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Abstract

We consider the buckling problem for a family of thin plates with thickness parameter
ε. This involves finding the least positive multipleλε

min of the load that makes the plate
buckle, a value that can be expressed in terms of an eigenvalue problem involving a non-
compact operator. We show that under certain assumptions onthe load, we haveλε

min =
O(ε2). This guarantees that provided the plate is thin enough, this minimum value can
be numerically approximated without the spectral pollution that is possible due to the
presence of the non-compact operator. We provide numericalcomputations illustrating
some of our theoretical results.
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1 Introduction

An important problem in engineering is the determination ofthelimit of elastic stabilityof

a body, or more informally, the point at which the bodybuckles. Linearization of the problem

leads to this limit being expressed as that critical multiple λmin of the applied load (or, more

generally, a pre-existing stress) at which the equations fail to have a unique solution. For

structures such as plates and shells that arethin in one direction, the classical approach is now

to impose Kirchhoff-type hypotheses on the displacements,to give a dimensionally reduced

model. This leads to the critical multipliers being formulated as the eigenvaluesµ = λ−1 of

a compactoperatorX. As a result,λmin = µmax is well-separated from other eigenvalues and

can be easily approximated using the finite element method (see e.g. [1]).

In [12], a method that uses the full three-dimensional equations (rather than their dimen-

sionally reduced version) has been proposed, based on an underlying model derived classically

by Trefftz [13]. This allows various loads, boundary conditions and topological details (e.g.

stiffeners) that might have otherwise complicated the dimensional reduction to be taken into

account for the buckling analysis. The disadvantage of thisformulation (which has been im-

plemented in thehp commercial code STRESS CHECK) is that the underlying operator X is

no longer compact. As a result, the essential spectrum,σe(X) of X no longer coincides with

{0} (as it must for compactX) — it can potentially contain eigenvalues of infinite multiplicity,

accumulation points, a continuous spectrum, etc. This can cause serious problems such as

spectral pollution in the finite element approximations (see [5] and the references therein).

Let us define theessential numerical rangeWe of X by

We = [min σe(X), max σe(X)]. (1.1)

The corresponding regionfree of the essential spectrumfor the buckling problem is

Λ = {λ = µ−1 | µ ∈ R \ We}. (1.2)

Our goal in this paper is to show that for a model problem of a family of thin plates the

eigenvalues of interestλmin lie insideΛ when the plate thicknessd = 2ε is small enough. Then,

by a result of Descloux [6], the finite element method gives pollution-free approximations of

these eigenvalues (see [5]). Our proof also bounds the asymptotic behavior of the smallest

three-dimensional eigenvaluesλ asε → 0 in terms of the smallest eigenvalues of the two-

dimensional model based on the Kirchhoff hypothesis.

The outline of our paper is as follows.

• In Section 2, we define the model family of plates and describethe buckling formulation

under consideration. We present a result from [5] that showsdiam(Λ) ≥ C > 0 for all

ε → 0 and we prove thatλmin is larger thanε2c0 for a constantc0 > 0.
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• In sections 3 to 5, by the construction of quasi-modes we prove that under some generic

assumptions on thepre-existing stressesin the family of plates there holds

λε
min ≤ ε2λKL

min + O(ε3), (1.3)

with λKL
min the smallest eigenvalue of the corresponding Kirchhoff limiting problem.

• Section 6 contains the results of numerical experiments.

• Section 7 is an appendix in which we discuss the choice of the family of loads that

are applied to the family of plates to make them buckle: We findthat any non-zero

membrane load constant through the thickness and independent of ε yields a pre-existing

stress which satisfies the hypotheses leading to (1.3).

Although our results here are proved rigorously only for thespecial case of a plate, we

expect that more complicated thin domains, such as flexural shells, would demonstrate the

same types of behavior, in contrast with clamped elliptic shells where we do not expect any

O(ε2) eigenvalue.

2 The buckling problem for thin plates

2.a The elasticity operator

We consider a family of platesΩε = ω × (−ε, ε) where the mid-surfaceω is a fixed

domain inR2. The boundary∂ω will be considered smooth. We assume that the plate is made

of isotropic elastic material, with Lamé constants given by λ andµ. Then for the displacement

field u = {ui} on Ωε (Latin indices are in{1, 2, 3}, while Greek onesα, β are in{1, 2},

with repeated indices indicating summation), we define the linearized strain tensoreij(u) =
1
2
(∂iuj + ∂jui). By Hooke’s law, the stress tensor is then given by

σ(u) = Ae(u),

whereA = Aijkl, the tensor of elastic constants of the material is given by

Aijkl = λδijδkl + µ(δikδjl + δilδjk).

