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POLYHEDRA

Monique Dauge

We prove regularity results in L
p Sobolev spaces. On one hand, we state some abstract

results by L
p functional techniques : exponentially decreasing estimates in dyadic partitions of

cones and dihedra, operator valued symbols and Marcinkievicz’s theorem. On the other hand, we

derive more concrete statements with the help of estimates about the first non-zero eigenvalue of

some Laplace-Beltrami operators on spherical domains.

1. INTRODUCTION

It is well known [1] that elliptic boundary value problems in a smooth domain Ω
are regular in the class of Lp Sobolev spaces. For instance, if u is a strong solution of
the Neumann problem with ∆u ∈ W k,p(Ω), then u belongs to W k+2,p(Ω). Here k ∈ N.
Such properties no longer hold in general in non-smooth domains : for instance for p = 2,
k = 0, the regularity property fails for non-convex polygons. But non-smooth domains,
and especially piecewise smooth domains, are very important in numerous applications to
problems arising from physics. Moreover, one also may have to consider boundary conditions
which are discontinuous on the boundary : this is what is called mixed conditions.

The Lp regularity of elliptic boundary value problems on non-smooth domains has
been studied by several authors. Let us quote Fichera [16], Grisvard [17], [18], Maz’ya and
Plamenevskii [25], [24], Maz’ya and Roßmann [26]. But all of them use weighted spaces
techniques. In particular, this does not provide complete results for the Neumann problem
associated with the Laplace operator. There exists more literature in Hilbert Sobolev spaces.
Let us quote Kondrat’ev [20], Rempel and Schulze [27], Schulze [28] and the author [11]. The
extension from p = 2 to p 6= 2 is in no way straightforward, because of the constant use
of Mellin transform on cones and partial Fourier transform on edges. Such an extension
gives rise to interesting and difficult techniques : study of operator kernels in [1] and [18],
exponentially decreasing estimates in dyadic partitions of cones and dihedra in [25], [24].

Our method is inspired by [25], [24]. We have performed some simplifications and
introduced improvements in order to obtain results in non-weighted spaces for a variational
solution in H1(Ω), which seems impossible by a strict application of the above references.
This leads to an “abstract” result, as stated in the following Theorem 1.1. In this statement,
the regularity is linked with the location of some spectra. Estimates from below for the first



non-zero element of these spectra leads to explicit bounds for the couples (k, p) so that the
regularity property

∆u ∈W k,p(Ω) =⇒ u ∈W k+2,p(Ω)

holds for any solution of the mixed problem. The above mentioned spectra are only deter-
mined by the geometry of the domain and of the boundary conditions.

Here is what we obtain in a simple situation. Let Ω be a polyhedron in R3. We
denote by E the set of its edge points and by S the set of its vertices. To each x ∈ S and to
each x ∈ E, we associate some spectrum σ(x). This spectrum is determined (except possibly
for its integer elements) by the set of the eigenvalues of some Laplace-Beltrami operator.
Let λ1(x) be the least > 0 element of σ(x).

Theorem 1.1 Let k ∈ {−1, 0, 1, . . .}. Let u be the variational solution in H1(Ω) of

∀v ∈ H1(Ω)
∫

Ω
∇u∇v = < f, v >

with f ∈W k,p(Ω). Then u ∈W k+2,p(Ω) if both following conditions are fulfilled
(i) ∀x ∈ E k + 2 − 2/p < λ1(x),
(ii) ∀x ∈ S k + 2 − 3/p < λ1(x).

When x belongs to an edge, λ1(x) is well known : it is equal to π/ω where ω is the
opening of the edge. When x is a vertex, the exact value of λ1(x) is not known in general.
For Dirichlet boundary conditions, minorizations using the monotonicity with respect to the
domain are possible and yield information. For Neumann conditions, minorizations are more
difficult to obtain since the monotonicity principle no longer holds : see [14] for instance.
We have obtained that when Ω is convex

λ1(x) ≥
√

5 − 1

2
.

Here is the outline of the paper.

In section 2, we introduce our class of domains : this is a class of piecewise Cρ

domains. We also introduce our class of operators : we are going to study second order
operators defined by a symmetric integrodifferential form with real coefficients with limited
regularity (Cρ−1 for the principal part, where ρ is the same parameter as previously).

In section 3, we introduce the characteristic spectra at the vertices and edges of the
domain and we state our main results, the abstract one (Theorem 3.2) and several more
concrete ones using estimates about the “first eigenvalue” λ1.

In section 4, we study this “first eigenvalue” and prove various minorizations which
allow to deduce concrete statements from Theorem 3.2.

We give the proof of Theorem 3.2 in the remaining sections. By perturbation ar-
guments we show in section 5 how to reduce to the case of constant coefficients. We prove
regularity results for the Laplacian in cones (section 6) and wedges (sections 8 – 11). Fol-
lowing the idea of [25, 24] we prove exponentially decreasing estimates : see in section 7
Lemma 7.1 where we state such estimates in an “abstract” framework and Lemma 7.2 which
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gives the use of such estimates. For wedges, such estimates are applied to operator valued
symbols on the edge.

A complete study of boundary value problems on polyhedral domains would require
either the introduction of spaces with asymptotics like in [27, 28] or a more direct description
of the variational solution with the help of a splitting into regular and singular parts near the
edges and corners. If the faces of the polyhedron are flat and if the operator is the Laplacian,
such a description is given in [11]. But when the edges are curved, the situation is much
more complicated as can be seen in [26] and in the joint work with M. Costabel [8, 7].

Part of the results of this paper have been announced in the two notes [12, 13]. In
[4], we apply these results to the problem of coerciveness of the curl form on divergence free
vector functions with mixed conditions on the boundary and to the study of vector potentials
for the three-dimensional Stokes problem. Discussions about this problem were the starting
point of the present work.

Acknowledgments. I thank Professor V. G. Maz’ya for interesting discussions we
had in Darmstadt in Februar 1990. He suggested to me that the regularity assumptions
about the domain could be weakened by the use of multiplier results [22, 23].

2. OPERATORS AND DOMAINS

The regularity of the coefficients of the operator and of the faces of the domain are
limited by a parameter ρ ≥ 1. The domain Ω is a polyhedral domain in the class Qρ we
are going to define below. The boundary value problem we consider is determined by an
integrodifferential form a and a partition of the boundary ∂Ω. Let ai,j ∈ Cρ−1(Ω) be real
functions such that ai,j = aj,i and satisfying the strong ellipticity condition

∃c > 0, ∀x ∈ Ω, ∀ξ ∈ R
3,

∑

i,j

ai,j(x) ξiξj ≥ c|ξ|2. (2.1)

Let a0 ∈ C(ρ−2)+(Ω) be another real function, where

Notation 2.1 For any τ ∈ R, τ+ denotes max(τ, 0).

Our integrodifferential form is defined by

a(u, v) =
∫

Ω

∑

i,j

ai,j ∂iu ∂jv + a0 u v dx . (2.2)

The form a is coercive on H1(Ω). In every point x ∈ Ω, the quadratic form∑
i,j ai,j(x) ξiξj is diagonalizable, i. e. there exists an invertible matrix Mx = (mi,j(x))

such that
∑

i,j

ai,j(x) ξiξj =
∑

i



∑

j

mi,j(x)ξj




2

. (2.3)

For each x ∈ ∂Ω, this matrix Mx allows to introduce some geometric object attached
to x. This object is a polyhedral cone Ξx in R3, i. e. a positive homogeneous cone with plane
faces.

3



Definition 2.2 We say that Ω ∈ Qρ if Ω is a bounded domain in R3 satisfying that
for any x ∈ ∂Ω there exists a Cρ local map χx in a neighborhood of x and a polyhedral cone
Ξ such that χx maps a neighborhood of x in Ω onto a neighborhood of 0 in Ξ. Let us suppose,
which is not a restriction, that Dχx(x) is the identity map in R3. We set

Ξx = tM−1
x Ξ .

The reason for the introduction of Ξx is the following : the change of variables
X 7→ tM−1

x X transforms Ξ into Ξx and the form a into another form ax with principal
coefficients ax

i,j satisfying
ax

i,j(0) = δi,j .

So, in x, the principal part of a becomes the standard gradient form.

Definition 2.3 Let Ω ∈ Qρ and let x ∈ ∂Ω.
(i) If Ξx is a half-space, we say that x belongs to a “face”.
(ii) If Ξx is not a half-space but can be written in the form of a product R × Γx where Γx

is a plane sector, we say that x belongs to an “edge” ; ωx denotes the opening of Γx and
Gx :=]0, ωx[.
(iii) If Ξx cannot be written in the form of a product R×Γ, we say that x is a “vertex” ; we
also denote Γx := Ξx and Gx := Ξx ∩ S2.
We denote by S the set of the vertices and by E the closure of the set of the edge points.

We now introduce a partition of the boundary of Ω : we fix two open sets ∂DΩ and
∂NΩ in ∂Ω such that

∂Ω = ∂DΩ ∪ ∂NΩ and ∂DΩ ∩ ∂NΩ = ∅ . (2.4)

Such a partition is usually a partition of the faces of Ω. But it is also possible to
divide each face itself. We then introduce new “edges” or “vertices” on the border lines.
Generally speaking, all points in ∂DΩ ∩ ∂NΩ have to be considered as singular points.

We define our boundary value problem in variational form. We introduce the vari-
ational space

V = {u ∈ H1(Ω) | u = 0 on ∂DΩ}.
The boundary value problem we consider is defined by

V → V ′

u 7→ f = {v 7→ a(u, v)}. (2.5)

If f ∈ Lp(Ω) and is identified with v 7→ ∫
Ω fv, then problem (2.5) can be interpreted

in a classical way (νj is the j-th component of the outward normal to ∂Ω)




∑

i,j

∂jai,j ∂iu = f on Ω,

u = 0 on ∂DΩ (Dirichlet condition),∑

i,j

νjai,j ∂iu = 0 on ∂NΩ (Neumann condition).
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3. MAIN RESULTS

We assume that Ω ∈ Qρ. We are interested in the regularity of a solution u of (2.5)
when f belongs to some Lp Sobolev space. For any k ∈ N and any p ∈]1,+∞[, W k,p(Ω)
denotes the usual space of functions f such that

∀α, |α| ≤ k, Dαf ∈ Lp(Ω).

