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DIRICHLET SPECTRUM OF THE FICHERA LAYER
MONIQUE DAUGE, YVON LAFRANCHE, AND THOMAS OURMIERES-BONAFOS

ABSTRACT. We investigate the spectrum of the three-dimensional Dirichlet Laplacian in a prototypal
infinite polyhedral layer, that is formed by three perpendicular quarter-plane walls of constant width
joining each other. Such a domain contains six edges and two corners. It is a canonical example of
what is called a non-smooth conical layer and we name it after Fichera because near the non-convex
corner, it coincides with the famous Fichera cube that illustrates the interaction between edge and
corner singularities. We show that the essential spectrum of the Laplacian on such a domain is a
half-line and we characterize its minimum as the first eigenvalue of the two-dimensional Laplacian
on a broken guide. By a Born-Oppenheimer type strategy, we also prove that its discrete spectrum is
finite and that a lower bound is given by the ground state of a special Sturm-Liouville operator. By
finite element computations, we exhibit exactly one eigenvalue under the essential spectrum threshold
leaving a relative gap of 3%. We extend these results to a variant of the Fichera layer with rounded
edges (for which we find a very small relative gap of 0.5%), and to a three-dimensional cross where
the three walls are full thickened planes.

1. INTRODUCTION AND MAIN RESULTS

1.1. Motivations. In the usual three-dimensional Euclidean space, the term layer commonly de-
notes a tubular neighborhood of a reference surface. Such geometries are physically relevant because
for example, in mesoscopic physics, properties of thin-films can be deduced by a spectral study of
the Dirichlet Laplacian in layers.

From a mathematical point of view, such operators have been considered in [18, 10] and the main
results can be roughly summed up as follows: under adequate geometric conditions on the reference
surface the essential spectrum is a half-line of the form [a, +00) (a € R, ) whereas the existence of
bound states depends on curvature properties (such a behavior is reminiscent of the study of quantum
waveguides, see for instance the pioneering works [22, 17]).

In fact, as mentioned in [18, 10] and specifically studied in [20], reference surfaces being circular
conical layers exhibit an interesting behavior: they have infinitely many bound states and thus, they
accumulate to the threshold of the essential spectrum. Moreover, we know that the accumulation
rate is logarithmic as shown in [16].

Recently, in [29], it has been proved that the infiniteness of bound states and the logarithmic ac-
cumulation to the threshold of the essential spectrum still hold for conical layers constructed around
any smooth reference conical surface (by smooth reference conical surface, we mean that the surface
is smooth except in its vertex).

Then, a natural question is to know whether this structure of the spectrum is preserved if this
smoothness hypothesis is violated. This is the very question we tackle in this paper for a reference
surface that is a specific polyhedral cone and thus has edges. We show that the structure of the
spectrum drastically differs from the smooth case: the threshold of the essential spectrum is lower
than for smooth conical surfaces and there is only a finite number of bound states.

Before going any further, let us mention similar works about various realizations of the Laplacian
interplaying with conical geometries. Schrodinger operators with singular potential, modeled by ¢-
interactions supported on smooth cones, are investigated in [4, 25] whereas the case of the Laplacian

with Robin boundary conditions in smooth conical domains is dealt with in [8, 30]. Finally, for
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problems related with polyhedral geometries, let us mention [7] where the magnetic Laplacian in
three-dimensional corner domains is studied as well as [9] where the bottom of the essential spectrum
of the Robin Laplacian is characterized for polyhedral cones.

1.2. Main results. As a prototype for infinite polyhedral layers including edges, we investigate the
layer A obtained by removing the first octant (R )? from the translated octant (R )3 — (1,1, 1) (see
Figure 1, right), namely:

A={R)’ = (1,1, D} \ (Ry)*. (1.1)
(Here R, denotes (0, 00)). We name it after Fichera since its non-convex polyhedral corner sitting
at the origin (0,0, 0) is a celebrated example of interaction between edge and corner singularities:
this interaction is described in [13, § 17] and related numerical issues are addressed in [2, 1, 12] for
instance. We are interested in the positive Dirichlet Laplacian £, posed on A. We will show that its
spectral properties heavily depend on its two-dimensional analogue posed on the broken guide I" of
width 1 and angle 7 (see Figure I, left).
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FIGURE 1. On the left: the two-dimensional broken guide I'. On the right: a repre-
sentation of the three-dimensional layer A.

Theorem 1.1 ([15, 28]). With the broken guide T' = {(R;)?> — (1,1)} \ (R4)? and Ly the positive
Dirichlet Laplacian on T, there holds:

i) The essential spectrum of Ly coincides with [1*, +00);

ii) The operator Lr has exactly one eigenvalue below its essential spectrum.

It is proved in [15] that L has a finite number of eigenvalues below its essential spectrum, and
in [28] that this number is 1, as expected after semi-analytical calculations [19], or finite element
approximation [15]. We are going to revisit this result later on, see Remark 2.2. Let A\;(T") be the
first eigenvalue of L. An approximate numerical value given in [15]is A\{(T") ~ 0.929 2. Our main
result concerning the Fichera layer A is

Theorem 1.2. With the Fichera layer A = {(R})* — (1,1,1) } \ (R)® and L, the positive Dirichlet
Laplacian on A, there holds:

i) The essential spectrum of L, coincides with [\ ('), +00);

ii) L has at most a finite number of eigenvalues below its essential spectrum.

Theorem 1.2 exhibits a significant difference between non-smooth and smooth conical layers:
First, the bottom of the essential spectrum in the non-smooth case is determined by the edge profile
(the broken guide) and is lower than in the smooth case where it is given by the first eigenvalue 72
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of the one-dimensional Laplacian on the interval Z = (—1,0) across the layer. Second, in contrast
with the present statement, for smooth conical layers the discrete spectrum is infinite as it was first
observed for circular cones [20, Thm. 3.1], [16, Thm. 1.4], and next generalized to smooth conical
layers [29, Thm. 2].

Before going further, let us comment on relations between smooth layers and our Fichera layer.
A smooth layer is defined like a shell in elasticity: from a reference unbounded smooth surface .”
without boundary (said midsurface) and a positive thickness parameter €, we may define the layer
A’[€] as the set of points at distance strictly smaller than £/2 to .. This same definition is also
adopted in [29] when .#” is a smooth conical surface. Trying this for our Fichera layer, we choose
" as the union of three quarter planes

S ={x e R*: min{zy, 20,25} = —1}
and take ¢ = 1. However the layer A := A°[1] is distinct from A outside any compact set: We can
see that the section of A by any plane x; = R, R > 0, is isometric to the broken guide I', whereas

a similar section of A’ is isometric to the broken guide I'” with rounded exterior corner drawn in
Figure 2, left.

% ? R%

I’ \\ It
(=3 —3) (=1, -1),

FIGURE 2. Plane sections I'” and I'? of the variants A? and A of the Fichera layer.

An alternative in the same spirit would be to set .¥° = {x € R® : min{zy, 29,23} = 0} and
define the layer A* as the set of points at signed distance less than 1 from .#° where the sign is given
by the outward normal to the octant (R, )3. We observe that the section of A* by any plane 7; = R,
R > 0, is isometric to the broken guide I'* with rounded exterior corner drawn in Figure 2, right.
Note that A can also be viewed as a layer of thickness ¢ = 1 associated with the midsurface .*
drawn in the same figure.

In fact, the Dirichlet Laplacian on I'* or I'* has exactly one eigenvalue under the threshold of the
essential spectrum [22, 31] and Theorem 1.2 generalizes to the layers A’ and A? if we replace the
guide " by I'” and I'¥, respectively, see Section 5 and Appendix B.

Another interesting related geometry is given by the cross-like domains. Let 2" and % be the
two- and three-dimensional “crosses”, c¢f. Figure 3 (here Z is the bounded interval (—1,0))

X =RxI)U(ZT xR) and Z =(R*xI)U(R xT xR)U(Z x R?). (1.2)

Here, once more, the Dirichlet Laplacian on 2" has exactly one eigenvalue under the essential
spectrum [31, Prop. 13] and Theorem 1.2 generalizes to the three-dimensional cross % if we replace
the guide I' by the two-dimensional cross 2", see Section 5.
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FIGURE 3. The 2- and 3-dimensional crosses.

1.3. Notations. Letd € {1,2,3} and let = (z1, - - ,24) denote the Cartesian coordinates of R,
For L > 0, we will make use of [1;, the box domains of R? defined as

Op = {w € R*: miax|a; +1| < L}, (1.3)
]:

1.3.1. Three-dimensional domains. In R3, the Fichera layer (1.1) is the unbounded layer domain A
that can alternatively be written as

A={z eR’: —1 <min{z,zs, 23} <0} (1.4)

Bounded versions of A are obtained as the intersection of A with the three-dimensional boxes [y,
centered at the external vertex (—1, —1, —1) of A. Set for R > —1:

Ar=ANUOgy:. (1.5)
The residual parts “at infinity” of A are denoted by Q2
Qp =ANR*\Opyr) = A\ Ag. (1.6)

The layer A is invariant by the symmetries with respect to the three diagonal planes z; = zj, (j < k).
It is natural to split A into the three isometric parts A', A2 and A3, with A® defined as

AN ={rcA: v, <w3 and 15 < 3} (1.7)
and the other two by permutation of indices. We also introduce the finite and residual parts
AN, =N NAg and Q) =ANQg. (1.8)

1.3.2. Two-dimensional domains. The two-dimensional domain corresponding to the Fichera layer
is the broken guide I' of opening 7 and width 1

I ={xecR*: —1<min{r,z,} <0} (1.9)
and the finite broken guide I'y is defined accordingly
'gk=I'Nn0gy; for R> -1, (1.10)

where [y, 1 is the two-dimensional box as defined in (1.3).
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These domains are symmetric with respect to the diagonal line x; = x5, which makes natural the
definition of the subdomains ! = {z € ' : 23 <z} and[?> = {x € ' : 21 < x5} together with
their bounded analogues F% = IV NOgy for j = 1, 2. We particularize the parts of their boundaries
at “distance” R, i.e. E{Q = 81“;% N 0Ugy1. Note that

Yr={R}xZ and Y% =7 x{R} with Z=(-1,0). (1.11)
Finally
Ypr=SRUXE =0gNI0g, . (1.12)
We will also make use of the rectangles 7;% and half-strips Sf{
Ta=0,R) xI, To=Zx(0,R) and Sp=(R,00)xZI, Sip=7TIx (R, 0).

