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Notations Maxwell equations Cavity problem

Before stating equations, agree on notations and conventions

Slides written in English / Transparents en anglais, avec quelques traductions

Colors

Direction that we will follow

Direction that we will leave

Important expressions

Emphasize or Danger

General notation

t ∈ R, time variable

∂t := ∂
∂t

, time derivative

x , space variable
In 3 dimensions x = (x1, x2, x3)
In 2 dimensions x = (x1, x2)

For j ∈ {1, 2, 3}, ∂j :=
∂
∂xj

partial space derivative
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Notations Maxwell equations Cavity problem

Operators of order 1 and 2 in 3 dimensions of space

∇ is the gradient operator. For scalar distribution ϕ

∇ϕ =

⎛

⎝
∂1ϕ
∂2ϕ
∂3ϕ

⎞

⎠

div is the divergence operator: For vector distributions u = (u1, u2, u3)

div u = ∇ · u = ∂1u1 + ∂2u2 + ∂3u3

curl is the curl operator / rotationnel: For vector distributions u = (u1, u2, u3)

curl u = ∇× u =

⎛

⎝
∂2u3 − ∂3u2

∂3u1 − ∂1u3

∂1u2 − ∂2u1

⎞

⎠

∆ is the Laplace operator (aka Laplacian). For scalar distribution ϕ

∆ϕ = ∂2
1ϕ+ ∂2

2ϕ+ ∂2
3ϕ
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Notations Maxwell equations Cavity problem

Important relations

div∇ϕ = ∆ϕ

div curl u = 0

curl∇ϕ = 0

curl curl u −∇ div u = −∆u

where the vector Laplacian is

∆u =

⎛

⎝
∆u1

∆u2

∆u3

⎞

⎠
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Notations Maxwell equations Cavity problem

Time dependent Maxwell equations

Unknowns are 4 vector functions (fields / champ) with 3 components each

E electric field

H magnetic field

D electric displacement

B magnetic induction

Maxwell equations consist of the 4 relations

∂tB + curl E = 0 (1a)

div D = ρ (1b)

∂t D − curl H = −J (1c)

div B = 0 (1d)

(1a) Faraday’s law

(1b) Gauss’s law with ρ the scalar charge density

(1c) Ampère’s circuital law, modified by Maxwell, with current densityJ

(1d) tells that B is solenoidal
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Notations Maxwell equations Cavity problem

Time harmonic Maxwell equations

By partial in time Fourier transformation, or because the dataJ and ρ are
time harmonic, we assume that E, H, D, and B are time harmonic, i.e. that
there exists ω ∈ R such that

E(t , x) = e−iωtE(x), H(t ,x) = e−iωtH(x),

B(t ,x) = e−iωtB(x), D(t ,x) = e−iωtD(x)

Then the 4-equation system becomes

curl E − iωB = 0 (2a)

div D = ρ (2b)

curl H + iωD = J (2c)

div B = 0 (2d)

Divergence constraints

Apply div to (2a) =⇒ iω div B = 0. Hence (2d) implied if ω ̸= 0

Apply div to (2c) =⇒ iω div D = div J . Hence the relation iωρ = div J

The 4-equation system is not closed.
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Notations Maxwell equations Cavity problem

Constitutive equations for linear media

Then D is proportional to E and B is proportional to H

D = εE and B = µH

with coefficients ε = ε(x) (electric permittivity) and µ = µ(x) (magnetic
permeability) depending on the material property at x .
Material coefficients ε and µ can be matrix valued (anisotropic materials).
We consider here isotropic materials for which ε and µ are scalar.
Particular materials

Vacuum (or free space): ε = ε0 and µ = µ0
1

Dielectric material: ε and µ real, ε ≥ ε0 and µ ≥ µ0 for classical
materials, possibly negative for metamaterials.

Conducting material: µ ≥ µ0 real and ε complex valued, with
Im ε = σω−1 where σ is the conductivity.

Globally in R3, ε and µ are piecewise constant depending on which material
occupies the space at each point.

