
STRONGLY ELLIPTIC PROBLEMS

NEAR CUSPIDAL POINTS AND EDGES

Monique Dauge ∗

Abstract. After an overview of the various geometrical situations occurring for
two-dimensional piecewise smooth domains, we concentrate on the case of outgo-
ing cusp points. We recall results by P. Grisvard [4] and V.G. Mazya & B.A.

Plamenevskii [10]. Then, relying on a work by J.-L. Steux [14], we state a result
of regularity in the space of infinitely smooth functions: if the data are C∞ , the
solution is also C∞ . We extend this result to the situation of cuspidal edges (for
example the domain exterior to a cylinder lying on a plane, or two tangent tori).

PROBLÈMES FORTEMENT ELLIPTIQUES PRÈS DE POINTS OU
ARÊTES CUSPIDES

Résumé. Après avoir passé en revue les différentes situations géométriques pouvant
se produire pour un domaine à bord régulier par morceaux, nous nous concentrons sur
le cas de point cuspides saillants. Nous rappelons des résultats de P. Grisvard [4]
et V.G. Mazya & B.A. Plamenevskii [10]. Ensuite, nous basant sur un travail
dû à J.-L. Steux [14], nous établissons un résultats de régularité dans l’espace des
fonctions infiniment différentiables : si les données sont C∞ , la solution est aussi
C∞ . Enfin nous étendons ce résultat à la situation d’une arête cuspide (par exemple
le domaine extérieur à un cylindre reposant sur un plan, ou encore à deux tores
tangents).
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1 PIECEWISE - SMOOTH PLANE DOMAINS

Let Ω be a piecewise-smooth plane domain. This means that the boundary ∂Ω of
Ω is the union of finitely many arcs of C∞ curves — which may be straight lines, of
course. We call them the sides of Ω . A point belonging to the intersection of two
sides is called a vertex of Ω .

The properties that we intend to investigate being local, we assume for simplicity
that Ω has only one vertex, located at the origin O of the coordinate axes. Let ~τ1
and ~τ2 be the two tangents to ∂Ω at O and let ω be the measure of the angle
between them. Five generic situations may occur:

ω = 2π : Ω has a crack (if the two arcs joining in O coincide), or a reentrant
cusp point if not.

π < ω < 2π : Ω has an ordinary non convex polygonal vertex.

π = ω : Ω has a weak geometrical singularity (or is smooth if O is a dummy
vertex!)

0 < ω < π : Ω has an ordinary convex polygonal vertex.

ω = 0 : Ω has an outgoing cusp point.

reentrant cusp outgoing cusp

With the help of a C∞ diffeomorphism, it is always possible to flatten one of the
sides of Ω in the neighborhood of O , say the side tangent to ~τ1 . So, from now on,
we assume that one side of Ω coincides with the horizontal axis in a neighborhood of
O . When π < ω < 2π or when 0 < ω < π , by a better choice of the diffeomorphism
it is also possible to flatten the other side. But when Ω has a cusp, it is of course
impossible.

Our object of consideration is the behavior of solutions of elliptic boundary value
problems in Ω . Let L by a properly elliptic operator of order 2m with C∞ co-
efficients in R2 . Let us consider the Dirichlet boundary value problem for L on
Ω : 



Lu = f in Ω,

u ∈
◦
Hm(Ω).

(1.1)
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If f is more regular than H−m(Ω) , say Hs−m(Ω) with s > 0 , due to the presence
of the corner in O , we cannot expect that u belongs to Hs+m(Ω) for any s and
any f .

When ω 6= 0 , i.e. in the four first situations, the structure of the solution u has
similar properties: the function u has an asymptotics in O , which, instead of being
reduced to polynomials as in the case of the Taylor expansion of a smooth function,
is made of special model functions which only depend on the geometry of Ω and
the operator L . These model functions w are better described in polar coordinates
(r, θ) centered in O :

w(r, θ) = rµ
Q∑

q=0

ψq(θ) logq r (1.2)

where µ is a complex (possibly real!) number, and the ψq are smooth functions of
θ , “belonging” to w . In general, u admits a splitting:

u = using + upol + uflat with





using =
∑Ks

k=1 ck wk,

upol a polynomial function,

uflat ∈ V s+m(Ω),

(1.3)

where the space V s+m(Ω) is a space of flat functions contained in Hs+m(Ω) . Note
that for each fixed s , the number Ks of independent singular model functions is
finite. Moreover the exponent µk belonging to wk satisfies

m− 1 < Reµ1 ≤ . . . ≤ Reµk ≤ . . . ≤ ReµKs
< s+m− 1. (1.4)

In the case of the Laplacian ∆ , the exponents µk are the kπ
ω

and Q = Q(k) is
equal to 1 if kπ

ω
∈ N and 0 if not. In general, the exponents µk are the eigenvalues

of generalized Sturm-Liouville operators on the angular interval ]0, ω[ . They are
piecewise-smooth continuous functions of ω . For the opening π , all the µk are
integers — if Ω is not smooth in O , logarithmic terms occur in the asymptotics.
For the opening 2π , all the µk are half-integers, i.e. belong to N/2 .