These domains are represented in Figure 4 and 5.

Sk
_ 2
F2 ( 17R) ER
I
(0,0) (0,0) Sk
I Tk Sk

FIGURE 4. The guide I' and its associated subdomains.

In this paper, we will use in two occurrences the following simple uniform trace estimate:
Lemma 1.3. There exists a constant C such that for all R > 1 and all w € H'(T'g) there holds
[ull L2mr) < Cllullar @y - (1.13)
Proof. We bound the L2-norm of the trace of u on X by the H'-norm on I'y \ Tr 1. O

1.3.3. Operators. The Laplace operator A in R? is the partial differential operator

d
_ 2
A=)
7j=1
On a generic domain O C R?, the positive Laplacian —A is associated with the quadratic form

Q(u) = /O V(@) de,

defined for u belonging to the Sobolev space H'(O). The boundary conditions considered in this
paper are either Dirichlet or Neumann on parts of the boundary of O. Let us assume that O is a
Lipschitz domain and that dpO and JyO are two Lipschitz subdomains of the boundary 0O such
that IpO U OyO = 0O. Then we can introduce the variational space Dom(Q) (form domain for Q)
with Dirichlet conditions on dpO:

Dom(Q) = {u € H'(O) : u’aDo =0}.
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Domain @ T, cf (1.9) Th of (1.10) A, of (1.4)
Neumann part OyO N[ =10 ONCRr = Xg, cf (1.12) ONA =0
Laplace operator Lr Lr, L
Rayleigh quotients Ae(T) Me(TR) Ae(A)
Condensed notations | A (I") := Ay M(TR) == Ar —
- - for R =x3: A\ ([y,) := A(z3) -
Main results Th. 1.1 Cor. 2.4 and Prop. 2.6 Th. 1.2 and Prop. 3.8

TABLE 1. Notations for the main Laplace operators studied in this paper.

The associated self-adjoint operator is £ := —A with domain
Dom(L) = {u € Dom(Q) : —Au € L*(Q), a"u’a,\,o = ()}'

The spectrum of L is denoted by o (L), its discrete and essential parts by o4is(L£) and cess(L), re-
spectively. Likewise, we might also write 0(Q), ess(Q) and o4s(Q), respectively. We particularize
the notation of £ (respectively Q) on the domain O as L2 (respectively Q") if OyO has measure
zero and LM (respectively OM™) otherwise.

The ¢-th Rayleigh quotient of Q2" (respectively Q%) on its form domain is denoted by AP (O)
(respectively AM™(0)). Except possibly in Section 4, there is no risk of confusion, thus, for the sake
of readability, we omit the mention of the superscripts Dir and Mix using Lo, Qo and A\,(O) instead.

In particular A\, (O) is the bottom of the spectrum of Lo:

M(0) = min Qo(u) :
ueDom(Qo), u#0 ||ul|?

In Table 1, we list the main geometrical domains we are interested in as well as the associated
Laplace operators, their Rayleigh quotients and the main related results.

1.3.4. Domain partition. We will often use a comparison principle of eigenvalues based on a domain
partition. Let us introduce a finite partition (O, ), of the Lipschitz domain O in the sense that each
O; is Lipschitz, that they are pairwise disjoint, and

UjGJ@j - @
Then we define the broken quadratic form Q%m
Q) = 3" [ [Vu(a) da.
JjeT O;

defined for v in the domain
Dom(Qg°) = {u € L*(0) : u}oj € Dom(Qo,), jE€ J},

where Dom(Qp,) = {u € H'(0;), U}GDOmaOv = 0}. Let A2°(0O) denote the ¢-th Rayleigh quotient

of Q2. Since we have the obvious embedding between form domains Dom(Qp) C Dom(Q%°),
the following inequalities between Rayleigh quotients hold

AFP(0) < N(0), V1, (1.14a)
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while
14

AP(O) is the (-th smallest term in the set U U {Me(0;)} (1.14b)
JjET k=1
with multiplicities taken into account.

1.4. Structure of the paper. In Section 2 we study the auxiliary question of the two-dimensional
broken guides of finite length I'p. We collect results regarding the first eigenvalue of the Dirichlet
Laplacian in such domains, in particular its exponential convergence to the first eigenvalue of the
infinite broken guide as the length R goes to infinity (see Corollary 2.4) and a Dauge-Helffer type
formula about its derivative with respect to the length of the finite guide (see Proposition 2.6).

Section 3 is devoted to the proof of Theorem 1.2. First, we investigate the structure of the essential
spectrum using the form decomposition method as well as constructing adapted Weyl sequences for
the operator. Second, we prove finiteness of the number of bound states by a Born-Oppenheimer
strategy: we compare the number of eigenvalues below the threshold of the essential spectrum to that
of a one-dimensional operator obtained after projection on the lowest eigenfunction of a transverse
operator. Third, we conclude this section by giving a lower bound on the spectrum that turns out
to be numerically close to the threshold of the essential spectrum: there is very little room left for
bound states to exist (see Proposition 3.8 and Figure 7).

In Section 4, we illustrate some of our results thanks to computations performed with the finite
element library XLiFE++ [33] and we exhibit the existence of exactly one isolated eigenvalue for
the Dirichlet problem on the Fichera layer. We address in Section 5 the extensions mentioned above
about the Fichera layer with exterior rounded edges A and the cross %. We draw finally some con-
clusions about other possible generalizations of our results in Section 6, developing the discussion on
the distinct spectral behaviors in the family of smooth conical layers and in a family of generalized
Fichera layers. The two appendices A and B close the paper.

2. BROKEN GUIDES OF FINITE LENGTH

In this section, we address the finite plane broken guides ' (1.10) for R > 0: we investigate the
first eigenpair of the Laplacian L1, with Dirichlet conditions on OI'y N 01" and Neumann conditions
on the remaining part X5 of the boundary of OI'p. We start with rough estimates on the first two
eigenvalues of Lr,.

Lemma 2.1. With the notations summarized in Table 1, there holds:

i) Forall R >0, \{(T'g) < A (D).
i) Forall R > 0, \y(T'g) > 7

Proof. We use the domain partition as stated in §1.3.4.

i) For a chosen R > 0, we split the broken guide I into three pieces: The finite guide I'g, and the
two half-strips Sy, = (R, 00) X Z and 8% = Z X (R, 00). On the half-strips S} and S, Dirichlet
conditions are applied on the unbounded sides. By (1.14a)-(1.14b) we find

M(T) > min {\(Tr), M(Sg), M(Sh)}-
Since \;(Sg) = A\ (S%) = 7%, we deduce point i) thanks to Theorem 1.1.
ii) Now we split the finite guide I into the square Iy and the two finite rectangles 74 = (0, R) xZ

and T2 = Z x (0, R) (see Figure 5). On the rectangles 75 and 7}, Dirichlet conditions are applied
on the sides (0, R) x {—1,0} and {—1,0} x (0, R), respectively. By (1.14a)-(1.14b) we find

XA2(Tr) > 2d smallest element of {A; (o), A2(Io), M(TE), M(TR), § = 1,2}. (2.1)
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FIGURE 5. The finite guide ', the square I'y and the rectangles 77, j = 1, 2.

Recall that the boundary conditions on the square 'y are Dirichlet on the sides 1 = —1, 2o = —1,
and Neumann on the sides x; = 0, x9 = 0. Therefore we have

1 1 w2 1 9
A (Tp) = (Z + 1)7?2 =5 and Xo(Ty) = (4_1 + Z)TF2 = —.

Moreover, we get
M(Tg) = M(Tg) =7° and  Xo(Tg) = Xao(TE) > .
Thus the second smallest element of the set in (2.1) is 72 and point ii) of the lemma is proved. [

Remark 2.2. A similar proof as that of point ii) above yields that the second Rayleigh quotient of L
is greater than 72, This is in the spirit of [31] and provides a more direct proof of the result [28] that
Lr has at most one eigenvalue under its essential spectrum.

2.1. Exponential decay of eigenvectors. In this section, we prove exponential decay estimates of
the first eigenvector of Lr,, uniformly as R — oo. For convenience, in the rest of Section 2 we use
the following condensed notation for the first eigenvalue on ' and I', ¢f. Table 1, as well as the
L?-norm of their difference:

Ar = MTR), A=A, and w= /72— .. 2.2)

Lemma 2.3. For R > 0, let vy be the positive normalized eigenvector associated with the first
eigenvalue \r of Lr,, i.e.

EFRUR = /\RUR, vg >0 on FR, and HUR||L2(FR) =1. 2.3)

Recall that ¥, = OI', N 00,44, cf. (1.12). Then, with w given in (2.2), for all integers {, m > 0,
there exists a constant Cy,,, such that

VR>1, Vpel[l,R], 000 vk|r2s,) < Come ™,
where O,, and 0. are the normal and tangential derivatives on ¥, respectively.

