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Abstract. The eigen-frequencies of elastic three-dimensional thin plates are addressed and
compared to the eigen-frequencies of two-dimensional Reissner-Mindlin plate models obtained by
dimension reduction. The qualitative mathematical analysis is supported by quantitative numerical
data obtained by the p-version finite element method.

The mathematical analysis establishes asymptotic expansion for the eigen-frequencies in power
series of the thickness parameter. Such results are new for orthotropic materials and for the
Reissner-Mindlin model. The 3-D and R-M asymptotics have a common first term but differ in
their second terms.

Numerical experiments for clamped plates show that for isotropic materials and relatively
thin plates the Reissner-Mindlin eigen-frequencies provide a good approximation to the three-
dimensional eigen-frequencies. However, for some anisotropic materials this is no longer the case,
and relative errors of order 0f30% are obtained even for relatively thin plates. Moreover, we
showed that no shear correction factor is known to be optimal in the sense that it provides the best
approximation of the R-M eigen-frequencies to their 3-D counterparts uniformly (for all relevant
thicknesses range).

1 INTRODUCTION

Accurate computation of eigen-frequencies of elastic domains, is of high engineering im-
portance because the smallest frequencies have to be higher compared with any frequency
of a dynamically applied load. Otherwise resonance may occur, resulting in the amplifica-
tion of the eigen-mode and finally the destruction of the elastic structure.

This is of particular importance in three-dimensional thin domains, such as three-
dimensional plates, where the smallest eigen-frequencies are proportional to the thickness.
It has been shown in [4, 5] that for isotropic thin plates the smallest frequencies are asso-
ciated with bending modes. Therefore, we address herein these bending eigen-frequencies



in a fully three-dimensional domain.

Due to the complexity of a three-dimensional eigen-analysis, much attention has been
given historically to the derivation of plate-models, which can be understood as an applica-
tion of dimensional reduction principles. These plate models are aimed to approximately
solve the three-dimensionbéndingeigen-problem by a two-dimensional formulation. In
engineering practice the Reissner-Mindlin (R-M) plate model is frequently used as an ap-
proximation of the 3-D thin plate domain, and is assumed to be valid for thicknesses of
plates undes% compared with other dimensions.

In this paper, our aim is a twofold investigation of the quality of approximation of 3-D
eigen-frequencies by R-M eigen-frequencies:

1. By a theoretical asymptotic analysis, we obtain after [9, 5] a power series expan-
sion in the thickness parameter of both 3-D eigen-frequencies and R-M eigen-
frequencies.

2. By a numerical implementation, we quantify the deviation from R-M with respect to
3-D, in a variety of situations for small but non-zescs.

The outcome of point 1. is that the 3-D and R-M eigen-frequency asymptotics have
the same first termas ¢ — 0, namelye times the corresponding eigen-frequenty of
the limit Kirchhoff-Love model (K-L). Butthe second termis the asymptotics, as far as
lateral clamped boundary conditions are consideredcalarays differentindeed we prove
in this paper that this second term for the 3-D eigen-frequency has the fortimes a
positive quantity\, , whereas for the R-M model, the term i is zero.

Thus, from a strict mathematical point of view, the R-M approximation is not better
than the K-L approximation, and in both cases, this is an otdapproximation. From a
practical point of view, the order of magnitude of the quantiy with respect to)\; is
of importance, since the relative error of approximating a 3-D plate by the R-M model is
equivalenttoc Ay /\; as e approaches zero, but is still non-zero.

The quantity \, is a coupling term between inner (boundary layer) and outer (regular)
parts of a two-scale expansion of eigen-vectors. Moreovepsirthere is a multiplica-
tive factor ¢® which depends only on the material law of the 3-D plates. For example,
for isotropic materials, we show that this factor is an increasing function of the Poisson
coefficient v . For special non-isotropic materials, we show that this factor is much larger.

That is why we extend the results of [9, 5] to orthotropic materials. The multiplicative
factor appears now as a density along the lateral boundary. We also present the correspond-
ing construction of R-M model, and the asymptotics of eigen-frequencies. What is known
about asymptotics for the R-M model is [1, 2] where it is proved that in the loading case,
there is no boundary layer at the order but that it starts at the ordex. This is exactly
the reason for the absence for the term of orefein the eigen-frequency asymptotics.

Numerical experiments with clamped plates are provided. These results quantify the in-
fluence of the material law and the shape of the mid-surface on the R-M eigen-frequencies
as compared to their 3-D counterparts. It is shown that for isotropic materials and relatively
thin plates, the difference is very small, whereas for orthotropic materials the difference in
the first eigen-frequency of the R-M plate model and the corresponding eigen-frequency of
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the fully 3-D plate can be as large as 30%. Moreover, we showed that no shear correction
factor is known to be optimal in the sense that it provides the best approximation of the
R-M eigen-frequencies to their 3-D counterparts uniformly (for all thicknesses range).

In section 2 we provide the mathematical description of the plate models (3-D and R-M
model), and in particular summarize the asymptotic behavior of the eigen-frequencies (in
terms of ¢ ). Details about the mathematical analysis on the derivation of the asymptotics of
the eigen-frequencies for orthotropic 3-D plates is given in Appendix A and for orthotropic
R-M model in Appendix B. The model problems used in the numerical experimentation
are described in section 3, followed by the numerical results in section 4. Summary and
conclusions are given in section 5.

2 3-D PLATE VIS REISSNER-MINDLIN PLATE MODEL

2.1 Eigen-Frequencies of the 3-D Plate
Consider a thin elastic domai of thickness2e as shown in Figure 1, defined as follows:
Q=wx (—e,+¢), with wc R?* aregular domain.

