Harmonic Maxwell equations and their Finite Element discretization Les équations de Maxwell harmoniques et leurs discrétisations par éléments finis

Monique Dauge & Martin Costabel

IRMAR, Université de Rennes 1, FRANCE

Cours Doctoral IRMAR 2019 25 & 26 février 2029

http://perso.univ-rennes1.fr/monique.dauge

## Outline / Plan / Planned contributions by MD and MC

- Part I. Introduction to Maxwell equations [MD]
- Notations
- Maxwell equations
- Variational formulation for cavity problem

Part II. Traps in Finite element discretization / Quelques pièges [MD]

- Toy problem Bench test
- 5 Numerical test / *Rien ne va plus*
- Part III. Elliptic regularization: bad and good methods [MD]
- Standard regularization
- Non-convex corners
- 8 Weighted regularization

Part IV. Edge element techniques [MC]

# Part I

# **Introduction to Maxwell equations**

## Outline



## 2 Maxwell equations



Variational formulation for cavity problem

## Before stating equations, agree on notations and conventions

Slides written in English / Transparents en anglais, avec quelques traductions

Colors

- Direction that we will follow
- Direction that we will leave
- Important expressions
- Emphasize or Danger

### General notation

- $t \in \mathbb{R}$ , time variable
- $\partial_t := \frac{\partial}{\partial t}$ , time derivative
- **x**, space variable
  - In 3 dimensions  $\mathbf{x} = (x_1, x_2, x_3)$
  - In 2 dimensions  $\mathbf{x} = (x_1, x_2)$
- For  $j \in \{1, 2, 3\}$ ,  $\partial_j := \frac{\partial}{\partial x_j}$  partial space derivative

## **Operators of order 1 and 2 in 3 dimensions of space**

 $\nabla$  is the gradient operator. For scalar distribution  $\varphi$ 

$$\nabla \varphi = \begin{pmatrix} \partial_1 \varphi \\ \partial_2 \varphi \\ \partial_3 \varphi \end{pmatrix}$$

div is the divergence operator: For vector distributions  $\boldsymbol{u} = (u_1, u_2, u_3)$ 

div 
$$\boldsymbol{u} = \nabla \cdot \boldsymbol{u} = \partial_1 u_1 + \partial_2 u_2 + \partial_3 u_3$$

**curl** is the curl operator / *rotationnel*: For vector distributions  $\boldsymbol{u} = (u_1, u_2, u_3)$ 

$$\operatorname{curl} \boldsymbol{u} = \nabla \times \boldsymbol{u} = \begin{pmatrix} \partial_2 u_3 - \partial_3 u_2 \\ \partial_3 u_1 - \partial_1 u_3 \\ \partial_1 u_2 - \partial_2 u_1 \end{pmatrix}$$

 $\Delta$  is the Laplace operator (aka Laplacian). For scalar distribution  $\varphi$ 

$$\Delta \varphi = \partial_1^2 \varphi + \partial_2^2 \varphi + \partial_3^2 \varphi$$

| Notations<br>○○● | Maxwell equations | Cavity problem |
|------------------|-------------------|----------------|
|                  |                   |                |

# **Important relations**

div 
$$\nabla \varphi = \Delta \varphi$$
  
div curl  $\boldsymbol{u} = 0$   
curl  $\nabla \varphi = 0$   
curl curl  $\boldsymbol{u} - \nabla$  div  $\boldsymbol{u} = -\Delta \boldsymbol{u}$ 

where the vector Laplacian is

$$oldsymbol{\Delta} oldsymbol{u} = egin{pmatrix} \Delta U_1 \ \Delta U_2 \ \Delta U_3 \end{pmatrix}$$

## Outline



## **2** Maxwell equations



Variational formulation for cavity problem

## **Time dependent Maxwell equations**

Unknowns are 4 vector functions (fields / champ) with 3 components each

- & electric field
- $\mathcal{H}$  magnetic field
- D electric displacement
- 38 magnetic induction

Maxwell equations consist of the 4 relations

 $\partial_t \mathscr{B} + \operatorname{curl} \mathscr{E} = 0$  (1a)

$$\operatorname{div} \mathfrak{D} = \rho \tag{1b}$$

$$\partial_t \mathcal{D} - \operatorname{curl} \mathcal{H} = -\mathcal{J} \tag{1c}$$

$$\operatorname{div} \mathscr{B} = 0 \tag{1d}$$

- (1a) Faraday's law
- (1b) Gauss's law with  $\rho$  the scalar charge density
- (1c) Ampère's circuital law, modified by Maxwell, with current density  $\mathcal{J}$
- (1d) tells that  $\mathscr{B}$  is solenoidal

