \quad \forall \boldsymbol{V} \in H(\operatorname{curl} ; \Omega) .
$$

Towards variational formulation of cavity problem

Recall

$$
\begin{align*}
\text { curl } \boldsymbol{E}-i \omega \mu \boldsymbol{H}=0 & \text { in } \Omega \tag{6a}\\
\operatorname{curl} \boldsymbol{H}+i \omega \varepsilon \boldsymbol{E}=0 & \text { in } \Omega \tag{6c}\\
\boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \quad \partial \Omega \tag{6e}
\end{align*}
$$

If $\boldsymbol{E} \in L^{2}(\Omega)^{3}$ and $\boldsymbol{H} \in L^{2}(\Omega)^{3}$, then $\boldsymbol{E} \in H_{0}$ (curl; $\left.\Omega\right)$ and $\boldsymbol{H} \in H($ curl; $\Omega)$.
Pick a test function $E^{\prime} \in H_{0}$ (curl; Ω). Multiply (6a) by μ^{-1} on the left, take the - product with curl E^{\prime} on the right, integrate over Ω

$$
\begin{equation*}
\int_{\Omega}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}^{\prime}-i \omega \boldsymbol{H} \cdot \operatorname{curl} \boldsymbol{E}^{\prime}\right) \mathrm{d} \boldsymbol{x}=0 \tag{6a'}
\end{equation*}
$$

Multiply (6c) by $i \omega$, take the product with \boldsymbol{E}^{\prime} on the right, integrate over Ω

$$
\int_{\Omega}\left(i \omega \operatorname{curl} \boldsymbol{H} \cdot \boldsymbol{E}^{\prime}-\omega^{2} \varepsilon \boldsymbol{E} \cdot \boldsymbol{E}^{\prime}\right) \mathrm{d} \boldsymbol{x}=0
$$

Add ($6 a^{\prime}$) and ($6 c^{\prime}$), use the Lemma on previous slide and obtain

$$
\int_{\Omega}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}^{\prime}-\omega^{2} \varepsilon \boldsymbol{E} \cdot \boldsymbol{E}^{\prime}\right) \mathrm{d} \boldsymbol{x}=0
$$

Electric spectral problem

Definition

Let Ω be a bounded Lipschitz domain. The electric spectral problem is to find pairs (ω, \boldsymbol{E}) with non-zero $\boldsymbol{E} \in H_{0}(\mathbf{c u r l} ; \Omega)$, such that

$$
\begin{equation*}
\int_{\Omega}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}^{\prime}-\omega^{2} \varepsilon \boldsymbol{E} \cdot \boldsymbol{E}^{\prime}\right) \mathrm{d} \boldsymbol{x}=0 \quad \forall \boldsymbol{E}^{\prime} \in H_{0}(\operatorname{curl} ; \Omega) \tag{8}
\end{equation*}
$$

Many questions arise
(1) Can we find solutions?
(2) Do solutions correspond to solutions of the cavity problem?
(3) Can we discretize (8) by Finite Element Method (Galerkin projection)

We address these questions on a simplifed two-dimensional problem which
(1) Encounters the same difficulties as the original 3D problem
(2) Has solutions that can be alternatively deduced by solving a scalar equation.

Part II

Traps in Finite element discretization

Outline

(4) Toy problem - Bench test
(5) Numerical test / Rien ne va plus

From 3 to 2 dimensions

- Take ε and μ constant equal to 1 .
- Take as domain Ω a 2-dim. polygon (straight sides).

To find the Maxwell cavity problem in Ω in its TE (Transverse Electric) formulation we go back to the 3-dim. formulation, considered in $\Omega \times \mathbb{R}$:

$$
\begin{align*}
\operatorname{curl} \boldsymbol{E}-i \omega \boldsymbol{H}=0 & \text { in } \Omega \times \mathbb{R} \tag{6a}\\
\operatorname{div} \boldsymbol{E}=0 & \text { in } \Omega \times \mathbb{R} \tag{6b}\\
\operatorname{curl} \boldsymbol{H}+i \omega \boldsymbol{E}=0 & \text { in } \Omega \times \mathbb{R} \tag{6c}\\
\operatorname{div} \boldsymbol{H}=0 & \text { in } \Omega \times \mathbb{R} \tag{6d}\\
\boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega \times \mathbb{R} \tag{6e}
\end{align*}
$$

and assume that

- \boldsymbol{E} and \boldsymbol{H} are function of (x_{1}, x_{2}) only (no dependence in x_{3})
- $E_{3}=0, H_{1}=H_{2}=0$, i.e.