The coordinates are = (z;, x2, v3) and the mid surfaces lies in the plater; - z, , while
x3 Is in the normal direction. As a representative case we restrict our attention to clamped

X3

2¢

Figure 1. Typical plate of interest and notations.

boundary conditions on the lateral edges. More precisely, we assume that the upper and
lower surfaces of the plate, i.exx { ¢}, are traction free, and that the lateral edges of the
plate Ow x (—¢,¢) are clamped, i.eu = 0. Here u = (u; (), uz(x), usz(x))* , denotes

the displacement field.

We denote bye the engineering notatiorof the linear strain tensor. Accordingly,
we use the index notation(el, €9, €3, €4, €5, 66) = (611, €922, €33, 2623, 2613, 2612) where
€ij = % (@uj + ajuz) ) and 82 = 8/8%1 .

Orthotropic (or isotropic) homogeneous materials are considered, hence the stress ten-
sor o is given by Hooke’s law

o =[C]e, (2.1)



where [C] isa 6 x 6 (positive) symmetric matrix associated with the 3-D material consti-
tuting the domain, in the form:

Cnu Cp Cis 0 0 O
022 023 0 0 0
Cs3 0 0 0
Cl|l= 2.2
(o Cu 0 0 (22)
055 0
C’66
In case the material is isotropic then
B B _ E(1-v) Ev
and =
Cuy = Cs5 = Cg6 = 2(1 T 1/)'

Here F is the Young modulus and is the Poisson ratio.
Denoting the material density by, the sought vibration eigen-frequenciasof the
three-dimensional plate are the solutions of the following weak eigen-problem:

Seek\ >0 and 0 # u € V(Q), such thatVv € V()

/// (v) dz1dzodas = /// pul vdrdrydes (2.3)

where
V(Q)={ve [Hl(Q)]3 ; v=0 0ndwx (—¢,¢) },
H'(Q2) being the usual Sobolev space.
The eigen-frequencies form an increasing sequemce- \;, of positive numbers
where we agree to repeat each eigen-frequency according to its multiplicity. There is no

finite accumulation point. The superscriptindicates that we fix the mid-surface and
that we consider the eigen-frequencies as functions of the thickness

Let S be the transverse symmetry operator defineddor (u;, us, us) by:

S
u — ((xl,xg,a:g) — (ul(:vl,xg, —x3), us(xy, Ta, —3), —ug(xl,xg,—xg))). (2.4)

We note that

// / put - vdrdrydes = // / p(Su)"- Svdrdrydrs

and that for orthotropic materials

/// v)dridrades = /// (Su)T[C] e(Sv) dzydzydas.

We deduce that each eigen-space determined by (2.3) can be split as the direct sum of a
bendingsubspace (i.e. where the elemenissatisfy Su = —u , in other wordsw are
anti-symmetric in respect to the mid plang) and amembraneor stretchingsubspace
(where u satisfy Su = w). Therefore for each fixed , each eigen-frequency in the
sequencg):),, is either bending or membrane.

n
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2.2 Isotropic 3-D Plate

For ease of presentation we fix the material dengity 1. For isotropic materials it has
been shown in [4, 5] that for each fixed ramk, for ¢ small enough); is a bending
eigen-frequency and that¢ /e tends to then'™ eigen-frequency, denotedX®, of the
Kirchhoff-Love dimensionally reduced model
ENA?
LEV = ——— ¢ H} H™?(w). 2.

In [5] it is proved that\: has a power series expansion in termsofi.e. there exist real
coefficients\,,; for ¢ > 1 such that for anyk :

A, =€\ + 52)\n,2 4+ ..+ Ek)\mk + O(gkﬂ). (2.6)

Here, of course\,, ; coincides with \X™ . Following the analyses of [5] (and see also [9,
§8]) we find the first two terms of the expansion of gealed eigen-valued®

AS = (N5 /e)? = Ao+ ey + ...+ A+ O, (2.7)

The first termA,, o is the then™ eigen-value of the Kirchhoff-Love model, i.¢\X%)2.
As for the second term\,, , , it is equal to

E
Ay =3 W) (05 + 03)Cnpl? ds, (2.8)
ow
where(, o € H3(w) isthen'™ eigen-function of the Kirchhoff-Love modelLX" normal-
ized in L?(w), and " is a coupling constant related to the structure of the first boundary
layer term in the expansion of 3-D eigen-vectors. This coupling constant is positive and
depends only onv . See details in Appendix A.

We immediately deduce that, » = A,,1/(21/A,.0) , and obtain:

E

Ao =
ST W

W) (07 + 02) (o) ds. (2.9)

2.3 Orthotropic 3-D Plate

Stricto senspthe eigenvalue expansion (2.7) is not known for non-isotropic plates. Never-
thelessfor clamped lateral boundary conditions is possible to use all constructions in

[5] and to extend the results of isotropic plates to orthotropic plates. Details are provided
in Appendix A.

We still fix the density top = 1. Then for fixedn, the n'" eigen-frequency has a
power series expansion with respecttan the form (2.6) where\,, ; = AKL with the 't

*When A\XL is a multiple eigen-frequency of X% , according to the constructions of [5], extra criteria
have to be applied for the determination ¢f o : the pair ({0, An,1) has to be an eigen-pair of a finite
positive symmetric eigen-problem, see Appendix A.



eigen-frequency\Kl of theKirchhoff-Love dimensionally reduced modef" associated
with material matrix[C] on w, cf [6]:

LY Hi(w) — H2(w)
(/Y a4 | o ~ ~ 2 52 (2.10)
C [a— 5(01181 -+ 02282 + 2(012 + 2066>8182>€,
where fori, j € {1,2,6}, C;; is defined as
Ci; = Cy; — CiaCia. (2.11)
Cs3

Thus, according to (2.6))5 /e — M\,1,ase — 0, i.e. then'™ eigen-frequency ovee
must approach a constant value as the plate thickness tends to zero. This will be visualized
by numerical examples.