Under the form (1.2), the functions w does not depend smoothly on ω , even
for L = ∆ . By mixing together the functions w and the polynomials, it is possible
to construct stable linear combinations wstab . Their radial behavior can be nicely
described by contour integrals. The ordinary simple asymptotics can be written:

rµ logq r =
q!

2iπ

∫

γ

rλ

(λ− µ)q+1
dλ, q = 0, . . . , Q, (1.5)

where the contour γ surrounds µ . When the exponents µ depend smoothly on ω ,
stable behaviors are given by divided differences of the function r → rλ :

S[µ(0), . . . , µ(q); r] =
1

2iπ

∫

γ

rλ

(λ− µ(0)) · · · (λ− µ(q))
dλ, q = 0, . . . , Q, (1.6)
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where the µ(q) occur in the exponents of the wk or are integers — exponents of
polynomials! In the general situation where the multiplicity of µ may change (for
instance for L = ∆2 in the neighborhood of the angle ω1 ≃ 0.813π ) stable behaviors
are given by generalized divided differences of the function r → rλ :

S[µ(0), . . . , µ(Q)| pq; r] =
1

2iπ

∫

γ

rλ pq(λ)

(λ− µ(0)) · · · (λ− µ(Q))
dλ, q = 0, . . . , Q, (1.7)

where the pq for q = 0, . . . , Q are a basis of PQ the space of polynomials of 1
variable with degree ≤ Q .

From a very abundant literature, we quote

- G.M. Verzbinskii & V.G. Maz’ya [15, 16, 17] concerning the Dirichlet problem
for the Laplace operator in all the geometrical situations quoted above,

- P. Grisvard [5], V.A. Kondrat’ev [8] and V.G. Maz’ya & B.A. Plame-

nevskii [10] concerning the ordinary “conical” situation where the opening is neither
0 , nor π nor 2π ,

- [5] again and [1] for the cracks, V.G. Maz’ya, S.A. Nazarov & B.A. Plame-

nevskii [9] and A.B. Movchan & S.A. Nazarov [12] for reentrant cusps,

- V.G. Maz’ya & J. Rossmann [11] and our [2] for stable asymptotics in the full
range 0 < ω ≤ 2π for the opening.

As a conclusion of this paragraph, we can say that in all the situations where the
opening is > 0 , the asymptotics uasy := using + upol of u in the neighborhood of
O can be described in a unified and stable way, including even the case when the
opening is equal to π and the domain smooth in O — the function uasy is then the
Taylor expansion of u .

Have we still a sort of stability when the opening tends to 0 ?

2 WHEN THE OPENING TENDS TO ZERO

We see that for L = ∆ , the first exponent occurring in the singular part using of
u is π

ω
and it tends to infinity when ω → 0 . The same phenomenon occurs for

L = ∆2 : the real part of the first exponent µ1 tends to infinity when ω → 0 . We
have

Proposition 2.1 Let L be a strongly elliptic operator. Let µ
(ω)
1 be the exponent

with least real part occurring in (1.4). Then

Reµ
(ω)
1 −→ +∞ when ω −→ 0.
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Proof. Let L be the principal part of L frozen in O , written in the coordinates
(t, θ) with t = log r :

L (θ; ∂t, ∂θ) = e2mtLprinc(O; ∂x, ∂y).

For any η ∈ R , let B(ω)
η be the operator

B(ω)
η : {v | e−ηtv ∈

◦
Hm(R×]0, ω[)} −→ {g | e−ηtg ∈ H−m(R×]0, ω[)}

v 7−→ L (θ; ∂t, ∂θ) v.

From the general theory [8], we have for any η > m− 1

B
(ω)
η isomorphism ⇐⇒ ∀k ≥ 1, Reµ

(ω)
k 6= η.

