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Notations Maxwell equations Cavity problem

Before stating equations, agree on notations and conventions

Slides written in English / Transparents en anglais, avec quelques traductions

Colors

Direction that we will follow

Direction that we will leave

Important expressions

Emphasize or Danger

General notation

t ∈ R, time variable

∂t :=
∂
∂t

, time derivative

x , space variable

In 3 dimensions x = (x1, x2, x3)
In 2 dimensions x = (x1, x2)

For j ∈ {1, 2, 3}, ∂j :=
∂
∂xj

partial space derivative
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Notations Maxwell equations Cavity problem

Operators of order 1 and 2 in 3 dimensions of space

∇ is the gradient operator. For scalar distribution ϕ

∇ϕ =



∂1ϕ
∂2ϕ
∂3ϕ




div is the divergence operator: For vector distributions u = (u1, u2, u3)

div u = ∇ · u = ∂1u1 + ∂2u2 + ∂3u3

curl is the curl operator / rotationnel: For vector distributions u = (u1, u2, u3)

curl u = ∇× u =




∂2u3 − ∂3u2

∂3u1 − ∂1u3

∂1u2 − ∂2u1





∆ is the Laplace operator (aka Laplacian). For scalar distribution ϕ

∆ϕ = ∂2
1ϕ+ ∂2

2ϕ+ ∂2
3ϕ
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Notations Maxwell equations Cavity problem

Important relations

div∇ϕ = ∆ϕ

div curl u = 0

curl∇ϕ = 0

curl curl u −∇ div u = −∆u

where the vector Laplacian is

∆u =



∆u1

∆u2

∆u3
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Notations Maxwell equations Cavity problem
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Notations Maxwell equations Cavity problem

Time dependent Maxwell equations

Unknowns are 4 vector functions (fields / champ) with 3 components each

E electric field

H magnetic field

D electric displacement

B magnetic induction

Maxwell equations consist of the 4 relations

∂tB + curl E = 0 (1a)

div D = ρ (1b)

∂t D − curl H = −J (1c)

div B = 0 (1d)

(1a) Faraday’s law

(1b) Gauss’s law with ρ the scalar charge density

(1c) Ampère’s circuital law, modified by Maxwell, with current densityJ

(1d) tells that B is solenoidal
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Notations Maxwell equations Cavity problem

Time harmonic Maxwell equations

By partial in time Fourier transformation, or because the dataJ and ρ are

time harmonic, we assume that E, H, D, and B are time harmonic, i.e. that

there exists ω ∈ R such that

E(t , x) = e
−iωtE(x), H(t ,x) = e

−iωtH(x),

B(t ,x) = e
−iωtB(x), D(t ,x) = e

−iωtD(x)

Then the 4-equation system becomes

curl E − iωB = 0 (2a)

div D = ρ (2b)

curl H + iωD = J (2c)

div B = 0 (2d)

Divergence constraints

Apply div to (2a) =⇒ iω div B = 0. Hence (2d) implied if ω 6= 0

Apply div to (2c) =⇒ iω div D = div J . Hence the relation iωρ = div J

The 4-equation system is not closed.
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Notations Maxwell equations Cavity problem

Constitutive equations for linear media

Then D is proportional to E and B is proportional to H

D = εE and B = µH

with coefficients ε = ε(x) (electric permittivity) and µ = µ(x) (magnetic

permeability) depending on the material property at x .

Material coefficients ε and µ can be matrix valued (anisotropic materials).

We consider here isotropic materials for which ε and µ are scalar.

Particular materials

Vacuum (or free space): ε = ε0 and µ = µ0
1

Dielectric material: ε and µ real, ε ≥ ε0 and µ ≥ µ0 for classical

materials, possibly negative for metamaterials.

Conducting material: µ ≥ µ0 real and ε complex valued, with

Im ε = σω−1 where σ is the conductivity.

Globally in R3, ε and µ are piecewise constant depending on which material

occupies the space at each point.

1ε0 = 8.854 × 10−12 Fm−1 and µ0 = 4π × 10−7 Hm−1. Speed of light c = (ε0µ0)
−1/2.
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Notations Maxwell equations Cavity problem

Time harmonic Maxwell equations with constitutive laws

Putting all together we obtain

curl E − iωµH = 0 (3a)

div εE = ρ (3b)

curl H + iωεE = J (3c)

divµH = 0 (3d)

Leaving aside the source problem we take ρ = 0 and J = 0:

curl E − iωµH = 0 (4a)

div εE = 0 (4b)

curl H + iωεE = 0 (4c)

divµH = 0 (4d)

The problem is to find triples (ω,E,H) with ω ∈ C, and (E,H) 6= (0,0) in

admissible function spaces

In R3, this is the problem of finding scattering resonances.Suitable

radiation conditions at infinity have to be imposed. In general Imω < 0.

