STRONGLY ELLIPTIC PROBLEMS
NEAR CUSPIDAL POINTS AND EDGES

Monique Dauge*

Abstract. After an overview of the various geometrical situations occurring for
two-dimensional piecewise smooth domains, we concentrate on the case of outgo-
ing cusp points. We recall results by P. GRISVARD [4] and V.G. MazyAa & B.A.
PLAMENEVSKII [10]. Then, relying on a work by J.-L. STEUX [14], we state a result
of regularity in the space of infinitely smooth functions: if the data are C*°, the
solution is also C* . We extend this result to the situation of cuspidal edges (for
example the domain exterior to a cylinder lying on a plane, or two tangent tori).

PROBLEMES FORTEMENT ELLIPTIQUES PRES DE POINTS OU
ARETES CUSPIDES

Résumé. Apres avoir passé en revue les différentes situations géométriques pouvant
se produire pour un domaine a bord régulier par morceaux, nous nous concentrons sur
le cas de point cuspides saillants. Nous rappelons des résultats de P. GRISVARD [4]
et V.G. MazyA & B.A. PLAMENEVSKII [10]. Ensuite, nous basant sur un travail
di a J.-L. STEUX [14], nous établissons un résultats de régularité dans l’espace des
fonctions infiniment différentiables : si les données sont C°, la solution est aussi
C® . Enfin nous étendons ce résultat a la situation d’une aréte cuspide (par exemple
le domaine extérieur a un cylindre reposant sur un plan, ou encore a deuxr tores
tangents).
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1 PIECEWISE - SMOOTH PLANE DOMAINS

Let © be a piecewise-smooth plane domain. This means that the boundary 02 of
Q) is the union of finitely many arcs of C*° curves — which may be straight lines, of
course. We call them the sides of 2. A point belonging to the intersection of two
sides is called a vertex of €.

The properties that we intend to investigate being local, we assume for simplicity
that  has only one vertex, located at the origin O of the coordinate axes. Let 7
and 7 be the two tangents to 92 at O and let w be the measure of the angle
between them. Five generic situations may occur:

w=2m: Q has a crack (if the two arcs joining in O coincide), or a reentrant
cusp point if not.

™ <w < 2m: € has an ordinary non convex polygonal vertex.

m=w: Q has a weak geometrical singularity (or is smooth if O is a dummy
vertex!)

0 <w < m: Q has an ordinary convex polygonal vertex.

w=0: Q has an outgoing cusp point.

—_—

reentrant cusp ———==_ outgoing cusp
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With the help of a C* diffeomorphism, it is always possible to flatten one of the
sides of €2 in the neighborhood of O, say the side tangent to 7;. So, from now on,
we assume that one side of 2 coincides with the horizontal axis in a neighborhood of
O. When 7 < w < 27 or when 0 < w < 7, by a better choice of the diffeomorphism

it is also possible to flatten the other side. But when (2 has a cusp, it is of course
impossible.

Our object of consideration is the behavior of solutions of elliptic boundary value
problems in 2. Let L by a properly elliptic operator of order 2m with C* co-
efficients in R?. Let us consider the Dirichlet boundary value problem for L on

Q:
{Lu:f in Q,

we H™(Q). (1)



If f is more regular than H (), say H* () with s > 0, due to the presence
of the corner in O, we cannot expect that u belongs to H**™(Q) for any s and

any f.

When w # 0, i.e. in the four first situations, the structure of the solution u has
similar properties: the function u has an asymptotics in O, which, instead of being
reduced to polynomials as in the case of the Taylor expansion of a smooth function,
is made of special model functions which only depend on the geometry of 2 and
the operator L. These model functions w are better described in polar coordinates
(r,0) centered in O:

Q
w(r,0) =r* Z 1,(8) log?r (1.2)

where g is a complex (possibly real!) number, and the 1, are smooth functions of
0, “belonging” to w. In general, u admits a splitting:

K
Using = Ek:sl Ck Wi,
U = Uging + Upol + Ugar With Upol @ polynomial function, (1.3)

Ufat - VSer(Q),

where the space V*7™(Q) is a space of flat functions contained in H*t"(€2). Note
that for each fixed s, the number K, of independent singular model functions is
finite. Moreover the exponent pu; belonging to wy satisfies

m—1<Repu; <...<Repr <...<Repg, <s+m—1. (1.4)

In the case of the Laplacian A, the exponents gy, are the ’L—” and Q = Q(k) is

equal to 1 if IL—” € N and 0 if not. In general, the exponents p; are the eigenvalues

of generalized Sturm-Liouville operators on the angular interval ]0,w[. They are

piecewise-smooth continuous functions of w. For the opening 7, all the u; are

integers — if € is not smooth in O, logarithmic terms occur in the asymptotics.
For the opening 27, all the p; are half-integers, i.e. belong to N/2.

