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STATIONARY STOKES AND NAVIER-STOKES SYSTEMS
ON TWO- OR THREE-DIMENSIONAL DOMAINS WITH CORNERS.
PART I: LINEARIZED EQUATIONS*

MONIQUE DAUGEt

Abstract. The H*-regularity (s being real and nonnegative) of solutions of the $tokes system in domains

with corners is studied. In particular, a Hregularity result on a convex polyhedron that generalizes Kellogg'

and Osborn's result on a convex polygon to three-dimensional domains is stated. Sharper regularity on a
cube and on other domains with corners is attained. Conditions for the problem to be Fredholm are also
given, and its singular functions along with those of the nonlinear problem are studied in the second pant
of this paper,
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L. Introduction. The linearized equations corresponding to the Navier-Stokes
system describing gas-dynamics consist of the following Stokes system in R" (n=2 or
k)5
(1.1) -Ad+Vp=F ~divi=g

where & =(u,, -, u,}is the speed of the fluid, p its pressure, and f the strength field.
On a domain (), the boundary conditions are ’

(12} ﬁlﬂl] == (),

The problem (1.1)-(1.2) can be approached as an elliptic boundary value problem
as in the paper by Agmon, Douglis, and Nirenberg [t). On the other hand, it may be
proved by a variational method (see Temam [22]) that for a bounded domain Q and
data {f. g) in the product of Sobolev spaces { H ()] x L*((1) with the compaltibility
condition

(1.3) I gdX =0,
Q

there exists a unique solution (4, p) of (1.1)-(1.2) in the space [ H'(Q)]" x{L}N)/C].
Here, as usual, F'(2) denotes the H'-space with null traces on the boundary, and
H™'is its dual with respect to the L:-duality.

Thus, if {f, g} is more regular, let us say

(1.4) Fe[H7(M)]" and geH(Q), s>0,

then, when Q has a smooth boundary, we draw from [1] and interpolation (cf. [23]),
that

(1.5) de[HYW)]" and pe H'(Q).

But, in the case of physical domains, or for partition of domains in numerical
analysis, it is natural to study the case when () has corners.

In two-dimensional domains (2D), when ) is a polygon, we have Kondrat’ev's
[12] and Grisvard’s [10] results for the divergence-free system (g = 0: incompressible
fluid) in spaces with integer exponents; for the general system (1.1}, we have Osborn’s
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results [19], Dauge’s results [5] in weighted Sobolev spaces, and the regularity result
of Kellogg and Osborn {11].

In three-dimensional domains (3D}, Maz'ja and Plamenevskii study the problem
{1.1)-(1.2} for a large class of domains in weighted Sobolev spaces: the results are
announced in {15] and proved in [16], [17a], [17b]. The spaces are general L”-Sobolev
spaces with weight (of Kondrat'ev type) and also Holder classes with weight. Merigot
f18] and Grisvard [10] have alsa used L”-Sobolev spaces in the 2D divergence-free
problem on a polygon.

In this paper we state precise results of regularity in the ordinary spaces (1.4),
(1.5). Among other things, the Sobolev spaces with real exponents are useful for
studying the nonlinear Navier-Stokes system (Part 11 of this work is forthcoming),
and for successive approximation schemes (see [20]).

Theorems 5.4 and 5.5 in 2D are a generalization of [10] and [11]. In 3D we get
new results. For several examples of domains, we hereafter indicate a condition on s
under which the solution (&, p) of (1.1)-(1.2) with (f, g} in the space (1.4) has the
regularity of (1.5), provided g is zero at the singular points of (2 if s2 1 (cf. [11] and
the definition (9.17)):

(1.6} I @ is any domain in our class of domains with corners @, (introduced
in § 2 below), 5 <0.5.

{1.7) If Q= Q\Q; where @, and Q, are two rectangular parallelepipeds with
the same axes, s =0.544 (approximate value).

(1.8) If © is any convex domain in our class @,, s =1.

(1.9) If ) is any convex domain with wedge angles =27/3, s <3/2.

(1.10) If Q is any cylinder with convex polygonal base, and angles <2x/3,
§E3/2.

(1.11) If @ is any cylinder with smooth base, 5 < 2.

(1.12} If © is a half-ball, s <2.

When we say a cylinder, we mean a bounded cylinder truncated perpendicularly
to its generating lines,

The plan of this paper is as follows. In § 2 we introduce our classes of domains
and the functional spaces. In § 3 we recall genera! results from Dauge’s works [6] and
[9], and we apply them to the problem (1.1)-{1.2). As these results are based on a
special condition of injectivity about tangent problems, in § 4 we link that condition
to the usual one used by Kondrat’ev in [12]). In § 5 we recall some properties of the
characteristic equation sin® Aw — A% sin” w = 0, we give a graph and tables of values for
its roots, and we state results in 2D. In § 6 we study the domains in 3D that have
edges, but no vertices. In § 7 we study the tangent problem in a three-dimensional
cone, which gives rise to a quantity linked with the Laplace-Beltrami operator that
we estimate in § 8. Finally, we state 3D results in § 9.

2. Classes of domains and functional spaces. Qur classes of domains contain various
curvilinear polygons (in 2D) and polyhedra or domains with piecewise-smooth boun-
dary (in 3D).

2.1. Plane and spherical domains. Our class 0,(R’} of plane domains consists of
all curvilinear polygons, possibly with cracks but without cusps (or turning points):
Q isin ¢,(R?) if and only if it enjoys the following properties:

(i) € is bounded and connected.
(ii) The boundary of { consists of a finite number of smooth closed arcs

I‘ln'-':I‘N,rN‘*lmrl-
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(iii) Let A; and A, be the ends of [';; the A, for j=1,-- -, N arc the vertices
of 0 and at the neighborhood of A;, {1 is locally diffeemorphic to a neighborhood of
zero in a plane sector 'y,

In the case when one of the sectors I's has its opening equal to 2w, we have a
crack and we dissociate the two sides of the crack as in Fig. 1.

Fig. 1

In both cases, A, is at the bottom of the crack and [, and I'; coincide in the
neighborhood of A,.

Let us note that condition (iii) may be rewritten in the following form. I the
tangents of [, and I'),, coincide in A, then [; and I';,, coincide in a neighborhood
of A;.

JWe denote by A,(Q)) the set {A,, -, Ay} and denote simply by x any element
of Ag((t). Thus, for x= A;, T4, is denoted by I'.

In the same way we define the class 0,{S7) of curvilinear polygons on the unit
sphere of R’

2.2. Three-dimensional domains. Q2 belongs to ,(R’} if and only if it satisfies the
following conditions:

(i) 1 is bounded and connected.

(ii} At each point x of its *'stretched” boundary, { is locally diffeomorphic to a
neighborhood of zero in one of the following three kinds of domains:

(1} A half-space: then x is a regular point;

(2) A dihedron isomorphic to RxI,, with ', a plane sector with an opening w,
different from «: then x belongs to an edge;

(3} A coneT, with vertex zero (which is not a dihedron), such that its intersection
G, with 5% belongs to @,(5%): then x is a vertex.