Proof. We prove exponential decay for vy by a representation formula on the rectangle 75 =
(0, R) x Z, the rectangle 737 = Z x (0, R) being handled in a similar way. We note that vp is
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solution of the mixed problem in 74 = (0, R) x Z

;

—Avg = Aguvg in(0,R) X Z,

vg(z1,—1) = vg(z1,0) = 0 vz, € (0, R),
Owr(R,x9) = 0 Ve €T,
vr(0,22) = gr Vo € Z,

2.4)

\

where g, is the trace of v on the segment X} = {0} x Z. Since v belongs in particular to H'(Ty),
its trace belongs to H'/2(3}) with the estimates

l9rllm12s1) < Collvellm )
where Cj does not depend on R. Now, there holds
ol ey < lvrllmen = VAr + Uorllen = VAR +1 < Va2 + 1.
Thus we have obtained in particular
lgrll 21y < CovVr? +1, VR >0. (2.5)

We expand v, along the eigenvectors of the operator —02, self-adjoint on (H* N Hy)(Z). Its nor-
malized eigenvectors are

sk(x2) = V2 sin(kma,)
and we write
vr(r1, x2) = Zuk(xl)sk(xg), where u (1) = /UR(xl,xg)sk(xg)de.
k>1 T
Hence, (2.4) yields that for all £ > 1 we have
—ufl + (K*m* — Ag)ur, = 0 in (0, R),
u,(R) = 0, where grji = /gR(a:Q) sk(zg)dzy. (2.6)
I
Uk<0) = YRk

The solution of (2.6) is given by

u(z1) = IRk cosh ((R — z1)V/ k212 — AR )

cosh (R k2m? — )\R)

which yields

IRk
vr(T1, T0) = ——— cosh ((R— z1)w Sk(2), 2.7
r(71,72) ; cosh (Rony) (( Dwryk) Sk(22) (2.7)
where we have set wp, = k%712 — Ag. Thanks to the uniform convergence of this series and its
derivatives on any subdomain of the form [a, R] x Z with a positive a, we deduce the formulas for
¢,meN

m m wh, o (km)™

0L R (1, 12) = ro1(—1) /2 m grk cosh (R — z1)wry) si(z2) m even
m m— Wb, (km)™

0T vR(1,22) = Y sy (1) /2 #w grk cosh (R — z1)wry) cx(z2) m odd

if ¢ is even and

wh, | (km)™ .
O 05 vR(z1, 1) = 3 sy (—1)™/2H % grk sinh (R — z1)wry) se(z2)  m even

wh, (k)™ .
O 05 vR(T1, L) = Y sy (1) H/2 L)) grk sinh (R — z1)wry) cx(z2) m odd

cosh(RwRg, k
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if ¢ is odd, where we set ¢, = V2 cos(kmxs) the cosine basis. Thus we can calculate the L?-norm
of their trace on E;, ie. atx; = p,forany p € [1, R]:

2
m cosh((R—p)wg,
Zk21 (we (k) m(s(h(Tw gR,k> ¢ even

R7
; 2
m sinh((R—p)wg,
ZkZI (wéR,k(kﬂ-) —CO(S(h(Rz)RV;?)k) gR’]{;> ¢ odd.

||8f8§”vRHi2(Z%) =

Since A < A;(I') by point i) of Lemma 2.1, we notice that wg, is larger than /k272 — A\ (I),
itself larger than kw. Thus we deduce

sinh ((R — p)wR,k) < cosh ((R - p)vak)

< < QeTPRE < 26—Pkw’
cosh (RwR,k) cosh (RwR,k)

hence

m m 2 — w
||8f82 URH%?(E},) < 42 (w%,k(lm) ) Q%z,ke e
E>1

Using the upper bound wg ;, < k7, we find

||3f35nUR||%2(z;) < 42(’”)2(@%) 91%2,1@ ek
k>1

< 46—2pw<zg%,k> Iil>alx {(k,n)2(f+m) e—2p(k—1)w}
k>1

< 46_2pw||gRH%2(2(1)) I?f‘fc {(km_)Q(f—i-m) e—2(k—1)w} for p>1.

Combining with (2.5), we find for any ¢, m > 0 the estimates Hé’f@?vRHLz(zé) < Cpme ™ with
constants () ,,, independent of 2. The lemma is thus proved. U

Corollary 2.4. With the positive number w = /72 — Ay, cf. (2.2), there exists a constant C such
that

VR>0, 0<\g—Ag<C)e 2

Proof. We know already that A\, > Ar. To prove the right estimate, we use the eigenvectors vy as
quasi-modes for L after cutting them off on the rectangular regions (R—1, R)xZ and Zx (R—1, R):
assume R > 2 for simplicity and introduce a smooth cut-off y such that

x(t)=1 for t<—1 and x(t) =0 for t > 0.

We define () by x (21— R)vg(x) if x € Tk, by (25— R)vg(x) if x € T4, andby Oif & € T'\T.
Then v belongs to the domain of L and we can evaluate its Rayleigh quotient. Lemma 2.3 implies
the following estimates with a constant C' independent of R:

‘||’6R||%2(F) - 1‘ < CB_ZRM and ‘HV:JRH%?(F) - ||VUR||%2(FR)‘ < CB_QRW. (28)
Hence, the min-max principle and (2.8) give
)\00(1 — 0672&0) < )\mHaRH%%F) < ‘|V63H%2(F) < HVURH?F(FR) + Ce 2R = Ap + Ce 2R,

Consequently, we get
)\oo - )\R S Cleisza

with C; = C'(Ax + 1) and the corollary is proved. O
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2.2. Variation of eigenpairs. Before proving differential formulas for the first eigenpair of the
operator Lr,, let us give an argument stating the regularity of this first eigenpair with respect to R.

Lemma 2.5. Recall the abbreviated notation \p for the first eigenvalue of Lr, and let vy be the
associated normalized and positive eigenvector, cf. (2.3). Then the function R — \g is analytic on
(0, 00) and the derivative wg, := Ogvr makes sense in Dom(Qr,. ).

Proof. For any R > 0, let us introduce the following change of variables that transforms I'g into I';:
(1'1,1‘2) if (l’l,l'g) € F[),

(m,y) = (R_l.’L‘l,LI}Q) if (1'1,1'2) € 7‘]%, (29)
(Jfl,R_ll’g) if <I1,1’2> 67}3.

For u € Dom(Qr,,), setting u(z,y) = u(xy, x2) we get Or,.(u) = Or (@), where Qp is the param-
eter dependent H* semi-norm on I'; defined as

On() = IVll3aqry) + B (105 + 10503272, ) + R(I0:T272) + 10,3 )
Dom(Qr) = {a € H'(T}) : Glar,\n, = 0}

Remark that the Z.?-norm becomes

el = Na@? = [laqryy + RNy + N7z, ).
where the norm A/ is equivalent to the usual norm |- {22y

Now, as Dom(Qj;) does not depend on R and that for all @ € Dom(Qj) the application

R € (0,+00) = —=
N,

is analytic, using that Q r 1s bounded from below (non-negative), the strategy of Kato [23, Chapt. 7
§4.2] can be adapted to obtain that the self-adjoint operators associated with the family (@ R)R>0 Vid
the first representation theorem is an analytic family of operators for R € (0, 00). In particular, as
for any R > 0 the first eigenvalue A is simple, we obtain the lemma. t

Now we can prove a formula for the derivative with respect to R of the first eigenvalue of Ly, in
the spirit of [23, VII, sect 6(5)] and [14, Theorem (1.4)].

Proposition 2.6. With notations as in Lemma 2.5, the derivative Or\r satisfies the formula (here T
is a tangential variable in the Neumann part g of OI'g)

OrAR = / (|0-vr|* = Aglvgl’) dr, R >0. (2.10)
YR

Proof. Since )\, is a simple eigenvalue, and since L£r,, commutes with the symmetry with respect to
the diagonal D = {x : x; = x5}, the eigenvector vy is also symmetric with respect to D. Indeed, it
satisfies Neumann conditions on D N [y, see [15, Prop.2.2]. Thus, we can reduce our analysis to the

lower half I'; of I'. There holds ||vz||%. (r1) = 5 and we are going to prove
R
OrAg = 2/ (|02vr|* — Ag|vg|?) dza, R >0. (2.11)

YR
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We follow the steps of the proof of [14, Theorem (1.4)]. Integrating by parts and using that 0,,vp is
zero on X% and D N Ty, we find for any chosen h > 0

/ (—A — )\R)UR UVR+h dl‘ld$2 = / VR (—A — AR)UR—&-h d[L’lelfg + / VR 01"UR+h d!lfg .
r r )
Hence, using the eigen-equations for vz and v p:

(Ar+n — AR) /

1
1—‘R

1 1 1
R R R

VR VUR+A dl’ldxz + / VR 81@R+h dxg =0.

1
2R

Taking advantage of the condition 0,v R+h|21 = (0 we can write
R+h

J

Putting together the last two identities, dividing by A and letting A tend to 0, we obtain the relation

8R)\R/ |vR\2dx1dx2:/ vg (Ofvg) dzy .
ri i

VR O1Vp4n dag = /

UR(R $2) (81UR+h(Ra I2) - alvR+h(R +h, $2)> dz,.
T

1
R

R R

Using the relation (—9? — 93 — Ag)vg = 0, we deduce formula (2.11), hence formula (2.10). O
Remark 2.7. 1) Formula (2.10) takes also the form

OrAg = / vg (Pvg)dr, R>0. (2.12)
YR

2) Since forany R > 0, vp belongs to Hy(Xr), thus satisfies |0,vr||72p ) = 72 [|vR|| 72, formula
(2.10) implies the inequality

83)\32 / (71'2—)\3)’?]3‘2(17', R>0. (2.13)
XRr

As v is not identically 0 on the Neumann boundary Xy, the above inequality implies:
the function R +— Mg is increasing on (0, c0). (2.14)

3) The function R — g is analytic on (0, 00), but has no extension as an analytic (nor even ¢*)
function on the closed interval [0, 00).