Under the form (1.2), the functions w does not depend smoothly on w, even
for L = A . By mixing together the functions w and the polynomials, it is possible
to construct stable linear combinations wgta, . Their radial behavior can be nicely
described by contour integrals. The ordinary simple asymptotics can be written:

A

q! r
r“logqrzf/ — d)\, qg=0,...,0Q, (1.5)
2im Jy (A — p)rtt
where the contour ~ surrounds p. When the exponents p depend smoothly on w,
stable behaviors are given by divided differences of the function r — r*:
S| = — / r d 0,....Q, (L6)
K@)y - -5 Hg)sT| = 5 9 q=VY,...,, .
© @ 2im Sy (A= o)) -+ (A = figg))



where the ) occur in the exponents of the wj or are integers — exponents of
polynomials! In the general situation where the multiplicity of g may change (for
instance for L = A? in the neighborhood of the angle w; ~ 0.8137 ) stable behaviors

are given by generalized divided differences of the function r — r*:
1 ™ pg(N)
STy, -+ - 1 |p;7“]:f/ 1 dX, qg=0,...,Q, (1.7)
(0) (@)1 Pq 2% ’}/ ()‘_,U(O))"'()\_,U(Q))

where the p, for ¢ = 0,...,Q are a basis of Py the space of polynomials of 1
variable with degree < @ .

From a very abundant literature, we quote

- G.M. VERZBINSKII & V.G. MAZ’YA [15, 16, 17] concerning the Dirichlet problem
for the Laplace operator in all the geometrical situations quoted above,

- P. GrISVARD [5], V.A. KONDRAT’EV [8] and V.G. MAz'yA & B.A. PLAME-
NEVSKII [10] concerning the ordinary “conical” situation where the opening is neither
0, nor 7 nor 27,

- [5] again and [1] for the cracks, V.G. MAz’YA, S.A. NAZAROV & B.A. PLAME-
NEVSKII [9] and A.B. MOVCHAN & S.A. NAZAROV [12] for reentrant cusps,

- V.G. Maz’ya & J. ROSSMANN [11] and our [2] for stable asymptotics in the full
range 0 < w < 27 for the opening.

As a conclusion of this paragraph, we can say that in all the situations where the
opening is > 0, the asymptotics Uasy := Using + Upot Of u in the neighborhood of
O can be described in a unified and stable way, including even the case when the
opening is equal to 7 and the domain smooth in O — the function u,s, is then the
Taylor expansion of u .

Have we still a sort of stability when the opening tends to 07

2 WHEN THE OPENING TENDS TO ZERO

We see that for L = A, the first exponent occurring in the singular part g, of
v is I and it tends to infinity when w — 0. The same phenomenon occurs for
L = A?%: the real part of the first exponent p; tends to infinity when w — 0. We

have
Proposition 2.1 Let L be a strongly elliptic operator. Let ug‘”) be the exponent
with least real part occurring in (1.4). Then

Re uﬁ“’) — 400 when w — 0.



Proof. Let £ be the principal part of L frozen in O, written in the coordinates
(t,0) with t =logr:

3(9, ata 89) = 62thprinc(O; aﬂca 8@/)

For any n € R, let %’T(]“’) be the operator

vl emto e HM(RxJ0,w)} — {g]e g e H™(Rx]0,w[)}
v — Z(0;0,,09) v

From the general theory [8], we have for any n >m — 1

%7(7‘”) isomorphism <= Vk > 1, Re ,uk 7é 7.