## **Time harmonic Maxwell equations**

By partial in time Fourier transformation, or because the data  $\mathcal{J}$  and  $\rho$  are time harmonic, we assume that  $\mathcal{E}, \mathcal{H}, \mathcal{D}$ , and  $\mathcal{B}$  are time harmonic, i.e. that there exists  $\omega \in \mathbb{R}$  such that

$$\begin{aligned} & \mathscr{E}(t, \boldsymbol{x}) = \boldsymbol{e}^{-i\omega t} \boldsymbol{E}(\boldsymbol{x}), \qquad \mathscr{H}(t, \boldsymbol{x}) = \boldsymbol{e}^{-i\omega t} \boldsymbol{H}(\boldsymbol{x}), \\ & \mathscr{B}(t, \boldsymbol{x}) = \boldsymbol{e}^{-i\omega t} \boldsymbol{B}(\boldsymbol{x}), \qquad \mathscr{D}(t, \boldsymbol{x}) = \boldsymbol{e}^{-i\omega t} \boldsymbol{D}(\boldsymbol{x}) \end{aligned}$$

Then the 4-equation system becomes

 $\operatorname{curl} \boldsymbol{E} - i\omega \boldsymbol{B} = 0 \tag{2a}$ 

$$\operatorname{div} \boldsymbol{D} = \rho \tag{2b}$$

$$\operatorname{curl} \boldsymbol{H} + i\omega \boldsymbol{D} = \boldsymbol{J}$$
(2c)

$$\operatorname{div} \boldsymbol{B} = 0 \tag{2d}$$

Divergence constraints

- Apply div to (2a)  $\implies i\omega \operatorname{div} \boldsymbol{B} = 0$ . Hence (2d) implied if  $\omega \neq 0$
- Apply div to (2c)  $\implies i\omega \operatorname{div} \boldsymbol{D} = \operatorname{div} \boldsymbol{J}$ . Hence the relation  $i\omega\rho = \operatorname{div} \boldsymbol{J}$

The 4-equation system is not closed.

## **Constitutive equations for linear media**

Then **D** is proportional to **E** and **B** is proportional to **H** 

 $\boldsymbol{D} = \boldsymbol{\varepsilon} \boldsymbol{E}$  and  $\boldsymbol{B} = \boldsymbol{\mu} \boldsymbol{H}$ 

with coefficients  $\varepsilon = \varepsilon(\mathbf{x})$  (electric permittivity) and  $\mu = \mu(\mathbf{x})$  (magnetic permeability) depending on the material property at  $\mathbf{x}$ . Material coefficients  $\varepsilon$  and  $\mu$  can be matrix valued (anisotropic materials). We consider here isotropic materials for which  $\varepsilon$  and  $\mu$  are scalar. Particular materials

- Vacuum (or free space):  $\varepsilon = \varepsilon_0$  and  $\mu = \mu_0^{-1}$
- Dielectric material:  $\varepsilon$  and  $\mu$  real,  $\varepsilon \geq \varepsilon_0$  and  $\mu \geq \mu_0$  for classical materials, possibly negative for metamaterials.
- Conducting material:  $\mu \ge \mu_0$  real and  $\varepsilon$  complex valued, with  $\operatorname{Im} \varepsilon = \sigma \omega^{-1}$  where  $\sigma$  is the conductivity.

Globally in  $\mathbb{R}^3$ ,  $\varepsilon$  and  $\mu$  are piecewise constant depending on which material occupies the space at each point.

 $^{1}\varepsilon_{0} = 8.854 \times 10^{-12} \text{ Fm}^{-1}$  and  $\mu_{0} = 4\pi \times 10^{-7} \text{ Hm}^{-1}$ . Speed of light  $c = (\varepsilon_{0}\mu_{0})^{-1/2}$ .

| Notations | Maxwell equations | Cavity problem |
|-----------|-------------------|----------------|
| 000       | 00000             | 00000          |