$$
\boldsymbol{E}=\left(\begin{array}{c}
E_{1} \\
E_{2} \\
0
\end{array}\right) \quad \text { and } \quad \boldsymbol{H}=\left(\begin{array}{c}
0 \\
0 \\
H_{3}
\end{array}\right)
$$

Note that (6d) is already satisfied. We obtain

The TE cavity problem

$$
\begin{align*}
& \partial_{1} E_{2}-\partial_{2} E_{1}-i \omega H_{3}=0 \text { in } \Omega \tag{9a}\\
& \partial_{1} E_{1}+\partial_{2} E_{2}=0 \text { in } \Omega \tag{9b}\\
& \partial_{2} H_{3}+i \omega E_{1}=0 \text { and }-\partial_{1} H_{3}+i \omega E_{2}=0 \text { in } \Omega \tag{9c}\\
& E_{1} n_{2}-E_{2} n_{1}=0 \text { on } \partial \Omega \tag{9d}
\end{align*}
$$

Define the scalar curl (denoted rot) in 2 dimensions as

$$
\operatorname{rot} \boldsymbol{U}=\partial_{1} U_{2}-\partial_{2} U_{1} \quad \text { for } \quad \boldsymbol{U}=\left(U_{1}, U_{2}\right)
$$

and the spaces $H($ rot $; \Omega)$ and $H_{0}($ rot $; \Omega)$ accordingly.
By the same method as in 3 -dim. we find that $\boldsymbol{U}=\left(E_{1}, E_{2}\right)$ is solution of the

Electric Maxwell spectral problem in 2-dim.

Find pairs (ω, \boldsymbol{U}) with non-zero $\boldsymbol{U} \in H_{0}($ rot; $\Omega)$, such that

$$
\begin{equation*}
\int_{\Omega}\left(\operatorname{rot} \boldsymbol{U} \operatorname{rot} \boldsymbol{U}^{\prime}-\omega^{2} \boldsymbol{U} \cdot \boldsymbol{U}^{\prime}\right) \mathrm{d} \boldsymbol{x}=0 \quad \forall \boldsymbol{U}^{\prime} \in H_{0}(\operatorname{rot} ; \Omega) \tag{10}
\end{equation*}
$$

Observe that (9c) implies $\partial_{1} H_{3}$ and $\partial_{2} H_{3}$ are in $L^{2}(\Omega)$. Hence $H_{3} \in H^{1}(\Omega)$. We find:

Neumann spectral problem

Find pairs $\left(\omega, H_{3}\right)$ with non-zero $H_{3} \in H^{1}(\Omega)$, such that

$$
\begin{equation*}
\int_{\Omega}\left(\nabla H_{3} \cdot \nabla H^{\prime}-\omega^{2} H_{3} H^{\prime}\right) d \boldsymbol{x}=0 \quad \forall H^{\prime} \in H^{1}(\Omega) \tag{11}
\end{equation*}
$$

The electric Maxwell spectral problem (rot-rot eigenmodes)

Proposition 1

Let Ω be a 2-dim. simply connected Lipschitz domain.
Let $(\omega, \boldsymbol{U}) \in \mathbb{C} \times H_{0}($ rot; $\Omega)$ be a solution of

$$
\begin{equation*}
\int_{\Omega}\left(\operatorname{rot} \boldsymbol{U} \operatorname{rot} \boldsymbol{U}^{\prime}-\omega^{2} \boldsymbol{U} \cdot \boldsymbol{U}^{\prime}\right) \mathrm{d} \boldsymbol{x}=0 \quad \forall \boldsymbol{U}^{\prime} \in H_{0}(\operatorname{rot} ; \Omega) \tag{*}
\end{equation*}
$$

(1) If $\omega=0$, then exists a scalar potential φ such that

$$
\varphi \in H_{0}^{1}(\Omega) \quad \text { and } \quad \nabla \varphi=\boldsymbol{U}
$$

Conversely, if $\varphi \in H_{0}^{1}(\Omega)$, then $(0, \nabla \varphi)$ solves $(*)$.
(2) If $\omega \neq 0$, then $\operatorname{div} \boldsymbol{U}=0$ and exists a scalar potential ${ }^{a} \psi \in H^{1}(\Omega)$ s. t.

$$
\psi \in H^{1}(\Omega) \quad \text { and } \quad \overrightarrow{\operatorname{rot}} \psi=\boldsymbol{U}
$$

and $\left(\omega^{2}, \psi\right)$ is an eigenpair of the Neumann problem
$(* *) \quad \int_{\Omega}\left(\nabla \psi \cdot \nabla \psi^{\prime}-\omega^{2} \psi \psi^{\prime}\right) \mathrm{d} \boldsymbol{x}=0 \quad \forall \psi^{\prime} \in H^{1}(\Omega)$
Conversely, if $\left(\omega^{2}, \psi\right)$ is an eigenpair $(* *)$, then $(\omega, \overrightarrow{\operatorname{rot}} \psi)$ solves $(*)$.