1ε0 = 8.854 × 10−12 Fm−1 and µ0 = 4π × 10−7 Hm−1. Speed of light c = (ε0µ0)
−1/2.
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Notations Maxwell equations Cavity problem

Time harmonic Maxwell equations with constitutive laws

Putting all together we obtain

curl E − iωµH = 0 (3a)

div εE = ρ (3b)

curl H + iωεE = J (3c)

divµH = 0 (3d)

Leaving aside the source problem we take ρ = 0 and J = 0:

curl E − iωµH = 0 (4a)

div εE = 0 (4b)

curl H + iωεE = 0 (4c)

divµH = 0 (4d)

The problem is to find triples (ω,E,H) with ω ∈ C, and (E,H) ̸= (0,0) in
admissible function spaces

In R3, this is the problem of finding scattering resonances.Suitable
radiation conditions at infinity have to be imposed. In general Imω < 0.

In bounded domains, combined with suitable boundary conditions, this is
the problem of finding cavity resonances. In general ω ∈ R.
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Notations Maxwell equations Cavity problem

The cavity problem

An electromagnetic cavity Ω is a bounded region of R3 that is isolated from
an electromagnetic point of view from the outside region R3 \ Ω.

This is an idealization of a Faraday cage for which we consider that Ω is
surrounded by a layer of infinite conductivity σ. Then the electric field E is
zero outside Ω and this causes the boundary condition

E × n = 0 on ∂Ω (the tangential component of E is 0 (5)

Here n is the unitary outward normal field to ∂Ω.

This can be rigorously proved by setting Maxwell equation in a region
containing Ω and its surrounding conductive medium and let σ tend to infinity.
Going to this limit exhibits the skin effect / effet de peau / in conductive media.
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Notations Maxwell equations Cavity problem

Elimination of magnetic field

Recall equations

curl E − iωµH = 0 in Ω (6a)

div εE = 0 in Ω (6b)

curl H + iωεE = 0 in Ω (6c)

divµH = 0 in Ω (6d)

E × n = 0 on ∂Ω (6e)

Using (6a) it is tempting to eliminate H by writing: iωH = 1
µ curl E which

yields, formally with (6c)

curl
1

µ
curl E − ω2εE = 0 (7)

Most frequently, one finds (7) in the literature, followed by an integration by
parts to find a variational formulation.

We will rather start from the system (6) to find directly the variational
formulation, which allows to find variational spaces without doubt.
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Notations Maxwell equations Cavity problem

The space H(curl;Ω)

Assume that E ∈ L2(Ω)3 and H ∈ L2(Ω)3. Then (6c) and (6a) yields

curl E ∈ L2(Ω)3 and curl H ∈ L2(Ω)3

This leads to introduce the space

H(curl;Ω) = {U ∈ L2(Ω)3, curl U ∈ L2(Ω)3}

Lemma [Girault-Raviart, 86]

Let Ω be a bounded Lipschitz domaina. Then C∞(Ω)3 is dense in H(curl;Ω).

aA Lipschitz domain is a domain that is (after possible rotations) the epigraph of a Lipschitz
function in the neighborhood of each of its boundary points.

Consequence: if U ∈ H(curl;Ω), the tangential trace U × n makes sense in
H−1/2(∂Ω)3 thanks to the identity, valid for any Φ ∈ H1(Ω)3:

〈
U × n,Φ

〉
H−1/2(∂Ω)3 | H1/2(∂Ω)3=

∫

Ω

U · curlΦ dx −

∫

Ω

curl U · Φ dx
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Notations Maxwell equations Cavity problem

The space H0(curl;Ω)

Then we can introduce the H-curl space with zero tangential traces

H0(curl;Ω) = {U ∈ H(curl;Ω), u × n
∣∣
∂Ω

= 0}

Then

Lemma [Girault-Raviart, 86]

Let Ω be a bounded Lipschitz domain. Then C∞
0 (Ω)3 is dense in H0(curl;Ω).

And an important consequence

Lemma

Let Ω be a bounded Lipschitz domain. Then
∫

Ω

U · curl V dx =

∫

Ω

curl U · V dx ∀U ∈ H0(curl;Ω), ∀V ∈ H(curl;Ω).
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Notations Maxwell equations Cavity problem

Towards variational formulation of cavity problem

Recall
curl E − iωµH = 0 in Ω (6a)

curl H + iωεE = 0 in Ω (6c)

E × n = 0 on ∂Ω (6e)

If E ∈ L2(Ω)3 and H ∈ L2(Ω)3, then E ∈ H0(curl;Ω) and H ∈ H(curl;Ω).