### Time harmonic Maxwell equations with constitutive laws

Putting all together we obtain

$$\operatorname{curl} \boldsymbol{E} - i\omega\mu \boldsymbol{H} = 0 \tag{3a}$$

$$\operatorname{div}\varepsilon\boldsymbol{E}=\rho\tag{3b}$$

$$\operatorname{curl} \boldsymbol{H} + i\omega\varepsilon\boldsymbol{E} = \boldsymbol{J} \tag{3c}$$

$$\operatorname{div} \mu \boldsymbol{H} = \boldsymbol{0} \tag{3d}$$

Leaving aside the source problem we take  $\rho = 0$  and J = 0:

$$\operatorname{curl} \boldsymbol{E} - i\omega\mu\boldsymbol{H} = 0 \tag{4a}$$

$$\operatorname{div}\varepsilon\boldsymbol{E}=0\tag{4b}$$

$$\operatorname{curl} \boldsymbol{H} + i\omega\varepsilon\boldsymbol{E} = 0 \tag{4c}$$

$$\operatorname{div} \mu \boldsymbol{H} = 0 \tag{4d}$$

The problem is to find triples  $(\omega, \boldsymbol{E}, \boldsymbol{H})$  with  $\omega \in \mathbb{C}$ , and  $(\boldsymbol{E}, \boldsymbol{H}) \neq (0, 0)$  in admissible function spaces

- In  $\mathbb{R}^3$ , this is the problem of finding scattering resonances. Suitable radiation conditions at infinity have to be imposed. In general Im  $\omega < 0$ .
- In bounded domains, combined with suitable boundary conditions, this is the problem of finding cavity resonances. In general  $\omega \in \mathbb{R}$ .

## The cavity problem

An electromagnetic cavity  $\Omega$  is a bounded region of  $\mathbb{R}^3$  that is isolated from an electromagnetic point of view from the outside region  $\mathbb{R}^3 \setminus \Omega$ .

This is an idealization of a Faraday cage for which we consider that  $\Omega$  is surrounded by a layer of infinite conductivity  $\sigma$ . Then the electric field  $\boldsymbol{E}$  is zero outside  $\Omega$  and this causes the boundary condition

 $\boldsymbol{E} \times \boldsymbol{n} = 0$  on  $\partial \Omega$  (the tangential component of  $\boldsymbol{E}$  is 0 (5)

Here *n* is the unitary outward normal field to  $\partial \Omega$ .

This can be rigorously proved by setting Maxwell equation in a region containing  $\Omega$  and its surrounding conductive medium and let  $\sigma$  tend to infinity. Going to this limit exhibits the skin effect / *effet de peau* / in conductive media.

## Outline







**3** Variational formulation for cavity problem

## Elimination of magnetic field

**Recall equations** 

| <b>curl <i>E</i> – iωμ</b> | $\mathbf{H} = 0$ | in | Ω | (6a) |
|----------------------------|------------------|----|---|------|
|                            | •••••            |    |   |      |

 $\operatorname{div} \varepsilon \boldsymbol{E} = 0 \quad \text{in} \quad \Omega \tag{6b}$ 

$$\operatorname{curl} \boldsymbol{H} + i\omega\varepsilon\boldsymbol{E} = 0 \quad \text{in} \quad \Omega \tag{6c}$$

 $\operatorname{div} \mu \boldsymbol{H} = 0 \quad \text{in} \quad \Omega \tag{6d}$ 

$$\boldsymbol{E} \times \boldsymbol{n} = 0$$
 on  $\partial \Omega$  (6e)

Using (6a) it is tempting to eliminate *H* by writing:  $i\omega H = \frac{1}{\mu} \operatorname{curl} E$  which yields, formally with (6c)

$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} \boldsymbol{E} - \omega^2 \varepsilon \boldsymbol{E} = 0 \tag{7}$$

Most frequently, one finds (7) in the literature, followed by an integration by parts to find a variational formulation.

We will rather start from the system (6) to find directly the variational formulation, which allows to find variational spaces without doubt.

## The space $H(\operatorname{curl}; \Omega)$

Assume that  $\boldsymbol{E} \in L^2(\Omega)^3$  and  $\boldsymbol{H} \in L^2(\Omega)^3$ . Then (6c) and (6a) yields

 $\operatorname{\mathsf{curl}} {\boldsymbol{\mathsf{E}}} \in L^2(\Omega)^3$  and  $\operatorname{\mathsf{curl}} {\boldsymbol{\mathsf{H}}} \in L^2(\Omega)^3$ 

This leads to introduce the space

$$H(\operatorname{curl};\Omega)=\{oldsymbol{U}\in L^2(\Omega)^3,\quad\operatorname{curl}oldsymbol{U}\in L^2(\Omega)^3\}$$

#### Lemma [Girault-Raviart, 86]

Let  $\Omega$  be a bounded Lipschitz domain<sup>*a*</sup>. Then  $\mathscr{C}^{\infty}(\overline{\Omega})^3$  is dense in  $H(\operatorname{curl}; \Omega)$ .