In bounded domains, combined with suitable boundary conditions, this is

the problem of finding cavity resonances. In general ω ∈ R.
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Notations Maxwell equations Cavity problem

The cavity problem

An electromagnetic cavity Ω is a bounded region of R3 that is isolated from

an electromagnetic point of view from the outside region R3 \ Ω.

This is an idealization of a Faraday cage for which we consider that Ω is

surrounded by a layer of infinite conductivity σ. Then the electric field E is

zero outside Ω and this causes the boundary condition

E × n = 0 on ∂Ω (the tangential component of E is 0 (5)

Here n is the unitary outward normal field to ∂Ω.

This can be rigorously proved by setting Maxwell equation in a region

containing Ω and its surrounding conductive medium and let σ tend to infinity.

Going to this limit exhibits the skin effect / effet de peau / in conductive media.
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Notations Maxwell equations Cavity problem

Elimination of magnetic field

Recall equations

curl E − iωµH = 0 in Ω (6a)

div εE = 0 in Ω (6b)

curl H + iωεE = 0 in Ω (6c)

divµH = 0 in Ω (6d)

E × n = 0 on ∂Ω (6e)

Using (6a) it is tempting to eliminate H by writing: iωH = 1
µ

curl E which

yields, formally with (6c)

curl
1

µ
curl E − ω2εE = 0 (7)

Most frequently, one finds (7) in the literature, followed by an integration by

parts to find a variational formulation.

We will rather start from the system (6) to find directly the variational

formulation, which allows to find variational spaces without doubt.

10/52



Notations Maxwell equations Cavity problem

The space H(curl; Ω)

Assume that E ∈ L2(Ω)3 and H ∈ L2(Ω)3. Then (6c) and (6a) yields

curl E ∈ L
2(Ω)3

and curl H ∈ L
2(Ω)3

This leads to introduce the space

H(curl; Ω) = {U ∈ L
2(Ω)3, curl U ∈ L

2(Ω)3}

Lemma [Girault-Raviart, 86]

Let Ω be a bounded Lipschitz domaina. Then C∞(Ω)3 is dense in H(curl; Ω).

aA Lipschitz domain is a domain that is (after possible rotations) the epigraph of a Lipschitz
function in the neighborhood of each of its boundary points.

Consequence: if U ∈ H(curl; Ω), the tangential trace U × n makes sense in

H−1/2(∂Ω)3 thanks to the identity, valid for any Φ ∈ H1(Ω)3:

〈
U × n,Φ

〉
H−1/2(∂Ω)3 | H1/2(∂Ω)3=

∫

Ω

U · curlΦ dx −

∫

Ω

curl U · Φ dx
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Notations Maxwell equations Cavity problem

The space H0(curl; Ω)

Then we can introduce the H-curl space with zero tangential traces

H0(curl; Ω) = {U ∈ H(curl; Ω), u × n
∣∣
∂Ω

= 0}

Then

Lemma [Girault-Raviart, 86]

Let Ω be a bounded Lipschitz domain. Then C∞
0 (Ω)3 is dense in H0(curl; Ω).

And an important consequence

Lemma

Let Ω be a bounded Lipschitz domain. Then

∫

Ω

U · curl V dx =

∫

Ω

curl U · V dx ∀U ∈ H0(curl; Ω), ∀V ∈ H(curl; Ω).
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Notations Maxwell equations Cavity problem

Towards variational formulation of cavity problem

Recall
curl E − iωµH = 0 in Ω (6a)

curl H + iωεE = 0 in Ω (6c)

E × n = 0 on ∂Ω (6e)

If E ∈ L2(Ω)3 and H ∈ L2(Ω)3, then E ∈ H0(curl; Ω) and H ∈ H(curl; Ω).

Pick a test function E ′ ∈ H0(curl; Ω). Multiply (6a) by µ−1 on the left, take the

· product with curl E ′ on the right, integrate over Ω
∫

Ω

(
µ−1

curl E · curl E ′ − iωH · curl E ′
)

dx = 0 (6a’)

Multiply (6c) by iω, take the · product with E ′ on the right, integrate over Ω
∫

Ω

(
iω curl H · E ′ − ω2εE · E ′

)
dx = 0 (6c’)

Add (6a’) and (6c’), use the Lemma on previous slide and obtain

∫

Ω

(
µ−1 curl E · curl E ′ − ω2εE · E ′

)
dx = 0
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Notations Maxwell equations Cavity problem

Electric spectral problem

Definition

Let Ω be a bounded Lipschitz domain. The electric spectral problem is to find

pairs (ω,E) with non-zero E ∈ H0(curl; Ω), such that

∫

Ω

(
µ−1

curl E · curl E ′ − ω2εE · E ′
)

dx = 0 ∀E ′ ∈ H0(curl; Ω) (8)