Let A,{Q)) be the set of vertices and A,(Q) be the union of the edges.

The stretched boundary is the notion corresponding to the doubling of the boundary
when there is a crack in 2D. This is more completely explained in § 2 of [9].

Note that if {2 has a piecewise-smooth boundary, and its faces meet two by two
or three by three with independent normals at meeting points, then {2 belongs to our
class @,(R%).

2.3. Sobolev spaces. For a positive integer 5, H*({)) is the usual Sobolev space of
all distributions u in 9'({}) such that each derivative D"u with length |e|=s, in 0,
belongs to L*(£}). For a positive noninteger real number s, let [s] be the integer part
of s and o =s—[s]. H*({1) is the space of all u in H*)(Q) that satisfy

Ya,lal=[s] . JL |D*u(x)— D*u(y}* d{x, y) "> dx dy <+

where d{x, y} is the infimum of length of the paths joining x to y and included in (2.
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ﬁ’(ﬂ.) is the closure of &(0)) in H*(Q}) and H () its dual with respect to the
L*-duality.

2.4. Stokes operators. We denote by D}, (Q) the product of Sobolev spaces [};" n
HHOQ < HH () {ef. (1.5)} and by E5(§) the product [H'™'{Q)]" x H* (). We
then denote by &, the operator (1.1) applying (4, p) on ¥ g), and we write especially
Fols, 8] for &, acting from D,(Q) to EL(Q). We suppose everywhere that s 73

3. General Fredholm properties, Genera! Fredholm properties rely on general
statements of [9] that we apply here to the Stokes system {1.1)-(1.2).

In[9], we develop general conditions for a strongly elliptic operator to be Fredholm
between Sobolev spaces H' (in the above sense; § 2.3), e.g., with Dirichlet conditions,
Moreover, we extend that theory to strongly elliptic systems, and other ones satisfying
a weaker ellipticity property that holds in particular for the Stokes system (see (7.7)
n [9]).

We will apply those results. To do so, we recall the characteristic conditions
concerning the operator and the domain. When £ is a polygon, it is well known that
such conditions are related to the angle openings of ! and to associated discriminant

“functions (cf. [10], [12]). In fact it is related with the spectrum of a holomorphic

operator family; in three dimensions the condition may be written only in that form.
We show in [9] that those “*spectral™ conditions are fully convenient for “*homogeneous™
weighted Sobolev spaces, and that, for ordinary Sobolev spaces, they must be replaced
with a new type of condition we call “injectivity modulo polynomials.”

Although that distinction is of lesser use for regularity properties than for Fredholm
properties, we introduce it in anticipation of the forthcoming Part 11 of this paper
where we will describe the singularities of solutions.

Our conditions are related to tangent (or frozen) operators at each singular point
of {1.

3.1, Frozen operators at a vertex. Let {2 be a domain in @,(R"), n=2,3 and
x € Ay({t). We will suppose that the diffeomorphism x, which implies a neighborhood
of x in (} on a neighborhood of zero in I, is such that

Dy(x)=1 is the identity matrix.

Then, the operator L., obtained by taking the principal part of the operator

x¢%,ex” frozen in zero, just coincides with &, on the cone I',.

3.2. Frozen operators along an edge. As in the case of a vertex, if x€ A,{Q)), the
frozen operator on the wedge Rx T, is &,. But, we have to define a new frozen operator
L, on the plane sector I, {cf. [9, (3.3)]). Let {y, z) be coordinates such that ye R and
zel',. The operator L, is defined as

LX(D:) = '9’3(0; Dz)
(we remove tangential derivatives along the edge). Thus, we have

(3.1} L{uy, uy,us, p)=(£1,12. 55, 8)
if and only if
(32) yl(ul,ulyp)=(fl)f2-g) and Aulz.fl'

3.3. Injectivity module polynomials, For A € C, Su(T",) denotes the set of vector
functions (u,, - , u,, p) of the form: .
w=rt T u(¥)log'r withu,e H' (G,
oSgsQ

p=r"" % p(¥)log?r withp, e LXG,)

VGguQ



78 MONIQUE DAUGE

where (r, ¥') =(|z|, z/iz|) are the polar coordinates and G, is the intersection of I',
with the unit sphere §"7%.
We say that L is injective modulo polynomial on Si(I",) if
(i, pye SH(T,) and L{d, p) is polynomial implies that
(4, p} is polynomial.
Here “polynomial” means polynomial with respect to cartesian variable z = (z,, z;)
or (z,, z, z;). For instance, r“ sin a# is polynomial in R? for @ € Z. Of course, the
zero function is polynomial.

3.4, Index and regularity results.

THEOREM 3.3, Let e 0,(R"). The Stokes operator &, (s, §}] is a Fredholm operator
if and only if both the following conditions are satisfied:

(3.4) Vxe Aplfd), YA with Re A=s+1—n/2,
L, is injective modulo polynomials on Si(T',);
(3.5) Je>0, ¥Vxe A (1), VA with Re A [0, s+ ¢],
L. is injective modulo polynomials on $3(I',).

This statement is derived from (7.15) in (9], with the variant (6.8} in [9].

If £} has only conical points (which is the case when n=2), the condition (3.5)
is void. If {2 has no vertex (cf. examples {1.11), (1.12)), the condition (3.4) is void and
(3.5) may be replaced with (3.5"):

(3.57) ¥xe A,{}), YA with Re A [0, 5],
L, is injective modulo polynomials on S3(I.).

If 1 is a three-dimensional polyhedron with plane faces, (3.5) may still be replaced
with (3.5'): the £ in (3.5) is useful in the case when  is a three-dimensional domain
with smooth curved faces; that ¢ allows an easier formulation without introducing
“subsections™ or “'singular chains,” which describe the limit geometrical behavior at
the neighborhood of a vertex.

THeOREM 3.6. Assume that the conditions (3.5} and (3.7) are fulfilled
3.7 Vxe Ao{f), VA with Re A€l —n/2,s+1—n/2],

L, is injective module polynomials on Si(T,).
Then, each solution (&, p) e D(Q) of (1.1) with (F, g) in E(Q) has the regularity D7, (Q)).

When (3.4} is satisfied, and not (3.7}, there are singular functions. We will study
these in Part 11 of this paper, along with the nonlinear Navier-Stokes system.

Now, we will study (3.5} and (3.7) in order to give more precise regularity resulls
in two and three dimensions.

4. The link between the injectivity condition and the usual spectral condition.

4.1. Generalities. Let us study condition (3.4). In view of §3.1, L, =&,. If we
consider £ of the form r*Z(¥) and p=r*""4(¥), then we get

Salit, p)=(f, 8)

where f=r*"2J(¥) and g = r* "' g(¥), with
{4.1) LalA )&, 4) = (7 2),
%£,(A} being a system on the sphere "', depending in a polynomial way on A. As in
[i7]), we can derive from the writing of &, in polar coordinates that (4.1) may be
written in the form

(6. —AA+1]a+[(A~-DP+¥,]4=7 (AT +6 =y
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where 8, is the positive Laplace-Beltrami operator on $"7', ¥ is the vector x/lx| in
R", and ¥, is the tangential component of the gradient on the sphere
¥, =% -¥y/s,.