[^2]
Proof

(1) If $\omega=0$, then $\operatorname{rot} \boldsymbol{U}=0$.

- As Ω is simply connected, there exists a potential φ such that $\nabla \varphi=\boldsymbol{U}$.
- Since $\boldsymbol{U} \times \boldsymbol{n}=0$ on $\partial \Omega$, then φ is constant on $\partial \Omega$.
- The simple connectedness implies that $\partial \Omega$ has one component, so φ can be chosen in $H_{0}^{1}(\Omega)$.
(2) If $\omega \neq 0$, choose as test function $\boldsymbol{U}^{\prime}=\nabla \varphi^{\prime}$, with $\varphi^{\prime} \in H_{0}^{1}(\Omega)$. Then $(*) \Rightarrow$

$$
\int_{\Omega} \boldsymbol{U} \cdot \nabla \varphi^{\prime} \mathrm{d} \boldsymbol{x}=0 \quad \forall \varphi^{\prime} \in H_{0}^{1}(\Omega)
$$

Therefore, in the sense of duality

$$
\left\langle\operatorname{div} \boldsymbol{U}, \varphi^{\prime}\right\rangle_{H^{-1}(\Omega)} \mid H_{0}^{1}(\Omega)=0 \quad \forall \varphi^{\prime} \in H_{0}^{1}(\Omega)
$$

Hence $\operatorname{div} \boldsymbol{U}=0$. This implies the existence of a scalar potential ψ s.t. $\overrightarrow{\operatorname{rot}} \psi=\boldsymbol{U}$. As

$$
\operatorname{rot} \overrightarrow{\operatorname{rot}} \psi=-\Delta \psi \quad \text { and } \quad \overrightarrow{\operatorname{rot}} \psi \cdot \overrightarrow{\operatorname{rot}} \psi^{\prime}=\nabla \psi \cdot \nabla \psi^{\prime}
$$

$\boldsymbol{U} \in H_{0}(\operatorname{rot} ; \Omega) \Longleftrightarrow \psi \in \mathrm{D}\left(\Delta^{\mathrm{Neu}} ; \Omega\right):=\left\{v \in H^{1}(\Omega),\left.\Delta v \in L^{2}(\Omega) \& \partial_{n} \psi\right|_{\partial \Omega}=0\right\}$
(*) implies $\psi \in \mathrm{D}\left(\Delta^{\mathrm{Neu}} ; \Omega\right)$
$(* * *) \quad \int_{\Omega}\left(\Delta \psi \Delta \psi^{\prime}-\omega^{2} \nabla \psi \cdot \nabla \psi^{\prime}\right) \mathrm{d} \boldsymbol{x}=0 \quad \forall \psi^{\prime} \in \mathrm{D}\left(\Delta^{\mathrm{Neu}} ; \Omega\right)$

End of proof

Integrating by parts ($* * *$) implies

$$
\int_{\Omega}\left(\Delta \psi \Delta \psi^{\prime}+\omega^{2} \psi \Delta \psi^{\prime}\right) \mathrm{d} \boldsymbol{x}=0 \quad \forall \psi^{\prime} \in \mathrm{D}\left(\Delta^{\mathrm{Neu}} ; \Omega\right)
$$

i.e.

$$
\int_{\Omega}\left(\Delta \psi+\omega^{2} \psi\right) \Delta \psi^{\prime} \mathrm{d} \boldsymbol{x}=0 \quad \forall \psi^{\prime} \in \mathrm{D}\left(\Delta^{\mathrm{Neu}} ; \Omega\right)
$$

Denote by $L_{0}^{2}(\Omega)$ the space of functions $L^{2}(\Omega)$ orthogonal to constants on Ω

$$
L_{o}^{2}(\Omega)=\left\{v \in L^{2}(\Omega), \quad \int_{\Omega} v \mathrm{~d} x=0\right\}
$$