<sup>a</sup>A Lipschitz domain is a domain that is (after possible rotations) the epigraph of a Lipschitz function in the neighborhood of each of its boundary points.

Consequence: if  $U \in H(\operatorname{curl}; \Omega)$ , the tangential trace  $U \times n$  makes sense in  $H^{-1/2}(\partial \Omega)^3$  thanks to the identity, valid for any  $\Phi \in H^1(\Omega)^3$ :

$$\langle \boldsymbol{U} \times \boldsymbol{n}, \Phi \rangle_{H^{-1/2}(\partial \Omega)^3 \mid H^{1/2}(\partial \Omega)^3} = \int_{\Omega} \boldsymbol{U} \cdot \operatorname{curl} \Phi \, \mathrm{d} \boldsymbol{x} - \int_{\Omega} \operatorname{curl} \boldsymbol{U} \cdot \Phi \, \mathrm{d} \boldsymbol{x}$$

| Notations<br>000              | Maxwell equations | Cavity problem<br>○○●○○ |  |  |  |  |
|-------------------------------|-------------------|-------------------------|--|--|--|--|
|                               |                   |                         |  |  |  |  |
| The space $H_0(curl; \Omega)$ |                   |                         |  |  |  |  |
|                               |                   |                         |  |  |  |  |

Then we can introduce the H-curl space with zero tangential traces

```
H_0(\operatorname{curl}; \Omega) = \{ \boldsymbol{U} \in H(\operatorname{curl}; \Omega), \quad \boldsymbol{u} \times \boldsymbol{n} |_{\partial \Omega} = 0 \}
```

Then

#### Lemma [Girault-Raviart, 86]

Let  $\Omega$  be a bounded Lipschitz domain. Then  $\mathscr{C}_0^{\infty}(\Omega)^3$  is dense in  $H_0(\operatorname{curl}; \Omega)$ .

And an important consequence

#### Lemma

Let  $\Omega$  be a bounded Lipschitz domain. Then

$$\int_{\Omega} \boldsymbol{U} \cdot \boldsymbol{\mathsf{curl}} \, \boldsymbol{V} \, \mathrm{d}\boldsymbol{x} = \int_{\Omega} \boldsymbol{\mathsf{curl}} \, \boldsymbol{U} \cdot \boldsymbol{V} \, \mathrm{d}\boldsymbol{x} \quad \forall \boldsymbol{U} \in H_0(\boldsymbol{\mathsf{curl}};\Omega), \ \forall \boldsymbol{V} \in H(\boldsymbol{\mathsf{curl}};\Omega).$$

Maxwell equations

## **Towards variational formulation of cavity problem**

Recall

$$\operatorname{curl} \boldsymbol{E} - i\omega\mu\boldsymbol{H} = 0 \quad \text{in} \quad \Omega \tag{6a}$$

$$\operatorname{curl} \boldsymbol{H} + i\omega\varepsilon\boldsymbol{E} = 0 \quad \text{in} \quad \Omega \tag{6c}$$

$$\boldsymbol{E} \times \boldsymbol{n} = 0$$
 on  $\partial \Omega$  (6e)

If  $\boldsymbol{E} \in L^2(\Omega)^3$  and  $\boldsymbol{H} \in L^2(\Omega)^3$ , then  $\boldsymbol{E} \in H_0(\operatorname{curl}; \Omega)$  and  $\boldsymbol{H} \in H(\operatorname{curl}; \Omega)$ .

Pick a test function  $\mathbf{E}' \in H_0(\operatorname{curl}; \Omega)$ . Multiply (6a) by  $\mu^{-1}$  on the left, take the  $\cdot$  product with curl  $\mathbf{E}'$  on the right, integrate over  $\Omega$ 

$$\int_{\Omega} \left( \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}' - i\omega \boldsymbol{H} \cdot \operatorname{curl} \boldsymbol{E}' \right) \mathrm{d}\boldsymbol{x} = 0$$
 (6a')

Multiply (6c) by  $i\omega$ , take the  $\cdot$  product with E' on the right, integrate over  $\Omega$ 

$$\int_{\Omega} \left( i\omega \operatorname{curl} \boldsymbol{H} \cdot \boldsymbol{E}' - \omega^2 \varepsilon \, \boldsymbol{E} \cdot \boldsymbol{E}' \right) \mathrm{d}\boldsymbol{x} = 0 \tag{6c'}$$