Thus, we are going to prove that ∀η > m − 1 , B(ω)
η is always an isomorphism if

ω is small enough. Setting A (ω)
η = e−ηtB(ω)

η eηt , acting from
◦
Hm(R×]0, ω[) into

H−m(R×]0, ω[) we have

B
(ω)
η isomorphism ⇐⇒ A

(ω)
η isomorphism . (2.1)

Let A (ω) be the principal part of A (ω)
η . The operator A (ω) does not depend on η

and we have the estimate

∃ c > 0, ∀ω ∈]0, 2π], ∀η ∈ R, ∀v ∈
◦
Hm(R×]0, ω[),

‖(A (ω) − A (ω)
η ) v‖

H−m(R×]0,ω[)
≤ c (1 + |η|)2m‖v‖

Hm−1(R×]0,ω[)
.

(2.2)

Let A (ω)(0) be the operator A (ω) with its coefficients frozen in θ = 0 . Since

∂t = et
(

cos θ ∂x + sin θ ∂y

)
and ∂θ = et

(
− sin θ ∂x + cos θ ∂y

)

we check that
A (0)(∂t, ∂θ) = Lprinc(O; ∂t, ∂θ). (2.3)

Due to the strong ellipticity of L , A (ω)(0) is an isomorphism for all ω > 0 :

∃ c > 0, ∀ω > 0, ∀v ∈
◦
Hm(R×]0, ω[),

|v|
Hm(R×]0,ω[)

≤ c |A (ω)(0) v|
H−m(R×]0,ω[)

.
(2.4)

The Poincaré inequality on the strip reads

∃ c > 0, ∀ω > 0, ∀v ∈
◦
Hm(R×]0, ω[),

‖v‖
Hm−1(R×]0,ω[)

≤ c ω |v|
Hm(R×]0,ω[)

.
(2.5)
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The regularity of the coefficients of L yields

∃ c > 0, ∀ω ∈]0, 2π], ∀v ∈
◦
Hm(R×]0, ω[),

‖(A (ω)(0) − A (ω)) v‖
H−m(R×]0,ω[)

≤ c ω ‖v‖
Hm(R×]0,ω[)

.
(2.6)

From (2.4)-(2.6), we deduce that for ω small enough, A (ω) is an isomorphism sat-
isfying

∃ c > 0, ∀ω, 0 < ω ≤ ω0, ∀v ∈
◦
Hm(R×]0, ω[),

‖v‖
Hm(R×]0,ω[)

≤ c ‖A (ω)v‖
H−m(R×]0,ω[)

.
(2.7)

With (2.2) and (2.5), (2.7) yields that A (ω)
η is an isomorphism if ω (1 + |η|)2m is

small enough. With (2.1), this gives the existence of a constant c0 > 0 such that

∀η ∈ R, ∀ω ≤ c0(1 + |η|)−2m, B
(ω)
η isomorphism.

Therefore µ
(ω)
1 satisfies

ω > c0(1 + Reµ
(ω)
1 )−2m i.e. Reµ

(ω)
1 >

(
ω

c0

)− 1

2m

− 1.

The strong ellipticity has served in only one place, to insure that A (ω)(0) is an
isomorphism for all ω > 0 and satisfies the estimates (2.4). If we only assume that

Lprinc(O; ∂t, ∂θ) :
◦
Hm(R×]0, 1[) −→ H−m(R×]0, 1[) isomorphism, (2.8)

by a simple scaling argument we still obtain the estimates (2.4). By partial Fourier
transform in the variable t , we obtain that (2.8) holds if

∀ξ ∈ R, Lprinc(O; iξ, ∂θ) :
◦
Hm(]0, 1[) −→ H−m(]0, 1[) isomorphism. (2.9)

Whence:

Proposition 2.2 Let L be a properly elliptic operator satisfying (2.9). Then

Reµ
(ω)
1 −→ +∞ when ω −→ 0.

So, we can expect good regularity properties for the Dirichlet problem associated
with operators L such as above in the neighborhood of outgoing cusp points.
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3 OUTGOING CUSP POINTS : CASE OF FLAT FUNCTIONS

We assume that in a neighborhood [−a, a] × [−a, a] of O , Ω is determined by the
inequalities

(x, y) ∈ Ω ∩ [−a, a] × [−a, a] ⇐⇒ 0 < x < a and 0 < y < ϕ(x), (3.1)

where ϕ is a function C∞([−a, a]) , such that

ϕ(0) = 0, ϕ′(0) = 0 and ϕ > 0 on ]0, a]. (3.2)

We assume moreover that ϕ is not infinitely flat in 0 and let p ∈ N be the smallest
integer such that

ϕ(p)(0) 6= 0. (3.3)

An example is given by the equation of a circle tangent to the x axis at O : if
the radius is equal to R

ϕ(x) = R


1 +

√

1 −
x2

R2


 =

x2

2R2
+ O(x4).