As for the second termh,, » in (2.6), it has an expression like (2.9) but witipasitive
coupling functiordefined ondw and depending on the material matfix| :

1
)\n2

— b . 2 2 2
2= g [ UL | + )Gl . 2.12)

Therefore we expect, as noticed in [9], that— /¢ is increasing fore small
enough. This will be visualized by numerical examples.

2.4 Eigen-frequencies of the Reissner-Mindlin Plate Model

For completeness of presentation, we provide herein the derivation of the weak eigen-
problem for the R-M plate model made of orthotropic materials.

The displacement field under the R-M assumptions can be represented as:

Uy _xSﬁl (xa)
Ug p = —175352(9%) (2.13)
Us w(xy)

where the indexy denotes the valuefl,2} corresponding to the in-plane variables. The
in-plane functionsg; (z,) and (»(x,) have the physical interpretation of rotations, while
the functionw(z,) denotes the deflection of the mean surface of the plate. R-M displace-
ment field assumption implies thabrmals to the mean surface remain straight lines
after deformation, but not necessary normdlfus, the strain vectoe is:

'61 ) ( —x301 51 )
€2 —x300 3,
€3 0
= 2.14
€4 < ((9210 - 52) ( )
€5 (3110 - 31)
L €6 [ —23(0201 + 0152) )



and as noticets; = 0.

The second important assumption for constructing the R-M plate model, igrihist
negligible Therefore one introduces the constraimt= 0 in the model. Writing (2.1) in
index notation, we obtain:

g; = C’ijej Z,j = ]., ce 76. (215)

Due to the constraint; = 0, i.e. Csje; = 0, we substitutee; by — Z,ﬁés Csper/Csz in
(2.15) except for; = 3, and we obtain:

m:}jm@—aﬁ%)q, i,j=1,2,4,5,6, (2.16)
J#3
We note that fori,j = 1,2,6, the new material coefficients’;; — Cg—si‘” are nothing
else than@j already introduced in notation (2.11). Based on (2.16) we obtain a mod-
ified Hooke’s law, connecting the stress vector, 02, 04, 05, 0¢) With the strain vector
(e1, €2, €4, €5, ¢6) . The 5 x 5 material matrix[C] = (5‘ij)i7j:172’47576 obtained is:

Cn — g—fi Cha — 0103—? o 0 O

) Cop— 0 0 0
[C] = Cu 0 0O (2.17)

Css 0

Ces

To account for a correction in the shear stressgsand o3 to better represent the fully
3-D stresses, the material matrix entrieg, and C5; are changed by introducing the
so-called shear correction factar:

544 = kCyy 555 = kCjs

By properly chosenx , either the energy of the R-M solution, or the deflectiencan
be optimized with respect with the fully 3-D plate. The smallest thehe smallest the
influence of x on the results. For the isotropic case two possible are (see details in

[3]):
5

REnergy = @
20
3(8 — 3v)
For modal analysis, it is not clear that an optimal value:ois available. A value ofx =

5/6 is frequently used in engineering practice. It is important to note that for orthotropic
materials the value of: is setto 1.

RDeflection =

Defining the vector3 = (51(.), B2(74))T and the vectorn = (ny(za), n2(za))",
and assuming = 1 as in the previous subsections, we can introduce the following two
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bi-linear forms for the R-M plate model:

3 ~ ~
AB,w,n,v) = % // C110181 01 4 C12(01 51 Oama + 0232 0111 ) (2.18)
+ 5223252 O + 566(3251 + 0102)(0om + O1m2) dzidas

+ 5// 544((92111 — ﬂg)(agv — 772) + 555(81@[) — ﬁﬂ(al’l} — 771) dl’ld.’L‘Q

3
M(B,w,m,v) = %// (Bim + Bame) dzydas —l—é?// wv dzydzs (2.19)

w

Using the above definitions, the weak eigen-problem foctampedR-M plate model is:
Seek )\ >0 and 0 # (8,w) € VEM(w), such that
A(B,w,n,v) = N M(B,w,m,v), Y (n,0) € VM), (2.20)

where f
VMWw) = {(B,w) € [Hl(w)}‘3 ; Bi=F=w=0 ondw}.

The solution of (2.20) provides the Reissner-Mindlin eigen-frequencies, which form
for eache an increasing sequence denoted(y,),, , where we do the same convention
of repeating according to the multiplicity as before.

By similar (and much easier) constructions than in [5], we can prove that'th&-M
eigen-frequency has a power series expansion in

X = ehnt + e+ N+ O, 2.21)

Here, the first coefﬁcienﬁml is equal to its counterpark,, ; in (2.6), i.e. then™ K-L
eigen-frequency.