£, (A} gives rise to an operator acting from DY{G,) to E2(G,). It is almost everywhere
invertible. The set of A for which %,(A)} is not invertible is called the spectrum of %,
and the condition used by Kondrat’ev [12] or Maz'ja and Plamenevskii is that the
straight line Re A = 5+ 1 —n/2 does not meet the spectrum of %,. As we have already
said, this type of condition is correct for weighted Sobolev spaces (of the type
rrHleipey & L%}, but it is not always suitable for ordinary Sobolev spaces. Nevertheless,
we have (cf, (4.2} for s =0 and (4.6) in [9]):

Lemma 4.2. If A is not a positive integer, ¥, is injective modulo polynomials on
SYI".) if and only if A does not belong to the specirum of ¥, on G..

If A is an integer number, the comparison depends on the difference d(A ) between
the dimensions of two spaces of polynomial functions:

d(A)=dim P*{I".)—dim Q" *

where P*(I',) is the set of the elements of $*(I',) that are polynomials in cartesian
variables, and @Q*7% is the set of the (f, g) with J; (respectively, g} homogeneous
polynomial of degree A —2 (respectively, A —1) in z d(A) depends only on T,.
According to [9, Annex D], there exists a homogeneous polynomial A that is zerc on
the boundary of I', and such that if B is a polynomial that is zero on aI',, then A
divides B (i.e., P*(I',} is a principal ideal).

If the degree of A is two, then d{A)=0; and according to {4.9) and {7.14) in [9],
we have the following lemma. '

Lemma 4.3, Ifd°A =2, for each integer A we have the same equivalence as in (4.2).

According to (4.8) and (7.14) in [9], we have the following lemma.

LeMMA 4.4, Ifd"AZ3, for A =1 we have the same equivalence as in (4.2); but for
each integer A =2, ¥, is not injective modulo polynomials on 5*(I', ).

According to (4.10) and (7.14) in [9], we have Lemma 4.5.

"Lemma 45. If dA=1, and A e N*, then &, is injective modulo polynomials on
S*(T,) if and only if £,(u}"" has a pole of order one in u = A and if
dim Ker £, (A)=d{A).

4.2, Application to two-dimensional cones. 1t is well known that the poles #3(A}™*
coincide with the roots of the following equations:
sin Aw —A2sin @

A2
because, more precisely, £,(1)™'F,(A) is holomorphic on C (cf. [12], [10], [11], [5].

When the opening @ of the plane sector I', is not 2m, then the two sides of I',
are independent and d"A = 2. So, the condition {3.4) is that F, has no zero with real
part s.

When o =2, then d°A =1 and d{A)> 0 for all positive integer numbers. As in
§15.B in [9] for fourth-order operators, we show in the Annex that, according to
Lemma 4.5, &, is injective modulo polynomials on $* for each A € N* (including
A =1). As the roots of (4.6) are the half integers, we find that condition {3.4) is reduced
to :

s#k+), WkeN.

4.3. Application to three-dimensional cones. If T, is a revolution cone, then d°4 =2
and we apply Lemmas 4.2 and 4.3.

(4.6) F(A)=0 where F_(A)=
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If I, is a polyhedral cone, let D be the number of distinct planes containing at
least one side of T',. For a cube, D =3. For a pyramid with a square basis, D=4, If
D=3, we apply Lemmas 4.2 and 4.4,

5. Precise results in two-dimensional domains.

%.1. More about the discriminant function F,,. The roots of (4.6) have been studied
by Seif [21], Lozi [13], Dauge [7], Bernardi and Raugel [2], [3], and Maslovskaya
{14]. Bernardi and Raugel give a table for the roots of {4.6) with the lowest positive
real part. Here, we complete that work by a table for the roots of (4.6) with their real
parts £€ [0, 4] and by the corresponding graph (Fig. 2) of £ in function of w.

Let us denote A by £+ in, with £ 7 real. We are interested in roots of (4.6) with
£=0. A =1 is always a root of (4.6) and plays a particular role (see § 5.2).

We denote by £ («) the real part of the kth root of

(A=17"F (a)=0

the roots being ordered with increasing real part and repeated according to their
multiplicities. The following can be shown (cf, [7], [2])

(a) f well, w[, £i{w) > m/w

(b) If w e lm 2nf, &ilw) € Jsup (3, v/ w), w/w[, where w, =0.812825r;
w, is the root of

sin w .
we]0, w[ and ———=-—cosw, withlanw,=w,.
w

Tables 1 and 2 and Fig. 2 give values for &, « -, £ that occur in [0, 4]. A dash
means a value greater than four.

For j= 1, let J; be the set of w such that £;(w) and £3;4,{w) ceincide. In the
interior of I, &; and £, are the real parts of two conjugate nonreal numbers. For
weal; and w # 0, there is 2 real double root and the bifurcation of two real roots.

TABLE 1

w & [7) & [ s 13

0.4 3.397 3.397 - -
0.5 2.740 PAL 4.808 4.808 - -
0.6 2.307 2.307 4.022 4.022 - -
0.7 2.004 2.004 3.464 3.464 - -

0.8 1.783 1.783 3.05t 3.051 4312 4312
0.9 1.252 1.988 2.542 2932 3.853 3.853
1 1 2 2 3 3 4

1.1 0.334 1.662 2.012 2475 3.096 3.215
1.2 0.718 1.408 2.045 2.045 2.883 2.883
1.3 0.637 1.207 1.882 1,882 2.657 2.657
14 0.581 1.044 1,745 1.745 2,465 2.465
1.5 0.544 0.909 1.629 1.629 2301 2.301

1.6 0.522 0.796 1.530 1.530 2159 2.159
1.7 0,509 0.701 1.444 1.444 2.035 2.035
1.8 0.503 0.622 1.258 1.480 1.927 1.927
i.9 0.500 0.555 1.111 1.498 1.670 1.994
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TARLE 2

o £ &y & 1o En £z

I.1 4.067 4.067 - - - -
1.2 3.720 3.720 - - - -
1.3 3.430 3.430 4.203 4.203 - -
1.4 3.184 3.184 3.901 3501 - -

1.5 2972 2972 3.641 3.641 - -
1.6 2.788 2,788 3415 3415 4.042 4.042
1.7 2.626 2.626 3.216 3.216 3.806 3.806
1.8 2.484 2.484 3.041 304 3.597 3.597
1.9 2.133 2.485 2.808 2.954 3.413 3413
2 2 2.5 25 3 3 3.5

3.5

25

0.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 win mwrad,

Fig. 2

I, has only one connected component: I, =]0, w,]. For j 22, I, has two connected
components: ]0, w;] and [w}, w]]. When j-» +00, w,» 7 and w; > 27 increase, while
w;— 7 decreases, All integers are double roots for w =, and all half integers are
double roots for w =21,

On the graph, the dotted line is the graph of w = 7/ w. The heavy lines represent
a double value for the £, {conjugate roots), and the ordinary lines represent real roots.