Many questions arise

1 Can we find solutions?

2 Do solutions correspond to solutions of the cavity problem?

3 Can we discretize (8) by Finite Element Method (Galerkin projection)

We address these questions on a simplifed two-dimensional problem which

1 Encounters the same difficulties as the original 3D problem

2 Has solutions that can be alternatively deduced by solving a scalar

equation.
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Bench test Numerical test

Part II

Traps in Finite element discretization
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Bench test Numerical test

Outline

4 Toy problem – Bench test

5 Numerical test / Rien ne va plus

16/52



Bench test Numerical test

From 3 to 2 dimensions

Take ε and µ constant equal to 1.

Take as domain Ω a 2-dim. polygon (straight sides).

To find the Maxwell cavity problem in Ω in its TE (Transverse Electric)

formulation we go back to the 3-dim. formulation, considered in Ω× R:

curl E − iωH = 0 in Ω× R (6a)

div E = 0 in Ω× R (6b)

curl H + iωE = 0 in Ω× R (6c)

div H = 0 in Ω× R (6d)

E × n = 0 on ∂Ω× R (6e)

and assume that

E and H are function of (x1, x2) only (no dependence in x3)

E3 = 0, H1 = H2 = 0, i.e.

E =




E1

E2

0



 and H =




0

0

H3





Note that (6d) is already satisfied. We obtain · · · / · · ·
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Bench test Numerical test

The TE cavity problem

∂1E2 − ∂2E1 − iωH3 = 0 in Ω (9a)

∂1E1 + ∂2E2 = 0 in Ω (9b)

∂2H3 + iωE1 = 0 and −∂1H3 + iωE2 = 0 in Ω (9c)

E1n2 − E2n1 = 0 on ∂Ω (9d)

Define the scalar curl (denoted rot) in 2 dimensions as

rot U = ∂1U2 − ∂2U1 for U = (U1,U2)

and the spaces H(rot; Ω) and H0(rot; Ω) accordingly.

By the same method as in 3-dim. we find that U = (E1,E2) is solution of the

Electric Maxwell spectral problem in 2-dim.

Find pairs (ω,U) with non-zero U ∈ H0(rot; Ω), such that∫

Ω

(
rot U rot U′ − ω2 U · U′

)
dx = 0 ∀U ′ ∈ H0(rot; Ω) (10)

Observe that (9c) implies ∂1H3 and ∂2H3 are in L2(Ω). Hence H3 ∈ H1(Ω). We find:

Neumann spectral problem

Find pairs (ω,H3) with non-zero H3 ∈ H1(Ω), such that∫

Ω

(
∇H3 · ∇H′ − ω2 H3 H′

)
dx = 0 ∀H′ ∈ H1(Ω) (11)
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Bench test Numerical test

The electric Maxwell spectral problem (rot-rot eigenmodes)

Proposition 1

Let Ω be a 2-dim. simply connected Lipschitz domain.

Let (ω,U) ∈ C× H0(rot; Ω) be a solution of

(∗)

∫

Ω

(
rot U rot U ′ − ω2 U · U ′

)
dx = 0 ∀U ′ ∈ H0(rot; Ω)

1 If ω = 0, then exists a scalar potential ϕ such that

ϕ ∈ H
1
0 (Ω) and ∇ϕ = U

Conversely, if ϕ ∈ H1
0 (Ω), then (0,∇ϕ) solves (∗).

2 If ω 6= 0, then div U = 0 and exists a scalar potentiala ψ ∈ H1(Ω) s. t.

ψ ∈ H
1(Ω) and

−→
rotψ = U

and (ω2, ψ) is an eigenpair of the Neumann problem

(∗∗)

∫

Ω

(
∇ψ · ∇ψ′ − ω2 ψ ψ′

)
dx = 0 ∀ψ′ ∈ H

1(Ω)

Conversely, if (ω2, ψ) is an eigenpair (∗∗), then (ω,
−→
rotψ) solves (∗).

a −→

rotψ is the vector curl in 2-dim. :
−→

rotψ = (∂2ψ,−∂1ψ)
⊥
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Bench test Numerical test

Proof

1 If ω = 0, then rot U = 0.

As Ω is simply connected, there exists a potential ϕ such that ∇ϕ = U.

Since U × n = 0 on ∂Ω, then ϕ is constant on ∂Ω.

The simple connectedness implies that ∂Ω has one component, so ϕ can be
chosen in H1

0
(Ω).