The plate is left free on the top and bottom facesΓε
± := ω × {±ε}. On the lateral edge

Γε
0 := ∂ω × (−ε, ε), we enforceclampedboundary conditions,u = 0. Then the space of

admissible displacements is given by

Vε :=
{
v ∈ H1(Ωε)3 | v = 0 onΓε

0 = ∂ω × (−ε, ε)
}

.

The spaceVε is endowed with the norm

‖u‖
Vε

:=
( 3∑

i,j=1

‖∂jui‖
2
L2(Ωε)

)1/2

.
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For functionsu, v ∈ Vε, we now define the usual bilinear form for elasticity by

aε(u,v) =

∫

Ωε

σ(u) : e(v) dx =

∫

Ωε

{
λepp(u)eqq(v) + 2µeij(u)eij(v)

}
dx. (2.1)

Obviously,aε is coercive onVε, though with coercivity constant dependent onε. The following

theorem holds.

Theorem 2.1 Korn Inequalities.(i) There exists a constantK > 0 such that the following

inequality holds uniformly∀ε ∈ (0, 1], ∀u ∈ Vε:

‖u‖2

Vε

≤ K
(
aε(u,u) + ε−2‖u‖2

L2(Ωε)

)
. (2.2)

(ii) There exists a constantK ′ > 0 such that the following inequality holds uniformly∀ε ∈

(0, 1], ∀u ∈ Vε:

‖u‖2

Vε

≤ K ′ε−2aε(u,u). (2.3)

Proof: The result of (i) is stated in [5, Lemma 5.1] and proved there.

The proof of (ii) follows from a scaling argument: OnΩ = ω × (−1, 1) with coordinates

(x1, x2, X3) andX3 = x3/ε, let ũ be defined as

ũα(x1, x2, X3) = uα(x1, x2, x3) and ũ3(x1, x2, X3) = εu3(x1, x2, x3). (2.4)

Denoting the derivatives with respect tox1, x2, X3 in Ω by ∂̃1, ∂̃2, ∂̃3, we have

ε−1‖u‖2

Vε

=
∑

α,β

‖∂̃αũβ‖
2 + ε−2

∑

α

(
‖∂̃αũ3‖

2 + ‖∂̃3ũα‖
2
)

+ ε−4‖∂̃3ũ3‖
2, (2.5)

where the norm‖ · ‖ denotes theL2(Ω) norm. Using the the positivity of the Lamé material

matrix and the scaling argument, we obtain

ε−1aε(u,u) ≥ C
∑

α,β

‖eαβ(ũ)‖2 + ε−2
∑

α

‖eα3(ũ)‖2 + ε−4‖∂̃3ũ3‖
2 (2.6)

The Korn inequality onΩ gives the estimate

∑

i,j

‖eij(ũ)‖2 ≥ C ′
∑

i,j

‖∂̃iũj‖
2 (2.7)

for some positive constantC ′. Noting that the termε−4‖∂̃3ũ3‖
2 is present in both (2.5) and

(2.6), we can combine the three previous inequalities to obtain (2.3). �
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2.b Pre-existing stresses

Suppose now that we are given a family{σε
∗} of pre-existing stress states in the body, such

thatσε
∗ satisfies the equations of equilibrium onΩε. In applications,{σε

∗} might be a sequence

of residualstresses created e.g. in the manufacture of the plate, but inour context, it is more

convenient to assume it arises from a sequence of loadings, as is discussed in the appendix (see

also the examples in Section 6). Then the buckling problem isto find the smallest multiple

λε
min of σε

∗ (called the ‘pre-buckling stress’) for which the plate buckles. As shown in [12, 5]

this can be formulated as the minimum positive spectral valueλε
min of the problem:

Find (u, λ) ∈ Vε × R satisfying: ∀v ∈ Vε, aε(u,v) = λ bε(u,v), (2.8)

where the termbε(·, ·) in (2.8) represents the work done byσε
∗ due to the product terms of the

Green-Lagrange strain tensor:

bε(u,v) =

∫

Ωε

(σε
∗)ij ∂ium ∂jvm dx. (2.9)