Table 3 gives the values of the w;, w;, w] that occur in Fig. 2.

5.2. The special case of the pole A =1. As we have already shown A =1 is always
a pole for %5(A)"". But, if the opening of the cone [ is @ = 2, &, is injective modulo
polynomials en $*(I'}. If w # 2, this is not so for &;.

It is easy to show that Ker %,(1) is one-dimensional and is generated by (0, 1)
{see [11], {5]). As a consequence, we gei the following lemma.
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TABLE 3
w w' w”
1 0.813 - -
2 0.884 1.154 1.751
3 0915 1.102 1.825

LeMMa 5.1. Let s be such that 15 s< £(w). Let (4, p) be in DHI") such that
FoAiR, p)= (7, 2) e EXT). Moreover, if s > 1, we suppose that g(0) =0; if s = 1 we suppose
that r'g € L}(T"). Then, if B denotes the unit ball, we have

(&, p)e DI~ B).

Proof. We derive the proof from the methods of [9]. For s = 1, it is the result of [11].
By a cut-off, we assume that {4, p} has compact support. We use the Mellin
transform # of (i, rp), which is defined for Re A =0; we have

(5.2) Eara, Wi, 1p) = (], rg),
and thus using the Mellin transform we have
(5.3) LD, P(A)=(F(a), G(A)).

But (F(A), G(A)) is defined for Re A <s. If s# 1, then we deduce from [9] (see
the condensed proof in [8]) that there exists (#,, po) € D:(I'm B) such that for Re A =
1+ ¢ with £€ 10, min (1, 51},

M i, 1po)(A) = (D(1), P(A))
where (J, P)(A) is the extension determined by (5.3}. And we have
(& p)—(ilo,p}= ¥  Res[r*T(1),~7"P(0))

O<RecA<1+r
Since 5 < £,(w), the sum is reduced to A = 1. And we have
Py Res (r*U(A), 7T P(A)) =Res Fo(r* T{A), ' P(A))
=Res,u (" 2F(A), P T'G(A))
= (D, g(0)).

The second equality is given by (5.3) and by the equivalence of ¥,(4, p) = (f, g) with
(5.2). Since g(0)=0, we get

F2Res, o (TR, AT P(A)) =0,
Therefore
2(1) Resy oy (T(A), P(A)) =0.
The residue belongs to the kernel of #3(1), Thus it is equal to (0, ¢), with ¢ a constant.
We finally get
(8, p) — (i, po) = (D,.€).

Thus (&, p) e Di(I"'n B).

If s=1, since r'ge L?, G(A) is defined up to Re A =1 {such is not the case if
ge H' only). Since Res, ., £(A)"'=(0, 1)x, where x is a linear form, we get that
[1%,(A)"" is holomorphic in the neighborhood of A = i, where II is the projection on
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the speed component. Thus, [1£5(A)'(F, G)(A) is definedupto Re A = l,nwith suitable
estimates. Then, we deduce that &€ HYI'n B). Since pe L% and Vp=Ai+fe
LA~ B), then pe H(TAB). O

5.3. Index and regularity results.

THEOREM 5.4. Let Qe O,(RY), and let s> 0. ¥5($2, s) is Fredholm if and only if the
three following conditions are fulfilled:

(a) s#1;

(b) Vxe Ay{Q)) such that w, # 2w, Yk, s# &{w,);

(¢) Vx&Ao(Q) such that w, =27, Yk, s# k+4%.

Let us recall that £ is defined in § 5.1. It is a straightforward consequence of
Theorem 3.3 and §§ 4.2, 4.3, and 5.1. From Theorem 3.6 and § 5.2 we derive Theorem
5.5.

THeOREM 5.5. Ler e O(R?) and s> 0. Let (i, p) € D3(£) be the solution of (1.1)
with (f, g)e EXQ):

(a) If s<1 and s <min,,a,un & {e.). then (4, p)e D3(01);

(b)Y If s>1 and moreover g{x) =0 for each vertex x, and if s <min,. . €i{@y),
then (i, p)e D3 (§1);

(c) If s=1 and moreover r;'ge LX) for each vertex x, and if 1<
min, . a,m £1(ws), then (4, p)e D¥Q).

As &(m)=1 and £ is a decreasing lunction, 1 <min,.ayq; &i{w,) holds if O is
convex. It coincides with the result in [11].

6. Precise results in three-dimensional domains when there are edges, but no vertex.

6.1. The statements. In such a case, we study condition (3.5} since, for xe A {(}},
L. is given by (3.1)-(3.2), it is obvious that L, is injective modulo polynomials en
§3(1';) and only il we have (6.1} and (6.2):

{6.1) %, is injective modulo polynomials on S3(I",),
{6.2) A is injective modulo polynomials on §3([,),

where S)T) ={v=r*T v,(¥)log’r, v, H'(G)}.

If w,# 2w, (6.2) is equivalent to A g{(km/w,)/ke N*} and if w,=27, (6.2) is
equivalent to A £{k +}, ke N} (for Re A Z0). Qur statement follows.

THEOREM 6.3. Let (e O4(R%) such that A(Q)=@. Let (d,p)e DY) be the
solution of (1.1} with (f, g)e E{(01).

(a) Hs<1 and s <MiNca,m & (w,), then (4, p)e D(Q);

(b) If s>1 and s<min,4.n) 7/ w,, and moreover g{x) =0 for each xe A,((}),
then (i, p)e Di{f1);

{c) If s=1 and § is convex, and moreover p;'g e L*(Q2), where p, is the disiance
Sfrom A(Q)), then (i, p)e Di(D).

Proof. First, here are the main arguments of the proof.

{a) If s<1, then (6.1) (respectively, {6.2)) is true for all A such that Re A [0, 5]
if s < £,(w,) (respectively, s <wr/w,). But, if £(w,) <], then £{w,} < 7/w,. Thus (a)
is derived from (3.6}.

(b) As s> 1, if s< 7/w,, then w, <7 and £ (w,)> 7w/w,. Thus, for each A #1
in the strip Re A €[0, 5], and for each x€ A,({2), L, is injective modulo polynomials
on §3(T,). We have that (b) is an adaptation of the proof of (5.12) in [9] by taking
advantage of Lemma 5.1 above. See some details that follow this proof.

{c}) When {2 is convex, £{w,) and w/w, are greater than one for each vertex x.
Like (b}, (¢} is derived from Lemma 5.1.
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6.2. A more detailed proof of Theorem 6.3. Because of the special role of the pole
A =1 (cf. Lemma 5.1} we are led to revise the proofs in § 12.C of {9] to take into
account the cancellation assumptions concerning g.