Ω

We will see later (cf Remark 4.4) that our results can be applied to any domain
Ω = R2 \ U exterior to the domain U formed by two tangent domains with analytic
boundaries (for instance, U is the union of two tangent disks, or a disk tangent to a
half plane.

As it has been proved in various frameworks by K. Ibuki [6], A. Khelif [7],
V.G. Mazya & B.A. Plamenevskii [10], P. Grisvard [4] and J.-L. Steux

[14], the operator of the Dirichlet problem (1.1) acts smoothly between spaces of flat
functions: for any j ∈ N , let

V j(Ω) = {u ∈ L2(Ω) | ∀α ∈ N
2, |α| ≤ j, ϕ|α|−j ∂αu ∈ L2(Ω)}.

Moreover, the space V −j(Ω) is defined as the dual space of
◦
V j(Ω) , where

◦
V j(Ω) is

the closure of D(Ω) in V j(Ω) .
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Theorem 3.1 Let L be a properly elliptic operator satisfying (2.9). In particular,
L can be any strongly elliptic operator. Let j ∈ Z , j > −m . Then any solution u
of the Dirichlet problem (1.1) with right hand side f ∈ V j(Ω) satisfies the optimal
regularity property

u ∈ V 2m+j(Ω).

The proof of this theorem relies on the change of variables

(x, y) −→ (t, θ) where θ =
y

ϕ(x)
and t = −

∫ a

x

dσ

ϕ(σ)
, (3.4)

which transforms

Ωa := Ω ∩ {(x, y) | 0 < x < a} onto Σ := {(t, θ) | t < 0, θ ∈]0, 1[}.

The spaces V j(Ω) are transformed in a simple way: we set

ϕ̃(t) = ϕ(x) and for η ∈ R, Hj
η(Σ) = {v | ϕ̃−ηv ∈ Hj(Σ)}.

Then the change of variables transforms

V j(Ωa) onto Hj
j−1(Σ). (3.5)

Note that

ϕ̃(t) = (p− 1)p |t|−1
(
|t|−

1

p−1 + O(|t|−
2

p−1 )
)

when t→ −∞. (3.6)

The transformation law of the operator L is

ϕ2m(x)L(x, y; ∂x, ∂y) =: L̃ (t, θ; ∂t, ∂θ) = Lprinc(O; ∂t, ∂θ) +M(t, θ; ∂t, ∂θ)

where the coefficients of M are smooth functions behaving like O(|t|−
1

p−1 ) when
t→ −∞ . For any η ∈ R , let Bη be the operator

Bη : {v | ϕ̃−ηv ∈
◦
Hm(Σ)} −→ {g | ϕ̃−ηg ∈ H−m(Σ)}

v 7−→ L̃ (t, θ; ∂t, ∂θ)v.

Setting Aη = ϕ̃−η Bη ϕ̃
η , acting from

◦
Hm(Σ) into H−m(Σ) we have:

Aη = Lprinc(O; ∂t, ∂θ) +Mη(t, θ; ∂t, ∂θ)

with ‖Mη‖ ◦
Hm(]−∞,−T [×]0,1[)→H−m(]−∞,−T [×]0,1[)

= O(T− 1

p−1 ).
(3.7)

Since (2.9) allows for proving that Lprinc(O; ∂t, ∂θ) induces an isomorphism from
◦
Hm(Σ) onto H−m(Σ) , the proof of the Theorem is a consequence of (3.5) and (3.7).

The fundamental difference between the present case of a cusp point and an acute
plane sector where ϕ(x) would be equal to γ x and ϕ̃(t) behave like et — compare
with (3.6), is the decay property of the splitting (3.7) which does not hold for a plane
sector.
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4 OUTGOING CUSP POINTS : CASE OF SMOOTH FUNCTIONS

Following [14], we now intend to study the regularity of u solution of problem (1.1)
when f ∈ C∞(Ω) . We can easily prove:

Lemma 4.1 For f ∈ C∞(Ω) , we set for any ℓ ≥ 1 :

fℓ(x, y) =
∑

|α|<ℓ

xα1yα2

α1!α2!
∂αf(O).

Then
∀ℓ ≥ pj, f − fℓ ∈ V j(Ω).