We also introduce the space W−1,p(Ω) as the dual space of

{v ∈W 1,q(Ω) | v = 0 on ∂DΩ},

where q denotes the conjugate of p : 1
p

+ 1
q

= 1.

We assume conditions on (k, p) so that W k,p(Ω) ⊂ V ′. We also want to avoid some
limit cases in Sobolev imbedding theorems. Thus, we suppose





p > 2, p 6= 3 if k = −1
p ≥ 6

5
, p 6= 2 if k = 0

p > 1, p 6∈ {2, 3} if k ≥ 1.
(3.1)

The abstract form of our statement relies on the notion of “injectivity modulo poly-
nomials” we introduced in §3.C and §23.B of [11] and which we recall hereafter. Let x be
a singular point of the boundary of Ω. To x we have associated a cone Γx. We denote by
∂DΓx the faces of Γx which correspond to ∂DΩ via the diffeomorphism χx and the linear
transformation tM−1

x .

Definition 3.1 The “spectrum” σ(x) is the complement in C of the set of the λ such
that the following condition Cλ(Γx, ∂DΓx) of injectivity modulo polynomials holds. Denoting
by (r, θ) the polar coordinates, we set

Sλ(Γ, ∂DΓ) = {u =
∑

q≥0

finite

rλ logq r uq(θ) | uq ∈ H1(G) and uq = 0 on ∂DG}.

Then the condition is

Cλ(Γx, ∂DΓx)





u ∈ Sλ(Γx, ∂DΓx) and ∆u = f with f polynomial in cartesian variables
implies

u polynomial in cartesian variables.

Here ∆u = f means that ∀v ∈ H1(Γ) such that v = 0 on ∂DΓ and with compact support, we
have

∫
Ω ∇u∇v =< f, v >.

Our basic result is the following

Theorem 3.2 We assume that ρ ≥ k+2. Let u be a solution of problem (2.5) with
f ∈W k,p(Ω). Then u ∈ W k+2,p(Ω) if both following conditions are fulfilled :
(i) ∀x ∈ E ∀λ, 0 ≤ Reλ ≤ k + 2 − 2/p, λ 6∈ σ(x)
(ii) ∀x ∈ S ∀λ, −1/2 ≤ Reλ ≤ k + 2 − 3/p, λ 6∈ σ(x).
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The conjunction of conditions (i) and (ii) is indeed a necessary and sufficient con-
dition to have the regularity of solutions. Though such a statement is optimal in a certain
sense, it is not informative enough. That is why we investigate now conditions (i) and (ii).

With the help of [17], [11], it is possible to determine completely the spectrum σ(x)
for any point in an edge. For Dirichlet or Neumann problems

σ(x) = { lπ
ωx

| l ∈ Z \ {0}}

except when ωx = 2π, where σ(x) coincides with the previous set from which one removes
the positive integers. For the mixed Dirichlet-Neumann problem

σ(x) = {(l + 1/2)π

ωx

| l ∈ Z}.

Notation 3.3

λ1(x) =

{
π/ωx for Dirichlet or Neumann conditions on Γx

π/2ωx for mixed conditions on Γx .

Then condition (i) holds if k + 2 − 2/p < λ1(x) for any x ∈ E.

Let us now study the case of the vertices.

Notation 3.4 For a domain G in the sphere S2 and a subset ∂DG of its bound-
ary, we denote by µ1(G, ∂DG) the first non-zero eigenvalue of the positive Laplace-Beltrami
operator L on the space H1(G, ∂DG) := {v ∈ H1(G) | v = 0 on ∂DG}.

We can prove

Lemma 3.5 Let x ∈ S. If λ has its real part < 2 and belongs to σ(x) then λ(λ+1)
is an eigenvalue of the Laplace-Beltrami operator L on the space H1(Gx, ∂DGx).

This lemma is a consequence of the more general results we proved in [11], §4. We
only give here two arguments which help to understand the link between the injectivity
modulo polynomials and the eigenvalues of L : let us consider u ∈ Sλ(Γx, ∂DΓx) such that
∆u = f with f polynomial ; firstly, if Reλ < 2 then f = 0 ; secondly,

∆(rλu0(θ)) = rλ−2
(
λ(λ+ 1) − L

)
u0(θ)

and u0 belongs to the domain H1(Gx, ∂DGx) of L. Indeed there holds :

If λ 6∈ N, Cλ(Γ, ∂DΓ) does not hold ⇐⇒ λ(λ+ 1) is an eigenvalue of L on H1(G, ∂DG).
(3.2)

If λ(λ + 1) is an eigenvalue µ of L, since we are only interested in the λ such that
Reλ > −1/2, we have

λ = −1

2
+

√

µ+
1

4
.

Then the least value of λ corresponds to the least value of µ. For Dirichlet or mixed problems,
the least value of µ is > 0 and it is equal to µ1(Gx, ∂DGx) according to Notation 3.4. For the
Neumann problem, the least possible value of µ is 0. But we have proved in [11], §23.C that
the condition of injectivity modulo polynomials always holds in λ = 0. Thus, the important
value is again µ1(Gx, ∂DGx).
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Notation 3.6 We set for x ∈ S

λ1(x) = −1

2
+

√

µ1(Gx, ∂DGx) +
1

4
and λ̃1(x) = min(λ1, 2) .

As a consequence of Theorem 3.2 and using Notations 3.3 and 3.6 we get

Corollary 3.7 Let u be a solution of problem (2.5) with f ∈ W k,p(Ω). Then u ∈
W k+2,p(Ω) if both following conditions are fulfilled :
(i) ∀x ∈ E, k + 2 − 2/p < λ1(x),

(ii) ∀x ∈ S, k + 2 − 3/p < λ̃1(x).

Remark 3.8 It is possible to prove [9], that for the Neumann problem one can take
min(λ1, 3) as λ̃1 instead of min(λ1, 2).

Introducing for each fixed k the greatest possible value of p such that the conditions
of Theorem 3.2 hold, we write the previous corollary in another way :

Corollary 3.9 Let k ∈ {−1, 0, 1, . . .}. Let pk(Ω, ∂DΩ) be the greatest real p̃ such
that conditions (i) and (ii) of Theorem 3.2 hold ∀p < p̃. Let ν(E) be the minimum of λ1(x)
when x ∈ E. Let ν(S) be the minimum of λ̃1(x) when x ∈ S. Then

pk(Ω, ∂DΩ) ≥ min

{
2

(k + 2 − ν(E))+
,

3

(k + 2 − ν(S))+

}
.

Minorizations of ν(E) and ν(S) yield minorizations of pk(Ω, ∂DΩ). Since ν(E) is
greater than 1

2
for Dirichlet or Neumann problems, and greater than 1

4
for mixed problems

and since ν(S) > 0 we obtain

Corollary 3.10 For Dirichlet or Neumann problems, p−1 > 3 and p0 ≥ 4
3
. For

mixed problems, p−1 ≥ 8
3
.

Remark 3.11 By a duality argument it is easy to deduce from the previous state-
ment that the Laplace operator

{u ∈W 1,p(Ω) | u = 0 on ∂DΩ} →W−1,p(Ω)

is an isomorphism for Dirichlet or Neumann conditions when 3
2
− ε < p < 3 + ε for a ε > 0.

Jerison and Kenig in [19] obtain the same result for Lipschitz domains.

The estimates we are going to prove in the next section (see §4.c and Proposition 4.5)
allow to obtain

Corollary 3.12 Let us suppose Ω convex. Then
• For Dirichlet problems, p−1 = +∞ and p0 > 2.
• For Neumann problems, p−1 ≥ 6

3−
√

5
∼ 7.854 and p0 > 2.

• For mixed problems, p−1 > 3 and p0 >
4
3
.
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Lemma 4.9 gives an improvement of the above Corollary for mixed problems when
all Neumann faces are isolated from each other.

The results in §4.c and Proposition 4.8 yield :

Corollary 3.13 Let us suppose that Ω has all its edge openings ωx ≤ π
2

and that
the form a is the gradient form. Then for the Dirichlet problem

pk(Ω, ∂Ω) ≥ 2

k+

and for the Neumann problem

p−1(Ω, ∅) = +∞, p0(Ω, ∅) ≥ 3, p1(Ω, ∅) ≥
3

2
.

Corollary 3.7 joined with Lemma 4.1 allows to obtain precise results in the case
when the domain Ω is a polygonal cylinder, i. e. of the form P × I where P is a curvilinear
polygon and I is a bounded interval. In particular :

Corollary 3.14 Let us suppose that Ω is a rectangular parallelepiped and that the
form a is the gradient form. Then for Dirichlet and Neumann problems

p−1, p0 = +∞, p1 = 2.

This statement is an extension of Faierman’s result in [15] which can be expressed
as p0 = +∞.

4. ESTIMATES FOR THE FIRST EIGENVALUE

4.a Explicit formulas.

In two special geometric situations : the dihedra Γω and the half-dihedra Γ+
ω , it is

possible to determine explicitely the value of λ1. Let ω be an opening angle. We denote by
(y, ρ, ϑ) with y ∈ R, ρ ∈ R

+, ϑ ∈ [0, 2π[, cylindrical coordinates in R
3. We set

Γω := {x ∈ R
3 | 0 < ϑ < ω}, Gω := Γω ∩ S2

and
Γ+

ω := {x ∈ R
3 | 0 < ϑ < ω, y > 0}, G+

ω := Γ+
ω ∩ S2.

We denote by T0 the side ϑ = 0 of Gω or G+
ω and T+ the side y = 0 of G+

ω .