2 If ω 6= 0, choose as test function U′ = ∇ϕ′, with ϕ′ ∈ H1
0
(Ω). Then (∗) ⇒

∫

Ω
U · ∇ϕ′ dx = 0 ∀ϕ′ ∈ H1

0 (Ω)

Therefore, in the sense of duality
〈

div U , ϕ′
〉

H−1(Ω) | H1
0
(Ω) = 0 ∀ϕ′ ∈ H1

0 (Ω)

Hence div U = 0. This implies the existence of a scalar potential ψ s.t.
−→
rotψ = U . As

rot
−→
rotψ = −∆ψ and

−→
rotψ ·

−→
rotψ′ = ∇ψ · ∇ψ′

U ∈ H0(rot; Ω) ⇐⇒ ψ ∈ D(∆Neu; Ω) :=
{

v ∈ H1(Ω), ∆v ∈ L2(Ω) & ∂nv
∣∣
∂Ω

= 0
}

With the test functions U′ =
−→
rotψ′ for any ψ′ ∈ D(∆Neu; Ω), (∗) implies that ψ satifies

(∗ ∗ ∗)

∫

Ω

(
∆ψ∆ψ′ − ω2 ∇ψ · ∇ψ′

)
dx = 0 ∀ψ′ ∈ D(∆Neu; Ω)
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Bench test Numerical test

End of proof

Integrating by parts (∗ ∗ ∗) implies
∫

Ω

(
∆ψ∆ψ′ + ω2 ψ∆ψ′

)
dx = 0 ∀ψ′ ∈ D(∆Neu; Ω)

i.e. ∫

Ω

(
∆ψ + ω2 ψ

)
∆ψ′dx = 0 ∀ψ′ ∈ D(∆Neu; Ω)

Denote by L2
◦(Ω) the space of functions L2(Ω) orthogonal to constants on Ω

L2
◦(Ω) =

{
v ∈ L2(Ω),

∫

Ω
v dx = 0

}

Now, we can choose ψ ∈ L2
◦(Ω), and still have

−→
rotψ = U. The operator ∆Neu

∆Neu : D(∆Neu; Ω) −→ L2
◦(Ω) is onto / surjectif

Hence ∫

Ω

(
∆ψ + ω2 ψ

)
vdx = 0 ∀v ∈ L2

◦(Ω)

and, since ∆ψ + ω2 ψ belongs to L2
◦(Ω)

∆ψ + ω2 ψ = 0

Finishing the proof is now easy.
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Bench test Numerical test

The TE cavity problem versus the rot-rot spectral problem

Corollary

Let Ω be a 2-dim. simply connected Lipschitz domain.
The solutions

(
ω, (E1,E2,H3)) of the TE cavity problem (9) are

1 ω = 0 with E1 = E2 = 0 and H3 non-zero constant.

2 ω 6= 0 such that ω2 is an eigenvalue of ∆Neu, the positive Laplace operator with
Neumann conditions: ∆Neu = −∆ with operator domain D(∆Neu; Ω). Then

(E1,E2,H3) = (
−→
rotψ,−iωψ)

with ψ eigenvector of ∆Neu associated with ω2.

Remarks on 3-dim. domains
If Ω is a 3-dim. simply connected Lipschitz domain, the solutions of

(∗)

∫

Ω

(
curl U · curl U′ − ω2 U · U′

)
dx = 0 ∀U ′ ∈ H0(curl; Ω)

are related to the cavity problem in a similar way:

ω = 0 =⇒ div U 6= 0 and ω 6= 0 =⇒ div U = 0

and the solutions of the cavity problem can be deduced from those of (∗) when ω 6= 0.
But, in 3-dim. there is no scalar potential in general.
The 2-dim. serves as a bench test / banc d’essai / for 3-dim.
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5 Numerical test / Rien ne va plus
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Bench test Numerical test

The square

Consider Ω = (0, π)× (0, π).
By separation of variables, we find that the eigenpairs of ∆Neu are

{
ω2 = j2

1 + j2
2

ψ(x1, x2) = cos(j1x1) cos(j2x2)
for any integers j1, j2 ∈ {0, 1, 2, . . .}

Using Proposition 1, this implies that the solutions of the electric Maxwell

spectral problem

(∗)

∫

Ω

rot U rot U ′
dx = ω2

∫

Ω

U · U ′
dx ∀U′ ∈ H0(rot; Ω)

correspond to eigenvalues ω2 equal to

1 0 (with infinite multiplicity)

2 1, 1, 2, 4, 4, 5, 5, 8, 9, 9, 10, 10, 13, 13, . . .
(with repetition according to multiplicity)
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Bench test Numerical test

Finite element method

a Let a be bilinear (or sesquilinear) form well defined on a product space

V × V

a(u, v) =
∑

i

∑

j

∑

|α|≤1

∑

|β|≤1

∫

Ω

(
aαβ ∂

α
ui ∂

β
vj

)
dx

Spectral problem associated with a: Find pairs (λ,u), with 0 6= u ∈ V s. t.