In view of Theorem 3.1, it remains to investigate the polynomial resolution. For
ℓ ≥ 0 , let C∞

ℓ (Ωa) denote the space of functions:

C∞
ℓ (Ωa) = {f ∈ C∞(Ωa) | ∀α, |α| ≤ ℓ, ∂αf(O) = 0}.

We note that
∀ℓ ≥ pj, C∞

ℓ (Ωa) ⊂ V j(Ωa).

Lemma 4.2 We assume that L is elliptic. Let α ∈ N
2 .

There exists a function Uα ∈ C∞(Ωa) and constants dα,1, . . . , dα,α1
such that

LUα − xα1yα2 −
α1∑

k=1

dα,k x
α1−kyα2+k ∈ C∞

|α|(Ωa) and χUα ∈
◦
Hm(Ω), (4.1)

where χ is a smooth cut-off function ≡ 1 if x ≤ a
2

and ≡ 0 if x ≥ a .

In particular, if α1 = 0 , the dα,k are not there and the function Uα satisfies

LUα − xα1yα2 ∈ C∞
|α|(Ωa) and χUα ∈

◦
Hm(Ω), (4.2)

Proof. The method consists in solving the boundary value problem with respect
to the variable y and considering x as a parameter.

The operator ∂2m
θ is continuous between the spaces of polynomials:

P2m+j ∩
◦
Hm(]0, 1[) −→ Pj.

It is one to one and since the dimensions of the two spaces P2m+j ∩
◦
Hm(]0, 1[) and

Pj are equal (to j+1 ), ∂2m
θ is onto. Thus, there exists a unique polynomial Pα2

(θ)
such that

∂2m
θ Pα2

= θα2 and Pα2
∈

◦
Hm(]0, 1[).
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With a0,2m(x, y) the coefficient of ∂2m
y in L and b0 := 1/a0,2m(O) , we set

Uα(x, y) = b0 ϕ(x)2m xα1 ϕ(x)α2 Pα2
(
y

ϕ(x)
).

Since Pα2
is a polynomial of degree ≤ α2 + 2m , we check that Uα has the form

Uα(x, y) = xα1

∑

α′

2
∈N, α′′

2
∈N

α′

2
+α′′

2
= α2+2m

cα′

2
,α′′

2
ϕ(x)α′

2 yα′′

2 .

Thus Uα is smooth in a neighborhood of O . By construction Uα satisfies the
boundary conditions and

a0,2m(O) ∂2m
y Uα(x, y) = xα1yα2.

A simple calculation proves (4.2) and (4.1).

The main result of this section is the regularity result [14]:

Theorem 4.3 Let L be a properly elliptic operator satisfying (2.9). In particular,
L can be any strongly elliptic operator. Then any solution u of the Dirichlet problem
(1.1) with right hand side f ∈ C∞(Ω) satisfies the optimal regularity property

u ∈ C∞(Ω).

Proof. If suffices to prove that for any j ∈ N , u can be written as the sum of a
function uj belonging to C∞(Ω) and of a flat function vj ∈ V 2m+j(Ω) .

Let j ∈ N . We begin with the following algorithm of polynomial resolution for
the polynomial part fpj of f given by Lemma 4.1. We start with α = (0, 0) , use
Lemma 4.2 with α1 = 0 and put the remainder into the right hand side. Then we
apply Lemma 4.2 for (α1, α2) = (1, 0) , put the remainder into the right hand side and
apply Lemma 4.2 for (α1, α2) = (0, 1) , etc... The order in which the multi-indices α
have to be treated is |α| increasing and α2 increasing. In this way, we construct uj

in
◦
Hm(Ω) ∩ C∞(Ω) such that

Luj = fpj + gj with gj ∈ C∞
pj .

We conclude with Theorem 3.1 since L(u− uj) = (f − fpj) − gj ∈ V j(Ω) .

Remark 4.4 If in a neighborhood [−a, a] × [−a, a] of O , Ω is determined by the
inequalities

(x, y) ∈ Ω ∩ [−a, a] × [−a, a] ⇐⇒ −a < x < a and ϕ1(x) < y < ϕ2(x), (4.3)

where ϕ1 and ϕ2 are C∞([−a, a]) such that

ϕ1(0) = ϕ2(0) = 0, ϕ′
1(0) = ϕ′

2(0) = 0, ϕ2 − ϕ1 > 0 on [−a, 0[∪ ]0, a], (4.4)
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and such that ϕ = ϕ2 − ϕ1 is not infinitely flat in 0 , then Theorem 4.3 still holds:
the two Taylor expansions of u in O in the half-planes x > 0 and x < 0 are linear
functions of the Taylor expansions of f , ϕ1 and ϕ2 ; therefore, one can prove that
they fit together.

