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Abstract. The eigen-frequencies of elastic three-dimensional thin plates are addressed and
compared to the eigen-frequencies of two-dimensional Reissner-Mindlin plate models obtained by
dimension reduction. The qualitative mathematical analysis is supported by quantitative numerical
data obtained by the p-version finite element method.

The mathematical analysis establishes asymptotic expansion for the eigen-frequencies in power
series of the thickness parameter. Such results are new for orthotropic materials and for the
Reissner-Mindlin model. The 3-D and R-M asymptotics have a common first term but differ in
their second terms.

Numerical experiments for clamped plates show that for isotropic materials and relatively
thin plates the Reissner-Mindlin eigen-frequencies provide a good approximation to the three-
dimensional eigen-frequencies. However, for some anisotropic materials this is no longer the case,
and relative errors of order of30% are obtained even for relatively thin plates. Moreover, we
showed that no shear correction factor is known to be optimal in the sense that it provides the best
approximation of the R-M eigen-frequencies to their 3-D counterparts uniformly (for all relevant
thicknesses range).

1 INTRODUCTION

Accurate computation of eigen-frequencies of elastic domains, is of high engineering im-
portance because the smallest frequencies have to be higher compared with any frequency
of a dynamically applied load. Otherwise resonance may occur, resulting in the amplifica-
tion of the eigen-mode and finally the destruction of the elastic structure.

This is of particular importance in three-dimensional thin domains, such as three-
dimensional plates, where the smallest eigen-frequencies are proportional to the thickness.
It has been shown in [4, 5] that for isotropic thin plates the smallest frequencies are asso-
ciated with bending modes. Therefore, we address herein these bending eigen-frequencies



in a fully three-dimensional domain.

Due to the complexity of a three-dimensional eigen-analysis, much attention has been
given historically to the derivation of plate-models, which can be understood as an applica-
tion of dimensional reduction principles. These plate models are aimed to approximately
solve the three-dimensionalbendingeigen-problem by a two-dimensional formulation. In
engineering practice the Reissner-Mindlin (R-M) plate model is frequently used as an ap-
proximation of the 3-D thin plate domain, and is assumed to be valid for thicknesses of
plates under5% compared with other dimensions.

In this paper, our aim is a twofold investigation of the quality of approximation of 3-D
eigen-frequencies by R-M eigen-frequencies:

1. By a theoretical asymptotic analysis, we obtain after [9, 5] a power series expan-
sion in the thickness parameterε of both 3-D eigen-frequencies and R-M eigen-
frequencies.

2. By a numerical implementation, we quantify the deviation from R-M with respect to
3-D, in a variety of situations for small but non-zeroε ’s.

The outcome of point 1. is that the 3-D and R-M eigen-frequency asymptotics have
the same first termsas ε → 0 , namely ε times the corresponding eigen-frequencyλ1 of
the limit Kirchhoff-Love model (K-L). Butthe second termsin the asymptotics, as far as
lateral clamped boundary conditions are considered, arealways different: indeed we prove
in this paper that this second term for the 3-D eigen-frequency has the formε2 times a
positive quantityλ2 , whereas for the R-M model, the term inε2 is zero.

Thus, from a strict mathematical point of view, the R-M approximation is not better
than the K-L approximation, and in both cases, this is an order1 approximation. From a
practical point of view, the order of magnitude of the quantityλ2 with respect toλ1 is
of importance, since the relative error of approximating a 3-D plate by the R-M model is
equivalent toελ2/λ1 as ε approaches zero, but is still non-zero.

The quantityλ2 is a coupling term between inner (boundary layer) and outer (regular)
parts of a two-scale expansion of eigen-vectors. Moreover, inλ2 there is a multiplica-
tive factor cb which depends only on the material law of the 3-D plates. For example,
for isotropic materials, we show that this factor is an increasing function of the Poisson
coefficient ν . For special non-isotropic materials, we show that this factor is much larger.

That is why we extend the results of [9, 5] to orthotropic materials. The multiplicative
factor appears now as a density along the lateral boundary. We also present the correspond-
ing construction of R-M model, and the asymptotics of eigen-frequencies. What is known
about asymptotics for the R-M model is [1, 2] where it is proved that in the loading case,
there is no boundary layer at the order1 , but that it starts at the order2 . This is exactly
the reason for the absence for the term of orderε2 in the eigen-frequency asymptotics.

Numerical experiments with clamped plates are provided. These results quantify the in-
fluence of the material law and the shape of the mid-surface on the R-M eigen-frequencies
as compared to their 3-D counterparts. It is shown that for isotropic materials and relatively
thin plates, the difference is very small, whereas for orthotropic materials the difference in
the first eigen-frequency of the R-M plate model and the corresponding eigen-frequency of
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the fully 3-D plate can be as large as 30%. Moreover, we showed that no shear correction
factor is known to be optimal in the sense that it provides the best approximation of the
R-M eigen-frequencies to their 3-D counterparts uniformly (for all thicknesses range).

In section 2 we provide the mathematical description of the plate models (3-D and R-M
model), and in particular summarize the asymptotic behavior of the eigen-frequencies (in
terms ofε ). Details about the mathematical analysis on the derivation of the asymptotics of
the eigen-frequencies for orthotropic 3-D plates is given in Appendix A and for orthotropic
R-M model in Appendix B. The model problems used in the numerical experimentation
are described in section 3, followed by the numerical results in section 4. Summary and
conclusions are given in section 5.

2 3-D PLATE VIS REISSNER-MINDLIN PLATE MODEL

2.1 Eigen-Frequencies of the 3-D Plate

Consider a thin elastic domainΩ of thickness2ε as shown in Figure 1, defined as follows:

Ω = ω × (−ε,+ε), with ω ⊂ R
2 a regular domain.

The coordinates arex = (x1, x2, x3) and the mid surfaceω lies in the platex1 - x2 , while
x3 is in the normal direction. As a representative case we restrict our attention to clamped

2ε
x1

x2

x3

Ω

Figure 1: Typical plate of interest and notations.

boundary conditions on the lateral edges. More precisely, we assume that the upper and
lower surfaces of the plate, i.e.ω×{−+ε} , are traction free, and that the lateral edges of the
plate ∂ω × (−ε, ε) are clamped, i.e.u = 0 . Here u = (u1(x), u2(x), u3(x))T , denotes
the displacement field.