Thus, we are going to prove that Vn > m — 1, ,%’7(7‘”) is always an isomorphism if
w is small enough. Setting &) = e " Ze™ | acting from ﬁm(Rx]O,w[) into
H™(Rx]0,w[) we have

%,(7“’) isomorphism <= 42%,7(“’) isomorphism . (2.1)

Let o/ be the principal part of 4277](“’) . The operator &/“) does not depend on 7
and we have the estimate

Je>0, Ywel0,2n], VneR, Yve HM(Rx]0,w]),

2.2
() — e < c(L+ )™l 2

)UHH ™ (Rx]0.w[) Hm=1(Rx]0,w]) °

Let /) (0) be the operator .7 with its coefficients frozen in # = 0. Since
Oy = et(coseax +sin98y) and 0Oy = et( —sinf o, + Coseay)

we check that
’Q{(O)(at? a@) = Lprinc(o; at, a@) (23)

Due to the strong ellipticity of L, <7)(0) is an isomorphism for all w > 0:

Je>0, Yw>0, Yoe H™(Rx]0, [)

(2.4)
‘U’HW(RX}O wl) ‘d ( Jv ‘H*W(RX}OMD ’
The Poincaré inequality on the strip reads
Je>0, Yw >0, Yoe H"(Rx]0,w]), 25)
H/UHHm—l(RX]O’wD Scw ‘U|HM(R><]O,w[) ’



The regularity of the coefficients of L yields

Je>0, Yw €l0,27], Yve H™(Rx]0,w]),

2.6
(e “)(0) — 7)o 20

<cw ||

H~m(Rx]0,w[) H™(RX]0,w[)

From (2.4)-(2.6), we deduce that for w small enough, &7(“) is an isomorphism sat-
isfying
Jec>0, YW, 0 <w<wy, Ve ]f]m(Rx]O,w[),

2.7
< el 20

o]

H™(Rx]0,w] H=m(Rx]0,w) ’

With (2.2) and (2.5), (2.7) yields that ) is an isomorphism if w (1 + [n])*™ is
small enough. With (2.1), this gives the existence of a constant ¢y > 0 such that
VneR, VYw <co(l+n)~*", 2 isomorphism.

Therefore u\*) satisfies

L
w>co(1+Rep)™? ie. Repl > (ﬂ) R
Co

The strong ellipticity has served in only one place, to insure that .7“)(0) is an
isomorphism for all w > 0 and satisfies the estimates (2.4). If we only assume that

Lorine (O3 0y, 95) : H™(Rx]0, 1) —> H™(Rx]0, 1) isomorphism,  (2.8)

by a simple scaling argument we still obtain the estimates (2.4). By partial Fourier
transform in the variable ¢, we obtain that (2.8) holds if

VEE€R, Lpinc(O;i€,0) : fofm(]O, 1[) — H™(]0,1]) isomorphism. (2.9)

Whence:

Proposition 2.2 Let L be a properly elliptic operator satisfying (2.9). Then

Re ,ugw) — 400 when w — 0.

So, we can expect good regularity properties for the Dirichlet problem associated
with operators L such as above in the neighborhood of outgoing cusp points.



3 OUTGOING CUSP POINTS : CASE OF FLAT FUNCTIONS

We assume that in a neighborhood [—a,a] x [—a,a] of O, Q is determined by the
inequalities

(x,y) € QN [—a,a] X [-a,a] <= 0<z<a and 0<y<p(z), (3.1)
where ¢ is a function C*([—a,al), such that
©(0) =0, ¢'(0)=0 and ¢ >0on]0,al. (3.2)

We assume moreover that ¢ is not infinitely flat in 0 and let p € N be the smallest
integer such that

»®(0) # 0. (3.3)
An example is given by the equation of a circle tangent to the = axis at O: if

the radius is equal to R

x? x? A

We will see later (c¢f Remark 4.4) that our results can be applied to any domain
Q) = R?\ U exterior to the domain U formed by two tangent domains with analytic
boundaries (for instance, U is the union of two tangent disks, or a disk tangent to a
half plane.

As it has been proved in various frameworks by K. IBUKI [6], A. KHELIF [7],
V.G. Mazya & B.A. PLAMENEVSKII [10], P. GRISVARD [4] and J.-L. STEUX
[14], the operator of the Dirichlet problem (1.1) acts smoothly between spaces of flat
functions: for any 7 € N, let

VI(Q) ={uec L*Q) | VaeN? |a| <j, o770 € L(Q)}.