Ω Ω

Remark 4.5 If ϕ has an asymptotics in non integer powers of x :

ϕ(x) = xp + γ1x
p1 + · · ·+ γNx

pN + O(xpN+1),

with pn an increasing sequence tending to +∞ (for example the profile of Joukowski
has such a form with p = 3

2
and pn = 3

2
+ n

2
), Theorem 3.1 still holds [6, 7, 10, 4, 14],

but the proofs of Lemma 4.2 and Theorem 4.3 yield the construction of a non smooth
asymptotics for u , see [14].

5 OTHER BOUNDARY CONDITIONS

While conditions corresponding to (2.9) are satisfied, we have the analogue of Theo-
rems 3.1 and 4.3 for any other elliptic boundary problem. Namely, if B1(x, y; ∂x, ∂y)
and B2(x, y; ∂x, ∂y) are two systems of boundary conditions on the sides θ = 0 and
θ = 1 of Ωa respectively, each of them covering L , then the behavior near O of
the solutions of the boundary problem





Lu = f in Ω,

B1u = g1 if y = 0,

B2u = g2 if y = ϕ(x),

∂k
xu = 0, k = 0, . . . , m− 1 if x = a,

(5.1)

depend on the problem
(
Lprinc(O; ∂x, ∂y), B1,princ(O; ∂x, ∂y), B2,princ(O; ∂x, ∂y)

)
on

the infinite strip R×]0, 1[ . The condition replacing (2.9) is now

∀ξ ∈ R,
(
Lprinc(O; iξ, ∂θ), B1,princ(O; iξ, ∂θ), B2,princ(O; iξ, ∂θ)

)
:

Hm(]0, 1[) −→ H−m(]0, 1[) × C2m isomorphism.
(5.2)
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Under this assumption, the real part of the exponent µ
(ω)
1 tends to +∞ when

ω → 0 , the regularity results in spaces of flat functions and in spaces of smooth
functions still hold — note that, however, if B1 and B2 contain operators of the
same order, the boundary data g1 and g2 have to satisfy a countable number of
compatibility conditions at O .

Examples are given by B1 = Id , B2 = ∂n for L = ∆ , or for B1 = B2 = (Id,∆)
for L = ∆2 .

At the opposite, for Neumann problem, condition (5.2) is always violated in ξ = 0 :
all polynomials v in Pm−1 satisfy

(
Lprinc(O; 0, ∂θ), B1,princ(O; 0, ∂θ), B2,princ(O; 0, ∂θ)

)
v = (0, 0, 0).

That fact induces severe difficulties to handle flat right hand sides. Anyway for
the Laplace operator for instance, it is still possible to construct an ansatz for the
asymptotics of u from the Taylor expansion of the right hand side by alternating
double integrations with respect to x of mean values of the type

x 7−→
1

ϕ(x)

(
g1(x) − g2(x) +

∫ ϕ(x)

0
f(x, y) dy

)

and double integrations in y like for Dirichlet, see S.A. Nazarov & O.R. Polya-

kova [13]. Such methods can be compared with what is done in elasticity for asymp-
totics in thin plates.

6 CUSPIDAL EDGES

Let now W be a three-dimensional domain with a cuspidal edge: this means that
the boundary of W is smooth, except in the neighborhood of a smooth curve E , the
edge of W , where W is locally diffeomorphic to R×Ω , where Ω is a plane domain
with an outgoing cusp in O as in §3-5.

Let M be a strongly elliptic operator with C∞ coefficients in R3 . We are inter-
ested in the regularity of the solutions of the Dirichlet problem:




Mu = f in W,

u ∈
◦
Hm(W).

(6.1)

We study first the localized problem and prove that it is regular in spaces of
flat and C∞ functions respectively. Our method of proof is classical and relies on
differential quotients.
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Let (x, y) be the variables in Ω and z the variable in R . Let ϕ be the function
defining the boundary of Ω according to (3.1)-(3.3). The spaces V j(R × Ω) are
defined for j ∈ N by:

V j(R × Ω) = {u ∈ L2(R × Ω) | ∀α ∈ N
3, |α| ≤ j, ϕ|α|−j ∂αu ∈ L2(R × Ω)},

and by duality if j < 0 .