Unless otherwise stated,σε
∗ will be bounded onΩε, uniformly for ε ∈ [0, 1]. Then it is clear

thatbε(·, ·) is a uniformly bounded bilinear form onVε for all ε ∈ (0, 1]:

|bε(u,v)| ≤ 9M0‖u‖Vε

‖v‖
Vε

, (2.10)

where

M0 = max
ε, x, i, j

|(σε
∗)ij(x)|. (2.11)

Remark 2.2 Supposeσε
∗ is determined from a given loading onΩε (as in the cases discussed

in Section 6 and the appendix). Then we can expectσε
∗ to be singular at the edges(x,±ε), x ∈

∂ω. However, these infinite values are normally discarded in the engineering analysis (because

of the presence of plastic zones). That is the reason why we will impose an assumption on the

family {σε
∗} (Hypothesis 3.1 ahead) which ensures that these pre-existing stresses have no

boundary layer present. (For actual stresses determined bya given loading, this amounts to

taking only the asymptotic contribution to them into account, regardless of boundary layer

effects.) Then (2.11) is satisfied withM0 < ∞.

Let us define the operatorXε : Vε → Vε by

For anyw ∈ Vε, Xεw ∈ Vε is the unique solution of

aε(Xεw,v) = bε(w,v) ∀v ∈ Vε. (2.12)

Then (2.8) is simply the variational formulation for findingthe eigenvaluesµ = λ−1 (and

corresponding eigenvectors) ofXε. We note from the definition ofaε andbε that for anyε > 0,
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Xε is not compact as an operator fromVε into itself, so that its spectrumσ(Xε) may have other

components besides isolated eigenvalues of finite multiplicity.

Let us define for anyµ ∈ C, the operator

Xε
µ = µI − Xε.

Then we define the following components of the spectrum as in [8]:

(1) Discrete spectrum

σd(X
ε) = {µ ∈ C, ker Xε

µ 6= {0} andXε
µ is a Fredholm operator fromVε into Vε}.

(2) Essential spectrum

σe(X
ε) = {µ ∈ C, Xε

µ is not a Fredholm operator fromVε into Vε}.

Then we have the following result [15] (see also [5, Theorem 3.3])

Theorem 2.3 σ(Xε) ⊂ R and σ(Xε) = σe(X
ε) ∪ σd(X

ε).

We now quote a result proved in [5, Theorem 5.2] that providesan estimate of the essential

spectrum. This result relies on the Korn inequality (2.2) given in Theorem 2.1.

Theorem 2.4 Let K, M0 be the constants in the uniform Korn’s inequality(2.2) and bound

for the pre-buckling stressesσε
∗ (2.11)respectively. Then∀ε ∈ (0, 1],

σe(X
ε) ⊂ [−9KM0, 9KM0].

By the results of Descloux [6], spectral pollution will onlyoccur forµ in the above interval.

In other words, anyλ = µ−1 belonging to the interval

Λ =
(
−

1

9KM0

,
1

9KM0

)
(2.13)

can be approximated without pollution by the finite element method (see [5] for details).

The other Korn inequality (2.3) yields a lower bound onλε
min:

Theorem 2.5 Let K ′, M0 be the constants in the second uniform Korn’s inequality(2.3)and

bound for the pre-buckling stressesσε
∗ (2.11)respectively. Then∀ε ∈ (0, 1],

λε
min ≥

ε2

9K ′M0
.
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Proof: We haveλε
min = (µε

max)
−1 and by the mini-max principle based on the Rayleigh-Riesz

quotient we have

µε
max = max

u∈Vε

bε(u,u)

aε(u,u)
.

Inequalities (2.3) and (2.11) then giveµε
max ≤ 9K ′M0 ε−2, hence the result. �

The results in the next sections show that under some quite general assumptions on the pre-

existing stresses there holdsλε
min ≤ ε2λKL

min +O(ε3) with λKL
min the smallest positive eigenvalue

of a similar 2D problem. Sincediam(Λ) = O(1), independently ofε, we can be assured

λε
min ∈ Λ providedε is small enough and will hence be accurately approximated.