Add (6a') and (6c'), use the Lemma on previous slide and obtain

$$\int_{\Omega} \left( \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}' - \omega^2 \varepsilon \, \boldsymbol{E} \cdot \boldsymbol{E}' \right) \mathrm{d} \boldsymbol{x} = \mathbf{0}$$

## **Electric spectral problem**

#### Definition

Let  $\Omega$  be a bounded Lipschitz domain. The electric spectral problem is to find pairs  $(\omega, \mathbf{E})$  with non-zero  $\mathbf{E} \in H_0(\mathbf{curl}; \Omega)$ , such that

$$\int_{\Omega} \left( \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}' - \omega^2 \varepsilon \, \boldsymbol{E} \cdot \boldsymbol{E}' \right) \mathrm{d} \boldsymbol{x} = 0 \quad \forall \boldsymbol{E}' \in H_0(\operatorname{curl}; \Omega)$$
(8)

Many questions arise

- Can we find solutions?
- Do solutions correspond to solutions of the cavity problem?
- Can we discretize (8) by Finite Element Method (Galerkin projection)

We address these questions on a simplifed two-dimensional problem which

- Encounters the same difficulties as the original 3D problem
  - Has solutions that can be alternatively deduced by solving a scalar equation.

# Part II

# **Traps in Finite element discretization**

## Outline

**4** Toy problem – Bench test



Numerical test / Rien ne va plus

## From 3 to 2 dimensions

- Take  $\varepsilon$  and  $\mu$  constant equal to 1.
- Take as domain  $\Omega$  a 2-dim. polygon (straight sides).

To find the Maxwell cavity problem in  $\Omega$  in its TE (Transverse Electric) formulation we go back to the 3-dim. formulation, considered in  $\Omega \times \mathbb{R}$ :

$$\operatorname{curl} \boldsymbol{E} - i\omega \boldsymbol{H} = 0 \quad \text{in} \quad \Omega \times \mathbb{R}$$
 (6a)

- div  $\boldsymbol{E} = 0$  in  $\Omega \times \mathbb{R}$  (6b)
- $\operatorname{curl} \boldsymbol{H} + i\omega \boldsymbol{E} = 0 \quad \text{in} \quad \Omega \times \mathbb{R}$  (6c)
  - div  $\boldsymbol{H} = 0$  in  $\Omega \times \mathbb{R}$  (6d)

$$\boldsymbol{E} \times \boldsymbol{n} = 0 \quad \text{on} \quad \partial \Omega \times \mathbb{R}$$
 (6e)

and assume that

- **E** and **H** are function of  $(x_1, x_2)$  only (no dependence in  $x_3$ )
- $E_3 = 0, H_1 = H_2 = 0$ , i.e.

$$oldsymbol{E} = egin{pmatrix} E_1 \ E_2 \ 0 \end{pmatrix}$$
 and  $oldsymbol{H} = egin{pmatrix} 0 \ 0 \ H_3 \end{pmatrix}$ 

Note that (6d) is already satisfied. We obtain

. . . / . . .

## The TE cavity problem

$$\partial_1 E_2 - \partial_2 E_1 - i\omega H_3 = 0$$
 in  $\Omega$  (9a)

$$\partial_1 E_1 + \partial_2 E_2 = 0$$
 in  $\Omega$  (9b)

$$\partial_2 H_3 + i\omega E_1 = 0$$
 and  $-\partial_1 H_3 + i\omega E_2 = 0$  in  $\Omega$  (9c)

$$E_1 n_2 - E_2 n_1 = 0 \quad \text{on} \quad \partial \Omega \tag{9d}$$

Define the scalar curl (denoted rot) in 2 dimensions as

rot 
$$\boldsymbol{U} = \partial_1 U_2 - \partial_2 U_1$$
 for  $\boldsymbol{U} = (U_1, U_2)$ 

and the spaces  $H(rot; \Omega)$  and  $H_0(rot; \Omega)$  accordingly.