We denote bye the engineering notationof the linear strain tensor. Accordingly,
we use the index notation:(e1, e2, e3, e4, e5, e6) = (e11, e22, e33, 2e23, 2e13, 2e12) where
eij = 1

2
(∂iuj + ∂jui) , and ∂i ≡ ∂/∂xi .

Orthotropic (or isotropic) homogeneous materials are considered, hence the stress ten-
sor σ is given by Hooke’s law

σ = [C] e, (2.1)
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where [C] is a 6× 6 (positive) symmetric matrix associated with the 3-D material consti-
tuting the domain, in the form:

[C] =



C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

C55 0
C66

 (2.2)

In case the material is isotropic then

C11 = C22 = C33 =
E(1 − ν)

(1 + ν)(1 − 2ν)
, C12 = C13 = C23 =

Eν

(1 + ν)(1 − 2ν)

and

C44 = C55 = C66 =
E

2(1 + ν)
.

HereE is the Young modulus andν is the Poisson ratio.

Denoting the material density byρ , the sought vibration eigen-frequenciesλ of the
three-dimensional plate are the solutions of the following weak eigen-problem:

Seek λ > 0 and 0 �= u ∈ V(Ω) , such that∀v ∈ V(Ω),∫∫
ω

∫ ε

−ε

e(u)T[C] e(v) dx1dx2dx3 = λ2

∫∫
ω

∫ ε

−ε

ρuT · v dx1dx2dx3 (2.3)

where
V(Ω) =

{
v ∈

[
H1(Ω)

]3
; v = 0 on ∂ω × (−ε, ε)

}
,

H1(Ω) being the usual Sobolev space.

The eigen-frequencies form an increasing sequencen �→ λε
n of positive numbers

where we agree to repeat each eigen-frequency according to its multiplicity. There is no
finite accumulation point. The superscriptε indicates that we fix the mid-surfaceω and
that we consider the eigen-frequencies as functions of the thicknessε .

Let S be the transverse symmetry operator defined foru = (u1, u2, u3) by:

u
S�−→

(
(x1, x2, x3) �→

(
u1(x1, x2,−x3), u2(x1, x2,−x3), −u3(x1, x2,−x3)

))
. (2.4)

We note that∫∫
ω

∫ ε

−ε

ρuT · v dx1dx2dx3 =

∫∫
ω

∫ ε

−ε

ρ(Su)T · Sv dx1dx2dx3

and that for orthotropic materials∫∫
ω

∫ ε

−ε

e(u)T[C] e(v) dx1dx2dx3 =

∫∫
ω

∫ ε

−ε

e(Su)T[C] e(Sv) dx1dx2dx3.

We deduce that each eigen-space determined by (2.3) can be split as the direct sum of a
bendingsubspace (i.e. where the elementsu satisfy Su = −u , in other wordsu are
anti-symmetric in respect to the mid planeω ) and amembraneor stretchingsubspace
(where u satisfy Su = u ). Therefore for each fixedε , each eigen-frequency in the
sequence(λε

n)n is either bending or membrane.
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2.2 Isotropic 3-D Plate

For ease of presentation we fix the material densityρ ≡ 1 . For isotropic materials it has
been shown in [4, 5] that for each fixed rankn , for ε small enoughλε

n is a bending
eigen-frequency and thatλε

n/ε tends to thenth eigen-frequency, denotedλKL
n , of the

Kirchhoff-Love dimensionally reduced model

LKL :=
E∆2

3(1 − ν2)
: H2

0(ω) −→ H−2(ω). (2.5)

In [5] it is proved thatλε
n has a power series expansion in terms ofε , i.e. there exist real

coefficientsλn,i for i ≥ 1 such that for anyk :

λε
n = ελn,1 + ε2λn,2 + . . .+ εkλn,k + O(εk+1). (2.6)

Here, of course,λn,1 coincides withλKL
n . Following the analyses of [5] (and see also [9,

§8]) we find the first two terms of the expansion of thescaled eigen-valuesΛε
n

Λε
n := (λε

n/ε)
2 = Λn,0 + εΛn,1 + . . .+ εkΛn,k + O(εk+1). (2.7)

The first termΛn,0 is the thenth eigen-value of the Kirchhoff-Love model, i.e.(λKL
n )2 .

As for the second termΛn,1 , it is equal to

Λn,1 =
E

3

∫
∂ω

cb(ν) |(∂2
1 + ∂2

2)ζn,0|2 ds, (2.8)

whereζn,0 ∈ H2
0(ω) is thenth eigen-function∗ of the Kirchhoff-Love modelLKL normal-

ized in L2(ω) , and cb is a coupling constant related to the structure of the first boundary
layer term in the expansion of 3-D eigen-vectors. This coupling constant is positive and
depends only onν . See details in Appendix A.

We immediately deduce thatλn,2 = Λn,1/(2
√

Λn,0) , and obtain:

λn,2 =
E

6λn,1

∫
∂ω

cb(ν) |(∂2
1 + ∂2

2)ζn,0|2 ds. (2.9)

2.3 Orthotropic 3-D Plate

Stricto sensu, the eigenvalue expansion (2.7) is not known for non-isotropic plates. Never-
theless,for clamped lateral boundary conditions, it is possible to use all constructions in
[5] and to extend the results of isotropic plates to orthotropic plates. Details are provided
in Appendix A.

We still fix the density toρ ≡ 1 . Then for fixedn , the nth eigen-frequency has a
power series expansion with respect toε in the form (2.6) whereλn,1 = λKL

n with the nth

∗When λKL
n is a multiple eigen-frequency ofLKL , according to the constructions of [5], extra criteria

have to be applied for the determination ofζn,0 : the pair (ζn,0,Λn,1) has to be an eigen-pair of a finite
positive symmetric eigen-problem, see Appendix A.
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eigen-frequencyλKL
n of theKirchhoff-Love dimensionally reduced modelLKL associated

with material matrix[C] on ω , cf [6]:

LKL : H2
0(ω) −→ H−2(ω)

ζ �−→ 1
3

(
C̃11∂

4
1 + C̃22∂

4
2 + 2(C̃12 + 2C̃66)∂

2
1∂

2
2

)
ζ,

(2.10)

where for i, j ∈ {1, 2, 6} , C̃ij is defined as

C̃ij = Cij −
Ci3Cj3

C33

. (2.11)

Thus, according to (2.6),λε
n/ε → λn,1 , as ε → 0 , i.e. the nth eigen-frequency overε

must approach a constant value as the plate thickness tends to zero. This will be visualized
by numerical examples.