Let I be a plane sector. We first study &, on RxI". We denote by y the coordinate
in R and by z the coordinates in I'; r=|z|. We introduce the space H}(RxT) as the
set of functions v such that

Ya,|le|=1 'Dope LYRXT).

ﬁ",(RX I} is the closure of @(RxT) in H§(RxT) and H;'(RxT) is its dual space.

LEMMA 6.4, %, induces an isomorphism from Hix Hix Hix LR xT) 10 H;'x
H'x Hy'x LYRxT),

Sketch of the Proof (cf. [9, (8.1), (12.6)]). It is sufficient to prove that &, is injective
and has a closed range because its adjoint has the same form. Let B, be the ball with
center zero and radius p. For (i, p)e (H') x L? with its support in B,, we have the
following estimate:

3 3} 3
% bl +1pes £ Wbt et 3 Dbt ol

But H'(8,)c HY{B)) and H;'(B,)< H'(B,). Moreover, if supp (4, p} < B,, we have
lwllizsplluwlliey  and by duality fipllu-=plpll..

Thus, if supp (4, p) = B,, we have the following estimate, for p > 0 small enough:
(6.5 leujllnaﬂ!pllﬁé?C(EIIJIIIH;'+II3!IL=)-

We deduce the same estimates for all (4, p) in (H})* x L? by homogeneity and density
of functions with compact support. o

¥, may be written &,(D,, D).

LEMMA 6.6. #{£1, D,) induces an isomorphism from H'x H'x H'x LYI'} 1o
H'x H ' x H ' LY{I').

Sketch of the Proof. Let (&, pye (H"Y)' % LA(I"). With ¢ a cut-off function in R,
¢ =1 in the neighborhood of zero, we consider

(3, 9){y. 2)=0(y) (i, p)(2),

for p=1 and apply the estimate (6.5) to (5, q). Denoting (f, g) = %:( p, D, )3, p), we
have

(B, 9) = o(y) e (J, gNz}+ e ( fr, gr).
Let us introduce the H(I, p)-norm on Fl'(l‘):
(6.7) I Wl kkr.e=p | Wi+ llr"WIIi=+f IZ | D“Wiiiz
=1

and Hy'(I', p) the dual norm. We have the equivalences:
lolraemsry = il iy and @ € filluzmurs = il
So the estimate (6.5) implies that
z "“j "H;'.{l‘.p)+ ”PH.L’(Hg CE ”J: ||H5'<t‘.p) + neiﬂyfR.j"HE'(Rxl']

(6.8) oy
‘*‘“8‘":.’([')"‘"9 grll emxr)-
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The support of gg is included in supp ¢, and
2x() 2} =1 a,(¥)u,(z)}, with a, smooth.
So,

e grllciruri = Co ' (T il mter o+ | Pl 2s),

and we can prove the same estimate for J|e” f {l in (6.8). So, for p large enough,

Lt NPl S 2CE 1) smr s+ g litas),

which is an a priori estimate for #( p; D, ). Using a suitable scaling, we get an estimate
for &#3(1, D.). The proof for #,(—1, D,) is the same, with ¢~*" instead of ™, |

For s> 1, we replace E(I") by Fi(I'), which is the space of the (f, gle EXID)
such that g(0)=0. For s =1, Fy(I') is characterized by r~'g e L}(T). When %,(1, D,)-
(i, p) = (7, g), we have

Qutautiuy =g,

Let us suppose that the opening w of I is not 27. When the u; belong to H**'(I"),
with s> I, since they are zero on al", Vi, (0) =0, thus g(0) = 0. On the other hand, if
s=1and e H*n H'(I'), then rM"*D%, e LXI") for |a]=2 (cf. [9 (AC.6)]; thus
r"ge L0,

Therefore ¥3(x1, D.) operate from D3(I) to Fi('). As a consequence of Lemmas
6.6 and 5.1, we get Proposition 6.9,

PrOPOSITION6.9. Lets= | besuchthats < w/w. Then ¥y (£1, D,) isan isomorphism
Srom D3(I) 1o Fi(IN).

By partial Fourler transform with respect to y the equation (D, D. Xy, p)=
(f, 2) becomes

Filxp, DI, fH=p, 2)=(F, §)(2p,2), pz0.

We define F3(Rx I') by the condition g(y,0)=0if s>1 and |z|'g(y, z) & LY(Rx '} if
s=L If {fg)e Fi(RxI), then for all p, {f, §Xxp)e Fi(I'). By a scaling argument,
we deduce from Proposition 6.9 the uniform estimate for p= 1;

G, Y22 b0 = CICE ) E0) e

where H*(F, p) means the norm || [, +p°|| ||.2 which obviously defines Di(T", p) and
F3(T, p) when s #1; F)(T, p) = LXI')* x H}(T, p) (see (6.7)). We also have an a priori
estimate for p =1,

5o, in the same way as in 9.C of [9], we get the following lemma,

Lemma 6.10. 1Ss<m/w F,=Tn B,. Then the inverse operator (F,)”" of (6.4)
induces a continuous operator from Fi(RxT,) to Di(RxTI,).

Now, if we go back to the operator %, on {2, for each x € 4,({2}, we get an operator
equal to ¥+ 7, 7 being a perturbation. It is important to note that the fourth equation
of (F5+ T)(d, p)=(f, g} has the following form:

Y ey 2)oum =g with g;, smooth.
155kS3
Thus, if {4, pYe D}(RxI), then (/, g}c Fi(RxT). So, we are able to use Lemma 6.10
along with the perturbation argument and Neumann series of 10.D in [9] in order to
get the local regularity result in the neighborhood of each x & A,({}).
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7. Study of the parametrical operator associated to the Stokes system in three-
dimensional domains: Description of areas free of poles.

7.1. First identities. Let T be a cone in R? and let G be its intersection with the
unit sphere §7,

In § 4.1 we introduced an operator #5(A) acting from DY G) to EX(G). In view
of Lemmas 4.2 and 4.3, we wish to find areas in C where £,(A} is everywhere invertible.
As the index of £,(A) is zero, it is equivalent to find where #,(A) is injective. But,
from the definition of #,(A) we deduce that

Z3(A)u, p) =0 F(r'n, »*7'p)=0.

For Re A =—i, #;(A) is always injective; it is a consequence of Theorem 3.3 for
s =0 {see also [16]). On the other hand, according to condition {3.7), we are interested
in the strip Re A €[4, s—1). Thus, we suppose the following:

(7.1) Re A>—},
(7.2) (u,p)e (H(GY’*xLAG),  (m,p)#0,
(7.3) =A(F o) +V (' p) =0,
(7.4) div (r*u) =0.
We denote

{=Rea, n=Ima,
z the cartesian coordinates in RY; ¥ = z/|z|;
u, =(ii, ¥}, the radial component of u;
& the positive Laplace-Beltrami operator on I—?’(G);
V, the spherical part of the gradient. ) _
If Cis TN{1<r<2}, we get by integrating (7.3} with r*d and (7.4) with r*~'p:

J (=A(Fu)+ V(7 'p), PE)+div rru- A =0,
C
As in [16], it implies by integration by parts:
{(7.5) 'f |Poul— A4 + e+ 26+ 1) J pi, =0,

G G
And, again as in [16), we deduce from

(-A(r*u)+¥(r'"'p), z)=0

and from (7.4) that
(7.6) Su,—(A+1)(A+2m,+(A-1)p=0.
By integrating (7.6) on G with @,, we get
(7.7) J V.0, = (A +1HA+2)u,*+ (2 —1)pia, =0.