Let wg be the derivative Ogvg. On I'g, the eigen-equations for vg, vgyy, yield
(=A = Ar+n)(VR4h — VR) = (AR4h — AR)VUR .

The function v, — vg satisfies the zero Dirichlet conditions on OI'g \ X z. On X g, we can write
like in the proof above

On(VR1h — UR)|ER = anUR—o—h’ER - nUR+h|ER+h
Dividing by h and letting h — 0, we deduce that wg, is solution of the mixed problem
(—A - )\R)wR = (aR/\R) VR in FR,
wrg = 0 on JI'g \ Xg, (2.15)
Oywr = —0%vp on Yp.

We note that formula (2.12) is the compatibility relation for the existence of a solution to the mixed
problem (2.15). Moreover, the normalization fFR |vg|*dx1dzy = 1 implies the relation

1
/ vaRdxldx2:_§/ lvg|? dr. (2.16)
T'r

YR
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Lemma 2.8. With the notations of Lemma 2.5 and w = /7% — A\ (D), the derivative wgr = Orvg
satisfies the estimates
lwellmey, <Ce ™, R>1. (2.17)

Proof. The solution wg of (2.15)-(2.16) is unique and can be written as

1
wg = ppvR +wg, Wwith / wrvg dridry =0 and pp = —5/ lvg|? dT.
T'n b

R

Recall that the variational space associated with Problem (2.15) is the form domain V' = Dom(Qr,,)
and denote by V" its dual space. Let fr denote the right hand side of (2.15). Let us prove that

1+ 72
w?

Hwﬁ”Hl(FR) < K| fgllv: for K = (2.18)

Indeed, if (-, -)y+ 1 denotes the duality pairing, for any € € (0, 1) we have
lwglla @l frllv: > (frowr)vey = [VwglZae,y — M Cr)wgliee,
> el Vwglllawgy + (1= €)X (Tr) — M(Tr) lwg 7z, -
Using Lemma 2.1, we get A\ (T'g) < A1(T') and X\o(T'g) — A\ (Tg) > 72 — A\ (T') = w?, hence
el VuwglZawp + (@ = em®)Jwgllizwy < lwgllmenlfrllv

Choosing ¢ so that ¢ = w? —e7?, we obtain (2.18). From (2.18) we deduce (still using the condensed
notation Ag for A\;(I'r))

lwrllmep) < el lvrllp s + ||w$||H1<FR)
< [vgll7zsp) vl g + K || frllv
< V14 Arllvrlzsy + K | fallv
< V147 |valliam,) + Kl frllv (2.19)
As the duality pairing between fr € V' and any g € V satisfies (fr, g)v'v = fFR(aR/\R)vR gdx —
fER D2vp gdT, we get

|(fr 9)vev] < 1OrMRIGN L2 n) + 102vR I 22 |9]l L2520 - (2.20)

Using Lemma 1.3 that provides a uniform estimate of ||g||.2(x ) by ||g|| #1(r,) (here the assumption
R > 1 comes into play), we find that (2.20) becomes

[(fr: @)vr | < (’31%)\1%\ + CHa’?L/UR”LQ(ER)) ”g”Hl(FR)
and we obtain
I frllv: < 10rAR| + CllOqvr| L2(2p). (2.21)
Combining estimates (2.19) and (2.21) with formula (2.12) yields
lwrllgr gy < V1472 [vrll72s,) + K <||UR||L2(ER)||572;UR||L2(ER) + O||83LUR||L2(ZR)> :

The application of Lemma 2.3 ends the proof. U

3. FICHERA LAYER: FINITENESS OF DISCRETE SPECTRUM

This section is devoted to the proof of our main theoretical result, that is Theorem 1.2 that de-
scribes the essential spectrum of the Dirichlet Laplacian £, on the Fichera layer and states the
finiteness of its discrete spectrum. We also exhibit a lower bound for the whole spectrum of L.
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3.1. Essential spectrum. In this subsection we prove point i) of Theorem 1.2, i.e.,
Oess(Ln) = [M(T), +00). (3.1)

The proof of (3.1) is made in two steps: first we establish the inclusion [A;(I"), 4+00) C Tess(Ln),
and second we show the inequality min cess(£4) > A1 (I'). For this, we make use of the following
result [6, Th.10.2.4]:

Q; < Qs in the sense of quadratic forms =—> Min Tes( Q1) < Min Tess(QD2). (3.2)

Proof of [\ ('), +00) C dess(L). To prove this, it suffices to consider suitable Weyl sequences for
the operator £,. Let v,, denote an eigenvector of L associated with its first eigenvalue. Choose
k> 0and x € Z(R) satisfying x = 1 on [1, 2] and supp(x) C [3, 2]. The sequence (¢/,,) given by
Uoo(9€17$2)6im3%zx %), x = (71,29,73) €I X Ry,
¢n(-’13) — N ( ) +
0 zeA\ (T xRy).
is a suitable Weyl sequence for the value \;(T") + 2 and the operator L. U

Proof of min oess (L) > A(I'). Choose R > 0. Then, using subdomains introduced in (1.5)—(1.8),
we see that

ARUQRUQRUQS

is a domain partition of A in the sense of Section 1.3.4 and its associated quadratic form Q%™ satisfies

QBre < Q,. So, by (3.2)
min O-ess(Q/B;ro) S min Uess(QA)-

As Ap is bounded and Q},, Q% and 3, are isometric, we find
min O'ess(QIEir()) = min Uess(QQ%) > )\I(QQ%>7

where we recall that the quadratic QQ% and its domain are defined according to the conventions of
§1.3.4. Note that by definition, the domain 23, satisfies

OF = {(v1,72,73) €A 23> Rand (z1,22) € Ty, }, (3.3)

where I';, is the finite waveguide of length x5 defined in (1.10) taking R = x3. Hence, for u €
Dom(Qq;3 ) we have

Qs (u) = / { / (|0vul® + |Ooul? + |05ul?) dxldxg}dxg

R Tay

> /3 M(Ta,) [ul? doydazades > M (Tr)ull720)
QR
where we used the monotonicity property (2.14) of the first eigenvalue A\, (I';,) = \,, with respect
to x3. We have finally obtained for any R > 0
min ess(La) > mino(Qqs ) > Mi(r).

Combined with the convergence result A\;(I'r) — A;(I") as R — oo (Corollary 2.4), this yields the
desired inequality. 0
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3.2. Finiteness of the number of bound states. The purpose of this part is to prove
#((£a) N[0, (D)) < +oo. (3.4)

Proof step 1: Reduction to the residual domain 3. Like in the previous proof, we use for L > 0
the domain partition Ay, UQ} UQ2 UQ3 of A. As a consequence of (1.14a)-(1.14b), if the number of
eigenvalues under \;(T") is finite for each of the operators acting on Ay, Q1, Q2 and 23, the same
holds for £,. For each chosen L, this finiteness holds for the bounded domain A;. Moreover the
spectra of the three operators €2} are identical by symmetry. Thus (3.4) will be proved if there holds

#<a(ggi) n [0, /\I(F))> < too. (3.5)
for some L > 0. O

Proof step 2. A Born-Oppenheimer type lower bound. Recall that 23 is the set of € A such that
x3 > L and (z1,72) € [y, ¢f (3.3). In order to prove (3.5), we establish a lower bound for the
associated quadratic form QQ3 by projection on the first eigenvector v,, of Lr,, for each z3 > L.
This is in the spirit of the so- called Born- Oppenheimer approximation [11, 24, 26] Recall that for
R > 0, vg denotes the positive normalized eigenfunction associated with the first eigenvalue A\r of
Lr,. Now, R is set as the third coordinate 23 of z € Q3. For an improved readability we denote, cf.
Table 1,

AMzz) = M(Te) = Ay, Ao :=M(0) and w = /72 — M. (3.6)
Lemma 3.1. For any L > 0 and any u € L?(Q3) we introduce the orthogonal projections
(Wayw) (21, 22, 43) = f(23) Vay (1, 22), Tgu=u—1u, for 3> 1L,

where for the sake of simplicity we set

f(xg):/ w(wy, Ta, T3) Vg (71, T2) dryda,.
r

3

Then, for all € € (0, 1), there exists Ly > 1, such that for all L > Lo and u € Dom(QQri), we have,
with notation (3.6),

Qo3 (u) > (1 — &) |lf 1 72(1.00) +/L (1 — e 2C=0) Mag) |f (3)|” das + Moo [Tz 0l 220

Proof. Thanks to the orthogonality in L*(T',,) of IT,,v and IT:, v for any v € L*(T,,) we get
105t 720y = 1Ty (D5 123 + ML, (F5u) 122y
Thus, for all v € Dom(QQi) we have
Qqs (u) = |’33U||2L2(Qiz) "‘/L Or,, (u) dz;
> ey @o) gy, + [ @, () d 37)

Now, since u € Dom(Qg; ), remark that f € H'(L, +00) and that we have

I, (Osu) (21, T2, 23) = f'(23) Vg, (1, T2) — F(X3) Vay (@1, T2), (3.8)
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where the commutator term F' is given by (using the notation w,, = 03v,,, ¢/ Lemma 2.8)

F(z3) == /2%

+/ u(x1, To, T3) Way (21, ¥2) dryday,  x3 > L.
r

T3

u(wl,xg,xs)vxg(xl,xg)dxl+/ (3, o, T3) Vgy (T3, 2) Ao

1
Exg

On one hand, using Lemmas 2.3 and 2.8, we deduce the exponentially decreasing upper bound for
F
|F(x3)] < Ce™ (Jull2(nay) + lullzzr.y)) s Yoz > L.