Pick a test function E ′ ∈ H0(curl;Ω). Multiply (6a) by µ−1 on the left, take the
· product with curl E ′ on the right, integrate over Ω

∫

Ω

(
µ−1 curl E · curl E ′ − iωH · curl E ′

)
dx = 0 (6a’)

Multiply (6c) by iω, take the · product with E ′ on the right, integrate over Ω
∫

Ω

(
iω curl H · E ′ − ω2εE · E ′

)
dx = 0 (6c’)

Add (6a’) and (6c’), use the Lemma on previous slide and obtain

∫

Ω

(
µ−1 curl E · curl E ′ − ω2εE · E ′

)
dx = 0
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Notations Maxwell equations Cavity problem

Electric spectral problem

Definition

Let Ω be a bounded Lipschitz domain. The electric spectral problem is to find
pairs (ω,E) with non-zero E ∈ H0(curl;Ω), such that

∫

Ω

(
µ−1 curl E · curl E ′ − ω2εE · E ′

)
dx = 0 ∀E ′ ∈ H0(curl;Ω) (8)

Many questions arise

1 Can we find solutions?

2 Do solutions correspond to solutions of the cavity problem?

3 Can we discretize (8) by Finite Element Method (Galerkin projection)

We address these questions on a simplifed two-dimensional problem which

1 Encounters the same difficulties as the original 3D problem

2 Has solutions that can be alternatively deduced by solving a scalar
equation.
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Part II

Traps in Finite element discretization
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Bench test Numerical test

From 3 to 2 dimensions

Take ε and µ constant equal to 1.

Take as domain Ω a 2-dim. polygon (straight sides).

To find the Maxwell cavity problem in Ω in its TE (Transverse Electric)
formulation we go back to the 3-dim. formulation, considered in Ω× R:

curl E − iωH = 0 in Ω× R (6a)

div E = 0 in Ω× R (6b)

curl H + iωE = 0 in Ω× R (6c)

div H = 0 in Ω× R (6d)

E × n = 0 on ∂Ω× R (6e)

and assume that

E and H are function of (x1, x2) only (no dependence in x3)

E3 = 0, H1 = H2 = 0, i.e.

E =

⎛

⎝
E1

E2

0

⎞

⎠ and H =

⎛

⎝
0
0

H3

⎞

⎠

Note that (6d) is already satisfied. We obtain · · · / · · ·
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Bench test Numerical test

The TE cavity problem

∂1E2 − ∂2E1 − iωH3 = 0 in Ω (9a)

∂1E1 + ∂2E2 = 0 in Ω (9b)

∂2H3 + iωE1 = 0 and −∂1H3 + iωE2 = 0 in Ω (9c)

E1n2 − E2n1 = 0 on ∂Ω (9d)

Define the scalar curl (denoted rot) in 2 dimensions as

rot U = ∂1U2 − ∂2U1 for U = (U1,U2)

and the spaces H(rot;Ω) and H0(rot;Ω) accordingly.

By the same method as in 3-dim. we find that U = (E1,E2) is solution of the

Electric Maxwell spectral problem in 2-dim.

Find pairs (ω,U) with non-zero U ∈ H0(rot;Ω), such that
∫

Ω

(

rot U rot U′ − ω2 U · U′
)

dx = 0 ∀U ′ ∈ H0(rot;Ω) (10)

Observe that (9c) implies ∂1H3 and ∂2H3 are in L2(Ω). Hence H3 ∈ H1(Ω). We find:

Neumann spectral problem

Find pairs (ω,H3) with non-zero H3 ∈ H1(Ω), such that
∫

Ω

(

∇H3 ·∇H′ − ω2 H3 H′
)

dx = 0 ∀H′ ∈ H1(Ω) (11)

17/36



Bench test Numerical test

The electric Maxwell spectral problem (rot-rot eigenmodes)

Proposition 1

Let Ω be a 2-dim. simply connected Lipschitz domain.
Let (ω,U) ∈ C× H0(rot;Ω) be a solution of

(∗)

∫

Ω

(
rot U rot U ′ − ω2 U · U ′

)
dx = 0 ∀U ′ ∈ H0(rot;Ω)

1 If ω = 0, then exists a scalar potential ϕ such that

ϕ ∈ H1
0 (Ω) and ∇ϕ = U

Conversely, if ϕ ∈ H1
0 (Ω), then (0,∇ϕ) solves (∗).