In the 3-D eigen-frequency asymptotics (2.6), the presence of a non-zero second coeffi-
cient )\, » is a consequence of the presence of the in-plane boundary layer compéfents
at the second rank in (A.2). But, for tliblamped R-M modelt is known, see [1, 2], that
the boundary layer series starts one rank further. That is why we can prove, see Appendix
B, that

A2 = 0. (2.22)

Therefore, from the asymptotic expansion point of view, the approximation of the 3-D
eigen-frequencies by R-M eigen-frequencies is only correct at the drder

3 FRAMEWORK OF NUMERICAL INVESTIGATION

Of major interest is the question whether the R-M eigen-frequencies are a good approxi-
mation of the 3-D eigen-frequencies. To address this question we defiReldt#/e Error
for the n'" eigen-frequency as follows:

€ Ye
déf )‘n _ )‘n

66

(3.1)



Relying on the previous qualitative mathematical theory, it is now natural for us to
address the following questions:

(a) How close are the R-M eigen-frequencies to their 3-D counterparts? Which shear
correction factor should be used so to obtain the “best” eigen-frequencies for the
R-M plate models? How small should be the ratio betweeand the other plate
dimensions so that the R-M eigen-frequencies approximate well the 3-D ones?

(b) From asymptotics (2.12) and (2.22), we see that

56 "y 8>\n72
n = .
)\n,l

Thus the question is how big is\,, » compared with),, ; for small, but non-zero
e ? Especially, are there material properties so that is of the same order of
magnitude ag )\, » for a given smalle ?

(c) In this connection, what is the influence of the geometrical shape of the plate boundary
and the material properties ox, » ?

To address the above questions, which are of quantitative nature, three-dimensional
plates are considered and analyzed from the numerical approximation point of view by the
p -version of the finite element method.

3.1 Three Dimensional Plates

We consider a rectangular plate, with or without a circular hole, having dimensions of
2 x 1 x 2¢, as shown in Figure 2. The lateral boundaries of the plate are clamped)

—
G F ]
X, X21h
boo 000 0Q 1 ]
Co
o)
A Bp E X3
Xy —>
2 2¢
—
G F [
Xy X2
X c C 1 2R
C
A BP E X3
X, —
2 2¢

Figure 2: Rectangular plate under consideration.

along AEFG, and in the case of the plate with the hole also the boundaries along the
circular hole are clamped. Since only bending eigen-frequencies are sought, we have to



consider anti-symmetric modes in respectat9. This is accomplished by taking as the
computational domain only the upper half of the plate- x3 > 0, with anti-symmetric
boundary conditionu; = u; = 0 on the entire mid surface; = 0. The first bending
eigen-frequency of the whole plate is symmetric in respectto= 1 and =, = 1/2
therefore it is exactly the one obtained as the first eigen-frequency of the one-eight compu-
tational domain. Thus, we further reduce the computational cost and compute the first three
eigen-frequencies which are symmetric along= 1 and z, = 1/2. The computational
domain is therefore one eight of the original plate, the shaded domalt’'D (respec-

tively ABCC'D for the plate with a circular hole), with clamped boundary conditions
along the lateral boundaried B and AD (and C'C’ respectively), symmetric boundary
conditions along the other two lateral boundaries, g.= 0 along BC and uy, = 0

along C'D (resp.C’D), and anti-symmetric boundary conditions on the plage= 0.

Four different material properties are investigated, two of which are isotropic and the
other two orthotropic. For all cases the density is takep as1 .

Name Young ModulusE Poisson ratio/

Isotropic 0.854 0.382

Almost Incompressible 1 0.49
Name Ci = Cxp Crz Ci3 = Cys Cs3 Cys = Cs5 = Cgs
Strongly orthotropic 11 9.9 1 0.1 1
Orthotropic 3 15 1 0.5 1

Rectangular plate. Plate w. circ. holeR = 0.2

Plate w. cir. holeR = 0.3 Plate w. circ. holeR = 0.4

Figure 3: Finite element meshes for 3-D analysis with= 0.1 .

A three dimensionap -version finite element model is constructed having two elements
in the thickness directiony;, and three elements in the, and x, directions. In the
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neighborhood of the edges, the mesh is graded so that there is an element of dimension
each. The finite element model is constructed parametrically so that the valuenafy

vary, and we change it from.1 to 0.001. For the plate with a circular hole, three radii
are analyzed:R = 0.2, R=0.3 and R = 0.4. In Figure 3 the mesh used for the various
problems of interest is presented for plates of half thickness0.1 .

The p-level over each element has been increased ftote 8 and the trunk space
has been used (see [10]). For the rectangular plate (Wdtthexahedral elements) there
are 4068 degrees of freedom at = 8, and the eigen-frequencies are converged to within
a relative error of less thaf.5% at p = 8 for most . An advantage of using -version
finite element methods is the possibility of having “needle elements” in the boundary layer
zone with aspect ratios as large 8300 without significant degradation in the numerical
performance. Arexponential convergence raie obtained (due to the use of high-order
elements) and the convergence of the eigen-frequencies (the first three of them) has been
examined in order to evaluate the reliability of the numerical results.

In Figure 4 we present the finite element mesh for the case where 0.01. As
may be noticed the boundary layer elements are changed according to the plate thickness.
Although almost not visible, there are two elements across the thickness and one element
each of dimensiorz in the neighborhood of the boundary.

Rectangular plate. Plate w. circ. holeR = 0.4

Figure 4: Finite element meshes for 3-D analysis with= 0.01 .

Al finite element computations are done within the finite element code Stress ‘Check

3.2 R-M Plate Models

Finite element models of mid-surface of the 3-D plate have been constructed similar to
the 3-D meshes, where one fourth of the plate has been considered for computing the
symmetric eigen-frequencies. Again, a layer of one element along the plate boundary of
width equal toe is present. An example of the meshes for the R-M plate with 0.1 and

e = 0.01 is shown in Figure 5. One can specify three different shear correction factors
used in conjunction with the R-M plate model made of an isotropic matefighegy
KDeflection OF K = 1. For orthotropic material only: = 1 is available in the code that we

t Stress Check is a trade mark of Engineering Software Research and Development, Inc., 10845 Olive
Blvd., Suite 170, St. Louis, MO 63141, USA
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Thickness 0.1 Thickness 0.01
Figure 5: Finite element meshes for the rectangular R-M plate model.

use. Again, we increase the polynomial degree over each elementftond and observe
an exponential convergence in the eigen-frequencies (usually les$ tHanrelative error
for most ¢ values atp = 8 with 2816 degrees of freedom).