3 An introduction to asymptotic analysis

A natural way to start the analysis is as follows: Scaling thedomainsΩε in thex3 direction,

we get theε-independent domainΩ = ω × (−1, 1). The coordinates inΩ naturally split

into (x>, X3) wherex> denotes the in-plane variables(x1, x2) andX3 the stretched transverse

variablex3/ε. Our assumption on the pre-existing stresses is the following:

Hypothesis 3.1 (i) There exist smooth real functionsσij on Ω such that for allε > 0, the

pre-existing stressσε
∗ is given by





(σε
∗)αβ

(x) = σαβ(x>, X3), α, β = 1, 2

(σε
∗)α3

(x) = ε σα3(x>, X3), α = 1, 2
(σε

∗)33
(x) = ε2σ33(x>, X3).

(3.1)

(ii) The coefficientsp0
αβ defined as

p0
αβ(x>) =

1

2

∫ 1

−1

σαβ(x>, X3) dX3 (3.2)

satisfy the non-negativity property: There existsζ ∈ C∞
0 (ω) such that

∫

ω

p0
αβ(x>)∂αζ(x>) ∂βζ(x>) dx> > 0. (3.3)

We note thatσij = σji.

Remark 3.2 The wayε scales in (3.1) ensures that there will be no boundary layerspresent in

σε
∗ (see Remark 2.2). The second hypothesis guarantees that there will be positive eigenvalues

present (see Remark 5.2). Note that the weaker assumption

p0
αβ(x>) 6≡ 0 for someα, β (3.4)

would already guarantee that (3.3) is non-zero, which in turn would assure the existence of

eigenvalues that might be positive or negative. As specifiedin [12], the engineering problem

7



requires one to findpositiveeigenvalues, which is why we need the stronger assumption (3.3).

Except for some specialized cases, (3.3) can be generally expected to be true whenever the

weaker condition (3.4) holds.

We postpone to section 7 the discussion of the kinds of loads under which the above as-

sumption will hold.

The aim of the next sections is to prove that under Hypothesis3.1, the least positive buck-

ling eigenvalues belong to the intervalΛ and have a power series expansion inε. A powerful

tool for this is the construction of quasi-modes (approximate eigen-pairs). The validation of

this method requires, however, that the eigen-pairs we wantto approximate are the eigen-pairs

of aself-adjoint operator. Since this is not the case for the operatorXε, we begin by construct-

ing a self-adjoint operatorYε with the same spectrum asXε.

3.a Self-adjoint equivalent operator

The elasticity operatorAε defined byAε(u) : v 7→ aε(u,v) has a fully discrete spectrum.

Let its eigen-pair basis be denoted as(Λε
` ,w

ε
`)`≥1

. There holds:

Aε(u) =
∑

`

Λε
` 〈u,wε

`〉w
ε
`

(here〈u,w〉 denotes the scalar product inL2(Ωε)). We define the operatorQε as

Qε(u) =
∑

`

(Λε
`)

−1/2〈u,wε
`〉w

ε
` .

In fact Qε = (Aε)−1/2 and there holds

aε
(
Qε(u), Qε(u)

)
= (u,u). (3.5)

The operatorQε is bounded fromHε := L2(Ωε) into Vε and fromV ′
ε into Hε. The Korn

inequality (2.3) together with identity (3.5) gives that

|||Qε|||
Hε→Vε

≤ Cε−1 and |||Qε|||
V ′

ε
→Hε

≤ Cε−1. (3.6)

With Bε(u) : v 7→ bε(u,v), continuous fromVε into V ′
ε , we define

Yε = QεBεQε : Hε → Hε. (3.7)

Then it is clear that there holds:

Theorem 3.3 The operatorYε is self-adjoint and bounded fromHε into itself and its spectrum

coincides with the spectrum ofXε. Thus, the inverse of its discrete spectrum

σ−1
d

(Yε) := {λ ∈ R | λ = µ−1, µ ∈ σd(Y
ε)}

gives back the buckling eigenvalues.
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With h > 0, anh quasi-mode(µ,y) for Yε is a pair with realµ and non-zerow such that

‖Yεy − µy‖
Hε

≤ h‖y‖
Hε

. (3.8)

Using spectral projectors according to [11], we can extend the result of [14, Lemmas 12 & 13]

and obtain

Lemma 3.4 Let (µ,y) be anh quasi-mode forYε. Then

dist
(
µ, σ(Yε)

)
≤ h. (3.9)

Let us assume thatσ(Yε) ∩ [µ − h, µ + h] is contained in the discrete spectrum ofYε and let

Eµ,h be the sum of corresponding eigenspaces. Then there existsu ∈ Eµ,h such that

‖y − u‖
Hε

≤
h

M
‖y‖

Hε

, (3.10)

whereM is the distance ofσ(Yε) ∩ [µ − h, µ + h] to the remaining part of the spectrum, i.e.

to σ(Yε) ∩ (R \ [µ − h, µ + h]).