We denote by Λ(G, ∂DG) the set of the characteristic values

λj := −1

2
+

√

µj(G, ∂DG) +
1

4

where µj(G, ∂DG) are the eigenvalues of the Laplace-Beltrami operator on H1(G, ∂DG). We
recall that λ1(G, ∂DG) is the least positive element of this set.
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Lemma 4.1

Λ(Gω, ∂Gω) = { lπ
ω

+ d | l ∈ N∗, d ∈ N}, λ1(Gω, ∂Gω) =
π

ω
Λ(Gω, ∅) = { lπ

ω
+ d | l, d ∈ N}, λ1(Gω, ∅) = min(1,

π

ω
)

Λ(Gω, T0) = { lπ
ω

+ π
2ω

+ d | l, d ∈ N}, λ1(Gω, T0) =
π

2ω
Λ(G+

ω , ∂G
+
ω ) = { lπ

ω
+ 1 + 2d | l ∈ N∗, d ∈ N}, λ1(G

+
ω , ∂G

+
ω ) = 1 +

π

ω
Λ(G+

ω , ∅) = { lπ
ω

+ 2d | l, d ∈ N}, λ1(G
+
ω , ∅) = min(2,

π

ω
)

Λ(G+
ω , T0) = { lπ

ω
+ π

2ω
+ 2d | l, d ∈ N}, λ1(G

+
ω , T0) =

π

2ω

Λ(G+
ω , T

+) = { lπ
ω

+ 1 + 2d | l, d ∈ N}, λ1(G
+
ω , T

+) = 1

Λ(G+
ω , T0 ∪ T+) = { lπ

ω
+ π

2ω
+ 1 + 2d | l, d ∈ N}, λ1(G

+
ω , T0 ∪ T+) =

π

2ω
+ 1

The proof of this lemma is based upon the knowledge of the structure of the eigen-
functions of the Laplace-Beltrami operator. Following [11], §18.C, one can show that they
are the trace on the sphere S2 of functions of the type

∑

q∈N

∆q
yQ(y) γqρ

2qv(ρ, ϑ)

where Q is an homogeneous polynomial (here, this is yd), γq are constants which only depend
on v and v is an homogeneous harmonic function on the plane sector {0 < ϑ < ω} and
satisfies the boundary conditions induced by the initial problem on (G, ∂DG). The powers lπ

ω

come from v and the integer powers come from Q. Depending on the boundary conditions
on T+, the degree of Q is odd or even.

Remark 4.2 When λ1 is equal to 1, the corresponding eigenfunction on Γ is a
polynomial. Indeed the condition of injectivity modulo polynomials is satisfied in λ = 1. A
similar phenomenon happens on the plane sector with opening π

2
with the mixed conditions :

the characteristic value λ = 1 does not give rise to any singularity. Anyway, in such cases,
we can consider the next characteristic value for the computation of the parameters ν(E)
and ν(S) in Corollary 3.9 which give the limits for the regularity of the problem (2.5). This
is due to the fact that we take zero Neumann boundary conditions. On the contrary, if the
Neumann conditions are non-zero, there appears a logarithmic singularity in λ = 1.

4.b A monotonicity result.

Here is an extension to mixed problems of the well-known monotonicity result for
the eigenvalues of the Dirichlet problem.

Proposition 4.3 Let G and G′ be two connected curvilinear polygons in the sphere
S2. We consider partitions (2.4) of the boundary of G, resp. G′, into ∂DG and ∂NG, resp.
∂DG

′ and ∂NG
′. We assume that

G ⊂ G′ and ∂NG ⊂ ∂NG
′ . (4.1)
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Then
µ1(G, ∂DG) ≥ µ1(G

′, ∂DG
′) .

Proof. We can assume that ∂DG 6= ∅, since if ∂DG were empty, we would have
G ⊂ G′ and ∂G ⊂ ∂G′, thus G = G′. Since

µ1(G, ∂DG) = min
u∈H1(G)

u=0 on ∂DG

||∇u||2
||u||2

and a similar formula for G′, it is enough to prove that if u ∈ H1(G) is such that u = 0 on
∂DG, then ũ ∈ H1(G′) and ũ = 0 on ∂DG

′, where ũ denotes the extension by 0 of u.

As ∂DG
′ ⊂ G′ \ (G ∪ ∂NG), we have indeed ũ = 0 on ∂DG

′. To end the proof, it suffices to
prove that ∀x ∈ G′, there exists a neighborhood Vx of x such that ũ ∈ H1(G′ ∩ Vx).

Since for x ∈ G or x ∈ G′ \G, this is obvious, it remains to consider the case when x ∈ ∂G.
But

∂G = ∂DG ∪ ∂NG ∪ J ,
where J is the finite set of junction points J = ∂DG ∩ ∂NG.
• If x ∈ ∂NG, there is no extension in the neighborhood of x. So, ũ = u on a suitable Vx.
• If x ∈ ∂DG, the usual result about extension by zero of functions with null traces yields
the wanted result.
• If x ∈ J , with the help of local map, we reduce to the case when x = 0 and G ∩ Vx is a
plane sector in R2 with opening ω. Let us denote by ϑ the angular variable in R2. We can
assume that

∂DG ∩ Vx = {z ∈ R
2 | ϑ = 0, |z| < ε},

∂NG ∩ Vx = {z ∈ R
2 | ϑ = ω, |z| < ε},

G′ ∩ Vx ⊂ {z ∈ R
2 | ω′ < ϑ < ω, |z| < ε},

with ω − 2π ≤ ω′ ≤ 0. Since u ∈ H1(G) and u = 0 on ∂DG, then |z|−1u ∈ L2. So, in the
coordinates (t, ϑ) with t = log |z|, we have u ∈ H1(I×]0, ω[) with I =] − ∞, log ε[. Since
u(t, 0) = 0 ∀t ∈ I, the extension by 0 yields that ũ ∈ H1(I×]ω′, ω[). Hence ũ ∈ H1(G′ ∩Vx).

4.c Dirichlet problem.

In numerous situations the conjunction of Lemma 4.1 and Proposition 4.3 yields
estimates on the values λ1(x) for any vertex x. For instance, if Ω is convex, and if ω denotes
the greatest edge opening of Ω, then for any vertex x, the cone Γx is contained in Γω. Thus

λ1(x) ≥
π

ω
.

In this case, ν(E) = π
ω

and ν(S) ≥ min(2, π
ω
).
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4.d Neumann problem.

We begin with a general result.

Lemma 4.4 Let M be a convex domain on the sphere Sn with C∞ boundary. Then
µ1(G, ∅) ≥ n− 1.

Proof. We follow the proof of [21], Theorem 7. As the Ricci curvature of Sn is
(n− 1)I, with the help of Theorem 3 in [21] we arrive at the minorization

α− 1

α

{
1

4(n− 1)d2

(
log

α

α− 1

)2

+ (n− 1)

}
≤ µ1(G, ∅) ,

where α > 1 is arbitrary and d is the diameter of G, compare [21], (3.8). Therefore, ∀α > 1

(1 − 1

α
)(n− 1) ≤ µ1(G, ∅) .

Hence the lemma.

We derive the statement which is useful for us.

Proposition 4.5 Let G be a convex curvilinear polygon on the sphere S2 with C∞

sides. Then µ1(G, ∅) ≥ 1.

Hence λ1(G, ∅) ≥
√

5−1
2

as stated in the introduction.

Proof. Regularizing ∂G in the neighborhood of each vertex (with preservation of
the convexity), we construct a sequence of convex domains Gn ⊂ G with smooth boundaries
such that mes(G \Gn) → 0 when n→ ∞.

Let u be an eigenvector on G associated with µ1(G, ∅). Let un be defined as

un := u
∣∣∣
Gn

− (mesGn)−1
∫

Gn

u(x) dx.

Then un ∈ H1(Gn) and
∫
Gn
un(x) dx = 0. Therefore Lemma 4.4 yields

1 ≤ ||∇un||2
||un||2

.

Since mes(G \Gn) → 0, it is easy to see that

||un||L2(Gn) → ||u||L2(G) and ||∇un||L2(Gn) → ||∇u||L2(G).

Hence

1 ≤ ||∇u||2
||u||2 .

We are going to prove a sharper result when G is a spherical triangle.

Proposition 4.6 Let G be a spherical geodesic triangle (i. e. the cone Γ such that
G = Γ ∩ S2 has three flat faces). Then there exists a side T of G such that

µ1(G, ∅) ≥ µ1(G, T ).
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Proof. Let u be a real eigenfunction associated with µ1(G, ∅). Let G1, . . . , Gk, . . .
be the nodal domains of u, i. e. the connected components of u−1(R \ {0}). Let uk be the
restriction of u to Gk and ũk be the extension of uk by zero outside Gk. We rely on the
following lemma which is stated in [3] and proved in the appendix of [9].

Lemma 4.7 Let D be a bounded domain. Let u be a function on D such that

u ∈ H1(D), u ∈ C0(D), u ∈ Liploc(D).

If moreover u
∣∣∣
∂D

= 0 then u ∈ H1
0 (D), i. e. u is the limit in H1(D) of a sequence of C∞

0 (D)

functions.

We deduce from this lemma that uk is the limit in H1(Gk) of a sequence of C∞(Gk) functions
whose supports do not meet Tk, where Tk denotes the complement of ∂G in ∂Gk.

Therefore, uk is an eigenvector of the positive Laplace-Beltrami operator with the Dirichlet
conditions on Tk associated with the eigenvalue µ1(G, ∅). Since uk has a constant sign on
Gk, we infer that

µ1(G, ∅) = µ1(Gk, Tk). (4.2)

As another consequence of the above property of uk, we obtain that ũk ∈ H1(G). Therefore,
the Max–Min principle yields :

µ1(Gk, Tk) ≥ µ1(G, ∂kG), (4.3)

where ∂kG denotes the complement of ∂Gk in ∂G.

Since there exists at least one nodal domain Gk such that ∂kG contains a full side T of G,
(4.2), (4.3) and Proposition 4.3 yield Proposition 4.6.

Proposition 4.8 Let G be a spherical geodesic triangle such that all its openings
are ≤ π

2
. Then

µ1(G, ∅) ≥ 2.

Proof. Applying Proposition 4.6, we obtain that there exists a side T of G such
that µ1(G, ∅) ≥ µ1(G, T ). Let N be the vertex of G such that N 6∈ T . Let us choose N as
north pole and (ϕ, θ) ∈ [−π, π[×[0, π] as spherical coordinates such that in the neighborhood
of N , G coincides with the spherical sector Gω

{ψ ∈ S2 | 0 < ϕ < ω, 0 < θ < π}.
We introduce

G+
ω := {ψ ∈ S2 | 0 < ϕ < ω, 0 < θ <

π

2
} T+ := {ψ ∈ S2 | 0 < ϕ < ω, θ =

π

2
}.

It is possible to prove [9] Lemma 8.11, that G is included in G+
ω . Then Proposition 4.3

implies that
µ1(G, T ) ≥ µ1(G

+
ω , T

+).