As for the second termλn,2 in (2.6), it has an expression like (2.9) but with apositive
coupling functiondefined on∂ω and depending on the material matrix[C] :

λn,2 =
1

2λn,1

∫
∂ω

cb([C] ; s) |(∂2
1 + ∂2

2)ζn,0|2 ds. (2.12)

Therefore we expect, as noticed in [9], thatε �→ λε
n/ε is increasing forε small

enough. This will be visualized by numerical examples.

2.4 Eigen-frequencies of the Reissner-Mindlin Plate Model

For completeness of presentation, we provide herein the derivation of the weak eigen-
problem for the R-M plate model made of orthotropic materials.

The displacement field under the R-M assumptions can be represented as:
u1

u2

u3

 =


−x3β1(xα)
−x3β2(xα)
w(xα)

 (2.13)

where the indexα denotes the values{1,2} corresponding to the in-plane variables. The
in-plane functionsβ1(xα) and β2(xα) have the physical interpretation of rotations, while
the functionw(xα) denotes the deflection of the mean surface of the plate. R-M displace-
ment field assumption implies thatnormals to the mean surfaceω remain straight lines
after deformation, but not necessary normals. Thus, the strain vectore is:

e1
e2
e3
e4
e5
e6


=



−x3∂1β1

−x3∂2β2

0
(∂2w − β2)
(∂1w − β1)

−x3(∂2β1 + ∂1β2)


(2.14)
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and as noticede3 = 0 .

The second important assumption for constructing the R-M plate model, is thatσ3 is
negligible. Therefore one introduces the constraintσ3 = 0 in the model. Writing (2.1) in
index notation, we obtain:

σi = Cijej i, j = 1, . . . , 6. (2.15)

Due to the constraintσ3 = 0 , i.e. C3jej = 0 , we substitutee3 by −
∑

k �=3C3kek/C33 in
(2.15) except fori = 3 , and we obtain:

σi =
∑
j �=3

(
Cij −

Ci3C3j

C33

)
ej, i, j = 1, 2, 4, 5, 6, (2.16)

We note that fori, j = 1, 2, 6 , the new material coefficientsCij − Ci3C3j

C33
are nothing

else thanC̃ij already introduced in notation (2.11). Based on (2.16) we obtain a mod-
ified Hooke’s law, connecting the stress vector(σ1, σ2, σ4, σ5, σ6) with the strain vector
(e1, e2, e4, e5, e6) . The 5 × 5 material matrix[C̃] = (C̃ij)i,j=1,2,4,5,6

obtained is:

[C̃] =



C11 − C2
13

C33
C12 − C13C23

C33
0 0 0

C22 − C2
23

C33
0 0 0

C44 0 0

C55 0

C66


(2.17)

To account for a correction in the shear stressesσ13 and σ23 to better represent the fully
3-D stresses, the material matrix entries̃C44 and C̃55 are changed by introducing the
so-called shear correction factorκ :

C̃44 = κC44 C̃55 = κC55

By properly chosenκ , either the energy of the R-M solution, or the deflectionw can
be optimized with respect with the fully 3-D plate. The smallest theε , the smallest the
influence ofκ on the results. For the isotropic case two possibleκ ’s are (see details in
[3]):

κEnergy =
5

6(1 − ν)

κDeflection =
20

3(8 − 3ν)

For modal analysis, it is not clear that an optimal value ofκ is available. A value ofκ =
5/6 is frequently used in engineering practice. It is important to note that for orthotropic
materials the value ofκ is set to 1.

Defining the vectorβ = (β1(xα), β2(xα))T and the vectorη = (η1(xα), η2(xα))T ,
and assumingρ ≡ 1 as in the previous subsections, we can introduce the following two
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bi-linear forms for the R-M plate model:

A(β, w,η, v) =
ε3

3

∫∫
ω

C̃11∂1β1 ∂1η1 + C̃12(∂1β1 ∂2η2 + ∂2β2 ∂1η1) (2.18)

+ C̃22∂2β2 ∂2η2 + C̃66(∂2β1 + ∂1β2)(∂2η1 + ∂1η2) dx1dx2

+ ε

∫∫
ω

C̃44(∂2w − β2)(∂2v − η2) + C̃55(∂1w − β1)(∂1v − η1) dx1dx2

M(β, w,η, v) =
ε3

3

∫∫
ω

(β1η1 + β2η2) dx1dx2 + ε

∫∫
ω

wv dx1dx2 (2.19)

Using the above definitions, the weak eigen-problem for theclampedR-M plate model is:

Seek λ̃ > 0 and 0 �= (β, w) ∈ VRM(ω) , such that

A(β, w,η, v) = λ̃2M(β, w,η, v), ∀ (η, v) ∈ VRM(ω), (2.20)

where
VRM(ω) =

{
(β, w) ∈

[
H1(ω)

]3
; β1 = β2 = w = 0 on ∂ω

}
.

The solution of (2.20) provides the Reissner-Mindlin eigen-frequencies, which form
for each ε an increasing sequence denoted by(λ̃ε

n)n , where we do the same convention
of repeating according to the multiplicity as before.

By similar (and much easier) constructions than in [5], we can prove that thenth R-M
eigen-frequency has a power series expansion inε

λ̃ε
n = ελ̃n,1 + ε2λ̃n,2 + . . .+ εkλ̃n,k + O(εk+1). (2.21)

Here, the first coefficient̃λn,1 is equal to its counterpartλn,1 in (2.6), i.e. thenth K-L
eigen-frequency.