4 QUANTITATIVE COMPARISON BETWEEN 3-D AND R-M
EIGEN-FREQUENCIES

We give the results of numerical experimentations in the rectangular plate for the four
different material laws introduced in the previous section. Then we provide a few results
on the influence of the shape of the mid-surface.

4.1 The standard isotropic material

This subsection is devoted to the rectangular plate with the “isotropic” material properties.
We investigate which of the threes, used for the R-M plate model, provide the closest
eigen-frequencies compared with their 3-D counterparts. We plot the first three symmetric
eigen-frequencieg& vis the plate half thickness in Figure 6.

As expected by the mathematical analysis, indeed= — \,; ase¢ — 0, and also
A, — A, regardless of the: used.

To better visualize the difference betweey and ), we provide in Figure 7 the
relative errordj for the first eigen-frequency for the three choices:ofThe representation
of relative errorsé; and o5 for the second and third eigen-frequencies is very similar.
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, — % — 1-Defl.
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—=—2-3D

—«—3-3D

Ae

0.001 0.01 0.1 1

Figure 6: First 3 symmetric eigen-frequencies for “isotropic” rectangular plate: 3-D vis
R-M model with different s.

At the observation scale of Figure 7, it seems thglgcciion IS the “best” x from the
three investigated, in the sense that is the closest to\,, for all investigateds . Again
at this observation scale, no linear dependence is visible (we cannotXseg’

Using kpegection TOr the “isotropic” material, the relative error for the first three eigen-
frequencies is negligible (less than12% ) for thin plates with slander ratio of less than
1%, and for moderately thick plates (thickness abdut compared to other plate dimen-
sions) is smaller tha.2% .

Now, if we magnify the ordinates of Figure 7 by a factobO, we obtain Figure 8,
where the expected increase of the eigen-frequency wiildue to the non-zero factor
A1,2) is clearly visible. In this “asymptotic” region, the shear correction faet@fe.s, IS
the best one.
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Figure 7: Relative error for first eigen-frequency: 3-D vis R-M model with differerg.
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Figure 8: Zoom view of the relative error for first eigen-frequency: 3-D vis R-M model
with different s ’s.
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4.2 Almost Incompressible Materials.

The numerical values of the functiom — c"(v), see Appendix A, suggest that the dif-
ference between\, and )\, should be much more pronounced asapproached).5 .

Herein we investigate the rectangular plate discussed in subsection 4.1 only with “almost
incompressible” material properties. We provide in Figure 9 the relative error for the first,
second and third eigen-frequencies with thg.ac.tion Which, for the standard isotropic
material, was the best one at medium scale. Comparing with Figure 7 one notices the more

0.01

Relative error

——1-st freq. \ \
003 - <o --2ndfreq. |- Y b GREEEEELEEEEEEEE
— A — 3-rd freq. AN

-0.04 T T
0.001 0.01 0.1

Figure 9: Relative error for first eigen-frequency: 3-D vis R-M model with differerg
of “almost incompressible material”.

pronounced difference between the R-M and 3-D eigen-frequencies as expected. In this
case, a relative error of almo8t7% is obtained for the first eigen-frequencyat- 0.03.

As ¢ — 0, and as we compute higher eigen-frequencies by the finite element method
of a 3-D domain, the numerical errors increase. This numerical error is visible in Figure 9
for the third eigen-frequency at < 0.003 .
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Figure 10: Zoom view of relative errors for first eigen-frequency of “almost incompressible
material”.
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4.3 Orthotropic Materials.

We herein investigate the influence of the material law (orthotropicity) on the eigen-fre-
guencies, based on the rectangular plate model. The material properties are these defined
as “orthotropic”, and in Figure 11 we present the first symmetric three eigen-frequencies
over ¢ vis ¢ for the 3-D and R-M plate. The relative error is presented in Figure 12. The

60 :
3 — % — RM - 1st freq
. — % — RM- 2nd freq
4 ————————a—
R S P —©—RM-3rdfreq| |
50 ] 3 ——3D- 1st freq
—=—3D- 2nd freq
——3D- 3rd freq
40
D) 1 |
AN A
330 :
- —————
20 A
10 A
0 T .
0.001 0.01 0.1 1

Figure 11. First 3 symmetric eigen-frequencies for “orthotropic” rectangular plate: 3-D
vis R-M model.

relative error for the first eigen-frequency is aroustd at ¢ ~ 0.07, and increases up to

8% arounde ~ 0.18. Although the behavior of the eigen-frequencies compared to the
“isotropic” plates is the same, we obtain herein a relative error which is larger by an order
of magnitude compared to the isotropic case.

Plotting the relative error vig (not logarithmic scale), foe < 0.03, a linear curve
for ¢ — 0 is visible as seen in Figure 13, supporting the asymptotic behavior (2.6).
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Figure 12: Relative error of first 3 symmetric eigen-frequencies: 3-D vis R-M model made
of “orthotropic material”.
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Figure 13. Relative error (linear graph) of first 3 symmetric eigen-frequencies: 3-D vis
R-M model made of “orthotropic material”.
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4.4 Strongly Orthotropic Materials.