But Lemma 4.1 yields that λ1(G
+
ω , T

+) = 1. Therefore µ1(G
+
ω , T

+) = 2. Hence µ1(G, T ) ≥ 2.

12



4.e Mixed problems.

We only give two results which can help to obtain minorizations of ν(S) in Corol-
lary 3.9.

Lemma 4.9 Let G be a convex geodesic polygon on the sphere and T be one of its
sides. If ∂DG is the complement of T in ∂G, i. e. if the Neumann condition is prescribed
only on T , then

λ1(G, ∂DG) ≥ π

2ω
where ω is the smallest of the opening angles of G at the vertices which belong to the side T .

Proof. It is possible to include G in a spherical sector Gω so that one of the sides
of Gω contains T . Then according to Proposition 4.3

λ1(G, ∂DG) ≥ λ1(Gω, T0)

with the notation of Lemma 4.1. This Lemma yields the result.

Lemma 4.10 Let G be a spherical geodesic triangle such that all its openings are
≤ π

2
. Then

µ1(G, ∂DG) ≥ 2.

Proof. Owing to Proposition 4.3

µ1(G, ∂DG) ≥ µ1(G, ∅)
Proposition 4.8 yields the result.

4.f Last comments about eigenvalues.

If one knows the numerical value of the first non-zero eigenvalue µ1 at each vertex,
one can deduce regularity results on the domain Ω. Till recently, the existing eigenvalues
approximations were only done for the Dirichlet problem. But in this case there are also
theoretical ways to get minorizations :
(i) Monotonicity with respect to the domain,
(ii) Faber-Krahn principle, which holds on all spheres Sn, see [5] for example.

For the Neumann problem, theoretical questions remain open : for example, is the
minorization in Proposition 4.5 optimal ? When explicit theoretical computation is possible,
one gets µ1(G, ∅) ≥ 2 (for convex domains of the following form : spherical sectors, half
spherical sectors, spherical disks, . . . ). But the theoretical general lower bound is 1 and
not 2 . . . Do correct numerical computations exist for the Neumann problem ? There is no
monotonicity with respect to the domain, even for convex domains. But it seems that, in a
neighbourhood of the hemisphere H (for which we have exactly µ1(G, ∅) = 2), the eigenvalues
are decreasing when the domain increases, i. e. if we consider an analytic decreasing one
parameter family of spherical domains τ → Gτ , τ ∈ [0, 1] such that G0 = H , then dλ1

dτ
would

be > 0 in τ = 0. To see that, one may use [14]’s method without returning to the equation
and compute the sign of the derivative “on the hemisphere”. But what is the situation
outside such a neighborhood ?

13



Now, let us give a little list of works about numerical approximation of Dirichlet
eigenvalues :
• Fichera [16] for the complement of an octant (which gives upper and lower bounds (this
last one by Faber-Krahn) : 0.4335 < λ1 < 0.4645)
• Beagles and Whiteman [2] for theoretical formulas and computations : in particular when
separation of variables is possible, formulas involving Legendre functions are given, and
methods for calculating them – compare also [14] relating to that topic. [2] also indicates
a finite elements method combined with stereographic projection. Results of computations
are given for the complement of an octant (see above).
• Walden and Kellogg [30] use finite difference approximation for the computing of the first
Dirichlet eigenvalue on various spherical geodesic triangles. Tests are made for theoretically
known situations.
• A programm by Costabel [6] uses a first kind integral equation and approximation by
boundary elements. The problem is reduced to the detection of a zero eigenvalue for a
preconditioned matrix. The numerical results are sharp with a short computing time.

5. PROOF : REDUCTION TO CONSTANT COEFFICIENTS

In the next sections, we will prove Theorem 3.2 in the case when the integrodiffer-
ential form a is the gradient form and Ω is a polyhedron with flat faces : Theorems 6.4 and
8.1. We explain here how to perform the reduction from the variable coefficients case to the
constant coefficients case.

We assume that conditions (i) and (ii) of Theorem 3.2 hold. We take u and f as in
Theorem 3.2. Let x ∈ Ω. We want to prove that u belongs to W k+2,p in a neighborhood of
x. With the help of the local map χx and the matrix tM−1

x we transform locally the domain
into the straight cone Ξx and the integrodifferential form into a form b with coefficients bi,j
and b0 satisfying

bi,j ∈ Ck+1 and b0 ∈ Ck+ (5.1)

and
bi,j(0) = δi,j. (5.2)

Now we are going to use a perturbation argument, like in §10.C and §10.D of [11]. Let ψ be
a smooth cut-off function which is equal to 1 in a neighborhood of 0. For σ ≥ 0 we introduce

bσi,j(z) := δi,j + ψ(z)[bi,j(σz) − δi,j ] and bσ0 (z) := σ2b0(σz). (5.3)

These coefficients define an integrodifferential form bσ on the cone Ξx. We note that for
σ = 0, bσ coincides with the gradient form and that for σ 6= 0, the change of variables z → σz
transforms σ−2bσ into a form whose coefficients coincide with those of b in a neighborhood
of 0. We will prove in the next sections that (i) and (ii) of Theorem 3.2 imply the regularity
result on the cone Ξx for b0. In order to deduce the corresponding result for b it suffices to
prove that

||| bσ − b0 |||k, p→ 0 when σ → 0, (5.4)

where ||| . |||k, p denotes the norm of the induced operator from W k+2,p(Ξx) into W k,p(Ξx).
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Let K be the support of ψ. We have

‖b0(σz)u(z)‖W k,p(K)
≤ C‖b0(σz)‖Ck+ (K)

‖u‖
W k+2,p(K)

and
‖∂j [bi,j(σz) − δi,j ]∂iu(z)‖W k,p(K)

≤ C‖bi,j(σz) − δi,j‖Ck+1(K)
‖u‖

W k+2,p(K)
.

As a consequence of (5.1), ‖b0(σz)‖Ck+ (K)
is uniformly bounded when σ ∈ [0, 1] and with

(5.2)
‖bi,j(σz) − δi,j‖Ck+1(K)

→ 0 when σ → 0.

All that yields (5.4).

We will now show by two examples that the assumptions about the regularity of
the coefficients ai,j are not far from optimality : it is impossible to replace “continuous” by
“bounded” without destroying the regularity result.

Let us take k = −1 and Ω a convex plane polygon. Let ai,j be real continuous
functions on Ω satisfying the ellipticity condition. Let A be the operator

∑

i,j

∂jai,j∂i.

Our statement, adapted for 2-dimensional domains, gives immediately that any function u
such that

u ∈
o

H1(Ω) and Au ∈W−1,p(Ω) (5.5)

satisfies
u ∈W 1,p(Ω)

for any p ≥ 2. Such a result no longer holds in general when the coefficients are only
bounded. We are going to study two examples.

Example 5.1 Let a be a positive parameter. We write (x, y) the coordinates in R
2,

(r, θ) the polar coordinates and we suppose that 0 ∈ Ω. We define A as

∆ + (a− 1)

(
∂x
y2

r2
∂x + ∂y

x2

r2
∂y − ∂x

xy

r2
∂y − ∂y

xy

r2
∂x

)
.

In polar coordinates we have
r2A = (r∂r)

2 + a∂2
θ .

A is an elliptic operator. Let ψ be a cut-off function with support in Ω and equal to 1 in a
neighborhood of 0. For any p ≥ 2, the function u := ψ r

√
a cos θ satisfies (5.5) but if a ∈]0, 1[ :

u ∈W 1,p(Ω) ⇐⇒ 1 − 2

p
<

√
a.

Indeed we can show that for this example, with the notation of Corollary 3.9,

p−1 =
2

1 −√
a
.
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Example 5.2 We consider a case when the coefficients ai,j are piecewise constant.
This is a framework for transmission problems. The polygon Ω is covered by a finite number
of disjoint polygons Ωk and there are given α1, . . . , αK > 0 and

ai,j

∣∣∣
Ωk

= αk δi,j .

Let us consider in the neighborhood of 0 the covering of the half-space x > 0 by the 3 sectors
−π

2
< θ < −π

4
, −π

4
< θ < π

4
and π

4
< θ < π

2
. We set

α1, α3 = 1, α2 = (tan
4

π
λ)−2,

where λ is a positive parameter. Then p−1 ≤ 2
1−λ

as shown by the consideration of the

function rλv(θ) where v = (v1, v2, v3) defined by




v1(θ) = κ sinλ(θ + π
2
) −π

2
< θ < −π

4

v2(θ) = cosλθ −π
4

< θ < π
4

v3(θ) = κ sinλ(π
2
− θ) π

4
< θ < π

2

with κ = (tan 4
π
λ)−1.

6. PROOF : REGULARITY ON CONES

Let Γ be a cone in R
n with vertex 0. We set G := Γ∩ Sn−1. We assume that G has

a Lipschitz boundary. Let ∂DG be an open set in ∂G. We denote

∂DΓ := {z ∈ R
n | z

|z| ∈ ∂DG}.

We denote by H1(Γ, ∂DΓ) the space of the functions u ∈ H1(Γ) which are zero on ∂DΓ. Let
us recall that we define the space W−1,p(Γ) as the dual space of

{v ∈W 1,q(Γ) | v = 0 on ∂DΓ},

where q denotes the conjugate of p : 1
p

+ 1
q

= 1.

We take k ∈ {−1, 0, 1 . . .} and p ∈]1,∞[ such that k+2− n
p
≥ 1− n

2
. Thus we have

the imbeddings
W k+2,p(Γ) ⊂ H1

loc(Γ) and W k,p(Γ) ⊂W−1,2
loc (Γ).

We also assume that k + 2 − n
p
6∈ N. Thus W k,p(Γ) is imbedded in C [k−n/p](Γ). Moreover,

setting
V k,p

β (Γ) = {u ∈ D′(Γ) | rβ+|α|−kDαu ∈ Lp(Γ) ∀α, |α| ≤ k},
we obtain as a standard consequence of Hardy’s inequality

Lemma 6.1 We assume that k − n
p
6∈ N. For any f ∈W k,p(Γ) we have

∀α, |α| ≤ k − n

p
, Dαf(0) = 0 =⇒ f ∈ V k,p

0 (Γ).
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We are going to deduce a regularity result in Lp Sobolev spaces on Γ from two hypotheses :
the first one about the regularity “far from 0” and the second one about the absence of
singular functions at the vertex.