We are going to construct quasi-modes forYε by an asymptotic method adapted from [3].

It is based on a scaled boundary value formulation of the buckling problem.

3.b Scaled boundary value formulation

Under Hypothesis 3.1, we consider problem (2.8): Find(uε, λε) ∈ Vε × R satisfying

∀v ∈ Vε, aε(uε,v) = λε bε(u,v).

We scale the unknowns,cf (2.4)

uα(ε)(x>, X3) = uε
α(x) and u3(ε)(x>, X3) = εuε

3(x). (3.11)

Then the variational spaceVε is transformed into

V :=
{
v ∈ H1(Ω)3 | v = 0 onΓ0 = ∂ω × (−1, 1)

}

and the above eigenvalue problem becomes

∀v ∈ V, a(ε)(u(ε),v) = λε b(ε)(u(ε),v), (3.12)

where

a(ε)(u,v) =

∫

Ω

{
λκpp(ε)(u)κqq(ε)(v) + 2µκij(ε)(u)κij(ε)(v)

}
dx, (3.13)

b(ε)(u,v) =

∫

Ω

{
σij ∂iuα ∂jvα + ε−2σij ∂iu3 ∂jv3

}
dx, (3.14)
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and where the scaled strainκij(ε) is defined as

καβ(ε) = eαβ , κα3(ε) = ε−1eα3, κ33(ε) = ε−2e33. (3.15)

We integrate by parts and obtain the following boundary value problem onΩ

A(ε)u(ε) = λε
B(ε)u(ε) in Ω, (3.16)

T(ε)u(ε) = λε
S(ε)u(ε) on Γ±, (3.17)

u(ε) = 0 on Γ0, (3.18)

where the interior operatorsA(ε), B(ε) and the traction operatorsT(ε), S(ε) are defined as

follows

A(ε) = A
0 + ε2

A
2, with

A
0 =




2µ∂3e13(u) + λ∂13u3

2µ∂3e23(u) + λ∂23u3

(λ + 2µ)∂33u3


 , A

2 =




(λ + µ)∂1 div> u> + µ∆>u1

(λ + µ)∂2 div> u> + µ∆>u2

λ∂3 div> u> + 2µ∂βeβ3(u)


(3.19)

B(ε) = ε2
B with (Bu)k = ∂i(σij∂juk), (3.20)

T(ε) = T
0 + ε2

T
2, with

T
0 =




2µe13(u)
2µe23(u)

(λ + 2µ)∂3u3


 , T

2 =




0
0

λ div>u>


 (3.21)

S(ε) = ε2
S with (Su)k = σ3j∂juk. (3.22)

In (3.19) and (3.21),u> = (u1, u2) are the in-plane components,div>u> = ∂1u1 + ∂2u2 and

∆> = ∂2
1 + ∂2

2 .

Our analysis is organized in two main steps:

(i) The construction of quasi-modes as power series solutions of the boundary value prob-

lem (3.16)-(3.18).

(ii) The identification of all smallest eigenvalues of problem (3.16)-(3.18) with quasi-mode

expansions.

4 Buckling quasi-modes: An outer expansion

In a similar way as [4, 3], the construction of quasi-modes isitself split into two steps:

(a) The solution of the boundary value problem (3.16)-(3.17) (without the lateral Dirichlet

boundary condition) by the construction ofpower series expansions:

λ[ε] = λ0 + ελ1 + ε2λ2 . . . (4.1)

u[ε] = u0 + εu1 + ε2u2 + . . . (4.2)
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with λε ∼ ε2λ[ε] andu(ε) ∼ u[ε]. Note that we start the expansion ofλε with the power

ε2 because of Theorem 2.5 according to which we cannot find eigenvalues smaller than

O(ε2). Step(a) is referred to asouter expansion.

(b) The solution of the whole problem (3.16)-(3.18) requires the introduction of aninner

expansionincluding boundary layer terms.