Moreover, the space V—7(Q) is defined as the dual space of V7(Q), where V() is
the closure of 2(Q2) in VI(Q).



Theorem 3.1 Let L be a properly elliptic operator satisfying (2.9). In particular,
L can be any strongly elliptic operator. Let j € Z, 7 > —m . Then any solution u
of the Dirichlet problem (1.1) with right hand side f € VI() satisfies the optimal
reqularity property

u € VIH(Q).

The proof of this theorem relies on the change of variables

Y e [
(x,y) — (t,0) where 0—@@) d t /a:go(a)’ (3.4)

which transforms
Q=N {(z,y) |0 <z <a} onto X:={(t,0)|t<0,0¢€|0,1[}.
The spaces V7(Q2) are transformed in a simple way: we set
@(t) = ¢(z) and forneR, H)(Z)={v|s "ve H (L)}
Then the change of variables transforms
Vi(Q,) onto HI_\(%). (3.5)

Note that

a(t) = (p— V7 |t} ([t 77 + O(t| 771))  when t — —cc. (3.6)
The transformation law of the operator L is

QDZM(IB)L(xa Y; 8x7 ay) = g(@ 9? ata 89) = Lprinc(O; at; 89) + M(t> 9? ata 89)
where the coefficients of M are smooth functions behaving like O(]t\fp_il) when
t — —oo. For any n € R, let %, be the operator

By {v|¢7we H"(X)} — {g|¢"ge H(X)}
v o— L(t,0,0,, 0.
Setting o7, = ¢~" %, ¢", acting from ﬁlm(Z) into H~"(X) we have:
% = Lprinc(O; ata 89) + Mn(ta 97 ata 89)

3.7
with [ 3D

= O(T 771).

Hm (] —00,~T[x]0,1[)— H~m(]—00,~T[x]0,1])

Since (2.9) allows for proving that Lpinc(O; 0, 0p) induces an isomorphism from
H™(X) onto H ™ (X), the proof of the Theorem is a consequence of (3.5) and (3.7).

The fundamental difference between the present case of a cusp point and an acute
plane sector where ¢(x) would be equal to vz and @(t) behave like e — compare
with (3.6), is the decay property of the splitting (3.7) which does not hold for a plane
sector.



4 OUTGOING CUSP POINTS : CASE OF SMOOTH FUNCTIONS

Following [14], we now intend to study the regularity of u solution of problem (1.1)

when f € C®(€2). We can easily prove:

Lemma 4.1 For f € C>(Q), we set for any ¢ > 1:

xal yOlQ

flwy) = > 0°f(0).

Oél!OéQ!

Then '
V0> pj, f—foeVI(Q).

In view of Theorem 3.1, it remains to investigate the polynomial resolution. For

>0, let CX(€,) denote the space of functions:

Cr(Qa) ={f € C=() | Vo, |af < ¢, 0°f(O) = 0}

We note that
V0> pj, CF(Q) C VI(Q).

Lemma 4.2 We assume that L is elliptic. Let o € N? .

There ezists a function U, € C*(Q,) and constants daq,...,daqs, Such that
LU, — x®y® = > " dypa™ Fy*2th e Cini(Q) and XU, € ﬁm(Q), (4.1)
k=1

where x is a smooth cut-off function =1 if v <5 and =0 if x> a.

In particular, if oy =0, the d,, are not there and the function U, satisfies

LUy — 2™y™ € Gy (Q,) and xU, € folm(Q), (4.2)

Proof. The method consists in solving the boundary value problem with respect
to the variable y and considering x as a parameter.

The operator 92™ is continuous between the spaces of polynomials:
Pomyj 0 H™(]0,1]) — P;.

It is one to one and since the dimensions of the two spaces P, N i ™(]0,1[) and
P; are equal (to j+1), 95™ is onto. Thus, there exists a unique polynomial P,,(6)
such that .

07" Py, = 02 and P,, € H™(]0,1]).