Hypothesis 6.2 For j = 1, 2, let Γj be the subsets {x ∈ Γ | 2−j < |x| < 2j}.
For any u ∈ H1(Γ, ∂DΩ) such that ∆u ∈ W k,p(Γ) we have u ∈ W k+2,p(Γ) with the a priori
estimate

‖u‖
W k+2,p(Γ1)

≤ C(‖f‖
W k,p(Γ2)

+ ‖u‖
H1(Γ2)

).

This hypothesis always holds when the section G of Γ on the sphere is smooth (Γ is a
“regular” cone). But we are interested here in the polyhedral cones Γx for x ∈ S. The
above hypothesis will be satisfied if the regularity property holds in the neighborhood of
each edge of Γx in {x | 1/2 < |x| < 2}. Such a regularity is a consequence of condition (i) of
Theorem 3.2 as will be shown in Theorem 8.1.

Hypothesis 6.3 For any λ, Reλ ∈ [1 − n
2
, k + 2 − n

p
], the condition Cλ(Γ, ∂DΓ) of

injectivity modulo polynomials holds. Let us recall from Definition 3.1 that

Cλ(Γ, ∂DΓ)





u ∈ Sλ(Γ, ∂DΓ) and ∆u = f with f polynomial in cartesian variables
implies

u polynomial in cartesian variables.

When x ∈ S, this hypothesis corresponds exactly to condition (ii) of Theorem 3.2.

The main result of this section is

Theorem 6.4 We suppose that k + 2 − n
p
6∈ N is greater than 1 − n

2
. We assume

the above hypotheses 6.2 and 6.3. Let u ∈ H1(Γ, ∂DΓ) with compact support such that

∀v ∈ H1(Γ, ∂DΓ) < ∇u,∇v > = < f, v > with f ∈W k,p(Γ).

Then u ∈ W k+2,p(Γ).

Note that if k ≥ 0, u is solution of the following boundary value problem





∆u = f on Γ,
u = 0 on ∂DΓ (Dirichlet condition),
∂nu = 0 on ∂NΓ (Neumann condition).

Proof.
First step : reduction to weighted spaces on Γ. With the help of Lemma 6.1, we write f as
the sum of a polynomial Q of degree [k − n

p
] and a function in V k,p

0 (Γ). With the results

of §4.C in [11], we obtain that for each homogeneous component Qλ of degree λ − 2 of Q,
with λ = 2, 3, . . . , [k+ 2− n

p
] there exists an element Pλ ∈ Sλ(Γ, ∂DΓ) satisfying ∆Pλ = Qλ.

Hypothesis 6.3 yields that Pλ is a polynomial.

Second step : problem on the strip R×G. Now we can assume that f ∈ V k,p
0 (Γ) with compact

support. We introduce the new coordinates

t := log |x| and θ :=
x

|x| ∈ Sn−1

17



and the following functions on R ×G

v(t, θ) = u(x) and g(t, θ) = e2tf(x).

We need some spaces on R×G. It is well known [20, 25] that the previous change of variables
transforms the weighted spaces of the type of V k,p

β (Γ) into spaces with an exponential weight
on R ×G. We set for any real ζ

W k,p
ζ (R ×G) = {h ∈ D′(R ×G) | e−ζth ∈W k,p(R ×G)},

where, as usual, W−1,p(R ×G) denotes the dual space of

{w ∈W 1,q(R ×G) | w = 0 on R × ∂DG}.
We have

Lemma 6.5 The change of variables z 7→ (t, θ) induces an isomorphism

V k,p
β (Γ) −→W k,p

ζ (R ×G) with ζ = k − β − n/p.

We will also use some kind of “variational” spaces :

H
1
ζ = {w ∈W 1,2

ζ (R ×G) | w = 0 on R × ∂DG}
and, with the above notation

H
−1
ζ = W−1,2

ζ (R ×G).

Indeed, H
−1
ζ is the dual space of H1

−ζ . H∗ denotes H∗
0.

Functions g and h satisfy the following properties

Lemma 6.6 We set
η = k + 2 − n

p
.

Then
∀ζ ≤ η, g ∈ W k,p

ζ (R ×G) (6.1)

∀ζ < η, g ∈ H
−1
ζ (6.2)

and
∀ζ < 1 − n

2
, v ∈ H

1
ζ . (6.3)

Moreover
(∂2

t + (n− 2)∂t − L)v = g (6.4)

where L is the positive Laplace-Beltrami operator on H1(G, ∂DG).

The assertions (6.1), (6.3), (6.4) are not difficult to obtain. We are going to prove (6.2),
which uses the basic tool of translation invariant partition of unity on R ×G.

Lemma 6.7 Let χ0 ∈ D(] − 1, 1[) such that

χν(t) := χ0(t− ν), ν ∈ Z

forms a partition of unity on R. Then

‖h‖
W k,p(R×G)

≃
(∑

ν∈Z

‖χνh‖p

W k,p(R×G)

)1/p
.
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Let us deduce (6.2) from (6.1). We set gν := χνg. Let ζ < η. We have the uniform estimate

‖e−ζtgν‖
H−1

≤ C‖e−ζtgν‖W k,p

which implies : (∑

ν∈Z

‖e−ζtgν‖2

H−1

)1/2 ≤ C
(∑

ν∈Z

‖e−ζtgν‖2

W k,p

)1/2
.

• If p ∈]1, 2[, as lp ⊂ l2 the right hand side is smaller than

C
(∑

ν∈Z

‖e−ζtgν‖p

W k,p

)1/p
.

Lemma 6.7 then imply that ‖e−ζtg‖
H−1

≤ ‖e−ζtg‖
W k,p

.

• If p > 2, we fix ε > 0 such that ζ + ε ≤ η and we write :

‖e−ζtgν‖W k,p
≃ eεν‖e−(ζ+ε)tgν‖W k,p

.

As the support of g is bounded from above, and as the sequence (eεν)ν∈Z− belongs to l1, the
Hölder inequality yields that

(∑

ν∈Z

‖e−ζtgν‖2

W k,p

)1/2 ≤ C
(∑

ν∈Z

‖e−(ζ+ε)tgν‖p

W k,p

)1/p
.

We conclude as previously.

Third step : regularity on the strip R × G in Hilbert spaces. Among other things, we use
classical facts of the theory of such problems in Hilbert Sobolev spaces. We recall these facts
without proof in the two following lemmas. The techniques of proof are essentially based
on the partial Fourier-Laplace transform in the variable t and the Cauchy residue formula
joined with some a priori estimates : see [20, 11] for instance.

Lemma 6.8 If ζ ∈ R satisfies

ζ(ζ + n− 2) is not an eigenvalue of L

then the operator ∂2
t + (n− 2)∂t − L induces an isomorphism :

Aζ : H
1
ζ −→ H

−1
ζ .

Lemma 6.9 Let ζ1, ζ2 ∈ R, ζ1 < ζ2 such that

ζj(ζj + n− 2) is not an eigenvalue of L for j = 1, 2.

Let h ∈ H
−1
ζ1

∩ H
−1
ζ2

. Lemma 6.8 gives the existence of wj := (Aζj)−1h for j = 1, 2. We
denote by uj the function on Γ defined by uj(z) := wj(t, θ). Then, if λ1, . . . , λK denotes the
set of the λ ∈]ζ1, ζ2[ such that λ(λ+ n− 2) is an eigenvalue of L, we have

u1 − u2 =
K∑

k=1

Pk where Pk ∈ Sλk(Γ, ∂DΓ) and ∆Pk = 0.

In particular, if ∀λ ∈]ζ1, ζ2[, λ(λ+ n− 2) is not an eigenvalue of L, w1 = w2.

We come back now to the functions g and v which were previously defined and satisfy the
properties in Lemma 6.6. Since, according to our hypotheses η 6∈ N and the condition
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Cλ(Γ, ∂DΓ) holds for λ = η, then η(η+n−2) is not an eigenvalue of L (see (3.2)). Let ζ0 < η
be such that

∀ζ ∈ [ζ0, η], ζ(ζ + n− 2) is not an eigenvalue of L .

The conjunction of (6.2) and Lemma 6.9 yields that ∀ζ ∈ [ζ0, η[, (Aζ)−1g gives the same
function w. Let us set u0(z) = w(t, θ).

From (6.3) and (6.4), we deduce that ∀ζ < 1 − n
2
, (Aζ)−1g = v. As a consequence of

Lemma 6.9, we obtain that

u− u0 =
K∑

k=1

Pk

and Hypothesis 6.3 yields that the Pk are polynomial. Theorem 6.4 will be proved if we
show that u0 ∈ V k+2,p

0 (Γ), i. e.

e−ηtw ∈W k+2,p(R ×G). (6.5)

Fourth step : regularity on the strip R ×G in Lp spaces. We are going to prove (6.5). This
is the basic step, where we use the idea [25] of pseudo-localization of the operators (Aζ)−1.
We introduce the sequence (vν) defined for ν ∈ Z, by :

vν = (Aη)−1gν with gν = χνg,

as previously (cf Lemma 6.7). The properties of ζ0 imply that :

∀ζ ∈ [ζ0, η], vν = (Aζ)−1gν .

As
∑
gν = g with convergence in H

−1
ζ for all ζ ∈ [ζ0, η[ (compare (6.2)), we have

∑
vν = w with convergence in H

1
ζ , ∀ζ ∈ [ζ0, η[.

Thus, to obtain (6.5) it is enough to prove that :

e−ηt
∑

vν ∈W k+2,p(R ×G). (6.6)

For doing that, we first prove :

the sequence (χµ

∑
e−ηtvν)µ∈Z belongs to lp(H1(R ×G)). (6.7)

Next, we will complete the proof of (6.6) by a priori estimates.

In order to prove (6.7), we start from the isomorphisms Aζ for ζ = η ± ε, with a suitable
small enough ε > 0, such that the property

ζ(ζ + n− 2) is not an eigenvalue of L

still holds for any ζ in the interval [η − ε, η + ε]. So

∀ζ ∈ [η − ε, η + ε] vν = (Aζ)−1gν.

We are going to estimate χµvν where µ spans Z.