<
And from (7.4), which implies

j div{(r*u)=0,
[n

we get

(7.8) {A +2)J u, =0.

G
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7.2. The case when A is not real.
LemMa 7.9. Ler us assume that we have {7.1)-(7.4) and moreover that n # 0. Then

1
Z-={A,+1+757)"7
A

where A, is the first eigenvalue of 6.
Proof. We take the imaginary part of (7.5) and divide it by (2£+ 1) and obtain

(7.10) Im J pi,=n J ful®.
G G
We take the imaginary part of (7.7) and use (7.10); after we divide that by 5 we obtain
(7.11) —(2§+3>J lu [+ (£~ Dluf + Re f pi. =0.
G G

We take the real part of (7.5) and eliminate Re IG pi, by using (7.11). Then we obtain

G

J |V,.u|2+[n2—§(§+1)—(2£+l)(£—l)]|"|2+(2£+1)(2£+3)J. = 0.
[

Since (2£+1)(2£+3) >0, it implies

(7.12) J V.ulf=(3g2-1 ""2)_[ juf.
G G
If w were zero, then (7.3) would yield
V(r*'p) =0.

Thus #*~'p would be constant, which implies, as A # 1, that p would be zero. Therefore,
if we have (7.2), then u= 0., So we have

(7.13) J iV;uizéAuj [ul*
[&] (&)

and, with (7.12) it implies that
3E-1-9'zA,,

ie.,
gzi(/\ +1+9%H1?
=30 ’
As £> -3, it is equivalent to
1
>—= (A, + 1+ 932 o
£ \/3( 1 7°)

7.3. The case when A is real: -3 <A <1. As A # |, we determine IG pii, by using
(7.7), and putting that into (7.3), we get

22+1
(7.14) I Wauf—aa+ 1)|u|2=——J Vo, P = (A +1)(A + 2}, [~
G A-1Jg
But, with {7.13), we have

le,ulz—z\(a+1)iur’z£m-““”]J fuf®
(7.15) ¢
%{A.-—/\()H-I)}J’ Ju,?
[#]
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whenever

(7.16) AEAA+]).

So, with (7.15), (7.14) yields
MJ Vo~ (A + DA+ 2)ju, P2 (A - A (A +1)] J Ju, .
A=1 G G

As A —1 is negative, this may be written in the form

(7.17) J IV,u,l"éqb(A)J .
G G
with
(7.18) ()= A+ D3 +2)~[A = A+ D] 22

Just as in [16], we intreduce Definition 7.19.

DeFiNITION7.19. Let A’ be the minimum of [ |V,uf whenve H'(G), vl ixe, =1
and [, v=0.

Formulae (7.17) and (7.8) imply that if ¢(A)<A’, then u, =0, With (7.16), this
implies that u=0 and p=0 since A # 1. Therefore, we get the following lemma.

LEMMA 7.20. Ler us suppose that we have (7.1)-(7.4) and moreover that A is real
and smaller than one. Then, with (7.18) and Definition 7.19, we have

AA+D)> A, or SlA)Z A
This statement is close to what is proved in [16].
74. The case when A =1, Equations (7.6) and (7.8), respectively, give
(7.21) Su,—6u, =0,

(7.22) J' u,=0.

Then if u, is nonzero, six is an eigenvalue of 5. But since the first eigenfunction
has a constant sign (cf. [4] and (19.B) in [9]), six cannot be equal to A,. Therefore,
if 6 <A, (the second eigenvalue of &), then u, = 0. So (7.5) implies that

J [¥,ul* - 2juf*=0.
G

If 2<A,, then u=0 and p is a constant. We have just proved Lemma 7.23.
Lemma 7.23. Let us suppose that A =1 and thar

A1>2 aﬂd A2>6.

Then the solutions of (7.2)-(7.4) are proportional to (0, 1).
Now, we are going to prove Lemma 7.24,
Lemma 7.24, If A\ =6, then the pole of £5(A)}"" in A =1 has the order one.
Proof. Because no confusion is possible, we drop the index 3 in L)
Since ¥(1) is not injective, #£~'(A} has a pole in A =1. Let us write the Laurent
expansion of £7'(A) in the neighborhood of A =1, and the power series of £(A):
FA)= T (A4

je=1
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where J is the order of the pole
Fa)= T (A-1/L)/f

jen
where #'(1) is the jth derivative of £ with respect to A. As L(A)2L 7 (A)=I, we get
the relation

(7.25) F(1)A_, =0,
and, only if J =2,
(7.26) FYNA,FF()A,, =0.

Thus, (7.25) implies that A_, = ® - (0, 1) where & is a linear form, and using (7.26)
we get that if

(1.27) LU0, 1) 2 £(1) D(G),
then J=1. On the other hand

(7.28) 200, 1) =¥, 0),
and

(7.29) 21D G) = (ker L))",

But, according to [16], we have
0
(7.30) £(1)*u, p}= (; _1) Z(=2)u, ~p).

So we search the kernel of .#(—2), which is one-dimensional just like the kernel
of ¥(1). We may suppose that a basis of ker #(~2) has the radial form (u, p) = (v'¥, p).
According to (7.6}, we have

(7.31) ‘ p=}éu.
We also have
div (r 2oy = (¥, r 08
=r2w(@, D+E V()
=3r‘u+(ra,)(r v} =0.

As a consequence, relation (7.4) is satisfied for any v (see also {7.8)). To take into
account relation (7.3), we notice that

A(r";jv) =sz(r‘3u)+26',(r_3vJ,
-A(rv)=r"*(8v-6v),
3 (ru)==3zr v+ r 3.
So (7.3), which may be written as
—A(r T zp) +45,(r280) =0, j=1,2,3,
is equivalent to
3;(v~6v)=0, j=1,2,3.

We have just proved Lemma 7.32. a
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Lemma 7.32. A basis of ker £(-2) is given by (v, p), where p = v/3 and

(i) If six is an eigenvalue of §: v is an eigenfunction of & associated with six;

(ii} If not, v is the unique solution of 3v—6v =1.