With agom(x,y) the coefficient of 9;™ in L and by := 1/ag2m(O) , we set

Y

p(x)

Since P,, is a polynomial of degree < ay 4+ 2m , we check that U, has the form
Ua(xa y) =z Z Caly,alf Qo(x)aé ya’Q"

Q/QEN, o/2/eN
ah+al = az+2m

Ua(z,y) = by o(2)*™ 2 ()2 P, (

Thus U, is smooth in a neighborhood of O. By construction U, satisfies the
boundary conditions and

a0,2m (0) 0" Ug(z,y) = a1y,
A simple calculation proves (4.2) and (4.1). ]

The main result of this section is the regularity result [14]:

Theorem 4.3 Let L be a properly elliptic operator satisfying (2.9). In particular,
L can be any strongly elliptic operator. Then any solution u of the Dirichlet problem

(1.1) with right hand side f € C>(Q)) satisfies the optimal reqularity property

u € C*(Q).
Proof. If suffices to prove that for any j € N, u can be written as the sum of a
function w; belonging to C*(Q) and of a flat function v; € V2™+(Q).

Let 7 € N. We begin with the following algorithm of polynomial resolution for
the polynomial part f,; of f given by Lemma 4.1. We start with a = (0,0), use
Lemma 4.2 with a; = 0 and put the remainder into the right hand side. Then we
apply Lemma 4.2 for (ay, a3) = (1,0), put the remainder into the right hand side and
apply Lemma 4.2 for (ay,as) = (0,1), etc... The order in which the multi-indices «
have to be treated is |a| increasing and «s increasing. In this way, we construct u;

in ﬁlm(Q) NC>®(Q) such that
LUj = fpj + g; with g; € C;;)

We conclude with Theorem 3.1 since L(u —u;) = (f — fp;) — 95 € VI(Q). n

Remark 4.4 If in a neighborhood [—a,a] X [—a,a] of O, € is determined by the
inequalities

(x,y) € QN [—a,a] X [-a,a] <= —a<z<a and p1(r) <y < pa(x), (4.3)
where ¢ and ¢y are C*([—a,a]) such that
p1(0) = 2(0) =0, ¥1(0) = ¢5(0) =0, @2 — 1 >0o0n[-a,0[U]0,a], (44)

9



and such that ¢ = @9 — 1 is not infinitely flat in 0, then Theorem 4.3 still holds:
the two Taylor expansions of u in O in the half-planes x > 0 and z < 0 are linear
functions of the Taylor expansions of f, ¢; and (5 ; therefore, one can prove that
they fit together. m

Remark 4.5 If ¢ has an asymptotics in non integer powers of =z :

gp(;y) =P + ﬁ)/lwpl 44 p)/prN + O(xpN+1)’

with p, an increasing sequence tending to +o0o (for example the profile of Joukowski

has such a form with p = % and p, = %—l—% ), Theorem 3.1 still holds [6, 7, 10, 4, 14],

but the proofs of Lemma 4.2 and Theorem 4.3 yield the construction of a non smooth
asymptotics for wu, see [14]. [

5 OTHER BOUNDARY CONDITIONS

While conditions corresponding to (2.9) are satisfied, we have the analogue of Theo-
rems 3.1 and 4.3 for any other elliptic boundary problem. Namely, if B;(z,y;0,, 0,)
and Bs(z,y; 0y, 0,) are two systems of boundary conditions on the sides § =0 and
0 =1 of Q, respectively, each of them covering L, then the behavior near O of
the solutions of the boundary problem

Lu=f in Q,
Byu =g, if y=0, (5.1)
Byu =g, if y= (), ‘

Ofu=0, k=0,....m—1 if z=a,

depend on the problem (LprinC(O;ﬁx,ay),BLprinC(O; Oy Oy) s Ba prine(O; Gxﬁy)) on
the infinite strip Rx]0,1[. The condition replacing (2.9) is now

v€ € R? (Lprinc(O; 26, 89), Bl,princ(O; 26, 89), BQ,princ(O; Z€> a@)) .

5.2
H™(]0,1[) — H~™(]0,1[) x C*™ isomorphism. (5:2)

10



Under this assumption, the real part of the exponent ,ugw) tends to 400 when

w — 0, the regularity results in spaces of flat functions and in spaces of smooth
functions still hold — note that, however, if B; and B, contain operators of the
same order, the boundary data ¢g; and ¢, have to satisfy a countable number of
compatibility conditions at O.