By the same method as in 3-dim. we find that  $U = (E_1, E_2)$  is solution of the

**Electric Maxwell spectral problem in 2-dim.** 

Find pairs ( $\omega$ , **U**) with non-zero **U**  $\in$  *H*<sub>0</sub>(rot;  $\Omega$ ), such that

$$\int_{\Omega} \left( \operatorname{rot} \boldsymbol{U} \operatorname{rot} \boldsymbol{U}' - \omega^2 \, \boldsymbol{U} \cdot \boldsymbol{U}' \right) d\boldsymbol{x} = 0 \quad \forall \boldsymbol{U}' \in H_0(\operatorname{rot}; \Omega)$$
(10)

Observe that (9c) implies  $\partial_1 H_3$  and  $\partial_2 H_3$  are in  $L^2(\Omega)$ . Hence  $H_3 \in H^1(\Omega)$ . We find:

#### **Neumann spectral problem**

Find pairs  $(\omega, H_3)$  with non-zero  $H_3 \in H^1(\Omega)$ , such that

$$\int_{\Omega} \left( \nabla H_3 \cdot \nabla H' - \omega^2 H_3 H' \right) d\boldsymbol{x} = 0 \quad \forall H' \in H^1(\Omega)$$
(11)

17/36

## The electric Maxwell spectral problem (rot-rot eigenmodes)

#### **Proposition 1**

Let  $\Omega$  be a 2-dim. simply connected Lipschitz domain. Let  $(\omega, \boldsymbol{U}) \in \mathbb{C} \times H_0(\operatorname{rot}; \Omega)$  be a solution of

(\*) 
$$\int_{\Omega} \left( \operatorname{rot} \boldsymbol{U} \operatorname{rot} \boldsymbol{U}' - \omega^2 \boldsymbol{U} \cdot \boldsymbol{U}' \right) d\boldsymbol{x} = 0 \quad \forall \boldsymbol{U}' \in H_0(\operatorname{rot}; \Omega)$$

**1** If  $\omega = 0$ , then exists a scalar potential  $\varphi$  such that

$$\varphi \in H_0^1(\Omega)$$
 and  $\nabla \varphi = \boldsymbol{U}$ 

Conversely, if  $\varphi \in H_0^1(\Omega)$ , then  $(0, \nabla \varphi)$  solves (\*).

**2** If  $\omega \neq 0$ , then div  $\boldsymbol{U} = 0$  and exists a scalar potential<sup>*a*</sup>  $\psi \in H^1(\Omega)$  s. t.

$$\psi \in H^1(\Omega)$$
 and  $\overrightarrow{rot} \psi = U$ 

and  $(\omega^2, \psi)$  is an eigenpair of the Neumann problem

(\*\*) 
$$\int_{\Omega} \left( \nabla \psi \cdot \nabla \psi' - \omega^2 \psi \psi' \right) d\mathbf{x} = \mathbf{0} \quad \forall \psi' \in H^1(\Omega)$$

Conversely, if  $(\omega^2, \psi)$  is an eigenpair (\*\*), then  $(\omega, \overrightarrow{rot} \psi)$  solves (\*).

<sup>*a*</sup>  $\overrightarrow{\mathsf{rot}} \psi$  is the vector curl in 2-dim. :  $\overrightarrow{\mathsf{rot}} \psi = (\partial_2 \psi, -\partial_1 \psi)^{\perp}$ 

## Proof

If  $\omega = 0$ , then rot U = 0.

- As  $\Omega$  is simply connected, there exists a potential  $\varphi$  such that  $\nabla \varphi = \boldsymbol{U}$ .
- Since  $\boldsymbol{U} \times \boldsymbol{n} = 0$  on  $\partial \Omega$ , then  $\varphi$  is constant on  $\partial \Omega$ .
- The simple connectedness implies that  $\partial \Omega$  has one component, so  $\varphi$  can be chosen in  $H_0^1(\Omega)$ .

**2** If  $\omega \neq 0$ , choose as test function  $U' = \nabla \varphi'$ , with  $\varphi' \in H_0^1(\Omega)$ . Then  $(*) \Rightarrow$ 

$$\int_{\Omega} oldsymbol{U} \cdot 
abla arphi' \, \mathrm{d} oldsymbol{x} = 0 \quad orall arphi' \in H^1_0(\Omega)$$

Therefore, in the sense of duality

$$\langle \operatorname{div} \boldsymbol{U}, \varphi' \rangle_{H^{-1}(\Omega) \mid H^{1}_{0}(\Omega)} = 0 \quad \forall \varphi' \in H^{1}_{0}(\Omega)$$

Hence div  $\boldsymbol{U} = 0$ . This implies the existence of a scalar potential  $\psi$  s.t.  $\overrightarrow{rot} \psi = \boldsymbol{U}$ . As rot  $\overrightarrow{rot} \psi = -\Delta \psi$  and  $\overrightarrow{rot} \psi \cdot \overrightarrow{rot} \psi' = \nabla \psi \cdot \nabla \psi'$  $\boldsymbol{U} \in H_0(rot; \Omega) \iff \psi \in D(\Delta^{\text{Neu}}; \Omega) \coloneqq \{ \boldsymbol{v} \in H^1(\Omega), \ \Delta \boldsymbol{v} \in L^2(\Omega) \& \partial_n \psi \big|_{\partial\Omega} = 0 \}$ (\*) implies  $\psi \in D(\Delta^{\text{Neu}}; \Omega)$ 