Since L > 1, we can use Lemma 1.3 to bound the trace term ||ul|z2(s,,) by a multiple of ||u|| 1 (r,,)
uniformly in z3 > L. Hence, with other constants C’ and C” independent of z3

|F(x3)| < C"e™" ullmr,,) < C"e ™™ /Qr,, (u), Vaz>L, (3.9
where we used the min-max principle and Point 2) in Remark 2.7 to obtain
ACD)llulZeqr, ) < Ao lul2aqr, ) < Q. ().
On the other hand, coming back to (3.8) we have for any ¢ € (0, 1)
ey (O3u)l[72(3) = (1= €)' (23) vy (21, 22) |72 + (1 — €I F (@) vay (21, 22) [ 20
= (1=l f 2200y + (1 = e DFI 721, 00)
> (1=l f 20y — & NI T2(100)

Now (3.9) yields, with a new constant C' independent of x3

IF|2 0 < C /

(o)

e 2% Qr, (u)dxs.

Hence we get

My (Gu) oy = (1= ) gy = O™ [ e, () da.

Combining this with (3.7) we obtain

o0

Quy ()2 (L= )| oy + [ Qe (w)day = Cet [ ™m0 () day.
L L
Let us fix € € (0, 1) and choose L; > 1 such that C'e~1e=**%1 < 1. Then we write for any L > L,
Qqg (1) > (1= &) /' 72(1.00) +/L (1—e =P Qp (u)das. (3.10)

But for u € Dom(Qg;3 ) we have for x5 > L:
Qrzg (u> = QFI3 (HJBSU) + QFZ3 (ij_gu>
> M (Fa) IMagullZa e,y + Ao (Caa) T ul o,
Noting that HH%UH%%F%) = | f(x3)|* we get (with notation (3.6))
Or,, (u) > M) | f(3)* + 72 ull 7, . (3.11)
where we used point ii) of Lemma 2.1. Combining (3.10) and (3.11) yields

Qo (1) 2 (1= ) gy + [ (1= €472 (M) 11w + Tl )
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Take Lo > L; such that (1 — e=20(bo=la)yz2 > X For L > L the previous estimate implies
Quy (1) (1= I gy + [ (1= ¢ A r) (o) s+ e HTE 0y

But since (1 — e~ 20(@3=11)) > (1 — ¢=2(#3=L0)) the lemma is proved. O
Taking advantage of the exponential convergence of A(z3) toward A, we deduce:

Corollary 3.2. There exists Ly > 1, such that for all L > Ly and u € Dom(QQ:z ), we have,

Qo (u) > / (317 @) 2 + (oo = Volwa)) 1f (23)) dag + Ao I ulfagy)  (B12)
L

with Vo(3) = e~ 2@=L0) and with ., defined in (3.6).

Proof. Thanks to Lemma 3.1 withe = % we get the existence of L) > 1 such that for all L > L9:

Qas (u) > 5111 72(1.00) +/:0(1 — e 2\ (4 | f(5)|” Ay + Moo [T ulFa0s) (3.13)
But:
(1— e 23 LY\ (23) = Ao + (M@3) — Aoo) — e~ 2@ L0) )\(15)
> Aoo — Cre 297 — e_2w(x3_L5))\(x3)
> \oo — Che™ 20 — 6_%(9”3_%))\00

where we have used Corollary 2.4 and the monotonicity of A\. Hence, to obtain the corollary, it
suffices to choose Lo > L7 such that C; + 2o\ < ewlo, 0

This concludes step 2 of the proof of (3.4). U

Proof step 3. Reduction to a one-dimensional Schrodinger operator. Taking advantage of Corollary
3.2, we extend the quadratic form in the right hand side of (3.12) to a larger functional space, defining
the quadratic form Q" with tensor product domain:

@ (f0) = [ (7 @) + (e = Valoa) ) ) das + A [0l
Dom(Q*"™) = H'(L, +o0) x L*(Q}).
Let u € Dom(Qqs ), thanks to (3.12) we have
QQPZ (U) > Qtens(fa Hx3u)7 HUH%Z(Q%) = Hf”%z(L,—‘,-oo) + ||H.i‘_3uH%2(Q%)7
with f(r3) = (u, Vs3) 22(r,,)- This inequality and the natural embedding of domains
Dom(Qqs) — Dom(Q'")
u — ((u, Vss ) [2(Ty ) I u)

imply by the min-max principle that the number of eigenvalues of Qqs below A is not greater than
the number of eigenvalues of Q" below \,,. Moreover, by construction, any eigenstate of Q"
below A, is of the form (f,0), with f an eigenstate associated with a negative eigenvalue of the
one-dimensional Schrodinger quadratic form

Q" (f) = / TP VeI FOP . Dom(Q™) = H(L, +00).

It remains to prove that the QP (f) has at most a finite number of negative eigenvalues. 0
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Proof step 4. Conclusion. As the potential V;, of O'P satisfies

+0o0
/ tVo(t)dt < +o0,
L

a Bargmann estimate (see [3] or [32, Thm. XIIL.9 a)]) gives the finiteness of negative eigenvalues of
Q'P. More precisely, in our case
“+o00

#(0(Q1D)ﬂ (—oo,O)) < 1+2/ £ V(1) dt,

L
where the shift of 1 with respect to [32, Thm. XIII.9 a)] comes from the fact that the operator
with Neumann boundary condition in x3 = L is a perturbation of rank one of the same differential
operator but with Dirichlet boundary condition in x5 = L. This ends the proof of (3.4), i.e. of point
ii) of Theorem 1.2. l

3.3. Bounds for the discrete spectrum. As a consequence of (3.1), an upper bound for the discrete
spectrum ogis(L4) is A1 (I"). We exhibit now a lower bound. First, we prove symmetry properties for
possible eigenvectors.

Lemma 3.3. Denote by P! the diagonal plane x5 = xs, and P2, P> by permutation of indices. Let u
be an eigenvector of L, associated with a discrete eigenvalue. Then u satisfies Neumann conditions
0w = 0 on the three diagonal planes PN A, £ = 1,2, 3.

Proof. Let us write the eigenvector u as the sum of its even and odd parts u, and u_ with respect
to the plane P'. The operator A and the domain A being invariant by the symmetry with respect to
the plane P, the parts v, and u_ satisfy the same eigenproblem as u. The odd part u_ is zero on
P! N A, hence satisfies Dirichlet boundary conditions on the domain II' N A, where II' denotes the
half-space zo < x3. Let us notice that

M'NA=T1"N(T x R).

Indeed, II' N A = {z € R? : —1 < min{zy, 29,73} < 0 and zo < z3}. Butif x5 < z3, then
min{zy, xe, x3} = min{xy, x2}. Whence the above equality. Therefore we have

AP N A) = APP(IT N (T x R)),

where for a Lipschitz domain O, as introduced in §1.3.3, A" () denotes the i-th Rayleigh quotient
of the Dirichlet Laplacian posed on O. By Dirichlet bracketing AP (IT' N (T x R)) > AP"(T" x R).
This last quantity coincides with A;(I"), the infimum of the essential spectrum of £,. Thus we
deduce that u_ is zero and are left with u = w,. It proves that u is even with respect to the plane
P, thus satisfies 9,,u = 0 on P*, and similarly for P2 and P3. O

Corollary 3.4. With the definition (1.7) of A3 (see also Figure 6), we denote by L s the realization
of —A in A3 with Dirichlet boundary conditions on ON* N O\ and Neumann boundary conditions
on the remaining part of the boundary OA*> N (P! U P?). Then

odis(Lr) = 04is(Las)  with multiplicities

and the associated eigenvectors of L s are the restrictions to A3 of the eigenvectors of L.

Proof. Lemma 3.3 implies that if u is an eigenvector associated with an eigenvalue below A;(I'),
then its restriction to A is an eigenvector of £ s associated with the same eigenvalue. Conversely, if
w is an eigenvector of L3 associated with an eigenvalue below A (I"), we prove that it is symmetric
with respect to the plane P3 by an argument similar as above: the odd part u_ of u is zero on the
boundary of A® NTI? (with TT? the half-space 1 < ). But A> N I1? = (Z x R?) N TI3, from which
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FIGURE 6. Two views of A? (cut by a plane perpendicular to the x5 axis).

we deduce that u_ is zero. Hence, v can be extended to A by symmetry through P! and P?, defining
an eigenvector of L. O

Notation 3.5. According to Table 1, we use the condensed notation A(x3) for Ay (I'y,) (z3 > —1).
For any L > —1, let V), be the Sturm-Liouville operator with potential A : x3 — A(z3) on (L, c0):

Vi:iqg— —¢"+Xq, Dom(Vy)={q€ H*(L,+o0): ¢'(L) =0}. (3.14)
Let p(L) be its lowest eigenvalue and ¢, be its normalized eigenfunction satisfying g, (L) > 0.
Before stating the main result of this paragraph, we need the following two lemmas.

Lemma 3.6. There holds:

i) Mxs) = %2(1 + x3) 72 for x3 € (—1,0], in particular X is analytic and decreasing on (—1,0);
it) A is analytic and increasing on (0, +00);
iii) \ has a right limit in x3 = 0 satisfying A\(0;.) > A\(0) = %2
Proof. For Point i) we remark that if z3 < 0, \(x3) is the first eigenvalue of a Laplacian on a square

of size (1 + x3) with Dirichlet boundary condition on 0I"' N [J; 4, and Neumann on the remaining

72

part of the boundary. This yields Point i) immediately and we notice that lim,, o~ A(z3) = %-.
Point ii) is a direct consequence of Lemma 2.5 and (2.14).
Concerning Point iii), for any positive x3, we apply the argument (1.14a)-(1.14b) to the partition
of I'y, into I'g, 7.}, and 72 and find

A(z3) = min {)‘(0)7 )\1<7;13)a >\1(7;23)} :

Since A\ (77,) = = for j = 1,2, which is larger than \(0), we find that A(z3) > A(0) for all positive
x3. As the function \ is increasing on (0, 00), it has a right limit A(0;) > A(0) in x5 = 0. O

Lemma 3.7. The first eigenvalue j1(L) of the Sturm-Liouville operator Vy, defines a €° function u
on (—1,400) and the following holds:

i) Forall L # 0, j1 has a derivative that satisfies 1/ (L) = (u(L) — A(L)) qr(L)%

ii) Forall L > 0, u(L) > A(L),
iii) Forall L € (—1,400), u(L) < A (Where A\, is defined in (3.6)).