(†) a(u, v) = λ〈u, v〉L2(Ω)|L2(Ω) ∀v ∈ V

b Let Ṽ be a finite dimensional subspace of V .

Galerkin projection of problem (†): Find pairs (λ̃, ũ), with 0 6= ũ ∈ Ṽ s. t.

(‡) a(ũ, ṽ) = λ̃〈ũ, ṽ〉L2(Ω)|L2(Ω) ∀ṽ ∈ Ṽ

c The Finite Element Method [FEM] consists in constructing and

implementing suitable spaces Ṽ . In general, they are based on a mesh of Ω
(subdivision into triangular or quadrilateral elements in 2-dim.) and piecewise

(mapped-)polynomials in each element of the mesh.

Analysis of FEM: proving (or disproving) convergence when dim Ṽ → ∞.
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Bench test Numerical test

Let’s go / On y va
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Triangular mesh

∼ 450 Lagrange elements

of degree 1

Sort computed eigenvalues

by increasing order

λ̃1 ≤ λ̃2 ≤ · · ·

Abscissa: rank of computed eigenvalue 1 ≤ n ≤ 140

Ordinates: value of λ̃n

Horizontal lines = exact values for λj
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Bench test Numerical test

Another try / Un autre essai
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Mesh with one square element

of degree 8 :

ũ = (ũ1, ũ2)

with

ũ1, ũ2 ∈ Q8 = P8 ⊗ P8

Sort computed eigenvalues

by increasing order

λ̃1 ≤ λ̃2 ≤ · · ·

Il y a encore un problème

Abscissa: rank of computed eigenvalue 1 ≤ n ≤ 70

Ordinates: value of λ̃n

Horizontal lines = exact values for λj
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Bench test Numerical test

Another try / Un autre essai
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Bench test Numerical test

Try something else (breaking identity between components)
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Mesh with one square element

of mixed degrees 7&8 :

ũ = (ũ1, ũ2)

with

ũ1 ∈ P7 ⊗ P8 ũ2 ∈ P8 ⊗ P7

Sort computed eigenvalues

by increasing order

λ̃1 ≤ λ̃2 ≤ · · ·

Il n’y a plus de problème

This is an “edge element”

cf lecture by Martin.

Abscissa: rank of computed eigenvalue 1 ≤ n ≤ 70

Ordinates: value of λ̃n

Horizontal lines = exact values for λj
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Standard regularization Non-convex corners Weighted regularization

Part III

Elliptic regularization: bad and good methods
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Standard regularization Non-convex corners Weighted regularization

Outline
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Standard regularization Non-convex corners Weighted regularization

Rappels on Dirichlet and Neumann scalar Laplace operators

Let Ω be a bounded Lipschitz domain. Denote by a∇ the bilinear form

a∇(u, v) :=

∫

Ω
∇u · ∇v dx , for u, v ∈ H1(Ω).

a The positive Dirichlet Laplacian ∆Dir is defined from H1
0
(Ω) into its dual space

H−1(Ω) by

∆Dir(u) = F with
〈
F , v

〉
H−1(Ω) | H1

0
(Ω)

:= a∇(u, v)

NB: Since H−1(Ω) is a space of distributions in Ω, we have F = −∆u.

Since a∇ is coercive on H1
0 (Ω), ∆Dir is invertible with compact inverse. The domain (in

the sense of domain of unbounded operators) is

D(∆Dir; Ω) = {v ∈ H1
0 (Ω), F ∈ L2(Ω)}

The operator ∆Dir defines an isomorphism from D(∆Dir; Ω) onto L2(Ω).

The spectrum of ∆Dir is discrete and formed by a sequence of positive eigenvalues λDir
n

that tends to infinity as n → +∞.
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Standard regularization Non-convex corners Weighted regularization

Rappels on Dirichlet and Neumann scalar Laplace operators

Let Ω be a bounded Lipschitz domain. Denote by a∇ the bilinear form

a∇(u, v) :=

∫

Ω
∇u · ∇v dx , for u, v ∈ H1(Ω).

b The non-negative Neumann Laplacian ∆Neu is defined from H1(Ω) into its dual

space H1(Ω)′ by

∆Neu(u) = F with
〈
F , v

〉
H1(Ω)′ | H1(Ω)

:= a∇(u, v)

NB: Since H1(Ω)′ is not a space of distributions in Ω, it may happen that F 6= −∆u

Since a∇ + Id is coercive on H1(Ω), ∆Neu + Id is invertible with compact inverse.