In the 3-D eigen-frequency asymptotics (2.6), the presence of a non-zero second coeffi-
cient λn,2 is a consequence of the presence of the in-plane boundary layer componentsΦ1

α

at the second rank in (A.2). But, for theclamped R-M model, it is known, see [1, 2], that
the boundary layer series starts one rank further. That is why we can prove, see Appendix
B, that

λ̃n,2 = 0. (2.22)

Therefore, from the asymptotic expansion point of view, the approximation of the 3-D
eigen-frequencies by R-M eigen-frequencies is only correct at the order1 .

3 FRAMEWORK OF NUMERICAL INVESTIGATION

Of major interest is the question whether the R-M eigen-frequencies are a good approxi-
mation of the 3-D eigen-frequencies. To address this question we define theRelative Error
for the nth eigen-frequency as follows:

δεn
def
=

λε
n − λ̃ε

n

λε
n

. (3.1)
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Relying on the previous qualitative mathematical theory, it is now natural for us to
address the following questions:

(a) How close are the R-M eigen-frequencies to their 3-D counterparts? Which shear
correction factor should be used so to obtain the “best” eigen-frequencies for the
R-M plate models? How small should be the ratio betweenε and the other plate
dimensions so that the R-M eigen-frequencies approximate well the 3-D ones?

(b) From asymptotics (2.12) and (2.22), we see that

δεn � ελn,2

λn,1

.

Thus the question is how big isελn,2 compared withλn,1 for small, but non-zero
ε ? Especially, are there material properties so thatλn,1 is of the same order of
magnitude asελn,2 for a given smallε ?

(c) In this connection, what is the influence of the geometrical shape of the plate boundary
and the material properties onλn,2 ?

To address the above questions, which are of quantitative nature, three-dimensional
plates are considered and analyzed from the numerical approximation point of view by the
p -version of the finite element method.

3.1 Three Dimensional Plates

We consider a rectangular plate, with or without a circular hole, having dimensions of
2 × 1 × 2ε , as shown in Figure 2. The lateral boundaries of the plate are clamped,u = 0

2

1
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11
11
11
11
11
11
11
11
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Figure 2: Rectangular plate under consideration.

along AEFG , and in the case of the plate with the hole also the boundaries along the
circular hole are clamped. Since only bending eigen-frequencies are sought, we have to
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consider anti-symmetric modes in respect tox3 . This is accomplished by taking as the
computational domain only the upper half of the plateε > x3 > 0 , with anti-symmetric
boundary conditionu1 = u2 = 0 on the entire mid surfacex3 = 0 . The first bending
eigen-frequency of the whole plate is symmetric in respect tox1 = 1 and x2 = 1/2
therefore it is exactly the one obtained as the first eigen-frequency of the one-eight compu-
tational domain. Thus, we further reduce the computational cost and compute the first three
eigen-frequencies which are symmetric alongx1 = 1 and x2 = 1/2 . The computational
domain is therefore one eight of the original plate, the shaded domainABCD (respec-
tively ABCC ′D for the plate with a circular hole), with clamped boundary conditions
along the lateral boundariesAB and AD (and CC ′ respectively), symmetric boundary
conditions along the other two lateral boundaries, i.e.u1 = 0 along BC and u2 = 0
along CD (resp.C ′D ), and anti-symmetric boundary conditions on the planex3 = 0 .

Four different material properties are investigated, two of which are isotropic and the
other two orthotropic. For all cases the density is taken asρ = 1 .

Name Young ModulusE Poisson ratioν
Isotropic 0.854 0.382
Almost Incompressible 1 0.49

Name C11 = C22 C12 C13 = C23 C33 C44 = C55 = C66

Strongly orthotropic 11 9.9 1 0.1 1
Orthotropic 3 1.5 1 0.5 1

Rectangular plate. Plate w. circ. holeR = 0.2

Plate w. cir. holeR = 0.3 Plate w. circ. holeR = 0.4

Figure 3: Finite element meshes for 3-D analysis withε = 0.1 .

A three dimensionalp -version finite element model is constructed having two elements
in the thickness direction,x3 , and three elements in thex1 and x2 directions. In the
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neighborhood of the edges, the mesh is graded so that there is an element of dimensionε
each. The finite element model is constructed parametrically so that the value ofε may
vary, and we change it from0.1 to 0.001 . For the plate with a circular hole, three radii
are analyzed:R = 0.2 , R = 0.3 andR = 0.4 . In Figure 3 the mesh used for the various
problems of interest is presented for plates of half thicknessε = 0.1 .

The p -level over each element has been increased from1 to 8 and the trunk space
has been used (see [10]). For the rectangular plate (with18 hexahedral elements) there
are 4068 degrees of freedom atp = 8 , and the eigen-frequencies are converged to within
a relative error of less than0.5% at p = 8 for most ε . An advantage of usingp -version
finite element methods is the possibility of having “needle elements” in the boundary layer
zone with aspect ratios as large as1000 without significant degradation in the numerical
performance. Anexponential convergence rateis obtained (due to the use of high-order
elements) and the convergence of the eigen-frequencies (the first three of them) has been
examined in order to evaluate the reliability of the numerical results.

In Figure 4 we present the finite element mesh for the case whereε = 0.01 . As
may be noticed the boundary layer elements are changed according to the plate thickness.
Although almost not visible, there are two elements across the thickness and one element
each of dimensionε in the neighborhood of the boundary.

Rectangular plate. Plate w. circ. holeR = 0.4

Figure 4: Finite element meshes for 3-D analysis withε = 0.01 .

All finite element computations are done within the finite element code Stress Check†.

3.2 R-M Plate Models

Finite element models of mid-surface of the 3-D plate have been constructed similar to
the 3-D meshes, where one fourth of the plate has been considered for computing the
symmetric eigen-frequencies. Again, a layer of one element along the plate boundary of
width equal toε is present. An example of the meshes for the R-M plate withε = 0.1 and
ε = 0.01 is shown in Figure 5. One can specify three different shear correction factors
used in conjunction with the R-M plate model made of an isotropic material:κEnergy ,
κDeflection or κ = 1 . For orthotropic material onlyκ = 1 is available in the code that we

† Stress Check is a trade mark of Engineering Software Research and Development, Inc., 10845 Olive
Blvd., Suite 170, St. Louis, MO 63141, USA
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Thickness 0.1 Thickness 0.01

Figure 5: Finite element meshes for the rectangular R-M plate model.

use. Again, we increase the polynomial degree over each element from1 to 8 and observe
an exponential convergence in the eigen-frequencies (usually less than0.1% relative error
for most ε values atp = 8 with 2816 degrees of freedom).