Proof. The continuity of y(L) is obtained via its characterization by the min-max principle and the
continuity of its associated Rayleigh quotient. Point i) is straightforward application of the main
result in [14]. About Point /i), using that \ is increasing on [0, +00) we know that for all L > 0

—+00

u(L) = / T + Aes)lqul?) des > / oy + ML) > A(L),
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where the strict inequality holds because ¢} can not be identically zero otherwise ¢;, would be con-
stant, which is incompatible with the eigen-equation verified by q..

Finally Point iii) is a consequence of the fact that the potential A of the Sturm-Liouville operator
V;, is smaller than A, on the unbounded interval (0,00). Therefore A, belongs to the essential
spectrum of V, and is an upper bound for p(L). O

We are ready to prove the following proposition.

Proposition 3.8. With Notation 3.5, the first Rayleigh quotient of the Fichera layer \i(\) admits the
lower bound

A(A) > inf u(L). (3.15)

T L>-1

and there exists a unique element L* € (—1,00) such that
it p(L) = p(L).
Moreover L* belongs to (—1,0) and satisfies j1(L*) = A(L*).

Proof. By Corollary 3.4, it suffices to consider the operator Ljs. Let u € Dom(L,3) such that
||| £2(a3) = 1. We bound its energy from below:

|Vu|2 dz;dxydzs = / (/ (|81u|2 + |82u|2 + |63u|2) dxldx2> dzs
A3 —1 N,

> /_oo </r (AMx3)|ul* + [05ul?) dxldx2> dws

1 x3

> /r </OO (AMas)|ul® + [O5ul?) d:c3> dzidxy

max{z1,z2}

> /F plmaxc{zr, 22))( / h uf?dzy )

max{z1,z2}

> LiEEIM(L) /A3 lu|? doydaodas
which proves (3.15). Thanks to Lemma 3.6 i) we know that lim,, , 1+ A(23) = +o00 and thanks to
Lemma 3.7 iii) we know that p(L) < A\ forall L € (—1,+00). In particular, in a neighborhood
of —1 we have ;1 < A. Combining Lemma 3.7 ii) and Lemma 3.6 iii), we know that x > A in a
neighborhood of 0. Since p — A is continuous on (—1,0), the functions ;2 and A cross at a lowest
point L* € (—1,0). They cannot cross again due to Lemma 3.6 i) and Lemma 3.7 i): \ is decreasing
while (i is increasing on (L*,0). O

Remark 3.9. In fact the function ) is continuous in 0, i.e. A(0;.) = A(0). But the convergence to A(0)
on the right is very slow, behaving as 1/|log x3|, as in the case of a small Dirichlet hole [5, 27]. This
is illustrated by the plots in Figure 7 where A\ and p are represented as functions of x3 (computation
details are provided in the next section). We can see that the function . is piecewise €' (1’ has a
discontinuity in 0) and reaches its minimum at its intersection point with \.

4. FICHERA LAYER: NUMERICAL EVIDENCE OF DISCRETE SPECTRUM

Here we address the issue of existence of bound states for the Dirichlet Laplacian £, on the
Fichera layer. In absence of a theoretical proof for the existence of discrete eigenvalues, we investi-
gate the spectrum of £, by means of Galerkin projections using finite element approximations.
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FIGURE 7. Normalized functions z3 — \(z3) /7% and 23 — p(x3) /7% (with zoom).

It is a classical result that, in presence of exact geometric description and exact quadrature, the

computed eigenvalues are larger than those of the original problem, see for instance the short survey
[15, Section 1].

4.1. Finite two-dimensional guides. Beforehand, we compute an approximation of the functions
A and pu, cf. Figure 7. Since A is explicit when z3 = R < 0, we only need to compute it when R
is positive. In order to deal with a single domain and a single finite element mesh, we perform the
change of variables (2.9) that transforms I'; into I';. We use a quadrilateral strongly refined mesh
with 4 layers and a refinement ratio of 0.1 around the nonconvex corner (0,0). For the results in
Figure 7, the interpolation degree p is chosen equal to 16. Values of I? are sampled between 0.001
and 10. Varying the interpolation degree p shows that we may expect 5 or 6 correct digits when
p = 16.

0.8
0.6
0.4
0.2
[ 0 0
-0.2
-0.4
-0.6

0.05 0.005

-0.05 -0.005

-1 -0.1 -0.01

-1.5 -1 -0.5 0 0.5 1 1.5 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 -0.015 -0.01 -0.005 0 0.005 0.01 0.015

FIGURE 8. Mesh of I'; with 4 layers and ratio 0.1, and zoom by factors 10 and 100.

These computations allow to find numerical upper and lower bounds for the first Rayleigh quotient
A1(A) of the Fichera layer.

4.1.1. Upper bound. To evaluate \,,, we compute the first eigenvalue of the Laplacian on ' either
with Dirichlet or Neumann conditions on X, (and still Dirichlet conditions on 0T'g \ ¥ ). Denote
by AP"(T'z) and A\M*(T"r) = AR, respectively, these eigenvalues.

We perform the computations for a sample of values of R. The log of their difference is plotted
in Figure 9, together with its slope with respect to R. The slope converges to a number —«, which
means the exponential convergence

ADF(DR) — AMX(TR) ~ e7of with o ~ 1.672782. 4.1)
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As an approximation of )\, we take the mean value of AP"(I'z) and A\V™*(I"y) for R = 10
LADIT(y0) + AMX(Dyg)) = 09291205 7% == .

We notice that, with this numerical value, the theoretical exponential convergence ~ e~ 25 stated
by Corollary 2.4 becomes

e 2FY  with 2% = 271 — 0.9291205 ~ 1.672785,

which is very close to the observed « in (4.1).

log(:.2"-2%)

FIGURE 9. Computed eigenvalues A\P"(T'g) and A\M*(T'g) as functions of R (left),
log of difference AP"(I'z) — AM*(I"z) and slope (right).

We also notice that the value A,/ 72 = 0.9291205 is smaller, thus more precise, than the value
0.92934 computed in [15]: here the strongly refined mesh and the polynomials of degree 16 capture
the corner singularity of the eigenvectors more effectively than the uniform triangular mesh with
polynomials of degree 6 used in [15].

4.1.2. Lower bound. Computing \M*(T'z) = A(R) for a sufficiently dense sample of values of R
allows to evaluate in turn the first eigenvalue o of the Sturm Liouville operator (3.14) V : q —
—q" + Aq for a sample of values of L, as shown in Figure 7: here the computation is performed
with polynomials of degree 10 on the interval [L, 40] with Neumann conditions at the two ends. This
yields an evaluation of the quantities L* and p(L*) defined in Proposition 3.8:

L*~—0.228 and pu(L*)~ 0.838653 .
Thus the first Rayleigh quotient \; (A) of the Fichera layer satisfies
0.838653 m < A1 (A) < 0.9291205 7°. (4.2)
4.2. Finite Fichera layers. We compute the first eigenvalues of the bilinear form Q = V - V on
finite layers Ar with Dirichlet or Neumann boundary conditions on the part X of the boundary

of Ax (and Dirichlet on dAr N JA in both cases). Let us denote them by AP (Ax) and A (Ag),
respectively. We have the inequalities

N™(AR) < A"(Ag) and  APT(A) < APT(Ag), Vi>1, VR>-L 4.3

Beforehand, we compute the first eigenvalue (L, R) of the Sturm-Liouville operators Vy, g : ¢ —
—¢" 4+ Aq on the interval (L, R) with Neumann condition at L and Dirichlet condition at R. By a
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FIGURE 10. First eigenvalues (L, R) (divided by 72) of Sturm-Liouville operators
Vr..r as functions of L for R = 2,4, 6,8, 10 and 40.

reasoning similar to Lemma 3.7 we find the lower bound for AP (AR)

N (Ag) 2 | min (L, R). (44)
From Figure 10, we see that the value of R has a very slight influence on miny, (L, R) as soon as
R > 4. Moreover, the values for R = 40 are very close to those presented in Figure 7 for which the
Neumann condition at R = 40 was imposed.

We compute the first three eigenvalues A\P"(Ag), j = 1,2,3, for R ranging from 2 to 10, and
M™(AR) for the same values of R for comparison sake, see Figure 11. We use three structured
tensor hexahedral grids &;, ®,, and &3 on the finite Fichera layers Ay (see details in Appendix A)
combined with the interpolation degrees p = 4, 2 and 1, respectively. In all these configurations, the
number of degrees of freedom is 20293 when R = 2 and 36829 for larger values of R.

1.02f G o logn "™
HMix; 2 Dir_ 5 Mix
) o o)
Q A

-~ ——""1

10

FIGURE 11. Computed eigenvalues A\P"(Ag) and A)'™(AR) as functions of R (left),
log of difference AP"(Ar) — AMX(AR) (right). Solid lines: p = 4 on &;, dash and
dots: p = 1 on B5. The results with p = 2 on &, are very close to p = 4 on &; and
are not plotted.