4.a Formal series solution for the outer expansion

As in [7], step(a) consists of solving (3.16)-(3.17) in the sense of formal series:
{

(A0 + ε2A
2)u[ε] = ε4λ[ε]Bu[ε] in Ω,

(T0 + ε2T
2)u[ε] = ε4λ[ε]Su[ε] on Γ±.

(4.3)

Equating the terms with the same power ofε in front, we find successively for all` = 0, 1, . . .

(with the convention thatu−1 = u−2 = 0)
{

A
0u` + A

2u`−2 =
∑`−4

k=0 λk Bu`−4−k in Ω,

T
0u` + T

2u`−2 =
∑`−4

k=0 λk Su`−4−k on Γ±.
(4.4)

The six first problems are

A
0u0 = 0 [Ω], T

0u0 = 0 [Γ±], (4.5)

A
0u1 = 0 [Ω], T

0u1 = 0 [Γ±], (4.6)

A
0u2 + A

2u0 = 0 [Ω], T
0u2 + T

2u0 = 0 [Γ±], (4.7)

A
0u3 + A

2u1 = 0 [Ω], T
0u3 + T

2u1 = 0 [Γ±], (4.8)

A
0u4 + A

2u2 = λ0Bu
0 [Ω], T

0u4 + T
2u2 = λ0Su

0 [Γ±], (4.9)

A
0u5 + A

2u3 = λ0Bu
1 + λ1Bu

0 [Ω], T
0u5 + T

2u3 = λ0Su
1 + λ1Su

0 [Γ±].(4.10)

4.b First steps

It is well known and easy to check that the solutionsu0 andu1 to (4.5) and (4.6) respec-

tively can be anyKirchhoff-Love displacement, i.e.:

Lemma 4.1 (i) Let the operatorU0 : ζ 7→ U
0ζ be defined fromC∞(ω)3 into C∞(Ω)3 by

U
0ζ := (ζ1 − X3∂1ζ3, ζ2 − X3∂2ζ3, ζ3), ζ = (ζ1, ζ2, ζ3)(x>). (4.11)

(ii) Any smooth solutionu0 andu1 to (4.5)and(4.6)are of the form

u0 = U
0ζ0 and u1 = U

0ζ1, with ζ0, ζ1 ∈ C∞(ω)3.

For the two next equations, for a fixedζ, we look forv such that

A
0v = −A

2(U0ζ) [Ω], T
0v = −T

2(U0ζ) [Γ±].
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Selecting the third components of the equations inΩ and onΓ±, we find forv3 a problem of

the type

(λ + 2µ)∂33v3 = −F3 [Ω], (λ + 2µ)∂3v3 = −G±
3 [Γ±], (4.12)

with F3 = (A2
U

0ζ)3 andG±
3 = (T2

U
0ζ)3. The problem (4.12) is a Neumann problem on

the interval(−1, 1) for each fixedx> ∈ ω. It can be solved if and only if the following

compatibility conditions are satisfied

Φ
(
F3(x>, ·), G+

3 (x>), G−
3 (x>)

)
= 0, ∀x> ∈ ω, (4.13)

where forf ∈ L1(−1, 1) andg± ∈ R the compatibility formΦ is given by

Φ(f, g+, g−) =

∫ 1

−1

f(X3)dX3 + g+ − g−. (4.14)

With the actual value ofF3 andG±
3 , the compatibility condition (4.13) is satisfied. Then there

is a unique solutionv3 with zero mean value on each fiberx> × (−1, 1). That solutionv3 is

the result of the action of an operatorU
2 onζ: we write thatv3 =: (U2ζ)3, see (4.19).

In a similar way the two first components of the equations forv can be written as

µ∂33vα = −Fα [Ω], µ∂3vα = −G±
α [Γ±], α = 1, 2, (4.15)

with Fα = (λ + µ)∂α3v3 + (A2
U

0ζ)α andG±
α = µ∂αv3 + (T2

U
0ζ)α.

Computing the corresponding compatibility formΦ(Fα, G±
α ) for α = 1, 2, we find that for

all x> ∈ ω
{

Φ(F1, G
±
1 )(x>) = 2

(
µ∆>ζ1 + (λ̂ + µ)∂1 div> ζ>

)
(x>)

Φ(F2, G
±
2 )(x>) = 2

(
µ∆>ζ2 + (λ̂ + µ)∂2 div> ζ>

)
(x>).

(4.16)

Hereζ> = (ζ1, ζ2) andλ̂ denotes the Lamé coefficient of the plane stress model:

λ̂ = 2λµ(λ + 2µ)−1.