4 QUANTITATIVE COMPARISON BETWEEN 3-D AND R-M
EIGEN-FREQUENCIES

We give the results of numerical experimentations in the rectangular plate for the four
different material laws introduced in the previous section. Then we provide a few results
on the influence of the shape of the mid-surface.

4.1 The standard isotropic material

This subsection is devoted to the rectangular plate with the “isotropic” material properties.
We investigate which of the threeκ s, used for the R-M plate model, provide the closest
eigen-frequencies compared with their 3-D counterparts. We plot the first three symmetric
eigen-frequencies/ε vis the plate half thicknessε in Figure 6.

As expected by the mathematical analysis, indeedλn/ε → λn,1 as ε → 0 , and also
λ̃n → λn regardless of theκ used.

To better visualize the difference betweeñλn and λn we provide in Figure 7 the
relative errorδε1 for the first eigen-frequency for the three choices ofκ . The representation
of relative errorsδε2 and δε3 for the second and third eigen-frequencies is very similar.

12



�

��

��

��

��

��

��

����� ���� ��� �
�

��
�

�	
���

�	
���

�	
���

�	������

�	������

�	������

�	�����

�	�����

�	�����

�	�


�	�


�	�


Figure 6: First 3 symmetric eigen-frequencies for “isotropic” rectangular plate: 3-D vis
R-M model with differentκ s.

At the observation scale of Figure 7, it seems thatκDeflection is the “best” κ from the
three investigated, in the sense thatλ̃n is the closest toλn for all investigatedε . Again
at this observation scale, no linear dependence is visible (we cannot “see”λn,2 ).

Using κDeflection for the “isotropic” material, the relative error for the first three eigen-
frequencies is negligible (less than0.12% ) for thin plates with slander ratio of less than
1% , and for moderately thick plates (thickness about5% compared to other plate dimen-
sions) is smaller than0.2% .

Now, if we magnify the ordinates of Figure 7 by a factor100 , we obtain Figure 8,
where the expected increase of the eigen-frequency withε (due to the non-zero factor
λ1,2 ) is clearly visible. In this “asymptotic” region, the shear correction factorκEnergy is
the best one.

13
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Figure 7: Relative error for first eigen-frequency: 3-D vis R-M model with differentκ ’s.
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Figure 8: Zoom view of the relative error for first eigen-frequency: 3-D vis R-M model
with differentκ ’s.
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4.2 Almost Incompressible Materials.

The numerical values of the functionν �→ cb(ν) , see Appendix A, suggest that the dif-
ference betweenλn and λ̃n should be much more pronounced asν approaches0.5 .
Herein we investigate the rectangular plate discussed in subsection 4.1 only with “almost
incompressible” material properties. We provide in Figure 9 the relative error for the first,
second and third eigen-frequencies with theκDeflection which, for the standard isotropic
material, was the best one at medium scale. Comparing with Figure 7 one notices the more
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Figure 9: Relative error for first eigen-frequency: 3-D vis R-M model with differentκ ’s
of “almost incompressible material”.

pronounced difference between the R-M and 3-D eigen-frequencies as expected. In this
case, a relative error of almost0.7% is obtained for the first eigen-frequency atε ≈ 0.03 .

As ε → 0 , and as we compute higher eigen-frequencies by the finite element method
of a 3-D domain, the numerical errors increase. This numerical error is visible in Figure 9
for the third eigen-frequency atε < 0.003 .
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Figure 10: Zoom view of relative errors for first eigen-frequency of “almost incompressible
material”.
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4.3 Orthotropic Materials.

We herein investigate the influence of the material law (orthotropicity) on the eigen-fre-
quencies, based on the rectangular plate model. The material properties are these defined
as “orthotropic”, and in Figure 11 we present the first symmetric three eigen-frequencies
over ε vis ε for the 3-D and R-M plate. The relative error is presented in Figure 12. The
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Figure 11: First 3 symmetric eigen-frequencies for “orthotropic” rectangular plate: 3-D
vis R-M model.

relative error for the first eigen-frequency is around5% at ε ≈ 0.07 , and increases up to
8% around ε ≈ 0.18 . Although the behavior of the eigen-frequencies compared to the
“isotropic” plates is the same, we obtain herein a relative error which is larger by an order
of magnitude compared to the isotropic case.

Plotting the relative error visε (not logarithmic scale), forε < 0.03 , a linear curve
for ε→ 0 is visible as seen in Figure 13, supporting the asymptotic behavior (2.6).
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Figure 12: Relative error of first 3 symmetric eigen-frequencies: 3-D vis R-M model made
of “orthotropic material”.
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Figure 13: Relative error (linear graph) of first 3 symmetric eigen-frequencies: 3-D vis
R-M model made of “orthotropic material”.

18



4.4 Strongly Orthotropic Materials.

For the “strongly orthotropic” plate, the boundary layer effect on the eigen-frequencies
should be the most pronounced. We present in Figure 14 the first three symmetric eigen-
frequencies overε vis ε , as obtained from the 3-D analysis compared to these obtained
by the R-M plate analysis withκ =1. The 3-D eigen-frequencies overε clearly tend to
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Figure 14: First 3 symmetric eigen-frequencies overε for “strongly orthotropic” rectan-
gular plate: 3-D vis R-M model.

a limit as ε → 0 , and the valuesλn/ε increase asε increase up toε ≈ 0.05 . The
relative error is presented in Figure 15. A very large relative error of25% is visible for the
first eigen-frequency atε = 0.1 . This is a significant deviation whereas the R-M model
underestimates the “true” 3-D by25% , and is attributed to the boundary layer effect.
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Figure 15: Relative error of first 3 symmetric eigen-frequencies: 3-D vis R-M model made
of “strongly orthotropic material”.
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4.5 The Effect of the Shape of∂ω .