We have the tensorization properties for all j ∈ N :

V j(R × Ω) = Hj(R, V 0(Ω)) ∩ L2(R, V j(Ω)) (6.2)

and
V −j(R × Ω) = H−j(R, V 0(Ω)) + L2(R, V −j(Ω)). (6.3)

Proposition 6.1 Let M be a strongly elliptic operator of order 2 . Let j ∈ N .
Then any solution u of the Dirichlet problem (6.1) with compact support and right
hand side f ∈ V j(R × Ω) satisfies the optimal regularity property

u ∈ V 2+j(R × Ω).

P. Grisvard [4] proved this result for L = ∆ and j = 0 in Lp Sobolev spaces
by a completely different technique.

Proof. Thanks to the strong ellipticity of M , we have the a priori estimate

‖u‖
H1(R×Ω)

≤ c (‖Mu‖
H−1(R×Ω)

+ ‖u‖
L2(R×Ω)

)

where c depends only on the support of u . This estimate can also be written as

‖u‖
H1(R,L2(Ω))

+ ‖u‖
L2(R,H1(Ω))

≤ c
(
‖Mu‖

H−1(R,L2(Ω))+L2(R,H−1(Ω))
+ ‖u‖

L2(R×Ω)

)
.

(6.4)

Considering for h > 0 small enough the function (u(x, y, z+h)−u(x, y, z))h−1 and
letting h→ 0 , we deduce from (6.4) by recurrence over ℓ ∈ N that there holds:

‖u‖
Hℓ+1(R,L2(Ω))

+ ‖u‖
Hℓ(R,H1(Ω))

≤ c
(
‖Mu‖

Hℓ−1(R,L2(Ω))+Hℓ(R,H−1(Ω))
+ ‖u‖

L2(R×Ω)

)
.

(6.5)

Integrating in y from the side y = 0 , we easily prove that

◦
H1(Ω) =

◦
V 1(Ω). (6.6)

Thus, (6.5) writes

‖u‖
Hℓ+1(R,V 0(Ω))

+ ‖u‖
Hℓ(R,V 1(Ω))

≤ c
(
‖Mu‖

Hℓ−1(R,V 0(Ω))+Hℓ(R,V −1(Ω))
+ ‖u‖

L2(R×Ω)

)
.

(6.7)
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Thus, for f ∈ V j(R × Ω) , the above estimate for ℓ = j + 1 yields that

u ∈ H2+j(R, V 0(Ω)) ∩H1+j(R, V 1(Ω)). (6.8)

Let L be the operator

L(x, y, z; ∂x, ∂y) = M(x, y, z; ∂x, ∂y, 0), (6.9)

so that there exists an operator P of order ≤ 1 such that

M(x, y, z; ∂x, ∂y, ∂z) = L(x, y, z; ∂x, ∂y) + P (x, y, z; ∂x, ∂y, ∂z) ∂z. (6.10)

Since Mu = f belongs to Hj(R, V 0(Ω)) , we deduce from (6.8) and (6.10) that

Lu ∈ Hj(R, V 0(Ω)). (6.11)

Theorem 3.1 applied for each z combined with an argument of differential quotients
yields that (6.11) implies

u ∈ Hj(R, V 2(Ω)).

In that way, we prove by induction over ℓ = 0, . . . , j that

Lu ∈ Hj−ℓ(R, V ℓ(Ω))

which implies
u ∈ Hj−ℓ(R, V ℓ+2(Ω)). (6.12)

(6.12) for ℓ = j combined with (6.8) gives the Proposition.

For general operators of order 2m , one encounters a technical difficulty in han-
dling the norms with negative exponents. We have

Lemma 6.2 Let M be a strongly elliptic operator of order 2m with m ≥ 2 . Let
j ∈ Z , j > −m . There exists an integer k = k(m) > 0 such that any solution u of
the Dirichlet problem (6.1) with compact support and right hand side

f ∈ Hj+k(R, V 0(Ω)) ∩Hk(R, V j(Ω)) (6.13)

satisfies the regularity property

u ∈ V 2m+j(R × Ω).

Proof. Thanks to the strong ellipticity of M , just like above we obtain the a priori
estimate for any ℓ ∈ N — compare with (6.7)

‖u‖
Hℓ+m(R,V 0(Ω))

+ ‖u‖
Hℓ(R,V m(Ω))

≤ c
(
‖Mu‖

Hℓ−m(R,V 0(Ω))+Hℓ(R,V −m(Ω))
+ ‖u‖

L2(R×Ω)

)
.
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Thus, for f satisfying (6.13) the above estimate for ℓ = j +m+ k yields that

u ∈ H2m+j+k(R, V 0(Ω)) ∩Hm+j+k(R, V m(Ω)).