As, we have, for ζ = η ± ε :

‖e−ζtχµvν‖
H1

≤ C‖e−ζtgν‖
H−1

we deduce that :
e±εµ‖χµvν‖

H1
η

≤ Ce±εν‖gν‖
H

−1
η
.
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When ν ≥ µ, we choose −ε ; when ν < µ, we choose ε. So, we obtain :

‖e−ηtχµvν‖
H1

≤ Ce−ε|µ−ν|‖e−ηtgν‖
H−1

. (6.8)

But ∃C > 0, ∀ν :
‖e−ηtgν‖

H−1
≤ C‖e−ηtgν‖W k,p

.

That estimate yields :

‖e−ηtχµvν‖
H1

≤ Ce−ε|µ−ν|‖e−ηtgν‖W k,p
. (6.9)

Now, we define the four following sequences :

aν = ‖e−ηtgν‖W k,p

bµ = ‖χµ

∑

ν

e−ηtvν‖
H1

cµ =
∑

ν

e−ε|µ−ν|aν

eµ = e−ε|µ|.

The sequence c is equal to the convolution (eµ) ∗ (aν). As e−ηtg ∈W k,p, Lemma 6.7 give us

a ∈ lp.

As (eµ) belongs to l1, the convolution by a belongs to lp . But (6.9) yields :

|bµ| ≤ C|cµ|.
So b ∈ lp. Thus we have just gotten (6.7) :

∑

µ

‖χµe
−ηt

∑

ν

vν‖p

H1(R×G)
≤ C‖e−ηtg‖p

W k,p(R×G)
.

Let us recall that w is equal to the sum
∑

ν vν . We easily deduce from the latter estimate
that : ∑

µ

‖e−ηtw‖p

H1(]µ−1,µ+1[×G)
≤ C‖e−ηtg‖p

W k,p . (6.10)

Now, Hypothesis 6.2 yields the uniform estimate (as the operator ∂2
t + (n − 2)∂t − L is

translation invariant, the constant C does not depend on µ)

‖χµw‖W k+2,p
≤ C

(
‖g‖

W k,p(]µ−1,µ+1[×G)
+ ‖w‖

H1(]µ−1,µ+1[×G)

)
.

Since the weight e−ηt is equivalent to e−ηµ on ]µ− 1, µ+ 1[ we deduce the estimate

‖e−ηtχµw‖p

W k+2,p
≤ C

(
‖e−ηtg‖p

W k,p(]µ−1,µ+1[×G)
+ ‖e−ηtw‖p

H1(]µ−1,µ+1[×G)

)
. (6.11)

The two inequalities (6.10) and (6.11) yield :
∑

µ

‖e−ηtχµw‖p

W k+2,p
≤ C‖e−ηtg‖p

W k,p
.

So, we obtain that e−ηtw ∈W k+2,p(R ×G) ; thus u0 ∈ V k+2,p
0 (Γ) hence u ∈W k+2,p(Γ).

21



7. FUNCTIONAL LEMMAS

The last steps of the proof of Theorem 6.4 state results (estimates (6.8) and (6.10))
which can be formulated under more general assumptions. We state them here, because we
will be lead to use them anew in the proofs below.

The domain has the following form : R×U. All the spaces B we introduce are Banach
spaces of distributions over R×U such that ∀ψ ∈ C∞

0 (R), the mapping g(t, θ) → ψ(t)g(t, θ)
defines a bounded operator from B into B.

For ν ∈ Z, Tν denotes the translation : Tνg(t, θ) = g(t − ν, θ). We say that B is
translation invariant if :

∀ν ∈ Z, ∀g ∈ B, ‖Tνg‖B
= ‖g‖

B
.

Lemma 7.1 Suppose that B1 and B2 are Banach spaces as above, and translation
invariant. For ζ ∈ R and j = 1, 2 we set :

Bj,ζ := {g ∈ D′(R × U) | e−ζtg ∈ Bj}.

Let η ∈ R and ε > 0. For ζ ∈ {η − ε, η, η + ε}, let Aζ be such that :

(i) Aζ : B1,ζ → B2,ζ is bounded,

(ii) g ∈ B1,η−ε ∩B1,η+ε =⇒ Aη−εg = Aηg = Aη+εg.

Then ∃C > 0, ∀g ∈ B1,η, ∀µ, ν ∈ Z :

‖χµ A
η(χνg)‖B2,η

≤ Ce−ε|µ−ν|‖χνg‖B1,η
.

We say that a Banach space B as above is of lp-type if we have the equivalence
(compare Lemma 6.7) :

‖g‖
B
≃
(∑

ν∈Z

‖χνg‖p

B

)1/p
.

Lemma 7.2 Suppose that B1 and B2 are of lp-type. We set

B∞
1 := {g ∈ B1 | g compactly supported in the t-variable}.

Let A be an operator from B∞
1 into B2 such that :

∃C > 0, ∃ε > 0, ∀g ∈ B1, ∀µ, ν ∈ Z

‖χµ A(χνg)‖B2
≤ Ce−ε|µ−ν|‖χνg‖B1

.

Then A extends to a bounded operator B1 → B2 defined by Ag =
∑

ν A(χνg).
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8. PROOF : REGULARITY ON WEDGES – REDUCTION TO FLAT
DATA

Let Γ be a plane sector ; we denote by ω its opening angle. Let D be the wedge
R×Γ. The variables are (y, z) with y ∈ R and z ∈ Γ. We denote by ∂jΓ for j = 1, 2 the two
sides of Γ and ∂jD the two corresponding sides of D. On each of these sides we prescribe
the Dirichlet or the Neumann condition. For doing that we choose ∂DΓ equal to

∅, or ∂Γ, or ∂1Γ, or ∂2Γ

and we define ∂DD as the set R×∂DΓ. The first case corresponds to the Neumann problem,
the second to the Dirichlet problem and the last ones to mixed problems.

Following Notation 3.3, we set

λ1 =

{
π/ω for Dirichlet or Neumann problems
π/2ω for mixed problems .

The last sections of this work are devoted to the proof of

Theorem 8.1 We assume that 0 < k + 2 − 2/p < λ1. Let u ∈ H1(D, ∂DD) with
compact support such that

∀v ∈ H1(D, ∂DD) < ∇u,∇v > = < f, v > with f ∈W k,p(D).

Then u ∈ W k+2,p(D).

The first stage of the proof is to reduce to the case when f has null traces on the
edge E := R × {0} of D. As in section 6, we use weighted spaces on D :

V k,p
β (D) = {u ∈ D′(D) | rβ+|α|−kDαu ∈ Lp(D) ∀α, |α| ≤ k}.

We obtain as a standard consequence of Hardy’s inequality (compare Lemma 6.1)

Lemma 8.2 We assume that p 6= 2. For any f ∈W k,p(D) we have

∀α ∈ N
2, |α| ≤ k − 2

p
, ∂α

z f
∣∣∣
E

= 0 =⇒ f ∈ V k,p
0 (D).

We also need the corresponding result about trace spaces. We denote by τj , resp. nj , the
tangent, resp. normal, unitary vectors to the side ∂jΓ for j = 1, 2.

Lemma 8.3 We assume that p 6= 2. Let mj ∈ {0, 1} for j = 1, 2. If ψj ∈
W k+2−mj−1/p,p(∂jD) satisfy for j = 1, 2 :

∀α ∈ N, α < k + 2 −mj − 2/p, ∂α
τj
ψj

∣∣∣
E

= 0,

then there exists u ∈ V k+2,p
0 (D) such that :

∂mj
nj
u = ψj on ∂jD, j = 1, 2.

23



We will use both these lemmas to prove the reduction to flat data.

Proposition 8.4 Let f ∈W k,p(D), with k−2/p > 0 and p 6= 2. If k+2−2/p < λ1,
then there exists u ∈ W k+2,p(D) such that :

u
∣∣∣
E

= 0, u = 0 on ∂DD, ∂nu = 0 on ∂ND and ∆u− f ∈ V k,p
0 (D).

Proof. To fix the notations, we prove this statement for the Neumann conditions
(∂DD = ∅). Using Lemmas 8.2 and 8.3 we are reduced to find u ∈W k+2,p(D) such that :

∀β, |β| < k − 2/p ∂β
z (∆u− f)

∣∣∣
E

= 0

∀β, |β| < k + 1 − 2/p ∂β
τj
∂nj

u
∣∣∣
E

= 0, j = 1, 2

u
∣∣∣
E

= 0





(8.1)

We can be write (8.1) in the following form, with suitable coefficients cK,β
α and cK,j

α :

∀K = 2, . . . , [k + 2 − 2/p], ∀β, |β| = K − 2
( ∑

|α|=K

cK,β
α ∂α

z u+ ∂2
y∂

β
z u− ∂β

z f
)∣∣∣

E
= 0

∀K = 1, . . . , [k + 2 − 2/p], ∀j = 1, 2
( ∑

|α|=K

cK,j
α ∂α

z u
)∣∣∣

E
= 0

u
∣∣∣
E

= 0.





(8.2)

If we find for each α ∈ N2, |α| < k + 2 − 2/p,

uα ∈W k+2−|α|−2/p,p(E)

such that :

∀K = 2, . . . , [k + 2 − 2/p], ∀β, |β| = K − 2
( ∑

|α|=K

cK,β
α uα + ∂2

yuβ − ∂β
z f
)∣∣∣

E
= 0

∀K = 1, . . . , [k + 2 − 2/p], ∀j = 1, 2
( ∑

|α|=K

cK,j
α uα

)∣∣∣
E

= 0

u0

∣∣∣
E

= 0,





(8.3)

then problem (8.2) will be solved by a lifting

u ∈W k+2,p(D) such that ∀α : ∂α
z u
∣∣∣
E

= uα.

Such a lifting of traces does exist ([29], p.223). As ∂β
z f ∈W k−|β|−2/p,p(E), it is easy to prove

by induction over K that (8.3) will be solved if

∀gβ ∈W k−|β|−2/p,p(E)

there exists uα such that :

∀K = 2, . . . , [k + 2 − 2/p], ∀β, |β| = K − 2
( ∑

|α|=K

cK,β
α uα

)∣∣∣
E

= gβ

∀K = 1, . . . , [k + 2 − 2/p], ∀j = 1, 2
( ∑

|α|=K

cK,j
α uα

)∣∣∣
E

= 0

u0

∣∣∣
E

= 0.