The mathematical analysis demonstrates that the 3-D eigen-frequencies are clearly sen-
sitive to the shape of the mid-surface boundary. To quantify this effect we analyze the
rectangular plate having a hole in its center of increasing radii, as presented in Figure 3.
Since the most pronounced effect between the 3-D and R-M plate eigen-frequencies is ob-
served for the ”strongly orthotropic” material, we herein use same material properties. The
lowest (first) eigen-frequency overε vis ε is plotted in Figure 16 for the rectangular plate
without the whole, and for the plate with a hole of radiusR = 0.2, 0.3, 0.4 .
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Figure 16: First eigen-frequency for “strongly orthotropic” plate with a hole of different
radii: 3-D vis R-M model.

The influence of the hole (the boundary layer effect is increased) is better seen when
observing the relative error in the first eigen-frequency as a function ofε in Figure 17.

One notices that for the plate with a hole withR = 0.3 the relative error may be beyond
30% for ε ≈ 0.07 . On the other hand, there does not seem to be a clear connection
between the length of the clamped boundary layer and the increase in the relative error. In
fact the relative error is larger for the plate without the hole in comparison with the plate
having a hole of radiusR = 0.2 , however, the situation is reversed when comparing the
rectangular plate with the one having a hole of radiusR = 0.3 .
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Figure 17: Relative error of first eigen-frequency for “strongly orthotropic” plate with a
hole of different radii.
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5 SUMMARY AND CONCLUSIONS

The eigen-frequencies computed using the Reissner-Mindlin plate model are frequently
used in engineering practice as an approximation to the three dimensional plate eigen-
frequencies for relatively thin elastic plates. In this paper, we have provided explicitly the
asymptotic behavior of the eigen-frequencies as the thickness of the plate goes to zero,
both for the R-M and 3-D plates made of either isotropic or orthotropic materials. The
results for R-M and 3-D orthotropic plates are new. The 3-D and R-M asymptotics have a
common first term but differ in their second terms.

The qualitative mathematical description is supported by quantitative numerical data
obtained by thep -version finite element method for clamped plates. It was shown that
for isotropic materials and relatively thin plates the Reissner-Mindlin eigen-frequencies
provide a good approximation to the three-dimensional eigen-frequencies. It was also been
demonstrated that for isotropic materials, no shear correction factor is known to be optimal
in the sense that it provides the best approximation of the R-M eigen-frequencies to their
3-D counterparts uniformly (for all thicknesses range).

For some orthotropic materials we have shown relative errors between the R-M eigen-
frequencies and their 3-D counterparts of an order of30% even for relatively thin plates.
This imposes a serious question mark on the relevance of the R-M eigen-analysis for plates
made of orthotropic material. We also studied the influence of the shape of the mid-surface
boundary on the errors in R-M eigen-frequencies.

A 3-D EIGEN-VALUES: ASYMPTOTICS FOR ORTHOTROPIC PLATES

Herein, the results and constructions of [5], which are valid for isotropic materials, are
adapted to orthotropic materials. We explain in details the formula for the second term in
the asymptotics, which is left implicit in [5].

A.1 Third order Ansatz

Let X3 := x3/ε be the scaled transverse variable. Let(r, s) be boundary fitted coordi-
nates along∂ω in the mid-plane, withr the inward distance to∂ω and s an arc-length
coordinate along∂ω . Then−∂r is the outward normal derivative along∂ω . Let further-
moreR := r/ε be the scaled distance to the boundary∂ω .

For ε small enough, there exists a 3-D eigenvectoruε = (uε
1, u

ε
2, u

ε
3) associated with

λε
n with a two-scale asymptotic expansion (outer and inner expansion terms) starting with

uε
3 = ζ[ε] + ε2

(
X2

3

2
− 1

6

)
(C13∂

2
1 + C23∂

2
2)ζ[ε]

C33

+ ε2(Φ1
3ζ[ε])(s,R,X3) + O(ε3) (A.1)

and for the in-plate components,α = 1, 2

uε
α = −εX3∂αζ[ε] + ε2(Φ1

αζ[ε])(s,R,X3) + O(ε3) (A.2)
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where the“generator” ζ[ε] = ζ[ε](x1, x2) = ζ0 + εζ1 + ε2ζ2 + . . . is a (scalar)formal
series solutionof the dimensionally reduced eigenvalue equation (A.3) below, andΦ1 :
ζ �→ (Φ1ζ)(s,R,X3) is a 3-component boundary layer operator.

The PDE operatorP (∂1, ∂2) in the second term of (A.1) can be found in the asymp-
totics formonoclinicmaterials in [6,§2.3]. Note that for isotropic materials, this operator
reduces to:

C13∂
2
1 + C23∂

2
2

C33

=
ν

1 − ν (∂2
1 + ∂2

2).

The equation to be satisfied byζ[ε] in ω has the form

L[ε]ζ[ε] = Λ[ε]ζ[ε] in ω. (A.3)

Here L[ε] is an operator formal series
∑

j≥0 ε
jLj . The term of order0 is L0 = LKL

defined in (2.5),cf [6, §2.3] andL1 = 0 . Solution of the eigen-problem (A.3) provides
the seriesΛ[ε] (terms of the asymptotics ofΛε

n ) as defined in (2.7). Equation (A.3) is
completed by boundary conditions on∂ω which can also be written as a formal series
equation in the formγ[ε]ζ[ε] = 0 .

A.2 The first two eigen-problems for the generator

As we are interested inΛ0 and Λ1 , it is enough to consider the two first terms inζ[ε] , say
ζ0 + εζ1 . The boundary conditions onζ0 + εζ1 are obtained by considering the Ansatz
(A.1)-(A.2), and looking for zero Dirichlet traces up to the orderε2 .

Considering the first terms in (A.1)-(A.2), we see that the boundary conditions onζ0
are ζ0 = 0 and ∂rζ0 = 0 on ∂ω . With the first relation obtained from (A.3) we have

LKLζ0 = Λ0ζ0 in ω and ζ0, ∂rζ0 = 0 on ∂ω. (A.4)

In order to obtain the boundary conditions for the next term in the asymptotics,ζ1 , one
has to recall the procedure for obtaining the first boundary layer termΦ1ζ0 .