For the “strongly orthotropic” plate, the boundary layer effect on the eigen-frequencies
should be the most pronounced. We present in Figure 14 the first three symmetric eigen-
frequencies ovee Vvis ¢, as obtained from the 3-D analysis compared to these obtained
by the R-M plate analysis withc =1. The 3-D eigen-frequencies over clearly tend to

60

— X — RM - 1st freq
———&——— kA& _ T — < — RM -2nd freq
| — - — RM - 3rd freq
L e e ——3D-1stfreq |----

1 ‘ —=—3D- 2nd freq
—— 3D- 3rd freq

Me

0.001 0.01 0.1 1

Figure 14: First 3 symmetric eigen-frequencies overfor “strongly orthotropic” rectan-
gular plate: 3-D vis R-M model.

a limit as ¢ — 0, and the values\, /¢ increase as increase up t= ~ 0.05. The
relative error is presented in Figure 15. A very large relative err@56f is visible for the
first eigen-frequency at = 0.1. This is a significant deviation whereas the R-M model
underestimates the “true” 3-D b35% , and is attributed to the boundary layer effect.
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4.5 The Effect of the Shape ofow .

The mathematical analysis demonstrates that the 3-D eigen-frequencies are clearly sen-
sitive to the shape of the mid-surface boundary. To quantify this effect we analyze the
rectangular plate having a hole in its center of increasing radii, as presented in Figure 3.
Since the most pronounced effect between the 3-D and R-M plate eigen-frequencies is ob-
served for the "strongly orthotropic” material, we herein use same material properties. The
lowest (first) eigen-frequency over vis ¢ is plotted in Figure 16 for the rectangular plate
without the whole, and for the plate with a hole of radids= 0.2,0.3,0.4.

0.001 0.01 0.1

Figure 16: First eigen-frequency for “strongly orthotropic” plate with a hole of different
radii: 3-D vis R-M model.

The influence of the hole (the boundary layer effect is increased) is better seen when
observing the relative error in the first eigen-frequency as a functieniafFigure 17.

One notices that for the plate with a hole with= 0.3 the relative error may be beyond
30% for e ~ 0.07. On the other hand, there does not seem to be a clear connection
between the length of the clamped boundary layer and the increase in the relative error. In
fact the relative error is larger for the plate without the hole in comparison with the plate
having a hole of radiug? = 0.2, however, the situation is reversed when comparing the
rectangular plate with the one having a hole of radiis= 0.3 .
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5 SUMMARY AND CONCLUSIONS

The eigen-frequencies computed using the Reissner-Mindlin plate model are frequently
used in engineering practice as an approximation to the three dimensional plate eigen-
frequencies for relatively thin elastic plates. In this paper, we have provided explicitly the
asymptotic behavior of the eigen-frequencies as the thickness of the plate goes to zero,
both for the R-M and 3-D plates made of either isotropic or orthotropic materials. The
results for R-M and 3-D orthotropic plates are new. The 3-D and R-M asymptotics have a
common first term but differ in their second terms.

The qualitative mathematical description is supported by quantitative numerical data
obtained by thep -version finite element method for clamped plates. It was shown that
for isotropic materials and relatively thin plates the Reissner-Mindlin eigen-frequencies
provide a good approximation to the three-dimensional eigen-frequencies. It was also been
demonstrated that for isotropic materials, no shear correction factor is known to be optimal
in the sense that it provides the best approximation of the R-M eigen-frequencies to their
3-D counterparts uniformly (for all thicknesses range).

For some orthotropic materials we have shown relative errors between the R-M eigen-
frequencies and their 3-D counterparts of an orde3@f even for relatively thin plates.
This imposes a serious question mark on the relevance of the R-M eigen-analysis for plates
made of orthotropic material. We also studied the influence of the shape of the mid-surface
boundary on the errors in R-M eigen-frequencies.

A 3-D EIGEN-VALUES: ASYMPTOTICS FOR ORTHOTROPIC PLATES

Herein, the results and constructions of [5], which are valid for isotropic materials, are
adapted to orthotropic materials. We explain in details the formula for the second term in
the asymptotics, which is left implicit in [5].

A.1 Third order Ansatz

Let X; := x3/¢ be the scaled transverse variable. I(ets) be boundary fitted coordi-
nates alongdw in the mid-plane, withr the inward distance téw and s an arc-length
coordinate alongw . Then —0,. is the outward normal derivative alongv . Let further-
more R := r/c be the scaled distance to the bounday.

For ¢ small enough, there exists a 3-D eigenvector= (u5, u5, u3) associated with
A7 with a two-scale asymptotic expansion (outer and inner expansion terms) starting with

+ e2(PC[e]) (s, R, X3) + O(e®) (A.1)

- o (X5 1\ (Ci307 + Cy305)(|e]
u; = (el +¢ (2 5 C

and for the in-plate components,= 1,2

ug = —X30([e] + £%(24C[e]) (s, R X3) + O(e?) (A.2)
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where the‘generator” (le] = (le](x1,29) = (o + e + €2¢ + ... is a (scalarformal
series solutiorof the dimensionally reduced eigenvalue equation (A.3) below, &hd
¢ — (@) (s, R, X3) is a 3-component boundary layer operator.