D(∆Neu; Ω) = {v ∈ H1(Ω), F ∈ L2(Ω)}

F ∈ L2(Ω) means that there exists a function f ∈ L2(Ω) such that 〈F , v〉 =
∫
Ω

f v dx .
We deduce that

D(∆Neu; Ω) = {v ∈ H1(Ω), ∆v ∈ L2(Ω) and ∂nv
∣∣
∂Ω

= 0}

The spectrum of ∆Neu is discrete and formed by a sequence of non-negative
eigenvalues / valeurs propres positives ou nulles / λNeu

n → +∞ as n → +∞.
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Blowing up the kernel / Exploser le noyau /of the rot-rot operator

Recall that we want to compute FEM approximations of the eigenpairs (λ,U) with

λ = ω2 and non-zero U ∈ H0(rot; Ω), solution of

(∗)

∫

Ω
rot U rot U ′ dx = λ

∫

Ω
U · U ′ dx ∀U ′ ∈ H0(rot; Ω)

The “standard” approximation theory [Osborn, 75] [Babuška-Osborn, 91] applies if
there is a compact embedding of the space V corresponding to the left hand side of (∗)
into the space H corresponding to its right hand side. But in our case

V = H0(rot; Ω) and H = L2(Ω)2

The embedding H0(rot; Ω) −→ L2(Ω)2 is not compact. The symptom is the infinite
dimensional kernel.

Since we are interested by the divergence-free solutions of (∗), a natural idea is to
regularize the rot-rot bilinear form by the div-div form.

Notation

For any chosen s > 0 / pour tout s fixé, / set

a[s](U ,U ′) =

∫

Ω

(
rot U rot U′ + s div U div U ′

)
dx

well defined of the new space

XN(Ω) = {V ∈ H0(rot; Ω), div V ∈ L2(Ω)}
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The divergence

Lemma

Let Ω be a 2-dim. Lipschitz domain. Choose s > 0. Let (λ,U) ∈ R× XN(Ω) be an
eigenpair of a[s]

(∗) a[s](U,U′) = λ

∫

Ω
U · U′ dx ∀U′ ∈ XN(Ω)

Then div U ∈ H1
0
(Ω) and [ 1 or 2 holds]

1 div U =: Φ is an eigenvector of s ∆Dir with eigenvalue λ:

Φ ∈ H1
0 (Ω) solves s

∫

Ω
∇Φ · ∇Φ′ dx = λ

∫

Ω
ΦΦ′ dx ∀Φ′ ∈ H1

0 (Ω)

2 div U = 0.

Proof
Set Φ := div U. Choose as test function U′ = ∇Φ′ with

Φ′ ∈ D(∆Dir; Ω) =
{

v ∈ H1
0 (Ω), ∆v ∈ L2(Ω)

}
.

Then U′ = ∇Φ′ belongs to XN (Ω) since:

Φ′ ∈ H1(Ω) =⇒ U′ ∈ L2(Ω)

Φ′
∣∣
∂Ω

= 0 =⇒ U′ × n
∣∣
∂Ω

= 0

∆Φ′ ∈ L2(Ω) =⇒ div U ′ ∈ L2(Ω)
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The divergence: Proof of Lemma

Set Φ := div U. Choose as test function U′ = ∇Φ′ with Φ′ ∈ D(∆Dir; Ω). Then (∗) ⇒

s

∫

Ω
Φ div∇Φ′ dx = λ

∫

Ω
U · ∇Φ′ dx ∀Φ′ ∈ D(∆Dir; Ω)

Observe that

div∇Φ′ = −∆DirΦ′

∫

Ω
U · ∇Φ′ dx = −〈div U ,Φ′〉H−1(Ω) | H1

0
(Ω) = −λ

∫

Ω
Φ Φ′ dx

Therefore, we have the orthogonality condition
∫

Ω
Φ

(
s ∆DirΦ′ − λΦ′

)
dx = 0 ∀Φ′ ∈ D(∆Dir; Ω)

In other words div U = Φ belongs to the orthogonal of the range of the self-adjoint
operator s ∆Dir − λ Id:

Φ ∈
(

range(s ∆Dir − λ Id)
)⊥

Then 1 or 2 holds

1 Φ is a non-zero element in the kernel of s ∆Dir − λ Id, i.e. is an eigenvector of
s ∆Dir with eigenvalue λ.

2 Φ = 0.

31/52



Standard regularization Non-convex corners Weighted regularization

The scalar rot

We have a similar statement concerning the scalar rot of U:

Lemma

Let Ω be a 2-dim. Lipschitz domain. Choose s > 0.
Let (λ,U) ∈ R× XN (Ω) be an eigenpair of a[s]

(∗) a[s](U,U′) = λ

∫

Ω
U · U′ dx ∀U′ ∈ XN(Ω)

Then rot U ∈ H1(Ω) and [ 1 or 2 holds]

1 rot U = 0.