(\*\*\*) 
$$\int_{\Omega} \left( \Delta \psi \, \Delta \psi' - \omega^2 \, \nabla \psi \cdot \nabla \psi' \right) \mathrm{d} \boldsymbol{x} = 0 \quad \forall \psi' \in \mathsf{D}(\Delta^{\mathsf{Neu}}; \Omega)$$

## End of proof

Integrating by parts (\* \* \*) implies

$$\int_{\Omega} \left( \Delta \psi \, \Delta \psi' + \omega^2 \, \psi \, \Delta \psi' \right) \mathsf{d} \boldsymbol{x} = 0 \quad \forall \psi' \in \mathsf{D}(\Delta^{\mathsf{Neu}}; \Omega)$$

i.e.

$$\int_{\Omega} \left( \Delta \psi + \omega^2 \, \psi \right) \Delta \psi' \mathsf{d} \boldsymbol{x} = \boldsymbol{0} \quad \forall \psi' \in \mathsf{D}(\Delta^{\mathsf{Neu}}; \Omega)$$

Denote by  $L^2_{\circ}(\Omega)$  the space of functions  $L^2(\Omega)$  orthogonal to constants on  $\Omega$ 

$$L^2_{\circ}(\Omega) = \left\{ v \in L^2(\Omega), \quad \int_{\Omega} v \, \mathrm{d} \boldsymbol{x} = 0 
ight\}$$

Now, we can choose  $\psi \in L^2_{\circ}(\Omega)$ , and still have  $\overrightarrow{rot} \psi = U$ . The operator  $\Delta^{Neu}$ 

$$\Delta^{\mathsf{Neu}} : \mathsf{D}(\Delta^{\mathsf{Neu}}; \Omega) \longrightarrow L^2_{\circ}(\Omega)$$
 is onto / *surjectif*

Hence

$$\int_{\Omega} \left( \Delta \psi + \omega^2 \, \psi 
ight) \, v \mathrm{d} oldsymbol{x} = 0 \quad orall oldsymbol{v} \in L^2_{
m o}(\Omega)$$

and, since  $\Delta \psi + \omega^2 \psi$  belongs to  $L^2_{\circ}(\Omega)$ 

$$\Delta \psi + \omega^2 \, \psi = 0$$

Finishing the proof is now easy.

# The TE cavity problem versus the rot-rot spectral problem

#### Corollary

Let  $\Omega$  be a 2-dim. simply connected Lipschitz domain. The solutions ( $\omega$ , ( $E_1$ ,  $E_2$ ,  $H_3$ )) of the TE cavity problem (9) are

- $\omega = 0$  with  $E_1 = E_2 = 0$  and  $H_3$  non-zero constant.
- 2  $\omega \neq 0$  such that  $\omega^2$  is an eigenvalue of  $\Delta^{\text{Neu}}$ , the positive Laplace operator with Neumann conditions:  $\Delta^{\text{Neu}} = -\Delta$  with operator domain D( $\Delta^{\text{Neu}}$ ;  $\Omega$ ). Then

$$(E_1, E_2, H_3) = (\overrightarrow{rot} \psi, -i\omega\psi)$$

with  $\psi$  eigenvector of  $\Delta^{\text{Neu}}$  associated with  $\omega^2$ .

#### **Remarks on 3-dim. domains**

If  $\Omega$  is a 3-dim. simply connected Lipschitz domain, the solutions of

(\*) 
$$\int_{\Omega} \left( \operatorname{curl} \boldsymbol{U} \cdot \operatorname{curl} \boldsymbol{U}' - \omega^2 \boldsymbol{U} \cdot \boldsymbol{U}' \right) d\boldsymbol{x} = 0 \quad \forall \boldsymbol{U}' \in H_0(\operatorname{curl}; \Omega)$$

are related to the cavity problem in a similar way:

$$\omega = 0 \Longrightarrow \operatorname{div} \boldsymbol{U} \neq 0$$
 and  $\omega \neq 0 \Longrightarrow \operatorname{div} \boldsymbol{U} = 0$ 

and the solutions of the cavity problem can be deduced from those of (\*) when  $\omega \neq 0$ . But, in 3-dim. there is no scalar potential in general. The 2-dim. serves as a bench test / *banc d'essai* / for 3-dim.