The PDE operatorP(d;, ;) in the second term of (A.1) can be found in the asymp-
totics formonoclinicmaterials in [6,52.3]. Note that for isotropic materials, this operator
reduces to:

0138% —+ 02383 . 1%
033 N 1—v

(05 + 05).
The equation to be satisfied lg}fc] in w has the form
Lle|([e] = Alel¢le] in w. (A.3)

Here L[¢] is an operator formal serie} .. <’ L; . The term of order0 is L, = L*"
defined in (2.5)cf [6, §2.3] and L; = 0. Solution of the eigen-problem (A.3) provides
the seriesA[e] (terms of the asymptotics ol: ) as defined in (2.7). Equation (A.3) is
completed by boundary conditions aiw which can also be written as a formal series
equation in the formy[s]([e] = 0.

A.2 The first two eigen-problems for the generator

As we are interested i, and A, , itis enough to consider the two first terms(fe| , say
(o + (1 . The boundary conditions oy, + (; are obtained by considering the Ansatz
(A.1)-(A.2), and looking for zero Dirichlet traces up to the ordér.

Considering the first terms in (A.1)-(A.2), we see that the boundary condition on
are (o = 0 and 0,.{, = 0 on dw . With the first relation obtained from (A.3) we have

LR =Ny in w  and  (, 0, =0 on ow. (A.4)

In order to obtain the boundary conditions for the next term in the asymptaticene
has to recall the procedure for obtaining the first boundary layer tetgy .

Let B(0y,0,,03) and G(0y,0,,05) be the interior operator and the traction operators
on the upper and lower faces of the plate, associated with the left hand side of (2.3). Let
moreover (n(s), n2(s)) be the components of the inward unit normakte . Then there
holds

01 = N0, +n20s, and 0y = n20, — n1ds ON Jw.

For each fixeds € dw , the leading boundary layer operators are defined as
B(S; GR, 8}(3) = B(nl(s)ﬁR, ng(S)aR, 8X3) in the half-strip((), OO) X (—1, 1)
and

G(s; 0, 0x,) := G(n1(s)0r, na(s)0r, dx,) on upper and lower faced), oo) x {£1}.
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For each fixeds € dw , there exists a unique exponentially decreasing 3-component vector
oY (R, X3) = ©*(s; R, X3) and two real numbers® = ~*(s) and y’® = 7/*(s) such that
the mixed boundary value problem in the half-strip

B(s)w = 0 in (0,00) x (~1,1),

G(s)w =0 on (0,00) x {£1},

¥ =—(0,0,3 1T on {0} x (—1,1).

has a solution of the form (when written in normal-, tangentiabto-and vertical local

components)
—X3 0
Y=¢ +7" 0 ++9" 1 0 |.
R 1

Then the first boundary layer operator— ®!¢ is defined by
C’33

and the boundary conditions aji are obtained by requiring that the Dirichlet trace of the
components (A.1) and (A.2) of the Ansatz i<¥<?) and O(e?) respectively:

(C130f + Ca303) o
033

(®'¢)(s, R, X3) = ‘(% (5) ' (s; R, X3)

=0, 0.G= ‘8@) (s)v°(s) on Ow. (A.5)

These boundary conditions have to be combined withetHleequation arising from (A.3):

L¥YG = MG+ Ao (A.6)

A.3 Solution of the first two eigen-problems for the generator

The first eigen-problem is (A.4). Its solutions are obviously the eigen-gaits\,) of the
fourth-order operator.*" with Dirichlet conditions. Let us fix such &, and let£ be
the corresponding eigen-space.

The solution of the next eigen-problem (A.5)-(A.6) is subjectoonpatibility condi-
tions since LX" — A, is not invertible. The Fredholm alternative can be formulated by
integrating by parts equation (A.6) against any elemgnt £, that is

0= [] 166G - 80616 - A dod (A7)
where we integrate by parts four times the teffth L*"¢; (] . Since ¢, belongs toH3(w)
and ¢; to Hj(w), we are left with the only term- [, 0,1 P'¢j), where P’ is the second

order operatdr

1 ~ ~ ~ ~
P,(S; 817 (92) == g (nf(]nﬁf + 77/30228% + 2(012 + 2066)7117128182) .

fWe have used the relation$,(; = n,0,¢; valid on dw for a = 1,2, since ds¢; =0 on dw .
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And we know from (A.5) that

C130? + Cy302
0 (1 = 7b<3)P(81732) == 10 2 2C0~
33

Then we deduce from (A.7), together with the equatidi$ ¢} = Ay() :

0 :/ ’)/b(S)PCO P/<6 dS + // A1C0<6 dl‘ldl’g. (A8)
Ow w
Using that for any element € H2(w) , there holdsd,ds¢ = n,nzd? on dw, and setting

ni‘én -+ ngézg + 2(512 + 2566)71%71% n%Clg -+ H%C%

P([C58) == —"(s) 3 Cs3

(A.9)

we obtain that, to be associated with a p@jr, A;) , an element, € £ has to satisfy for
all ¢jeé&

/ P([C];8) 03¢ 02¢)ds = Ay / / Co ¢ daday, (A.10)
Ow w

which means that{¢, A;) is an eigen-pair of the symmetric eigen-problem (A.10). The
positivity of the function —+"(s) can be proved by the same arguments as ir§§72].
The positivity of the other functions in (A.9) constituting results from the positivity of
the material matrixC] .

Noting that for ¢ € HZ(w), there holdsd?¢ = A¢ on dw , we obtain formula (2.12)
in the case when\, is a simple eigenvalue. For isotropic materials, the “constah{)
introduced in (2.8) is plotted for € [0,0.5) in Figure 18. It looks very much like the one
plotted in [9].