(8.4)
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To solve that system we introduce for K = 0, . . . , [k+ 2− 2/p] the square (K + 1)× (K + 1)
matrix MK = (mK

α,γ) defined by :

for K = 0, M0 = 1
for K ≥ 1, mK

α,γ = cK,j
α with γ = (K, 0) for j = 1

γ = (0, K) for j = 2
mK

α,γ = cK,β
α with γ = (β1 + 1, β2 + 1).

It is enough to prove that each MK is injective, thus invertible. We will indeed have :

(uα)|α|=K = M−1
K

(
0, 0, (gβ)|β|=K−2

)
.

As gβ ∈W k−K+2−2/p,p(E), we will obtain uα ∈W k−K+2−2/p,p(E).

Let us prove that MK is injective. Let us consider vα ∈ R such that MK(vα)|α|=K = 0. If we
set

P :=
∑

|α|=K

1

α!
vα z

α,

we have ∂αP (0) = vα and (8.3) yields :

∀β, |β| = K − 2
∑

|α|=K

cK,β
α ∂αP (0) = 0

j = 1, 2
∑

|α|=K

cK,j
α ∂αP (0) = 0.

Coming back to (8.1), that means :

∀β, |β| = K − 2 ∂β∆P = 0
j = 1, 2 ∂K−1

τj
∂nj

P = 0.

As P is homogeneous of degree K, we obtain :

∆P = 0 and ∂nj
P = 0 on ∂jΓ.

Since K < λ1, no such polynomial exists.

9. PROOF : REGULARITY ON WEDGES – SYMBOLIC CALCULUS

With the help of Proposition 8.4, the proof of Theorem 8.1 is reduced to prove :

Theorem 9.1 We assume that 0 < k + 2 − 2/p < λ1. Let u ∈ H1(D, ∂DD) with
compact support such that

∀v ∈ H1(D, ∂DD) < ∇u,∇v > = < f, v > with f ∈ V k,p
0 (D).

If, moreover u
∣∣∣
E

= 0, then u ∈ V k+2,p
0 (D).

Remark 9.2 If ∂DD 6= ∅, i. e. if this is not the Neumann problem, the condition
u
∣∣∣
E

= 0 is a consequence of u ∈ H1(D, ∂DD). We prove in the appendix how we can reduce

to the case when u
∣∣∣
E

= 0 for the Neumann problem (see Proposition 11.3).
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In this section, we are going to show how Theorem 9.1 can be proved by partial
Fourier transform along the edge with the help of Marcinkiewicz’s theorem. We will prove
suitable estimates for the operator valued symbol in the next section.

Relying upon local a priori estimates on domains in the form

{(y, z) | |y − y0| < e−ν , e−ν−1 < r < e−ν+1}

for ν ∈ Z and y0 ∈ e−νZ, we can show that (compare [24], §4) :

‖u‖
V k+2,p
0

(D)
≤ C(‖f‖

V k,p
0

(D)
+ ‖u‖

V 0,p

−k−2
(D)

).

So, we are reduced to prove :
u ∈ V 0,p

−k−2(D). (9.1)

We set :
B1 = V 0,p

−k (Γ) and B2 = V 0,p
−k−2(Γ). (9.2)

When k ≥ 0, we have : f ∈ Lp(R, B1). When k = −1, similar arguments can be
used [10].

So, to obtain (9.1), it suffices to state the following estimate :

‖u‖
Lp(R,B2)

≤ C‖f‖
Lp(R,B1)

. (9.3)

To state that, we use Lemma 7.2. We are going to construct a bounded operator
R : such that :

R : Lp(R, B1) → Lp(R, B2) such that Ru = f. (9.4)

Since Lp(R, Bj) for j = 1, 2 has lp-type, Lemma 7.2 yields that it suffices to construct
R on compactly supported functions and satisfying :

∃C > 0, ∀g ∈ Lp(R, B1), ∀µ, ν ∈ Z ‖χµ Rχνg‖Lp(R,B2)
≤ Ce−ε|µ−ν|‖χνg‖Lp(R,B1)

. (9.5)

That will give estimate (9.3).

In order to apply Marcinkiewicz’s theorem, we are going to replace B1 and B2 by
suitable Hilbert spaces H1 and H2. We want the estimates :

∃C > 0, ∀w, ∀ν ∈ Z

‖χνw‖Lp(R,H1)
≤ C‖χνw‖Lp(R,B1)

and ‖χνw‖Lp(R,B2)
≤ C‖χνw‖Lp(R,H2)

(9.6)

We also want to construct an operator R̃ such that :

R̃(χνf) = R(χνf) ∀ν

and
‖χµ R̃χνg‖Lp(R,H2)

≤ Ce−ε|µ−ν|‖χνg‖Lp(R,H1)
. (9.7)
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It is clear that (9.6) and (9.7) imply (9.5). We set

β = −k − 2 + 2/p

and we choose :

H2 = {w ∈ V 1,2
β (Γ) | w = 0 on ∂DΓ}

H1 is the dual space of {w ∈ V 1,2
−β (Γ) | w = 0 on ∂DΓ}.

}
(9.8)

The estimates (9.6) are a consequence of the isomorphism in Lemma 6.5 and of the
assumptions on (k, p). As another consequence of these assumptions, we also have

−λ1 < β < 0.

To end the proof of theorem 9.1, we only have to construct R̃ satisfying (9.7) and such that :

∑

ν

R̃(χνf) = u. (9.9)

We search for R̃ with the following form :

R̃ = F−1Π(ξ)F (9.10)

where ξ → Π(ξ) is a suitable symbol with values in L(H1, H2) – the bounded operators from
H1 into H2. Here, F denotes the partial Fourier transform on R × Γ. Roughly speaking,
Π(ξ) will be (−∆+ ξ2)−1. In the situation of the Neumann problem, a correction is needed :
it will consist of the elimination of the first trace along the edge. As we have supposed that
u
∣∣∣
E

= 0, we will still obtain the convergence (9.9) towards u (see the appendix). Now, we

rely on the following Lemma 9.4 (compare Proposition 11.1 in the appendix).

Notation 9.3 For γ ∈ R, we introduce the following spaces

Eγ(Γ, ∂DΓ) := {w ∈ V 1,2
γ (Γ) | rγw ∈ L2(Γ) and w = 0 on ∂DΓ}.

and the operator

Eγ : Eγ(Γ, ∂DΓ) −→ E−γ(Γ, ∂DΓ)′

u −→ (v →< ∇u,∇v > + < u, v >).

We have

Lemma 9.4 We assume that ∂DΓ 6= ∅. Let γ ∈] − λ1, λ1[. Then Eγ is one to one.

The important fact is the equality

E0(Γ, ∂DΓ) = H1(Γ, ∂DΓ)

which is no longer true when ∂DΓ = ∅. So, as a consequence of the Lax–Milgram lemma, E0

is one to one ; then we obtain the Lemma by classical “corner” analysis on the plane sector
Γ ([24], see also Proposition 11.1).
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Let us introduce the homotheties Hρ

Hρw(z) = w(ρz). (9.11)

We note that :
−∆ + |ξ|2 = ξ2 H1/|ξ| (−∆ + 1)H|ξ|. (9.12)

Since (Eβ)−1 exists and solves −∆ + 1 in the convenient spaces, we set :

Π(ξ) = ξ−2 H|ξ| (Eβ)−1 H1/|ξ|. (9.13)

Then we note that Π(ξ)f solves the Dirichlet or mixed problem in Γ for the operator
−∆ + |ξ|2 with right hand side f. From that, we easily deduce the operator R̃ defined by
(9.10) and (9.13) satisfies (9.9).

It remains to prove (9.7). We have :

χµ R̃χν = F−1Πµ,ν(ξ)F

where Πµ,ν(ξ) := χµΠ(ξ)χν. We are going to prove in the next paragraph the following
estimate, where ||| ||| denotes the norm of bounded operators H1 → H2 :

∃ε > 0, ∃C > 0, ∀µ, ν ∈ Z, ∀ξ 6= 0 :

|||Πµ,ν(ξ) ||| + ||| ξ d
dξ

Πµ,ν(ξ) ||| ≤ Ce−ε|µ−ν|. (9.14)

This estimate will imply (9.7) with the application of Marcinkiewicz’s theorem.

The idea of applying Marcinkiewicz’s theorem with the help of the estimate (9.14)
comes from [24]. Our method to obtain (9.14) is different from [24].

10. PROOF : REGULARITY ON WEDGES – ESTIMATES OF THE
SYMBOLS

The mapping ξ → Π(ξ) is C∞ from R \ {0} into L(H1, H2). For ε > 0 such that

[β − ε, β + ε] ⊂] − λ1, 0],

Π is still C∞ from R \ {0} into L
(
V 1,2
−ζ (Γ, ∂DΓ)′, V 1,2

ζ (Γ, ∂DΓ)
)
, for all ζ ∈ [β − ε, β + ε].

Thus, such is also the case for Π′(ξ) := ( d
dξ

Π)(ξ). Therefore, with the help of Lemma 7.1,

we deduce that there exists C > 0, such that ∀µ, ν ∈ Z, ∀ξ ∈ [1, 2] :

|||χµ Π(ξ)χν ||| ≤ Ce−ε|µ−ν|, and |||χµ ξΠ
′(ξ)χν ||| ≤ Ce−ε|µ−ν|. (10.1)

We deduce from (9.13) the formula

Π(ξ) = ξ−2 H|ξ| Π(1)H1/|ξ|. (10.2)
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We are now going to prove that we have for ξΠ′(ξ) the following similar formula :

ξΠ′(ξ) = ξ−2 H|ξ| Π
′(1)H1/|ξ|. (10.3)

We differentiate formula (10.2) and we use that for ξ > 0 :

d

dξ
Hξ =

1

ξ
Hξ ◦ (r∂r) and

d

dξ
H1/ξ = −1

ξ
(r∂r) ◦ H1/ξ.

Thus, we easily obtain that :

ξΠ′(ξ) = ξ−2 H|ξ| {[r∂r,Π(1)] − 2Π(1)}H1/|ξ|.

For ξ = 1, that yields :
Π′(1) = [r∂r,Π(1)] − 2Π(1).

The two previous formulas give us (10.3).