We do not plot the third eigenvalue because it is identical (within 13 digits) to the second one. We
notice the numerical evidence of exactly one discrete eigenvalue under the essential spectrum of Ly :
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i) As soon as R > 3, both A\P"(Ag) and AM*(Ag) are smaller than ),
ii) The difference \P"(Ag) — AM*(AR) converges exponentially to 0 with respect to R.
iii) A\D"(Ar) and AY"™(AR) tend to A, by superior values.
iv) The difference A\D"(Ag) — AY'™(Ag) converges slowly to 0.
The observed convergence rate 3 such that APT(Az) — AMX(AR) ~ e P% is slightly larger than 1.
Extrapolating from computations on the same grid with degrees p from 1 to 8 yields the estimate

0.90317% < A\ (A) < 0.903372.

A theoretical Agmon-type exponential decay estimate is =27 with v = /A, — A1 (A). With the
numerical values 0.929172 for A, and 0.903372 for A;(A), we find v ~ 0.5046, which is coherent
with 2v ~ § ~ 1.

The relative gap between the bound state and the bottom of the essential spectrum is

(A) = A (T) — A (A) . 0.9291 —0.9032
TVZTN ) T 0.9032

We represent in Figure 12 slices of the eigenvectors associated with the first and second eigen-
values AM*(AR) and \Y'™(AR) for R = 4. We slice the domain Ay by the plane P of equation
x1 = xo. The first eigenvector is concentrated near the origin and is close to the restriction of the
first eigenvector on the infinite Fichera layer A. We can see that the decay is slower along the edge
1 = x9 = 0 (vertical leg in the figure) than in the horizontal leg that goes away from the edges. The
second eigenvector is a manifestation of the essential spectrum and concentrates along the edge.

. o 0.07
eigsN_1 : eigsN_2
0.09 0.06
0.08 0.05
0.07
0.04
0.06
0.05 0.03
0.04 0.02
0.03
0.01
0.02
0

-0.01

~ 0.029. (4.5)

FIGURE 12. Slices of eigenvectors associated with A\M*(A) (left) and \Y'™(A,)
(right) through the plane #; = x5. The vertical leg has length 4 and width v/2 whereas
the horizontal leg has length 41/2 and width 1.

5. TWO EXTENSIONS

In this section we discuss two extensions of Theorem 1.2. The first one is about the layer with
rounded edges A and the second one concerns the three-dimensional cross ¢, both introduced in
§1.2. A similar strategy could be applied to investigate the layer A” (also introduced in §1.2).

The theoretical investigation of A* and % follows the same lines as for the Fichera layer A. Let
us bring out the main points of the rationale of our proof:

(a) There are two-dimensional waveguides canonically associated with A* and 2. The Dirichlet
spectrum in these waveguides has the same structure as in Theorem 1.1: the essential spectrum
coincides with [7?, +00) and there is a (unique) bound state, as in Theorem 1.1.
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(b) The eigenvalues of the truncated guides converge exponentially to the one on the entire waveg-
uide, as in Corollary 2.4.

(c) If they exist, the eigenfunctions in A* or % have symmetry properties, which allows to reduce
the problem to truncated layers around each edge as in Corollary 3.4.

(d) The Born-Oppenheimer strategy of §3.2 reduces the study to a Sturm-Liouville operator with an
adequate potential which has a finite number of bound states.

To keep the discussion concise and avoid redundancies, we choose to skip proof details for A* and
% and focus on numerical results.

5.1. Fichera layer with exterior rounded edges. Let us start by defining the geometrical objects
we are interested in. Recall that the surface .7 is defined as {x € R? : min{z;, x5, 23} = 0}. Note
that it coincides with the boundary JR? of the first octant R? . The layer Afis

A ={x cR*\R3 : dist(z, OR%) < 1}.
Its two-dimensional analogue is the guide I'* (see Figure 2, right) that is defined as

I = {x e R*\ R : dist(z, OR%) < 1}.

Theorem 5.1. With the broken guide T'* and Ly: the positive Dirichlet Laplacian on T, there holds:
i) The essential spectrum of Ly coincides with [, +00);
i) The operator Lr: has exactly one eigenvalue under its essential spectrum denoted by \;(T'*).

Remark that Theorem 5.1 is not a direct consequence of [17] because the hypothesis of loc. cit.
on the curvature is not satisfied. For completeness, we present a proof in Appendix B.
The analogue of Theorem 1.2, stated for the layer A, reads as follows:

Theorem 5.2. Let L, be the positive Dirichlet Laplacian on A*. There holds:
i) The essential spectrum of L : coincides with [\ ('), +00);

ii) Ly: has at most a finite number of eigenvalues under its essential spectrum.

We present now in §5.1.1 computations supporting point (b) above (exponential convergence in
two-dimensional finite guides). Next in §5.1.2, we give numerical evidence about the existence of
exactly one bound state for A%,

5.1.1. Two-dimensional rounded guides. For R > 0, we define the finite broken guide F% like we
did in (1.10)
I =T N Oy
Note that the part of its boundary at “distance” R, i.e. OI'* N 0,1, coincides with X in (1.12).
Like in Section 4.1, AP"(T'%) and AM*(T'%,) denote the first eigenvalues of the Laplace operator in
F% with Dirichlet and mixed ((9NF§2 = X ) boundary conditions, respectively. The counterpart of
Corollary 2.4 for the guide I'* writes as follows.

Corollary 5.3. With the positive number w* = /72 — X\ (T'%), there exists a constant C* such that
VR 1 0< () - AT < O

Similarly as in §4.1.1, to evaluate \;(T'f) we compute AP"(I'%) and AM*(I'%) for a sample of
values of R (see Figure 13, left). We observe the numerical exponential convergence
ADIn(pEy ML) ~ emoR  with o = 0.7293. (5.1)
As an approximation of \;(I'*), we take the mean value of AP (I'%,) and AM>(I"%,) for R = 12:
A1 (T%) >~ 0.986572. (5.2)
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With this numerical value, the convergence rate expected in Corollary 5.3 becomes e 2% with
20* = 0.7294. This is consistent with the observed slope given in (5.1).

4 T T T T T

Dir_.

log(r"-2}"™)

05 i i i i -10 i i i i i
-1 0 1 2 3 4 0 2 4 6 8 10 12

FIGURE 13. Computed eigenvalues AP"(I'%,) and AM>(T"%,) as functions of R (left),
log of difference AP (T'%) — AM*(T'%) and slope (right).

5.1.2. Three-dimensional rounded layers. For R > 0, we define the finite layers like in (1.5)
AL = AN Opgys,

To find approximate Rayleigh quotients of £ ,:, we compute the first two eigenvalues )\ZD”(A%) and
)\L)/“X(Agz) (¢ = 1,2), of the Laplacian on A , with Dirichlet boundary conditions on OAf N 6A§% and
Dirichlet or Neumann conditions in what remains of the boundary. In Figure 14, we plot the results
for R ranging from 4 to 16. We used a tetrahedral mesh, see Figure 17, and an interpolation of degree
6. Like for the Fichera layer (see §4.2) the existence of a unique bound state is clearly exhibited. We
find the value
A (AF) ~ 0.981772.

Using (5.2), we know that the threshold of the essential spectrum for the layer A is given by
A (TF) ~ 0.986572. Thus the relative gap between the bound state and the bottom of the essen-
tial spectrum is

g(A) = AL(TH) — Ay (AF) ~ 0.9865 — 0.9817

A1 (AF) 0.9817

Compared to (4.5), there is less room for a bound state to exist than in the Fichera layer A.

~ (.0049. (5.3)

5.2. Three-dimensional cross. Recall that the cross waveguide 2~ and the three-dimensional ana-
logue % are defined in (1.2). The following result is known, see [31, §3.4].

Theorem 5.4 ([31]). Let L o be the Dirichlet Laplacian in Z . There holds:

i) The essential spectrum of L - coincides with [7%, +00);
ii) Ly has exactly one eigenvalue under its essential spectrum, denoted by \;(Z").

The analogue of Theorem 1.2 reads as follow.

Theorem 5.5. Let Loy be the Dirichlet Laplacian in %'. There holds:

i) The essential spectrum of Ly coincides with [\ (Z), +00);
ii) Lo has at most a finite number of eigenvalues under its essential spectrum.
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FIGURE 14. Computed eigenvalues A>"(A%) and AM™(A%) as functions of R (left),
log of difference AP (A%) — AMix(A%) (right), for £ = 1, 2.

The following lemma can be proved adapting Lemma 3.3. It implies that, up to a scaling factor,
calculations for 2" and ¢ reduce to calculations on I" and A, respectively, see Corollary 5.7.

Lemma 5.6. Ford=2,3and j € {1,...,d}, we define %7 := {x € R? : x; = —1/2}. Then:
i) For d = 2, an eigenfunction associated with \\(Z") satisfies O,u = 0 on P (j = 1,2),

ii) For d = 3, an eigenfunction associated with a bound state of Ly satisfies O,u = 0 on 97
(7=1,2,3)

Let us introduce the scaled versions of the broken guide I" and the Fichera layer A as
T= %F and A= %A.

We consider Dirichlet boundary conditions on 01" N T and 9ANHA, and Neumann on the remaining
part of the boundary. The Rayleigh quotients of the Correspondmg posmve two-dimensional and
three-dimensional Laplacians L and £ are denoted by Ae(T') and Ag(A), respectively.

A consequence of Lemma 5. 6 is the followmg corollary, reminiscent of Corollary 3.4, that can be
proved using symmetries of the eigenfunctions.

Corollary 5.7. The following holds:

i) We have \(2) = M (T).
ii) We have o4is(Ly) = 04is(L3).

The bounded versions of T and A are defined as 'y = F NUp1 and A R= —ANO r+1. Boundary
conditions on OT r and OA r on the common part with T and A are the same as mentioned above,
whergas on theAremalnmg part of thelrlooundarles we take Dirichlet or Neumann, thus defining
AP (Tr), AY™(Tr), and AP"(Ag), \"™(Ag).

Then an approximation of \{(Z") := A is given, for R large enough, by the mean value of
APIr(T' ) and AM*(T'). For R = 12 we obtain

M (Z) ~ 0.65967.