2 rot U =: Ψ is an eigenvector of ∆Neu with eigenvalue λ:

Ψ ∈ H1(Ω) solves

∫

Ω
∇Ψ · ∇Ψ′ dx = λ

∫

Ω
ΨΨ′ dx ∀Ψ′ ∈ H1(Ω)

Proof
Similar as before. Now the test functions are U ′ =

−→
rotΨ′ with any Φ′ ∈ D(∆Neu; Ω).
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Spectrum of the regularized form a[s]

Theorem

Let Ω be a 2-dim. simply connedted Lipschitz domain. Choose s > 0.

Let
(
λDir

n ,ΦDir
n

)
n≥1

be a complete system of eigenpairs of ∆Dir

Let
(
λNeu

n ,ΨNeu
n

)
n≥0

be a complete system of eigenpairs of ∆Neu,

with λNeu
0

= 0 and ΨNeu
0

= 1

Then a complete system of eigenpairs for a[s] is given by the union of
(

sλDir
n ,UDiv

n

)

n≥1
and

(
λNeu

n ,UMax
n

)

n≥1

where

1 rot UDiv
n = 0 and div UDiv

n = ΦDir
n

2 div UMax
n = 0 and rot UMax

n = ΦNeu
n

Proof. It suffices to set

UDiv
n = −

1

λDir
n

∇ΦDir
n and UMax

n =
1

λNeu
n

−→
rotΦDir

n

Since Ω is simply connected, there is no non-zero field U ∈ XN(Ω) such that
div U = rot U = 0.
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Spectrum of a[s] and Maxwell spectral problem

The spectrum of a[s]: λ ∈ R, U ∈ XN(Ω)

(∗)

∫

Ω

(
rot U rot U ′ + s div U div U ′)

dx = λ[s]

∫

Ω

U · U ′
dx ∀U ′ ∈ XN(Ω)

has clearly two well separated parts:

A part that depends linearly of s and with curl-free eigenvectors

A part independent of s with divergence free eigenvectors. This is the

spectrum we are looking for.

How to distinguish them in numerical computations?

Two techniques:

Calculate the ratio

τ (Ũ) =
‖ rot Ũ‖2

s‖ div Ũ‖2

We expect large values for approximation of divergence free

eigenvectors and small values for the others.

Calculate eigenvalues for several different values of s
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Spectrum of a[s] on the square, s = 0

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

Mesh with one square element

of degree 8 :
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Spectrum of a[s], s = 0.002 on the square
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Spectrum of a[s] on the square, dependence in s
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Spectrum of a[s] on a L-shape domain, dependence in s
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ũ ∈ (Q10)
2

with b.c. ũ × n
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Spectrum of a[s] on a L-shape domain: Interpretation

We observe

One (large) half of eigenvalues seems to be correctly approximated

The other (smaller) half is completely missed and replaced by something

else that does not have a clear behavior in s (neither linear nor constant).

The situation does not improve if we increase the polynomial degree or

the density of the mesh (or both)

The diagnosis is that

We converge towards something that we don’t expect

What? Why?

39/52



Standard regularization Non-convex corners Weighted regularization

Spectrum of a[s] on a L-shape domain: Explanation

Recall that

XN(Ω) = {V ∈ H0(rot; Ω), div V ∈ L
2(Ω)}

Denote by HN(Ω) the space

HN(Ω) = H1(Ω)
2 ∩ XN(Ω) = {V ∈ H1(Ω)

2, V × n
∣∣
∂Ω

= 0}

The explanation is the conjunction of three facts:

1 In L-shape domain Ω, HN(Ω) is strictly smaller that XN(Ω). Moreover, a

large part of eigenvectors UDiv
n and UMax

n do not belong to HN(Ω)

2 The discrete Finite Element spaces are contained in HN(Ω)

3 HN(Ω) is closed for the topology of XN(Ω)

Conclusion: A large part of the eigenvectors of a[s] cannot be approximated

by a plain Finire Element discretization in XN(Ω).

Let us explain each point in moe detail.
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Spectrum of a[s] on a L-shape domain. Point 1

There exists one corner singularity S = ∇Φsing s. t. [Birman-Solomyak 87]

XN(Ω) = HN(Ω)⊕ 〈S 〉

where Φsing ∈ D(∆Dir; Ω) but Φsing 6∈ H2(Ω). In polar coordinates (r , θ)

Φsing(x) = χ(r) r
2/3

sin(
2θ

3
)

where χ is a smooth function equal to 1 if r < 1
4

and to 0 if r > 1
2
. We have

D(∆Dir; Ω) = (H2 ∩ H
1
0 )(Ω)⊕ 〈Φsing〉

In fact, since we are in 2-dim.