## Outline

**Toy problem – Bench test** 4



**5** Numerical test / *Rien ne va plus* 

## The square

Consider  $\Omega = (0, \pi) \times (0, \pi)$ . By separation of variables, we find that the eigenpairs of  $\Delta^{Neu}$  are

$$\begin{cases} \omega^2 = j_1^2 + j_2^2 \\ \psi(x_1, x_2) = \cos(j_1 x_1) \cos(j_2 x_2) \end{cases} \text{ for any integers } j_1, \ j_2 \in \{0, 1, 2, \ldots\} \end{cases}$$

Using Proposition 1, this implies that the solutions of the electric Maxwell spectral problem

(\*) 
$$\int_{\Omega} \operatorname{rot} \boldsymbol{U} \operatorname{rot} \boldsymbol{U}' \, \mathrm{d} \boldsymbol{x} = \omega^2 \int_{\Omega} \boldsymbol{U} \cdot \boldsymbol{U}' \, \mathrm{d} \boldsymbol{x} \quad \forall \boldsymbol{U}' \in H_0(\operatorname{rot}; \Omega)$$

correspond to eigenvalues  $\omega^2$  equal to

- 0 (with infinite multiplicity)
- 1, 1, 2, 4, 4, 5, 5, 8, 9, 9, 10, 10, 13, 13, ...
   (with repetition according to multiplicity)

### **Finite element method**

• Let *a* be bilinear (or sesquilinear) form well defined on a product space  $V \times V$ 

$$a(\boldsymbol{u},\boldsymbol{v}) = \sum_{i} \sum_{j} \sum_{|\alpha| \leq 1} \sum_{|\beta| \leq 1} \int_{\Omega} \left( a_{\alpha\beta} \,\partial^{\alpha} u_{i} \,\partial^{\beta} v_{j} \right) \mathrm{d}\boldsymbol{x}$$

Spectral problem associated with *a*: Find pairs  $(\lambda, \boldsymbol{u})$ , with  $0 \neq \boldsymbol{u} \in V$  s. t.

(†) 
$$a(\boldsymbol{u},\boldsymbol{v}) = \lambda \langle \boldsymbol{u},\boldsymbol{v} \rangle_{L^2(\Omega)|L^2(\Omega)} \quad \forall \boldsymbol{v} \in \boldsymbol{V}$$

• Let  $\tilde{V}$  be a finite dimensional subspace of V. Galerkin projection of problem (†): Find pairs  $(\tilde{\lambda}, \tilde{\boldsymbol{u}})$ , with  $0 \neq \tilde{\boldsymbol{u}} \in \tilde{V}$  s. t.

(‡)  $a(\widetilde{\boldsymbol{u}},\widetilde{\boldsymbol{v}}) = \widetilde{\lambda} \langle \widetilde{\boldsymbol{u}},\widetilde{\boldsymbol{v}} \rangle_{L^2(\Omega)|L^2(\Omega)} \quad \forall \widetilde{\boldsymbol{v}} \in \widetilde{\boldsymbol{V}}$ 

The Finite Element Method [FEM] consists in constructing and implementing suitable spaces  $\tilde{V}$ . In general, they are based on a mesh of  $\Omega$  (subdivision into triangular or quadrilateral elements in 2-dim.) and piecewise (mapped-)polynomials in each element of the mesh.

Analysis of FEM: proving (or disproving) convergence when dim  $V \to \infty$ .

## Let's go / On y va



- Abscissa: rank of computed eigenvalue  $1 \le n \le 140$
- Ordinates: value of  $\tilde{\lambda}_n$
- Horizontal lines = exact values for  $\lambda_j$

### Another try / Un autre essai



- Abscissa: rank of computed eigenvalue  $1 \le n \le 70$
- Ordinates: value of  $\tilde{\lambda}_n$
- Horizontal lines = exact values for  $\lambda_j$

### Another try / Un autre essai



- Abscissa: rank of computed eigenvalue  $1 \le n \le 70$
- Ordinates: value of  $\tilde{\lambda}_n$
- Horizontal lines = exact values for  $\lambda_j$

## Try something else (breaking identity between components)



- Abscissa: rank of computed eigenvalue  $1 \le n \le 70$
- Ordinates: value of  $\tilde{\lambda}_n$
- Horizontal lines = exact values for  $\lambda_j$