Examples are given by By = Id, By =0, for L = A, or for By = By = (Id, A)
for L =A%,

At the opposite, for Neumann problem, condition (5.2) is always violated in £ = 0:
all polynomials v in P,,_; satisfy

(Lprinc(o; 07 89)7 Bl,princ(o; 07 89)7 B2,princ(0; 07 39))1) - (07 07 O)

That fact induces severe difficulties to handle flat right hand sides. Anyway for
the Laplace operator for instance, it is still possible to construct an ansatz for the
asymptotics of u from the Taylor expansion of the right hand side by alternating
double integrations with respect to x of mean values of the type

(o)~ ol + [ o) dy)
—_— —
x QO(I') gi\x g2\x 0 r,y Y
and double integrations in y like for Dirichlet, see S.A. NAzAROV & O.R. PoLyA-
KOVA [13]. Such methods can be compared with what is done in elasticity for asymp-
totics in thin plates.

6 CUSPIDAL EDGES

Let now W be a three-dimensional domain with a cuspidal edge: this means that
the boundary of W is smooth, except in the neighborhood of a smooth curve &, the
edge of W, where W is locally diffeomorphic to R x €2, where €2 is a plane domain
with an outgoing cusp in O as in §3-5.

Let M be a strongly elliptic operator with C*® coefficients in R®. We are inter-
ested in the regularity of the solutions of the Dirichlet problem:

{ Mu=f in W,
(6.1)

ue H™(W).

We study first the localized problem and prove that it is regular in spaces of
flat and C*> functions respectively. Our method of proof is classical and relies on
differential quotients.

11



Let (x,y) be the variables in © and z the variable in R. Let ¢ be the function
defining the boundary of € according to (3.1)-(3.3). The spaces V/(R x Q) are
defined for j € N by:

VIRx Q) ={ucl*RxQ)|VaeN |a|<j, 70" e L*RxQ)},
and by duality if 7 < 0.
We have the tensorization properties for all j € N:
VIR x Q) = H(R,V°(Q) N L*(R, V7(Q)) (6.2)

and
VIR x Q) = HIR,VYQ)) + LR, V(Q)). (6.3)

Proposition 6.1 Let M be a strongly elliptic operator of order 2. Let j € N.
Then any solution w of the Dirichlet problem (6.1) with compact support and right
hand side f € VI(R x Q) satisfies the optimal reqularity property

u € V(R x Q).

P. GRISVARD [4] proved this result for L = A and j =0 in L? Sobolev spaces
by a completely different technique.

Proof. Thanks to the strong ellipticity of M , we have the a priori estimate

] < c(IMull 4y gqy + llull

H1(RxQ) — L(R L2(Rx Q) )

where ¢ depends only on the support of w. This estimate can also be written as

Il + ull 2

<c (IIMUII + ull

L(R,L2(Q))+L2(R,H-(Q)) L2(Rx Q) )

Considering for h > 0 small enough the function (u(z,y,z+h)—u(z,y,z))h~! and
letting h — 0, we deduce from (6.4) by recurrence over ¢ € N that there holds:

loll ess g sy 10l ey (6.5)
< C(HMUHHZ 1 ]RLQ(Q))-i—H‘Z(RH 1 (Q)) + HUHL2 ]RXQ))
Integrating in y from the side y = 0, we easily prove that
HY(Q) = VY(Q). (6.6)
Thus, (6.5) writes
HuHHlJrl(R’VO(Q + HUHHZ R Vl(Q)) (6 7)
S C(HMuHHZ—I(R’VO(Q))JFHIZ(R"/—I(Q + || ||L2 ]RXQ )

12



Thus, for f € V/(R x ), the above estimate for ¢ = j + 1 yields that
u € H*M (R, VY(Q)) N H™ (R, V1(Q)). (6.8)
Let L be the operator
L(x,y, z;0;,0y) = M(x,y, z; 05, 0y, 0), (6.9)
so that there exists an operator P of order <1 such that
M(z,y, z; 0,0y, 0,) = L(z,y, 2,04, 0y) + P(x,y, 2; 0y, 0y, 0;) 0. (6.10)
Since Mu = f belongs to H’(R,V°(2)), we deduce from (6.8) and (6.10) that
Lu € H(R,V(Q)). (6.11)

Theorem 3.1 applied for each z combined with an argument of differential quotients
yields that (6.11) implies '
u € H' (R, V3(Q)).