2 If ω ̸= 0, then div U = 0 and exists a scalar potentiala ψ ∈ H1(Ω) s. t.

ψ ∈ H1(Ω) and
−→
rotψ = U

and (ω2,ψ) is an eigenpair of the Neumann problem

(∗∗)

∫

Ω

(
∇ψ ·∇ψ′ − ω2 ψ ψ′

)
dx = 0 ∀ψ′ ∈ H1(Ω)

Conversely, if (ω2,ψ) is an eigenpair (∗∗), then (ω,
−→
rotψ) solves (∗).

a −→
rotψ is the vector curl in 2-dim. :

−→
rotψ = (∂2ψ,−∂1ψ)

⊥
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Bench test Numerical test

Proof

1 If ω = 0, then rot U = 0.

As Ω is simply connected, there exists a potential ϕ such that ∇ϕ = U.

Since U × n = 0 on ∂Ω, then ϕ is constant on ∂Ω.

The simple connectedness implies that ∂Ω has one component, so ϕ can be
chosen in H1

0 (Ω).

2 If ω ̸= 0, choose as test function U′ = ∇ϕ′, with ϕ′ ∈ H1
0 (Ω). Then (∗) ⇒

∫

Ω
U ·∇ϕ′ dx = 0 ∀ϕ′ ∈ H1

0 (Ω)

Therefore, in the sense of duality
〈

div U , ϕ′〉

H−1(Ω) | H1
0
(Ω) = 0 ∀ϕ′ ∈ H1

0 (Ω)

Hence div U = 0. This implies the existence of a scalar potential ψ s.t.
−→
rotψ = U . As

rot
−→
rotψ = −∆ψ and

−→
rotψ ·

−→
rotψ′ = ∇ψ ·∇ψ′

U ∈ H0(rot;Ω) ⇐⇒ ψ ∈ D(∆Neu;Ω) :=
{

v ∈ H1(Ω), ∆v ∈ L2(Ω) & ∂nψ
∣

∣

∂Ω
= 0

}

(∗) implies ψ ∈ D(∆Neu;Ω)

(∗ ∗ ∗)

∫

Ω

(

∆ψ∆ψ′ − ω2 ∇ψ ·∇ψ′
)

dx = 0 ∀ψ′ ∈ D(∆Neu;Ω)
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End of proof

Integrating by parts (∗ ∗ ∗) implies
∫

Ω

(

∆ψ∆ψ′ + ω2 ψ∆ψ′
)

dx = 0 ∀ψ′ ∈ D(∆Neu;Ω)

i.e.
∫

Ω

(

∆ψ + ω2 ψ
)

∆ψ′dx = 0 ∀ψ′ ∈ D(∆Neu;Ω)

Denote by L2
◦(Ω) the space of functions L2(Ω) orthogonal to constants on Ω

L2
◦(Ω) =

{

v ∈ L2(Ω),

∫

Ω
v dx = 0

}

Now, we can choose ψ ∈ L2
◦(Ω), and still have

−→
rotψ = U. The operator ∆Neu

∆Neu : D(∆Neu;Ω) −→ L2
◦(Ω) is onto / surjectif

Hence
∫

Ω

(

∆ψ + ω2 ψ
)

vdx = 0 ∀v ∈ L2
◦(Ω)

and, since ∆ψ + ω2 ψ belongs to L2
◦(Ω)

∆ψ + ω2 ψ = 0

Finishing the proof is now easy.
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The TE cavity problem versus the rot-rot spectral problem

Corollary

Let Ω be a 2-dim. simply connected Lipschitz domain.
The solutions

(

ω, (E1,E2,H3)) of the TE cavity problem (9) are

1 ω = 0 with E1 = E2 = 0 and H3 non-zero constant.