Let B(∂1, ∂2, ∂3) andG(∂1, ∂2, ∂3) be the interior operator and the traction operators
on the upper and lower faces of the plate, associated with the left hand side of (2.3). Let
moreover

(
n1(s), n2(s)

)
be the components of the inward unit normal to∂ω . Then there

holds
∂1 = n1∂r + n2∂s and ∂2 = n2∂r − n1∂s on ∂ω.

For each fixeds ∈ ∂ω , the leading boundary layer operators are defined as

B(s; ∂R, ∂X3) := B(n1(s)∂R, n2(s)∂R, ∂X3) in the half-strip(0,∞) × (−1, 1)

and

G(s; ∂R, ∂X3) := G(n1(s)∂R, n2(s)∂R, ∂X3) on upper and lower faces(0,∞) × {−+1} .
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For each fixeds ∈ ∂ω , there exists a unique exponentially decreasing 3-component vector
ϕ1(R,X3) = ϕ1(s;R,X3) and two real numbersγb = γb(s) and γ′b = γ′b(s) such that
the mixed boundary value problem in the half-strip

B(s)ψ = 0 in (0,∞) × (−1, 1),

G(s)ψ = 0 on (0,∞) × {−+1},
ψ = −(0, 0,

X2
3

2
− 1

6
)T on {0} × (−1, 1).

has a solution of the form (when written in normal-, tangential-to-∂ω and vertical local
components)

ψ = ϕ1 + γb

 −X3

0
R

 + γ′b

 0
0
1

 .
Then the first boundary layer operatorζ �→ Φ1ζ is defined by

(Φ1ζ)(s,R,X3) =
(C13∂

2
1 + C23∂

2
2)ζ

C33

∣∣
∂ω

(s) ϕ1(s;R,X3)

and the boundary conditions onζ1 are obtained by requiring that the Dirichlet trace of the
components (A.1) and (A.2) of the Ansatz is aO(ε2) and O(ε3) respectively:

ζ1 = 0, ∂rζ1 =
(C13∂

2
1 + C23∂

2
2)ζ0

C33

∣∣
∂ω

(s) γb(s) on ∂ω. (A.5)

These boundary conditions have to be combined with the2nd equation arising from (A.3):

LKLζ1 = Λ0ζ1 + Λ1ζ0. (A.6)

A.3 Solution of the first two eigen-problems for the generator

The first eigen-problem is (A.4). Its solutions are obviously the eigen-pairs(ζ0,Λ0) of the
fourth-order operatorLKL with Dirichlet conditions. Let us fix such aΛ0 and let E be
the corresponding eigen-space.

The solution of the next eigen-problem (A.5)-(A.6) is subject tocompatibility condi-
tions since LKL − Λ0 is not invertible. The Fredholm alternative can be formulated by
integrating by parts equation (A.6) against any elementζ ′0 ∈ E , that is

0 =

∫∫
ω

LKLζ1ζ
′
0 − Λ0ζ1ζ

′
0 − Λ1ζ0ζ

′
0 dx1dx2 (A.7)

where we integrate by parts four times the term
∫∫
LKLζ1ζ

′
0 . Since ζ ′0 belongs toH2

0(ω)
and ζ1 to H1

0(ω) , we are left with the only term−
∫

∂ω
∂rζ1 P

′ζ ′0 , whereP ′ is the second
order operator‡

P ′(s; ∂1, ∂2) =
1

3

(
n2

1C̃11∂
2
1 + n2

2C̃22∂
2
2 + 2(C̃12 + 2C̃66)n1n2∂1∂2

)
.

‡We have used the relations∂αζ1 = nα∂rζ1 valid on ∂ω for α = 1, 2 , since ∂sζ1 = 0 on ∂ω .
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And we know from (A.5) that

∂rζ1 = γb(s)P (∂1, ∂2) =
C13∂

2
1 + C23∂

2
2

C33

ζ0 .

Then we deduce from (A.7), together with the equationsLKLζ ′0 = Λ0ζ
′
0 :

0 =

∫
∂ω

γb(s)Pζ0 P
′ζ ′0 ds+

∫∫
ω

Λ1ζ0ζ
′
0 dx1dx2. (A.8)

Using that for any elementζ ∈ H2
0(ω) , there holds∂α∂βζ = nαnβ∂

2
r on ∂ω , and setting

cb([C] ; s) := −γb(s)
n4

1C̃11 + n4
2C̃22 + 2(C̃12 + 2C̃66)n

2
1n

2
2

3

n2
1C13 + n2

2C23

C33

(A.9)

we obtain that, to be associated with a pair(ζ1,Λ1) , an elementζ0 ∈ E has to satisfy for
all ζ ′0 ∈ E ∫

∂ω

cb([C] ; s) ∂2
r ζ0 ∂

2
r ζ

′
0 ds = Λ1

∫∫
ω

ζ0 ζ
′
0 dx1dx2, (A.10)

which means that(ζ0,Λ1) is an eigen-pair of the symmetric eigen-problem (A.10). The
positivity of the function−γb(s) can be proved by the same arguments as in [7,§6.2].
The positivity of the other functions in (A.9) constitutingcb results from the positivity of
the material matrix[C] .

Noting that for ζ ∈ H2
0(ω) , there holds∂2

r ζ = ∆ζ on ∂ω , we obtain formula (2.12)
in the case whenΛ0 is a simple eigenvalue. For isotropic materials, the “constant”cb(ν)
introduced in (2.8) is plotted forν ∈ [0, 0.5) in Figure 18. It looks very much like the one
plotted in [9].

For non-isotropic materials,cb([C] ; s) also depends ons via the orientation of the ma-
terial fibers with respect to the boundary at points . Considering(n1, n2) = (cos θ, sin θ) ,
we may considercb([C]) as a functioncb([C] ; θ) of θ . For both orthotropic and strongly
orthotropic materials used in our computations, the functionθ/π �→ cb([C] ; θ) is plotted
for θ/π ∈ [0, 1] in Figure 19. We note thatcb takes larger values for the orthotropic mate-
rial than for isotropic materials, and still larger values for the strongly orthotropic material.
The period1/2 is due to the symmetries of our materials.

The computations for Figures 18 and 19 are done with the Finite Element library
MÉLINA [8].