In that way, we prove by induction over ¢ =0,...,5 that
Lu € H7Y (R, VY(Q))

which implies '
u € HITHR, VF2(Q)). (6.12)

(6.12) for ¢ = j combined with (6.8) gives the Proposition. ]

For general operators of order 2m , one encounters a technical difficulty in han-
dling the norms with negative exponents. We have

Lemma 6.2 Let M be a strongly elliptic operator of order 2m with m > 2. Let
jE€Z, j>—m. There exists an integer k = k(m) > 0 such that any solution u of
the Dirichlet problem (6.1) with compact support and right hand side

fe MR, VO(Q) N HYN R, VI(Q)) (6.13)
satisfies the reqularity property

u € V(R x Q).

Proof. Thanks to the strong ellipticity of M , just like above we obtain the a priori
estimate for any ¢ € N — compare with (6.7)

||U|| )) + HUHHIZ(]KVm(Q))

< c(||Mu]

H£+m(R7vo(Q

|+ llul

HE=m(R,VO(Q))+H! (R,V—m(Q L2(Rx Q) ) :
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Thus, for f satisfying (6.13) the above estimate for £ = j +m + k yields that
u € H*™ R, VOQ)) N H™HHR, V™(Q)).

The operator L is defined by (6.9) so that there exists an operator P of order
< 2m — 1 satisfying (6.10). Since Mu = f belongs to H'T*(R,V°(Q)), we deduce
that

Lu € HTHR, VI=™(Q)).

Theorem 3.1 yields that
u € HIPF(R, VIT™(Q)).

In that way, we prove by induction over ¢ =0,...,5 4+ m that
Lu € HITm=thy(R VE™(Q))

with k’ozk, /ﬁ:ko—(m—l), kgzkl—(m—Z), ey km—lzkm:---:km—i—j7
and
= Hj+mfe+k[ (R, Véer(Q))

It suffices to choose ky such that k,,_1 > 0 to obtain finally for ¢ = m + j that
u belongs to L*(R,V?"(Q)). As u also belongs to v € H*"(R,V%(Q)), the
Lemma is proved. |

Theorem 6.3 Let M be a strongly elliptic operator. Then any solution u of the

Dirichlet problem (6.1) with compact support and right hand side f € C®(R x Q)
satisfies the optimal reqularity property

u€C®(RxQ).
Proof. We denote by H* the intersection of all spaces H* for k € N. Since f
belongs to H*®(R, V°(Q)), Proposition 6.1 and Lemma 6.2 yield that
u € H*(R,V*™(Q)). (6.14)

The proof runs as above, using as spaces on ) the spaces V7({) augmented by the
spaces of polynomials: o ’
VI(Q) =V/(Q)+P,_1(9).
Indeed, Theorem 3.1 and Lemma 4.2 give that
Lu € VI(Q), o
. = eV (Q).
u e H™(Q).

So, starting from (6.14), we have Lu € H®(R, V'(Q)). Thus v € H®(R, V2"t1(Q)) .
Going on, we prove by induction that ¥/ € N,

u € H®(R, VM (Q)).
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Similarly to Remark 4.4, we deduce from all these statements a local regularity
result in the space C®(W) for any domain W = R3\ U where the domain U is the
disjoint union of two (or more) domains with analytic boundaries U; and U, such
that U, NU, is a curve €. As examples, we can take for U; and U, : a cylinder and
a half-space, two cylinders, a torus and a cylinder, a torus and a ball, a torus and a
half-space, two tori, etc...

Remark 6.4 Let us give a short description of the case where there is only one
contact point: we take as U; the half-space y < 0 and as U, the ball of radius
1 and of center (z1,z9,y) = (0,0,1) and we consider the Dirichlet problem for
the Laplace operator. Then it is possible to prove that for a right hand side flat
enough in O = (0,0,0), the solution is as flat as desired. The idea is to work in
cylindrical coordinates (r,0,y) with 27 = rcosf and zy = rsinf and to combine
arguments of differential quotients with respect to the variable # and estimates on
% by considering A(%). It is still possible to construct the asymptotics of u by the
polynomial resolution, but the outcome of the construction gives not only polynomial
terms but also non smooth terms. The most singular that we have found are
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NOTE

During the Conference, V.G. Mazya pointed out to us a work by V.I. Feigin. We
only found in the literature the short note [3], where are stated results very similar
to ours.
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