For non-isotropic materials;”([C] ; s) also depends on via the orientation of the ma-
terial fibers with respect to the boundary at pointConsidering(n, ny) = (cos#,sin @),
we may consider”([C]) as a functionc”([C];6) of @ . For both orthotropic and strongly
orthotropic materials used in our computations, the functignm — c([C]; 0) is plotted
for /7 € [0,1] in Figure 19. We note that” takes larger values for the orthotropic mate-
rial than for isotropic materials, and still larger values for the strongly orthotropic material.
The period1/2 is due to the symmetries of our materials.

The computations for Figures 18 and 19 are done with the Finite Element library
MELINA [8].
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Figure 18: The “constant” c®(v) as a function ofv for isotropic materials.
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Figure 19 The functiond/r — c([C] ;) for both orthotropic materials.

B R-M EIGEN-VALUES: ASYMPTOTICS FOR ORTHOTROPIC PLATES

In this Appendix, we describe the first steps of the asymptotic analysis for the R-M eigen-
pairs, solution of (2.20). In order to have simpler formulations of the underlying operators,
we assume, which introduces no essential restriction,
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On the other hand we define the followirdgx 2 bi-dimensional elasticity system/X

(B.1)

3

8 MK = 1 qllafﬁl + §12813252 + §66(3§51 + 010232)
022(3%52 + C12010:81 + 066(5%52 + 010:01).

We note that the system/X" has the following relation with the K-L operatarX" de-
fined in (2.5)

div MY = LKV (B.2)

Then the eigen-problem (2.20) can be written in the form

—SMKLB —e(Vuw — B) = 13N6, (5.3)
—ediv(Vw — 8) = X2, .
with the Dirichlet boundary conditions
Gr=0F=w=0 on Jw.
Setting A2 = c2A , we obtain that (B.3) is equivalent to
_ 2MKL —(Vw — — 1 4A
3 B ' (Vw — B) 325 B (B.4)
—div(Vw — B8) = e*Aw.

As there are onlgvenpowers ofe in (B.4) we start with even Aréze: for A,
A=Ay +eNy+ ...
and for 8 and w
B=PB,+28,+'B,+... and w=wy+ 2wy + ety + . ..

Using these Aritze in (B.4) and identifying the powers efwe find systems of equations
on A, B, andwy, the three first ones of which are

_(Vwo - 50) = 0,
{ —div(Vwy — 3,) = 0, (8:5)
—M¥ By — (Vwz — By) = 0,
{ —div(Vwy — By) = Agwy, (B.6)
{ —MKL52 —(Vwy, = By) = %AOIH(D (B.7)
— le(VU}4 - ,64) = AQU)Q + Agwo. '
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Here follow all the equations satisfied by, , A2, 3,, By, wy and w, so that (B.5)-
(B.7) hold:

By = Vup, (B.8)
B, = Vwy+ MV, (B.9)
(LK — Ag)wy = 0, (B.10)
(LRY = No)wo = Aswp + ($A0A + div MEEMEEV )y (B.11)

Equations (B.8) and (B.10) combined with the boundary conditiegs= 0 and 3, =
0 are solved by the eigen-pairsug, Ay) of the operatorLXL with Dirichlet boundary
conditionswy, = 0 and d,wy = 0 on Jw .

As for equation (B.11), for any pair of fixed tracgsand /, we can find (w,, A,)
satisfying (B.11) together with the boundary conditiong = ¢ and 0,w, = h on Jw.
In order to satisfy the Dirichlet condition8, , w. are zero ondw , and taking (B.9) into
account, we may choose

g=0 and h=—-0,M*"Vuy. (B.12)

Then w, and the normal component @, are zero ondw . As for the tangential compo-
nent of 3, , since d,w, = 0 on Jw, its trace is equal to the tangential compongnof
MXLVw, , which has no reason to be zero.

In the isotropic case the traces?y of the tangential component o8, + 23, is
compensated by the first boundary layer term in the expansion of the eigenvector: this term
has the forms?(¥, eW)(s, R), where we recall thaf? is the scaled variable/c . Here,
we simply obtain thati’ = 0, the normal componen¥,, of ¥ is zero, and for each
s € Ow the tangential componenk,(s, -) is the exponentially decreasing solution of the
boundary value problem oR :

—Ce02U, + U, =0, VYR>0, and U,(s,0)=—x(s). (B.13)

This fits perfectly with the loading case in [1, 2].

In the general orthotropic case, we do not have any more this uncoupling between
normal and tangential components Wf. The first boundary layer term has still the form
e?(W,eW)(s, R) and the triple(¥, W)(s,-) solves the system

R(s;02)(¥, W) =0, VYR>0,
where, if R(0;,0,) denotes the systerf3, w) — (—MXL8 + 8 — Vw, div 8 — Aw),
R(s;0r) := R(ni(s)0r,n2(s)0r) -

Then there exists a unique exponentially decreasing solution of the boundary value problem
on R, :

R(s;0r) (¥, W)=0, VR>0, and Vs, 0)=—x(s). (B.14)

$1f Ao is asimple eigenvaluef LK. The case of multiple eigenvalues has to be treated like above,
see Appendix A.
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But now, in generall,, and W are not= 0. As the power ofe in front of W is 3, the
trace of I does not disturb the trace af, + 2w, . This means that we keep the choice
of the boundary conditiory = 0 for w, in (B.12). But we have to modify: by setting
instead ofh = —9,, MX:Vwy :

h = —0,M**Vwy — V¥, (s,0).
Then the expansion of the R-M eigenvector starts with
By + 2B, +2W(s, R) + O(%) and  wy + c%wy + O(¥)
and that of the eigenvalue with
Ao +2Ay + O(e%),

where A, is influenced by the boundary layer only in the non-isotropic case (Whéas
to be modified).
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