End of the proof of Lemma 7.4. Using (7.28)-(7.30), we may rewrite condition
(7.27):

J F, viy =0,
G
ie.,

(7.33) J v#0,
G

If A, =6, v has a constant sign and {7.33) is fulfilled. If A, #6, according to the
assumptions of Lemma 7.24, A, > 6. Let (A, vi) be the eigenvalues and eigenfunctions
sequence of 8. Using Lemma 7.32, we have

v=Y Cyty withck=(A,‘—-6)"‘J. Uy
k G

Joompon-on ([ u),

which is positive since A, > 6. Thus (7.33) is true. a

So

8. Study of the minimum value A"

8.1, Minoration of A'(G). We study the minimum A'(G) of [;{V.0f° when ve
H(G), follit)=1and f; v=0 (cf. Definition 7.19) occurring in Lemma 7.20. As the
extension by zero preserves the above conditions of v, we get (as in [16]):

(8.1) if G,= G,, then A'(G)) = A'(G,).

The minimum A'(G) is reached for some function v. We recall that (A,, vk)’ is the
eigenvalues and eigenfunctions sequence of the Laplace-Beltrami operator § on H'(G).
We denote

-1/2
7k=yj v d¥ whercy=(J' d‘l’)
L) G

(we suppose that |||l 3, =1). We have

(8.2) v=Y v withyci=1,
k
(8.3) % y: =0,
(8.4) A(G)=Y Ayel.
k

If G=157 as y, =1 and the other v, are zero, it is obvious that (cf. [16])
(8.5) A8 =A, =2,

So, by (8.1) and (8.5), we get
(8.6) A(G)=z2.

We will obtain further information about A'{G).
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LemMa 8.7. Let K be ([ v, dW)([; d¥)". Then
A(G)2(1-K)A(GY+ K A(G).
Proof. Using (8.3), we get
avis( g d)(z, %) =u-chu-.
So, we have
(8.8) ci=1-vl
Equation (8.4) implies that
A(G)Z Ajci+ Ayl — D).
Using (8.8), we get
A(G)ZA(1- )+ Ay,

And as K is exactly ¥?, we get the lemma. O
Now, il v, =0, instead of (8.8) we get

as-ryH1-a).
And, with (8.4}, we have
A(GYZ Aci+ Aci+ Ay(1~ct=cd).

Thus
(8.9) C O AGZ~yDAF YA - B+ Ael
And, it is easy to show that, if moreover y,, - - - » Yn-1=0, A; may be replaced by Ay
in (8.9). So we get Lemma 8.10.
LeMma 810, If vy, -+, vy, =0, then

A(G)Zmin {{{1~ KA+ KAN], As).

8.2. The exact value of A’ in some special cases. For we 10,2%] and (8, ¢) the
spherical coordinates in [0, w]x [0, 27{, we denote by G,:

G,={¥e56¢]0, n[, 00, wl).

The associated cone I',, is a dihedron with interior angle w. Since v, is proportional
to sin (7/w)e, it is easy to compute the following:

(8.11) K(G,)=8/m"=0.81057.

The main result is Proposition 8.12.
ProrosiTion 8.12. A(G,)=A{G.).
Froof. We denote #/w by v. As a consequence of (18.6" in [9] we obtain

Aw= (g +1),
(u:) being the increasing sequence of positive numbers
lv+d withleN* and d N,
{The multiplicity of p is given by the number of couples {/, d) providing u.)
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From (18.9) in [9], we derive that an eigenfunction associated with Ml +1)

with u, = lv+d has the following form:
= Y @, cos 7 @-sinlvp
O=iZ2pad

where the a, are some constants.

As a consequence
(8.13) if ge=v+1, v, =a cos §sin vp and v =0,
(8.14) il ., =2, vy =asin2vp and 7, =0.

(@) M weld, 1 pi=w pa=20, uy=v+1, uy=3w
S0 y; and y, are zero; and according to (8.10) it is sufficient to prove that
(1-K)r{p+1}+3Kr(3e+1}=20(2p+1). .

With (8.11), this is easy to check.
(b) If vell,2): uy=v, po=v+1, u3=20, py=v+2.
So v: and v; are zero again. And we can prove that
{8.15}) (1-K)r(v+ 1)+ K(r+2)(#+3)=(»+1)(r+2).
Using Lemma 8.10 we get Proposition 8.12.
() If v=2: )= uy=r+1, py=r+2 v,=0and as in case (b}, (8.15) is true
and implies Proposition 8.12 by using Lemma §.10. 0
CoroLLary 8.16. Ifwe[m 27]), A(G,)=027/w)(1+27/w).

9. Precise regularity results in three-dimensional domains.

9.1. Strips free of poles. Let {} be a domain in O,(R%). If { has no vertex, it has
been studied in § 6 (Theorem 6.3). If not, for each vertex x of {2, we must check
condition {3.7).

Let us assume that

(9.1) s<i,

So, using Lemma 4.2, we have that (3.7) is equivalent to
(9.2) YA, Re A e[-1, s-1], #5(A) is invertible on DY G,).

We are going to determine 5{G,) so that (8.2) is true for s = s(G,).

We denote

£&H=5(G,) 1.

As a consequence of Lemmas 7.9 and 7.20, if we have the three following

conditions, for 2 £e1-4, 1[:

(9.3) E(+ D+ Q26+ 1)(£-1) <A(G),
(9.4) £E+1)<A(G),

(9.5) ¢(£) <A{G),

then

(9.6) WA, Re A = £, #,(A) is invertible on DY G).

Condition (9.4) implies (9.3), and (9.5} may be written as
9.7 (E+D(E+6£+2) <24+ 1IN +{1=£)A,.
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Using (8.6), A'=2 and A, >0, we obtain (9.7) if
(E+INE+6E+)= 20264 1),

It is easy to check that for all £e[-1,0].

So
(9.8) &H20, e s(G)zi.
l;‘or £> 0, we may use one of the following three conditions, each implying (9.7):
(9.9) (E+D(E+6£+2) <22E+1)+ (1= £)A,,
(9.10) (E+INE+6£+2) = (2E+1)A,
(9.11) (E+1)(E+6E+2) S (E+ DA +A,

(since A"> A,). Each of these conditions has the form
$(£)=0,

¢ being a strictly convex function on [=7/3, +cof. To have ¢(¢)=0 on £e[0, &], it
is enough 10 check that

$(0Y=0 and ¢(&)=0.

Using (9.9), we find Proposition 9.12, as in [16].

ProrosiTion 9.12. s(G) may be taken as §+,u/(,u. +4), where u > 0 is such that
ulp+1)=A,(G)

Now, il we consider condition (9.11) with A'Z2, we get

(E+1)(E+6£)5A,,

and it is easy to prove the following proposition.

PrROPOSITION 9.13. If Ai(G)=2, s(G) may be taken 10 be } A,(G)/8.

It is better than Proposition 9.12 if A, = 1.20.

We notice that the right-hand side of (9.1 1) increases when the domain G decreases.
So, we may determine £ such that (9.11) is satisfied for G, (cf. 8.3), and then we are
sure that (9.11) is also satisfied for all G<= G,,. It is not difficult to check Proposition
9.14.

Prorosimion 9.14. If Ge G, with we [, 2ar]), s(G) may be raken as 67/ 5w.