In the same way as stated in Corollary 2.4 and Corollary 5.3, an exponential convergence of the
truncated problems toward \;(2") can be exhibited.

For the three-dimensional domain, we compute the first two eigenvalues )\D"(A R)> )\QMX(K r), for
R ranging from 0.5 to 8 (see Figure 15). Computations have been performed on a rather coarse mesh
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FIGURE 15. Computed eigenvalues AP" (A ), AM*(A ) as functions of R (left), and
log of their difference (right), for / = 1, 2.

with interpolation degree 4, which is sufficient to exhibit the existence of a unique bound state with
approximate value
M (Z) ~ 0.51657°.

The relative gap between the bound state and the bottom of the essential spectrum is
M) - M(Z) . 0.6596 — 0.5165

92 MZ) T 05165

~ 0.277. (5.4)

6. CONCLUSION

We have investigated spectral properties of the Dirichlet Laplacian £, on the Fichera layer A and
we have given hints that these properties are shared with three-dimensional layers of a more general
structure. This suggests the definition of a family § of “generalized Fichera layers” in which the
following main spectral features of £, subsist:

i) The bottom of the essential spectrum is driven by the first eigenvalue of associated two-dimen-
sional quantum wave guides;
ii) The number of independent bound states is finite.

This contrasts with the family of smooth conical layers, denoted here as €, investigated in [29], in
which the Dirichlet Laplacian satisfies:

i) The bottom of the essential spectrum is driven by the first eigenvalue of a one-dimensional
problem;

i) The number of bound states is infinite, and their counting function satisfy a O(| log F/|) estimate,
with E being the distance to the essential spectrum.

Even though it was our initial motivation, it turns out that it is not particularly the existence of
edges that generates these different spectral features between elements of € and the Fichera layer
A. Indeed, consider for instance the smooth surface .#* (a slice of which is drawn in Figure 2) and
define .Z[¢] as the set of points at distance /2 from .7%, see Figure 16. Then, for any ¢ € (0, 1),
the layer Z[¢] has a smooth boundary but shares the spectral properties of the Fichera layer A.
Actually, the discriminating feature between § and € is related to “conical invariance properties”,
which characterizes the structure of the layer at infinity. By this, we mean the following:

There exists a partition of R? in a finite number of axisymmetric cones C; such that:
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FIGURE 16. Two views of the layer Z¢] for ¢ = % for which the internal and
external maximal radii of curvature are + and 3.

(a) If . belongs to §, the sections of .Z’NC; across the perpendicular planes I1;(R),
R > 0, to the axis of C;, are translation invariant: This means that there exists a
two-dimensional guide ¢; such that (. N C;) N IL;(R) is isomorphic to a part
4;(R) of 9;, and ¥;(R) tends to ¢; as R — oc.

(b) If .2 belongs to €, the sections of its midsurface .#’NC; across the spheres RS,
R > 0, centered at the tip of C;, are homothetic.
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APPENDIX A. THREE-DIMENSIONAL MESHES

We describe here the 3D meshes used for the computations presented in §4.2 and Section 5.

For the finite Fichera layers (§4.2), the mesh of the domain Ag is deduced from a 3D tensor
product based on a specific subdivision of the interval [—1, R], leading to a mesh made of hexahedra
whose faces are parallel to the Cartesian planes. By a 3D tensor product, we get a mesh in [—1, R]3,
from which the cube [0, R]? is removed. This process allows to build the meshes, called hexahedral
grids &1, B,, and &3 in §4.2.

The choice of the subdivision allows the refinement of the mesh on some particular parts of
the domain, namely the internal corner (0,0,0) and the edges starting from this point. The sub-

divisions Sk corresponding to the grids &,k = 1,2,3 are defined as follows. Starting from
S ={-1,-3,-1,0,1,3,1,2, R+2) , R}, the subdivision S is deduced from Sj by adding the

midpoint of each 1nterval of Sk. As an example, we show on figure 17, left, the grid &, for R = 4.

For the 3D cross (§5.2), the computations have been performed on the same kind of mesh, based on
the subdivision {—1, 110, 0, 110, 1,a,b} witha = min(4, R) and b = max(a, R) (with the convention
that a or b should be removed if it is equal to the preceding abscissa in the list).

For the 3D Fichera layer with exterior rounded edges (§5.1.2), the mesh of the domain AE% has
been created with Gmsh [21]. At the corner (0,0, 0), there is one eighth of sphere, extended across

its three plane faces by quarters of cylinder; three parallelepipeds (the walls) complete the domain.
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The mesh is made of tetrahedra of order 2; moreover it is non uniform: elements are densified inside
the spherical part and along the internal edges. An example is shown for R = 4 on figure 17, right.
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FIGURE 17. Meshes of the 3D Fichera layer (left), with exterior rounded edges (right).

APPENDIX B. EXISTENCE OF A BOUND STATE FOR THE GUIDE I'?

The aim of this appendix is to prove Theorem 5.1.

Recall that the guide I'* (Figure 2, right) is the union of the quarter disk of radius 1, Fg =T*n0Oy,
and of the two infinite strips [0,00) X Z and Z x [0, 00), with Z = (—1,0). The broken guide I" is
the union of the square I'y = Z x Z and of the same strips. So we see that I' and I'* coincide outside

[0, and that we have the inclusion T* C T'. As a consequence of this and Theorem 1.1, we obtain
immediately

i) The essential spectra of the Dirichlet Laplacian on I'* and I coincide,

ii) The number of bound states of the Dirichlet Laplacian in IT'* is smaller than that of £ in I, thus
is less than 1.

Hence, to prove Theorem 5.1, it remains to prove that there exists at least one bound state. For this
it is enough to construct a function ¢» € H} (I'*) such that

||V¢||?:2(rﬁ) < 7T2||@/)||%2(ru)- (B.1)

Our proof is inspired by [22, §A]. In the following, for the sake of completeness, we check that the
arguments loc. cit. apply to the guide I'*. We start with properties of the Helmholtz problem on Fﬁo.

Lemma B.1. Ler g € H'/2(OTY). There exists a unique 1y € H' (') such that:

{ A¢0+7T2¢0 =0 in F(ﬁ),

(B.2)
Yo =g on 8Fg.

Define, for ) € H 1(Fg), the energy functional of the above problem
— 2 201,112
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Then J(vy) is the unique minimizer of J on the space of functions with trace g, namely:

T(o) = min J(). (B.4)

YeH?! (Fg)7 Y=g on 8Fg

Proof. Consider a half-disk H of radius 1 containing Fg. By monotonicity of Dirichlet eigenvalues
AP (H) < ADT(T).
But it is known that AP"(H) = j7,, where ji 1 is the first zero of the first Bessel function of first
kind J;. Remark that 7, ; ~ 3.8 and in particular j; ; > m, thus
7% < AP, (B.5)

Therefore, the operator A + 72 is an isomorphism from H_} (Fg) onto its dual space. This, combined
with the fact that H'/2(9T%) is the trace space of H'(I'), provides existence and uniqueness for the
solution of problem (B.2).

The functional J is the energy related with the bilinear form a : (¢, 12) — fr’i (Vl/} . V@ — 7r21/)@
0
associated with problem (B.2). The variational formulation of this problem is

Find ¢ € H'(T'}) with Volpp =9 st Vi € HAU(TE),  a(to, ) =0

Let ¢, € HY(T?) such that ¢y = g on dT%. Since vy — 1, has zero trace on 9T, there holds
a(to, 11 — 1) = 0. Hence

J(¢1) = J(¥o) + J(¥1 — ¢o).
But, as a consequence of (B.5), J (¢ —1)y) is bounded from below by 7|11 — ||L2 o) for a positive
constant . This ends the proof of (B.4). U

We are ready to end the proof of Theorem 5.1. To prove the existence of bound states, by the
min-max principle, it is enough to construct a function ) € H}(I'*) such that

IVl Zarny < 72100 T2 sy

Let 11 > 0 be a parameter that will be chosen thereafter. We set o(t) := v/2sin(nt) and define the
following function

e Mrp(xy) if x € Ry X T,
P(x) =< e M2p(zy) if x €T xRy,
o if x €T},
where 1) is the solution of problem (B.2) with g defined on 8Fg as
glx)=0if || =1, ¢(0,22) = ¢(x3), Veg €Z and g(x1,0) = p(z1), Yz, € L.

Note that ¢ is continuous on &%, thus belongs to H'/2(dT%), and that ¢ belongs to H{ (T'%).
A simple computation yields

vaHm (T?) 2 M
= + + J . B.6
R e Y G (BO

We claim that J (7)) < 0 and to prove this, we rely on the characterization (B.4) of J(1y). So, it
suffices to exhibit a specific function w # o, € H 1(Fﬁ) such that ¢ =gon or?, satisfying

J(®) = 0. (B.7)




DIRICHLET SPECTRUM OF THE FICHERA LAYER 32

Consider the function ¢ () = —/2sin (my/2} + x3). By definition ¥ € HY(T'%) and coincide with
gon 8Fg. Using polar coordinates we get

J@) = 7 /0 |0, (sin(rr) 2y — /0 | sin(mr) 2 rdr
=7 /01 (cos®(mr) — sin®(wr) ) rdr

1
= 7T3/ cos(2mr) rdr = 0.
0

However, remark that

(A + 7)Y () = % cos(m|x|) # 0.

It proves (B.7) because necessarily zZ = 1)y and consequently we get

J(to) < J(¥) = 0.

Set pu = £|J(¢)|, (B.6) becomes
||V¢||L2 rt) 2 1
—27r | T ()| < 7.
11172 s 2+ I @o)l 1ol )
In particular, by the min-max principle, we obtain
A () < 72,

which yields the existence of at least one bound state.
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