S = ∇Φsing =
−→
rotΨsing

where Ψsing ∈ D(∆Neu; Ω) but Ψsing 6∈ H2(Ω). Note Ψsing = χ(r) r2/3 cos( 2θ
3
)

Almost all eigenvectors ΨNeu
n of ∆Neu that are even with respect to the

diagonal x1 + x2 = 0 “contain” this singularity, i.e.

ΨNeu
n − cnΨsing ∈ H2(Ω) for some coefficient cn 6= 0
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Spectrum of a[s] on a L-shape domain. Points 2 and 3

2 The FEM space are made of functions ũ that are

a piecewise polynomials

b in the space XN(Ω).

We observe

rot ũ is in L2(Ω) =⇒ no tangential jump for ũ between two elements.

div ũ is in L2(Ω) =⇒ no normal jump for ũ between two elements.

Finally, both components of ũ are continuous over Ω.

Therefore ũ belongs to HN

3 A sequence um ∈ HN(Ω), m ≥ 1, that is converging for the topology of

XN(Ω) will never converge to a limit outside HN(Ω) by virtue of

Theorem [Costabel, 91] [Costabel-Dauge, 99]

Let Ω be a Lipschitz polygon.

The space HN(Ω) is a closed subspace in XN(Ω).

=⇒ In L-shape, instead of the Maxwell spectral problem, we are solving a

Lamé system with elasticity coefficients depending on s
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Introduction of a weight

Let Ω be a polygon with one non-convex corner c of opening ω > π

This applies to the L-shape domain Ω with its non-convex corner at the

origin.

Let r = |x − c| be the distance function to the non-convex corner c.

Choose a number γ ∈ [0, 1]. This will be the exponent of a weight

function.

Notation

For any chosen s > 0 set

aγ[s](U,U
′) =

∫

Ω

(
rot U rot U ′ + s r

2γ
div U div U ′

)
dx

well defined of the new space

X
γ
N (Ω) = {V ∈ H0(rot; Ω), r

γ
div V ∈ L

2(Ω)}

If γ > 0, the norm in the divergence is relaxed (the norm is smaller than

without weight)
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Spectrum of aγ[s] on a L-shape domain, γ = 0
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∣∣
∂Ω

= 0

Sort computed eigenvalues
by increasing order

λ̃1 ≤ λ̃2 ≤ · · ·

τ(ũ) = ‖ rot ũ‖2(s‖ div ũ‖2)−1
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Spectrum of aγ[s] on a L-shape domain, γ = 0.35
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Spectrum of aγ[s] on a L-shape domain, γ = 0.5
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Spectrum of aγ[s] on a L-shape domain, γ = 1
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Theoretical result

Theorem Costabel-Dauge, 02

Let Ω be a polygon with one non-convex corner c of opening ω > π and let r

be the distance fonction to c. Let γ be such that

1 −
π

ω
< γ < 1

Then, for any s > 0

HN(Ω) is dense in X
γ
N (Ω)

The eigenvalues of aγ[s] are correctly approximated by Lagrange finite

elements

The eigenvalues of aγ[s] are

the sλDir,γ
n with the eigenvalues λDir,γ

n of the Dirichlet realization of

v 7→ rγ∆(rγv)

the λNeu (independent of s and γ)

This theorem extends to 3-dim. polyhedra. The weight is the distance to the

union of non-convex edges.
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Singularities and weighted spaces

Let Ω be a polygon with one non-convex corner c of opening ω > π
Define for m ∈ N and β ∈ R the weighted Sobolev space

K
m
β (Ω) = {v ∈ L

2
loc(Ω), r

β+|α|∂α
x v ∈ L

2(Ω) ∀α ∈ N
2, |α| ≤ m}

Observe that

The Laplacian ∆ = ∂2
1 + ∂2

2 is continuous from K 2
γ−2(Ω) into K 0

γ (Ω).

If U ∈ Xγ
N (Ω), then div U ∈ K 0

γ (Ω).
The singularity Φsing has the form, in polar coordinates centered at c

Φsing(x) = χ(r) r
π/ω

sin(
πθ

ω
)

and Φsing ∈ K 2
γ−2(Ω) if and only if π

ω
> 1 − γ, i.e. γ > 1 − π

ω

Theorem [Kondrat’ev, 67]

Let γ ∈ [0, 1]. If γ > 1 − π
ω

,

∆ isomorphism K
2
γ−2(Ω) ∩ H

1
0 (Ω) −→ K

0
γ (Ω)

If γ < 1 − π
ω

,

∆ isomorphism K
2
γ−2(Ω) ∩ H

1
0 (Ω) ⊕ 〈Φsing〉 −→ K

0
γ (Ω)
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