2 ω ̸= 0 such that ω2 is an eigenvalue of ∆Neu, the positive Laplace operator with
Neumann conditions: ∆Neu = −∆ with operator domain D(∆Neu;Ω). Then

(E1,E2,H3) = (
−→
rotψ,−iωψ)

with ψ eigenvector of ∆Neu associated with ω2.

Remarks on 3-dim. domains
If Ω is a 3-dim. simply connected Lipschitz domain, the solutions of

(∗)

∫

Ω

(

curl U · curl U′ − ω2 U · U′
)

dx = 0 ∀U ′ ∈ H0(curl;Ω)

are related to the cavity problem in a similar way:

ω = 0 =⇒ div U ̸= 0 and ω ̸= 0 =⇒ div U = 0

and the solutions of the cavity problem can be deduced from those of (∗) when ω ̸= 0.
But, in 3-dim. there is no scalar potential in general.
The 2-dim. serves as a bench test / banc d’essai / for 3-dim.
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Outline

4 Toy problem – Bench test

5 Numerical test / Rien ne va plus
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The square

Consider Ω = (0,π)× (0,π).
By separation of variables, we find that the eigenpairs of ∆Neu are
{
ω2 = j2

1 + j2
2

ψ(x1, x2) = cos(j1x1) cos(j2x2)
for any integers j1, j2 ∈ {0, 1, 2, . . .}

Using Proposition 1, this implies that the solutions of the electric Maxwell
spectral problem

(∗)

∫

Ω

rot U rot U ′ dx = ω2

∫

Ω

U · U ′ dx ∀U′ ∈ H0(rot;Ω)

correspond to eigenvalues ω2 equal to

1 0 (with infinite multiplicity)

2 1, 1, 2, 4, 4, 5, 5, 8, 9, 9, 10, 10, 13, 13, . . .
(with repetition according to multiplicity)
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Finite element method

a Let a be bilinear (or sesquilinear) form well defined on a product space
V × V

a(u, v) =
∑

i

∑

j

∑

|α|≤1

∑

|β|≤1

∫

Ω

(
aαβ ∂

αui ∂
βvj

)
dx

Spectral problem associated with a: Find pairs (λ,u), with 0 ̸= u ∈ V s. t.

(†) a(u, v) = λ⟨u, v⟩L2(Ω)|L2(Ω) ∀v ∈ V

b Let Ṽ be a finite dimensional subspace of V .

Galerkin projection of problem (†): Find pairs (λ̃, ũ), with 0 ̸= ũ ∈ Ṽ s. t.

(‡) a(ũ, ṽ) = λ̃⟨ũ, ṽ⟩L2(Ω)|L2(Ω) ∀ṽ ∈ Ṽ

b The Finite Element Method [FEM] consists in constructing and

implementing suitable spaces Ṽ . In general, they are based on a mesh of Ω
(subdivision into triangular or quadrilateral elements in 2-dim.) and piecewise
(mapped-)polynomials in each element of the mesh.

Analysis of FEM: proving (or disproving) convergence when dim Ṽ → ∞.
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Let’s go / On y va
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Triangular mesh
∼ 450 elements of degree 1

Sort computed eigenvalues
by increasing order

λ̃1 ≤ λ̃2 ≤ · · ·

Abscissa: rank of computed eigenvalue 1 ≤ n ≤ 140

Ordinates: value of λ̃n

Horizontal lines = exact values for λj
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Another try / Un autre essai
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ũ = (ũ1, ũ2)

with
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Il y a encore un problème

Abscissa: rank of computed eigenvalue 1 ≤ n ≤ 70
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Horizontal lines = exact values for λj
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Another try / Un autre essai
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Try something else (breaking identity between components)
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Mesh with one square element
of mixed degrees 7&8 :

ũ = (ũ1, ũ2)

with

ũ1 ∈ P7 ⊗ P8 ũ2 ∈ P8 ⊗ P7

Sort computed eigenvalues
by increasing order

λ̃1 ≤ λ̃2 ≤ · · ·

Il n’y a plus de problème
This is an “edge element”
cf lecture by Martin.

Abscissa: rank of computed eigenvalue 1 ≤ n ≤ 70

Ordinates: value of λ̃n

Horizontal lines = exact values for λj
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