Now, we want to prove (10.1) for all ξ 6= 0. To simplify the notations, let ξ > 0.
There exists l ∈ Z such that ξ ∈ [2l, 2l+1[. We set ρ := 2l. (10.2) gives that :

Π(ξ) = ρ−2 Hρ Π(
ξ

ρ
)H1/ρ.

So :

χµ Π(ξ)χν = ρ−2 χµ Hρ Π(
ξ

ρ
)H1/ρ χν

= ρ−2 Hρ χµ−l Π(
ξ

ρ
)χν−l H1/ρ.

Therefore :

‖χµ Π(ξ)χν‖L(H1,H2)
≤ ρ−2‖Hρ‖L(H2,H2)

×‖χµ−l Π(
ξ

ρ
)χν−l‖L(H1,H2)

×‖H1/ρ‖L(H1,H1)
. (10.4)

But it is easy to prove that :

‖Hρ‖L(H2,H2)
= ρ−β and ‖H1/ρ‖L(H1,H1)

= ρ2+β . (10.5)

On the other hand, as ξ/ρ ∈ [1, 2[, the first estimate in (10.1) yields :

‖χµ−l Π(
ξ

ρ
)χν−l‖L(H1,H2)

≤ Ce−ε|µ−l−ν+l|. (10.6)

Inequalities (10.4), (10.5) and (10.6) give the uniform estimate :

|||χµ Π(ξ)χν ||| ≤ Ce−ε|µ−ν|,

for ξ ∈ R\{0}. We obtain the corresponding estimate for ξΠ′(ξ) by starting from the second
estimate in (10.1) : (10.3) yields an estimate as (10.4) and we deduce that :

|||χµ ξΠ
′(ξ)χν ||| ≤ Ce−ε|µ−ν|.
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11. APPENDIX : NEUMANN PROBLEM IN A WEDGE

For the Neumann problem, it is impossible to define the solving symbol Π(ξ) by
formula (9.13) as in section 9, because the operators Eγ are never invertible. We begin this
section by a study of the properties of these operators. They are still defined according to
Notation 9.3 as operators

Eγ(Γ) −→ E−γ(Γ)′

where Eγ(Γ) := Eγ(Γ, ∅).

Let us denote by A the operator

u −→ (v →< ∇u,∇v > + < u, v >)

acting from H1(Γ) into its dual space. A is one to one.
Now λ1 = π/ω.

Proposition 11.1
(i) If −π/ω < γ < 0, Eγ is injective and Fredhom ; the codimension of its range is equal to
one ; there exists a compactly supported function σ ∈ C∞(Γ) such that :

σ(0) = 1 (thus σ 6∈ Eγ(Γ)) and Rg Eγ ⊕ (Aσ) = E−γ(Γ)′.

(ii) If 0 < γ < π/ω, Eγ is onto, and its kernel is one dimensional ; there exists a generator
K of Ker Eγ (which does not depend on γ) such that < K,Aσ >= 1.

Proof.
(i) As a consequence of the general theory of such problems [24], Eγ is Fredholm if and
only if γ2 is not an eigenvalue of the Neumann problem for the opeator −∂2

θ on ]0, ω[. The
first eigenvalue being 0 and the next one being (π

ω
)2, we obtain that Eγ is Fredholm when

−π/ω < γ < 0. On the other hand, the following property holds if γ < γ′ (cf [24])

u ∈ Eγ(Γ) and Eγu ∈ E−γ′(Γ)′ =⇒ u ∈ Eγ′(Γ)

Then any element of KerEγ belongs to H1(Γ) thus is equal to 0.

When −π/ω < γ < 0, a classical proof based on Mellin transform yields that there is only
one singular function σ which is generated by the constant function. A convenient choice
for σ is :

σ(z) = ϕ(r)
∑

0≤2j≤−γ

(−1)j 4−j 1

(j!)2
r2j (11.1)

where ϕ is a smooth cut-off function which is equal to 1 in a neighborhood of 0.

(ii) The dual of Eγ is E−γ . Thus

Rg E−γ = (Ker Eγ)
⊥

and the statement is a consequence of the Fredholm alternative.
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Corollary 11.2 Let f ∈ E−γ(Γ)′ with −π/ω < γ < 0. Then there exists a unique
v ∈ Eγ(Γ) such that

Eγv = f − < K, f > Aσ.

If moreover f ∈ H1(Γ)′ and u := A−1f then

u = v + < K, f > σ.

If moreover f ∈ V k,p
0 (Γ) with 0 < k + 2 − 2/p, then

< K, f >= u(0) and u = v + u(0)σ.

We are going to show how to modify the proof of Theorem 9.1 to reach the case of
the Neumann problem. Then, we will prove how to reduce to the case when u is zero on the
edge of D.

Proof of Theorem 9.1 for Neumann. We recall that −π/ω < β < 0. Applying
the above corollary, we define Π(1) as

Π(1)f := (Eβ)−1(f − < K, f > Aσ)

and Π(ξ) by the formula (cf (9.13) and (10.2))

Π(ξ) = ξ−2 H|ξ| Π(1)H1/|ξ|.

Since this formula allows, exactly as in section 10, to prove the estimate (9.14) on the symbol,
it remains to prove that equality (9.9) holds, i. e. setting (̂ denotes the Fourier transform F)

v̂ν(ξ) := Π(ξ)(χν f̂)

that we have ∑

ν

v̂ν = û. (11.2)

Setting
A(ξ) = ξ−2 H|ξ| A

−1 H1/|ξ| and ûν(ξ) := A(ξ)(χν f̂)

it is clear that
∑

ν ûν = û. Then using corollary 11.2 we obtain that

uν(ξ, z) = vν(ξ, z) + uν(ξ, 0) σ(|ξ|z).
Since

∑
ν ûν(ξ, 0) = û(ξ, 0) and û(ξ, 0) = 0 we deduce (11.2).

Our last task is to prove

Proposition 11.3 We assume that 0 < k + 2 − 2/p < π/ω. Let u ∈ H1(D) with
compact support such that

∀v ∈ H1(D) < ∇u,∇v > = < f, v > with f ∈ V k,p
0 (D).

Then there exists U ∈ W k+2,p(D) such that u − U
∣∣∣
E

= 0. If k ≥ 0, we have moreover

∂nU = 0 on ∂D.
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The main point is to prove that u has a trace u0 on the edge E and that this trace
belongs to W k+2−2/p,p(E). When we have that, the construction of U will be done with the
help of lifting of traces (compare Proposition 8.4 and Lemma 8.3).

Let us prove that u0 makes sense in S ′(R). The partial Fourier transform yields that
û(ξ) ∈ H1(Γ) and is solution of the Neumann problem associated to the operator −∆ + |ξ|2
with right hand side f̂(ξ). But f ∈ S ′(R,W k,p(Γ)) ; so f̂ ∈ S ′(R,W k,p(Γ)). The result of
Theorem 6.4 still holds for −∆ + |ξ|2 instead of −∆, and it is easy to obtain polynomial
estimates with respect to ξ. That gives u ∈ S ′(R,W k+2,p(Γ)) hence u0 ∈ S ′(R).

To obtain the regularity of u0, we are going to prove :

Lemma 11.4 There exist functions Kξ(r) independent from ω such that

∀ξ 6= 0 : û0(ξ) =
1

ω

∫

Γ
f̂(ξ, z)Kξ(r) dz.

That lemma will allow to state that u0 is also the trace of the solution of a Neumann
problem on the half-space with a right hand side in W k,p.

Proof. We deduce from Corollary 11.2 that

û0(ξ) =
∫

Γ
f̂(ξ, z) K(|ξ|z) dz.

We are going to prove that there exists a function K(r) such that

K(z) =
1

ω
K(r). (11.3)

So, setting Kξ(r) := K(r|ξ|), we will obtain the Lemma. To prove (11.3) we use the sep-
aration of variables in polar coordinates. Similarly to the operators Eγ, we introduce the
following operators Bγ which come from the radial part of −∆ (compare Notation 9.3) :

Bγ : Eγ(R+) −→ E−γ(R+)′

u −→ (v →< dru, drv > + < u, v >)

with r dr as mesure on R+ in relation with the polar coordinates in Γ : dz = r dr dθ. B

denotes the same operator acting from H1(R+) onto its dual space.

Now, all the results (Proposition 11.1 and Corollary 11.2) we proved for Eγ and A remain
true for Bγ and B (moreover (i) holds for any γ < 0 and (ii) holds for any γ > 0) : we
may take as singular function σ̃(r) such that σ̃(r) = σ(z), cf (11.1) ; there is a function
K ∈ ∩γ>0 Ker Bγ which satisfies :

< K,Bσ̃ >= 1.

But Bσ̃ = Aσ. So :
∫

Γ
K(r) Aσ dz =

∫ ω

0

∫ +∞

0
K(r) Bσ̃ r dr dθ

= ω < K,Bσ̃ >= ω.

So, we have proved that (11.3) holds.

Proof of Proposition 11.3. Lemma 11.4 still holds when ω = π (the domain
is then the half plane P ). f satisfying the assumptions of Proposition 11.3, we introduce f̃
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defined by :
f̃(y, z̃) = f(y, z), y ∈ R, z̃ ∈ P

where, for z̃ ∈ P :

z ∈ Γ is such that
z̃

|z̃| =
π

ω

z

|z| .

Since f ∈ V k,p
0 (R× Γ), we obtain that f̃ ∈ V k,p

0 (R× P ) ; as the support of f is compact, we
deduce that f̃ belongs to W k,p(R × P ) ∩H1(R × P )′. So, we can consider the solution

w ∈ W := {v ∈ L2
loc(R × P ) | ∇v ∈ L2(R × P )}

of the Neumann problem on R × P :

< ∇w,∇v > = < f̃, v > ∀v ∈W.

As R × P has a smooth boundary, w ∈ W k+2,p
loc (R × P ). So, the first trace w0 of w on the

“edge” E (r = 0) belongs to W
k+2−2/p,p
loc (E). Finally, Lemma 11.4 yields

ŵ0(ξ) =
1

π

∫

P
f̂(ξ, z̃)Kξ(r) dz̃

=
1

π

∫ π

0

∫ +∞

0

ˆ̃
f(ξ, z̃)Kξ(r) rdr dθ̃

=
1

ω

∫ ω

0

∫ +∞

0
f̂(ξ, z)Kξ(r) rdr dθ

= û0(ξ).
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