We denote byLm the2 × 2 matrix of the right hand sides of (4.16) divided by 2:

Lmζ> =

(
µ∆>ζ1 + (λ̂ + µ)∂1 div> ζ>
µ∆>ζ2 + (λ̂ + µ)∂2 div> ζ>

)
. (4.17)

Lm is the actual plane stress elasticity operator. We find that we can solve, instead of (4.15):

µ∂33vα = −Fα + (Lmζ>)α [Ω], µ∂3vα = −G±
α [Γ±], α = 1, 2,

because this new right hand sides satisfy the compatibilitycondition
∫ 1

−1

(
Fα(x>, X3) − (Lmζ>)α(x>)

)
dX3 − G+

α (x>) + G−
α (x>) = 0, ∀x> ∈ ω.

We can then computevα =: (U2ζ)α. Explicitly calculating the operatorU2, we obtain the

result,cf [4, Lemma 3.2]:
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Lemma 4.2 LetU0 be as defined in(4.11).

(i) Let the operatorL0 : ζ 7→ L
0ζ be defined fromC∞(ω)3 into C∞(ω)3 by

(L0ζ)> = Lmζ> cf (4.17), and (L0ζ)3 = 0. (4.18)

(ii) Let the operatorU2 : ζ 7→ U
2ζ be defined fromC∞(ω)3 into C∞(Ω)3 by

(U2ζ)α = q2 ∂α div> ζ> + q3 ∂α∆>ζ3

(U2ζ)3 = q1 div> ζ> + q2 ∆>ζ3

(4.19)

with q1, q2, q3 the polynomials in the variableX3 defined as

q1(X3) = −
bλ
2µ

X3, q2(X3) =
bλ
4µ

(
X2

3 −
1
3

)
,

q3(X3) = 1
12µ

(
(λ̂ + 4µ) X3

3 − (5λ̂ + 12µ) X3

)
.

(iii) Let ζ belong toC∞(ω)3.

Then the fieldU2ζ is the unique solution with zero mean values on each fiberx> × (−1, 1) of

the problem

A
0(U2ζ) + A

2(U0ζ) = L
0ζ [Ω], T

0(U2ζ) + T
2(U0ζ) = 0 [Γ±]. (4.20)

The outcome is that the general solution of (4.5) & (4.7) is

u0 = U
0ζ0, u2 = U

0ζ2 + U
2ζ0 for anyζ0 with L

0ζ0 = 0, (4.21)

and the general solution of (4.6) & (4.8) is

u1 = U
0ζ1, u3 = U

0ζ3 + U
2ζ1 for anyζ1 with L

0ζ1 = 0. (4.22)

4.c Next terms

To solve the next equation (4.9), we look for an operatorU
4 such thatv = U

4ζ solves

A
0v = −A

2(U2ζ) + λ0BU
0ζ [Ω], T

0v = −T
2(U2ζ) + λ0SU

0ζ [Γ±].

Forv3 we have still a problem of the form (4.12) with, nowF3 andG±
3 the third components of

the right hand sides in the above equation. The compatibility condition (4.13) is not satisfied

in general. Instead, we compute the value ofΦ(F3, G
±
3 ) and find it equal to:

2

3
(λ̂ + 2µ)∆2

>ζ3 + λ0

∫ 1

−1

∂ασαβ∂βζ3 dX3. (4.23)

We go on to find(v1, v2) and obtain a problem of the form (4.15). ComputingΦ(Fα, G±
α ), we

find

2cλ,µ∆>∂α div> ζ> + λ0

∫ 1

−1

(
∂δσδβ∂βζα − X3∂δσδβ∂βγζ3 − ∂δσδ3∂γζ3

)
dX3, (4.24)
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wherecλ,µ is a real constant. In (4.23) appears the standard operator(λ̂ + 2µ)∆2
> which is the

bending operator of thin plates for the Lamé coefficientsλ andµ. We have also obtained in

(4.23)-(4.24) differentmoments of the pre-existing stresses

p0
αj(x>) =

1

2

∫ 1

−1

σαj(x>, X3) dX3 and p1
αβ(x>) =

1

2

∫ 1

−1

X3σαβ(x>, X3) dX3. (4.25)

With all of these, we obtain a statement like Lemma 4.2 which provides the operators for the

solution of (4.9):