The operator L is defined by (6.9) so that there exists an operator P of order
≤ 2m− 1 satisfying (6.10). Since Mu = f belongs to Hj+k(R, V 0(Ω)) , we deduce
that

Lu ∈ Hj+k(R, V 1−m(Ω)).

Theorem 3.1 yields that
u ∈ Hj+k(R, V 1+m(Ω)).

In that way, we prove by induction over ℓ = 0, . . . , j +m that

Lu ∈ Hj+m−ℓ+kℓ(R, V ℓ−m(Ω))

with k0 = k , k1 = k0 − (m− 1) , k2 = k1 − (m− 2) , ... , km−1 = km = . . . = km+j ,
and

u ∈ Hj+m−ℓ+kℓ(R, V ℓ+m(Ω)).

It suffices to choose k0 such that km−1 ≥ 0 to obtain finally for ℓ = m + j that
u belongs to L2(R, V 2m+j(Ω)) . As u also belongs to u ∈ H2m+j(R, V 0(Ω)) , the
Lemma is proved.

Theorem 6.3 Let M be a strongly elliptic operator. Then any solution u of the
Dirichlet problem (6.1) with compact support and right hand side f ∈ C∞(R × Ω)
satisfies the optimal regularity property

u ∈ C∞(R × Ω).

Proof. We denote by H∞ the intersection of all spaces Hk for k ∈ N . Since f
belongs to H∞(R, V 0(Ω)) , Proposition 6.1 and Lemma 6.2 yield that

u ∈ H∞(R, V 2m(Ω)). (6.14)

The proof runs as above, using as spaces on Ω the spaces V j(Ω) augmented by the
spaces of polynomials:

Ṽ j(Ω) = V j(Ω) + Ppj−1(Ω).

Indeed, Theorem 3.1 and Lemma 4.2 give that



Lu ∈ Ṽ j(Ω),

u ∈
◦
Hm(Ω).

=⇒ u ∈ Ṽ 2m+j(Ω).

So, starting from (6.14), we have Lu ∈ H∞(R, Ṽ 1(Ω)) . Thus u ∈ H∞(R, Ṽ 2m+1(Ω)) .
Going on, we prove by induction that ∀ℓ ∈ N ,

u ∈ H∞(R, Ṽ 2m+ℓ(Ω)).
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Similarly to Remark 4.4, we deduce from all these statements a local regularity
result in the space C∞(W) for any domain W = R3 \ U where the domain U is the
disjoint union of two (or more) domains with analytic boundaries U1 and U2 such
that U1∩U2 is a curve E . As examples, we can take for U1 and U2 : a cylinder and
a half-space, two cylinders, a torus and a cylinder, a torus and a ball, a torus and a
half-space, two tori, etc...

Remark 6.4 Let us give a short description of the case where there is only one
contact point: we take as U1 the half-space y < 0 and as U2 the ball of radius
1 and of center (x1, x2, y) = (0, 0, 1) and we consider the Dirichlet problem for
the Laplace operator. Then it is possible to prove that for a right hand side flat
enough in O = (0, 0, 0) , the solution is as flat as desired. The idea is to work in
cylindrical coordinates (r, θ, y) with x1 = r cos θ and x2 = r sin θ and to combine
arguments of differential quotients with respect to the variable θ and estimates on
u
r

by considering ∆(u
r
) . It is still possible to construct the asymptotics of u by the

polynomial resolution, but the outcome of the construction gives not only polynomial
terms but also non smooth terms. The most singular that we have found are

x1 y
4

r2
and

x2 y
4

r2
.

NOTE

During the Conference, V.G. Mazya pointed out to us a work by V.I. Feigin. We
only found in the literature the short note [3], where are stated results very similar
to ours.
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cuspides. C. R. Acad. Sci. Paris. Série A 287 (1983) 1113–1116.

[8] V. A. Kondrat’ev. Boundary-value problems for elliptic equations in domains
with conical or angular points. Trans. Moscow Math. Soc. 16 (1967) 227–313.

[9] V. G. Maz’ya, S. A. Nazarov, B. A. Plamenevskii. Elliptic boundary
value problems in domains of the exterior-of-a-cusp type. Problemy Matematich-
eskogo Analyza 9 (1984) 105–148.

[10] V. G. Maz’ya, B. A. Plamenevskii. Estimates in Lp and in Hölder classes
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