Here, we use Corollary 8.16;

A(G,)=2v(v+1) and A{G)=r(v+]1), with v=n/w
In the important case when w = &, we have
A(G.)=6

and we immediately see that (9.10) is true for all £=1. Therefore, we have (9.5) for
£<1and as A, =2, we have {9.4) also. Thus we have Proposition 9.15.
ProprosITION 9.15. If G G,, then we may take s(G)=3—¢, SJor all ¢ > 0.
Finally, for G,,,, A, =6 and according to Lemma 7.24 we get Proposition 9.16.
ProrosiTiON 9.16. If G< G,,2, #\(A)"" has only one pole in the strip Re A €
[-5.1]. That pole is A =1, it is simple, and Ker #(1) is generated by (0, 1). Here let
s{G) be 3/2.
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9.2. Regularity results. Just as in Theorem 6.3, we make various assumptions
concerning the behavior of g at the singular points of {1, according to the value of 5.
DEerNITION 9.17. Let g be in H*™'(Q) for s = 1. g is said to be zero at the singular
poinis of {}
(i) When s=1: pi'ge L*(Q2) with g,{x) the distance of x from A, (£}, the edges
of N

(ii) When 1<s<3: g=0o0n A,(0});

(iii) When s=3: g =0 on A,(Q) and p;*/g e L*(}) where p, is the distance from
Ag()), the vertices of £}

(iv) When s>3: g=00n A,(£))U Ay(Q).

Remarks 9.18.

(1) IfgeH*™'N ﬁ'(.Q), then it is zero at the singular points of ().

{2} If each vertex x is in the closure of an edge, then the conditions concerning
A({}) are implied by conditions concerning A,(f}); such is the case when 2 is a
polyhedron,

This may be proved as is (AC.3) in [9].

DeFINITION 9.19. For each vertex x € A,(02), we denote by s, the best value of
5(G,) drawn from Propositions 9.12-9.16.

TreoREM 9.20. Let 1e O3(R’). Ler (i, pYe D3(Q) be the solution of (1.1) with
(f,g)e E3(Q).

(a) Ifs<1, sEmin,,ayn) s, and s <infycan € (@), then (&, p)e D).

(b) If s=1, s=min,can) 5x, s <infrca,in) 7/ w, and moreover g is zero at the
singular points of Q, then (4, p)e Di{((}).

For s<1, it is a straightforward consequence of Theorem 3.6, as in the case of
Theorem 6.3.

For sZ1, in view of Theorems 3.6 and 6.3, and the methods of proofs of [9], it
is enough to note that the Mellin transform (F(1), G(A)) of {(r*f, rg), after localization
in the neighborhood of any vertex, is defined up to Re A =5 —}, with values in Fi{G,).

Now, we derive from Theorem 9.20 the statements (1.6)-(1.12).

Since s, >1% and £{w )=, (16) is a straightforward consequence of Theorem
9.20a,

In situation {1.7), the openings of the edges are 7/2 or 37/2. £,(37/2)>0.544,
80 0.544 <inf, . 4 &, ). If x is a vertex of £, then the associated cone I, is an
octant or the complementary of an octant. In the first case, Proposition 9.16 yields
s(G,)=1%. In the last case, we note that T, is included in the revolution cone

F={zeRY/6e[0, &}

with 8,=w - 6,, 8, =arcsin (1/V3); so ;= 144.74°, As a consequence of 18.D in [9],
we find that A,(G,) = (e +1) with n > 0.35. By Proposition 9.12 we get
1 035
s(Gx)>2+4.35~0.580>0.544.

When (} is convex, we have 7/w, > 1 for any x € 4,{f)}, and by Proposition 9.15
s; > 1. Thus, we get {1.8).

If, for each xe A,(Q), 7/w, =1, as by Proposition 9.15 we have s, =3 —¢, then
for all £ >0, we get (1.9).

In the situation (1.10), min, 4 m/@,>% and, for each vertex x, owing to
Proposition 9.16, we have s, =32,

In the situations (1.11) or (1.12), we have: Millyea,ny 7/ w, =2 and there is no
vertex.
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Appendix. Behavior of #{A)" in the neighbarkood of positive integer numbers, on
the domain J0, 27r| (the model for a crack). Given suitable changes of functions (see
[11] and [5]), the problem

Ly (AN uy, uy, p)={f1, f5, g) with u,, u,€ E'(]0, 27[)
is equivalent to the other:
uH{A+ 1 u+(1-A)g=1,
(A1) A=—Duw'+(1-A%o+g' =1,
(l+A)uto' =1,
(A2) u, ve H'(J0, 2w[).

As in the above references, it can be proved that (A1) is holomorphically solvable.
To solve (A1)-(A2), it remains to solve (Al) with f;=0, and for any (¢, ¢3, ¢;, .)€ C*
(@ =vy, v2w)=1,,
(A3) 1 2
w0 =7, u@m)=vy,.

Problem (Al) with the zero right-hand side is equivalent to {A4)-(A6):

{Ad) u=—-v'(1+A)",
(AS) g={(v"+ 14+ AP0 -aY7",
{A6) s 201+ A+ (1~ A =0,

For Re A >0, a basis of solutions of {A6) is given by

_sin(aA-1)#

v;=sin(A+1)8, v, o1

, vy=cos(A+1}8, vy=cos(A—-1)6.

Let M(A) be the four X four matrix, the columns of which are
[0,40), (27, =0 (O)(1+A)7", —vj{( 271+ A)7").

The solvability of (A3}, (A4), and (A6) is equivalent to finding & = (o, "+, ay)
such that

(A7) M(A)a =y
where ¥ ="(vy,,* - -, y,). Then the solution of (A3}, (A4}, and (A6) is
{A8) v=Y oy and u=-o{A+1)7"
The determinant of M{A) is
4sin®2ma(A-1)"'(A+1)72

S0, in A =1, M(A)"' has a simple pole. On the other hand, when A is an integer
number and A Z2, it is easy to see that the first and the third rows (respectively, the
second and the fourth) are equal; then the cofactors of M(A) are zero and the pole
is simple again.

It is obvious that, for integer A

(A9} dimKer M(1})=1 and dimKerM(A)=2 whenA=2.
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To deduce the properties of £,(A)”", we must take (AS) into account. For A 22,
it is holomorphic. It remains to study the case when A =1.

For v=v,, or v =v,, (AS) yields g=0.

For v=u,, (A5) yields g=((A +1)*— (A —1)®) sin (A =138/ (A +1).

For A =1, it is zero again.

For v=1,, (AS) yields g;=({A+1* —(A=1)"cos (A —1)8/(1 —A D).

With (A8), we have g = a,q,.
As g, has a simple pole in A =1, it remains to state that a, is holomorphic, That arises
from the structure of M({A): the matrix M,(A ) obtained by removing the second column
of M(A) has its rank equal to two, and the corresponding cofactors balance the
determinant of M(A).

So, forany AeN, A =1, (A} has a simple pole, and with (A9), it is ¢clear that

dim Ker £,(A)=d(A).

With Lemma 4.5, we get that %, is injective modulo polynomial on $*(R*\R™).
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