Now, we can choose $\psi \in L_{o}^{2}(\Omega)$, and still have $\overrightarrow{\operatorname{rot}} \psi=\boldsymbol{U}$. The operator $\Delta^{\text {Neu }}$

$$
\Delta^{\mathrm{Neu}}: \mathrm{D}\left(\Delta^{\mathrm{Neu}} ; \Omega\right) \longrightarrow L_{o}^{2}(\Omega) \text { is onto / surjectif }
$$

Hence

$$
\int_{\Omega}\left(\Delta \psi+\omega^{2} \psi\right) v \mathrm{~d} \boldsymbol{x}=0 \quad \forall v \in L_{o}^{2}(\Omega)
$$

and, since $\Delta \psi+\omega^{2} \psi$ belongs to $L_{\circ}^{2}(\Omega)$

$$
\Delta \psi+\omega^{2} \psi=0
$$

Finishing the proof is now easy.

The TE cavity problem versus the rot-rot spectral problem

Corollary

Let Ω be a 2 -dim. simply connected Lipschitz domain.
The solutions ($\omega,\left(E_{1}, E_{2}, H_{3}\right)$) of the TE cavity problem (9) are
(1) $\omega=0$ with $E_{1}=E_{2}=0$ and H_{3} non-zero constant.
(2) $\omega \neq 0$ such that ω^{2} is an eigenvalue of $\Delta^{\text {Neu }}$, the positive Laplace operator with Neumann conditions: $\Delta^{\mathrm{Neu}}=-\Delta$ with operator domain $D\left(\Delta^{\mathrm{Neu}} ; \Omega\right)$. Then

$$
\left(E_{1}, E_{2}, H_{3}\right)=(\overrightarrow{\operatorname{rot}} \psi,-i \omega \psi)
$$

with ψ eigenvector of Δ^{Neu} associated with ω^{2}.

Remarks on 3-dim. domains

If Ω is a 3 -dim. simply connected Lipschitz domain, the solutions of

$$
\begin{equation*}
\int_{\Omega}\left(\operatorname{curl} \boldsymbol{U} \cdot \operatorname{curl} \boldsymbol{U}^{\prime}-\omega^{2} \boldsymbol{U} \cdot \boldsymbol{U}^{\prime}\right) \mathrm{d} \boldsymbol{x}=0 \quad \forall \boldsymbol{U}^{\prime} \in H_{0}(\operatorname{curl} ; \Omega) \tag{*}
\end{equation*}
$$

are related to the cavity problem in a similar way:

$$
\omega=0 \Longrightarrow \operatorname{div} \boldsymbol{U} \neq 0 \quad \text { and } \quad \omega \neq 0 \Longrightarrow \operatorname{div} \boldsymbol{U}=0
$$

and the solutions of the cavity problem can be deduced from those of $(*)$ when $\omega \neq 0$. But, in 3 -dim. there is no scalar potential in general.
The 2-dim. serves as a bench test / banc d'essai / for 3-dim.

Outline

(4) Toy problem - Bench test
(5) Numerical test/Rien ne va plus

The square

Consider $\Omega=(0, \pi) \times(0, \pi)$.
By separation of variables, we find that the eigenpairs of Δ^{Neu} are

$$
\left\{\begin{array}{l}
\omega^{2}=j_{1}^{2}+j_{2}^{2} \\
\psi\left(x_{1}, x_{2}\right)=\cos \left(j_{1} x_{1}\right) \cos \left(j_{2} x_{2}\right)
\end{array} \quad \text { for any integers } j_{1}, j_{2} \in\{0,1,2, \ldots\}\right.
$$

Using Proposition 1, this implies that the solutions of the electric Maxwell spectral problem
$(*) \quad \int_{\Omega} \operatorname{rot} \boldsymbol{U} \operatorname{rot} \boldsymbol{U}^{\prime} \mathrm{d} \boldsymbol{x}=\omega^{2} \int_{\Omega} \boldsymbol{U} \cdot \boldsymbol{U}^{\prime} \mathrm{d} \boldsymbol{x} \quad \forall \boldsymbol{U}^{\prime} \in H_{0}(\operatorname{rot} ; \Omega)$
correspond to eigenvalues ω^{2} equal to
(1) 0 (with infinite multiplicity)
(2) $1,1,2,4,4,5,5,8,9,9,10,10,13,13, \ldots$
(with repetition according to multiplicity)