26



0 0.125 0.25 0.375 0.5
0

0.05

0.1

Figure 18: The “constant” cb(ν) as a function ofν for isotropic materials.
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Figure 19: The functionθ/π �→ cb([C] ; θ) for both orthotropic materials.

B R-M EIGEN-VALUES: ASYMPTOTICS FOR ORTHOTROPIC PLATES

In this Appendix, we describe the first steps of the asymptotic analysis for the R-M eigen-
pairs, solution of (2.20). In order to have simpler formulations of the underlying operators,
we assume, which introduces no essential restriction,

C̃44 = C̃55 = 1.
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On the other hand we define the following2 × 2 bi-dimensional elasticity systemMKL

β �−→MKLβ =
1

3

{
C̃11∂

2
1β1 + C̃12∂1∂2β2 + C̃66(∂

2
2β1 + ∂1∂2β2)

C̃22∂
2
1β2 + C̃12∂1∂2β1 + C̃66(∂

2
1β2 + ∂1∂2β1).

(B.1)

We note that the systemMKL has the following relation with the K-L operatorLKL de-
fined in (2.5)

divMKL∇ = LKL. (B.2)

Then the eigen-problem (2.20) can be written in the form{
−ε3MKLβ − ε(∇w − β) = 1

3
ε3λ̃2β,

−ε div(∇w − β) = ελ̃2w,
(B.3)

with the Dirichlet boundary conditions

β1 = β2 = w = 0 on ∂ω.

Setting λ̃2 = ε2Λ , we obtain that (B.3) is equivalent to{ −ε2MKLβ − (∇w − β) = 1
3
ε4Λβ,

− div(∇w − β) = ε2Λw.
(B.4)

As there are onlyevenpowers ofε in (B.4) we start with even Ans̈atze: for Λ ,

Λ = Λ0 + ε2Λ2 + . . .

and for β and w

β = β0 + ε2β2 + ε4β4 + . . . and w = w0 + ε2w2 + ε4w4 + . . .

Using these Ans̈atze in (B.4) and identifying the powers ofε we find systems of equations
on Λk , βk and wk , the three first ones of which are{ −(∇w0 − β0) = 0,

− div(∇w0 − β0) = 0,
(B.5)

{ −MKLβ0 − (∇w2 − β2) = 0,

− div(∇w2 − β2) = Λ0w0,
(B.6)

{ −MKLβ2 − (∇w4 − β4) = 1
3
Λ0β0,

− div(∇w4 − β4) = Λ0w2 + Λ2w0.
(B.7)
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Here follow all the equations satisfied byΛ0 , Λ2 , β0 , β2 , w0 and w2 so that (B.5)-
(B.7) hold:

β0 = ∇w0 , (B.8)

β2 = ∇w2 +MKL∇w0 , (B.9)

(LKL − Λ0)w0 = 0 , (B.10)

(LKL − Λ0)w2 = Λ2w0 + (1
3
Λ0∆ + divMKLMKL∇)w0 . (B.11)

Equations (B.8) and (B.10) combined with the boundary conditionsw0 = 0 and β0 =
0 are solved by the eigen-pairs(w0,Λ0) of the operatorLKL with Dirichlet boundary
conditionsw0 = 0 and ∂nw0 = 0 on ∂ω .

As for equation (B.11), for any pair of fixed tracesg and h , we can find§ (w2,Λ2)
satisfying (B.11) together with the boundary conditionsw2 = g and ∂nw2 = h on ∂ω .
In order to satisfy the Dirichlet conditionsβ2 , w2 are zero on∂ω , and taking (B.9) into
account, we may choose

g = 0 and h = −∂nM
KL∇w0 . (B.12)

Thenw2 and the normal component ofβ2 are zero on∂ω . As for the tangential compo-
nent of β2 , since ∂sw2 = 0 on ∂ω , its trace is equal to the tangential componentχ of
MKL∇w0 , which has no reason to be zero.

In the isotropic case, the traceε2χ of the tangential component ofβ0 + ε2β2 is
compensated by the first boundary layer term in the expansion of the eigenvector: this term
has the formε2(Ψ, εW )(s,R) , where we recall thatR is the scaled variabler/ε . Here,
we simply obtain thatW = 0 , the normal componentΨn of Ψ is zero, and for each
s ∈ ∂ω the tangential componentΨs(s, ·) is the exponentially decreasing solution of the
boundary value problem onR+ :

−C̃66∂
2
RΨs + Ψs = 0, ∀R > 0, and Ψs(s, 0) = −χ(s). (B.13)

This fits perfectly with the loading case in [1, 2].

In the general orthotropic case, we do not have any more this uncoupling between
normal and tangential components ofΨ . The first boundary layer term has still the form
ε2(Ψ, εW )(s,R) and the triple(Ψ,W )(s, ·) solves the system

R(s; ∂R)(Ψ,W ) = 0, ∀R > 0,

where, if R(∂1, ∂2) denotes the system(β, w) �→ (−MKLβ + β −∇w, div β − ∆w) ,

R(s; ∂R) := R(n1(s)∂R, n2(s)∂R) .

Then there exists a unique exponentially decreasing solution of the boundary value problem
on R+ :

R(s; ∂R)(Ψ,W ) = 0, ∀R > 0, and Ψs(s, 0) = −χ(s). (B.14)

§ If Λ0 is asimple eigenvalueof LKL . The case of multiple eigenvalues has to be treated like above,
see Appendix A.
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But now, in general,Ψn andW are not≡ 0 . As the power ofε in front of W is 3 , the
trace ofW does not disturb the trace ofw0 + ε2w2 . This means that we keep the choice
of the boundary conditiong = 0 for w2 in (B.12). But we have to modifyh by setting
instead ofh = −∂nM

KL∇w0 :

h = −∂nM
KL∇w0 − Ψn(s, 0) .

Then the expansion of the R-M eigenvector starts with

β0 + ε2β2 + ε2Ψ(s,R) + O(ε3) and w0 + ε2w2 + O(ε3)

and that of the eigenvalue with

Λ0 + ε2Λ2 + O(ε3),

where Λ2 is influenced by the boundary layer only in the non-isotropic case (whenh has
to be modified).
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