Finite element method

© Let a be bilinear (or sesquilinear) form well defined on a product space $V \times V$

$$
a(\boldsymbol{u}, \boldsymbol{v})=\sum_{i} \sum_{j} \sum_{|\alpha| \leq 1} \sum_{|\beta| \leq 1} \int_{\Omega}\left(a_{\alpha \beta} \partial^{\alpha} u_{i} \partial^{\beta} v_{j}\right) \mathrm{d} \boldsymbol{x}
$$

Spectral problem associated with a: Find pairs $(\lambda, \boldsymbol{u})$, with $0 \neq \boldsymbol{u} \in V$ s. t.

$$
a(\boldsymbol{u}, \boldsymbol{v})=\lambda\langle\boldsymbol{u}, \boldsymbol{v}\rangle_{L^{2}(\Omega) \mid L^{2}(\Omega)} \quad \forall \boldsymbol{v} \in V
$$

(b) Let \widetilde{V} be a finite dimensional subspace of V. Galerkin projection of problem (\dagger): Find pairs $(\tilde{\lambda}, \widetilde{\boldsymbol{u}})$, with $0 \neq \widetilde{\boldsymbol{u}} \in \widetilde{V}$ s. t.

$$
a(\widetilde{\boldsymbol{u}}, \widetilde{\boldsymbol{v}})=\tilde{\lambda}\langle\widetilde{\boldsymbol{u}}, \widetilde{\boldsymbol{v}}\rangle_{L^{2}(\Omega) \mid L^{2}(\Omega)} \quad \forall \widetilde{\boldsymbol{v}} \in \widetilde{\boldsymbol{V}}
$$

(6) The Finite Element Method [FEM] consists in constructing and implementing suitable spaces \widetilde{V}. In general, they are based on a mesh of Ω (subdivision into triangular or quadrilateral elements in 2-dim.) and piecewise (mapped-)polynomials in each element of the mesh.
Analysis of FEM: proving (or disproving) convergence when $\operatorname{dim} \widetilde{V} \rightarrow \infty$.

Let's go / On y va

- Abscissa: rank of computed eigenvalue $1 \leq n \leq 140$
- Ordinates: value of $\tilde{\lambda}_{n}$
- Horizontal lines $=$ exact values for λ_{j}

Triangular mesh
~ 450 elements of degree 1
Sort computed eigenvalues by increasing order

$$
\tilde{\lambda}_{1} \leq \tilde{\lambda}_{2} \leq \cdots
$$

Another try / Un autire essai

- Abscissa: rank of computed eigenvalue $1 \leq n \leq 70$
- Ordinates: value of $\tilde{\lambda}_{n}$
- Horizontal lines $=$ exact values for λ_{j}

Another try / Un autire essai

- Abscissa: rank of computed eigenvalue $1 \leq n \leq 70$
- Ordinates: value of $\tilde{\lambda}_{n}$
- Horizontal lines $=$ exact values for λ_{j}

Try something else (breaking identity between components)

Mesh with one square element of mixed degrees 7\&8:

$$
\widetilde{\boldsymbol{u}}=\left(\tilde{u}_{1}, \tilde{u}_{2}\right)
$$

with

$$
\widetilde{u}_{1} \in \mathbb{P}_{7} \otimes \mathbb{P}_{8} \quad \widetilde{u}_{2} \in \mathbb{P}_{8} \otimes \mathbb{P}_{7}
$$

Sort computed eigenvalues by increasing order

$$
\tilde{\lambda}_{1} \leq \tilde{\lambda}_{2} \leq \cdots
$$

Il n'y a plus de problème This is an "edge element" cf lecture by Martin.

- Abscissa: rank of computed eigenvalue $1 \leq n \leq 70$
- Ordinates: value of $\tilde{\lambda}_{n}$
- Horizontal lines $=$ exact values for λ_{j}

[^0]: ${ }^{1} \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{Fm}^{-1}$ and $\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$. Speed of light $c=\left(\varepsilon_{0} \mu_{0}\right)^{-1 / 2}$.

[^1]: ${ }^{a} \mathrm{~A}$ Lipschitz domain is a domain that is (after possible rotations) the epigraph of a Lipschitz function in the neighborhood of each of its boundary points.

[^2]: ${ }^{a} \overrightarrow{\operatorname{rot}} \psi$ is the vector curl in 2-dim. : $\overrightarrow{\operatorname{rot}} \psi=\left(\partial_{2} \psi,-\partial_{1} \psi\right)^{\perp}$