Lemma 4.3 (i) Let the operatorL2 : ζ 7→ L
2ζ be defined fromC∞(ω)3 into C∞(ω)3 by

(L2ζ)> = −cλ,µ∆>∂α div> ζ> and (L2ζ)3 = −1
3
Lbζ3 := −1

3
(λ̂ + 2µ)∆2

>ζ3. (4.26)

(ii) Let the operatorM0 : ζ 7→ M
0ζ be defined fromC∞(ω)3 into C∞(ω)3 by

M
0ζ = −

(
P Q∇>

0 P

) (
ζ>
ζ3

)
(4.27)

with

Pη = −∂αp0
αβ∂βη and Qη =

(
∂αp1

αβ∂β + ∂αp0
α3

)
η

wherep0
αβ , p0

α3 andp1
αβ are defined in(4.25).

(iii) Let ζ belong toC∞(ω)3. Then the problem of findingv such that

{
A

0v + A
2(U2ζ) − λ0BU

0ζ = L
2ζ − λ0M

0ζ [Ω],

T
0v + T

2(U2ζ) − λ0SU
0ζ = 0 [Γ±].

(4.28)

has a unique solutionv =: U
4ζ with zero mean values on each fiberx> × (−1, 1).

As a result of all previous calculations, we obtain that the general solution of (4.5), (4.7)

and (4.9) is given by (4.21) and

u4 = U
0ζ4 + U

2ζ2 + U
4ζ0 for anyζ2 with L

0ζ2 + L
2ζ0 = λ0M

0ζ0. (4.29)

For the solution of the next step, we prove in the same way thatthere exist operatorsL3 and

U
5 such that the general solution of (4.5)-(4.10) is given by the conjunction of (4.21), (4.22),

(4.29) and

u5 = U
0ζ5+ U

2ζ3 + U
4ζ1 + U

5ζ0

for anyζ3 with L
0ζ3 + L

2ζ1 + L
3ζ0 = λ0M

0ζ1 + λ1M
0ζ0.

(4.30)
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4.d Operator series solutions

Following the method of [3, 7], we solve problem (4.3) in the sense offormal series:

Solving successively equations (4.4) for each` as above we find that forall formal seriesλ[ε]

given by (4.1) and for all formal series

ζ[ε] = ζ + εζ1 + ε2ζ2 + . . . , ζj ∈ C∞(ω)3

subject to the “residual” equations

L[ε]ζ[ε] = ε2λ[ε]M[ε]ζ[ε], (4.31)

the formal seriesu[ε] given by

u[ε] = U[ε]ζ[ε] (4.32)

yields all solutions of(4.3) (compare with (4.21), (4.22), (4.29) and (4.30)). Here L[ε] =

L
0 + εL1 + ε2L

2 + . . . is a formal series with operator coefficients, acting fromC∞(ω)3 into

itself. According to the calculations above,L
0 is given by (4.18),L1 = 0 andL

2 is given by

(4.26). SimilarlyM[ε] = M
0+εM1+ε2M

2+. . . has operator coefficients acting fromC∞(ω)3

into itself,M0 is given by (4.27) andM1 = 0.

Finally, the operator seriesU[ε] = U
0 + εU1 + ε2U

2 + . . . has coefficients acting from

C∞(ω)3 into C∞(Ω)3 with U
0 given by (4.11),U1 = 0 andU

2 given by (4.19).

The existence of the next operatorsL
k, Uk andM

k is proved as above.

5 Final construction of bucking quasi-modes

Until now, we have discarded the lateral boundary conditions and have found the general

solution of the remaining equations. If we are able to find conditions on the coefficientsζk

andλk of the formal seriesλ[ε] andζ[ε] so that the coefficientsuk of u[ε] satisfy the lateral

Dirichlet conditions, the whole problem will be solved. In fact we can do this only for the first

termsu0 andu1. To proceed, we have to take the boundary layer terms into account. We will

also describe them with the help of formal series.

5.a Lateral boundary conditions on the outer expansion

Now we try to have theuk satisfy the lateral Dirichlet conditions and we study the solv-

ability of the residual equations (4.31) on the surface generatorζk.

We know thatu0 is the Kirchhoff-Love displacementU0ζ0 with generatorζ0. It is clear

thatu0 = 0 onΓ0 if and only if

ζ0
j = 0 on ∂ω, j = 1, 2, 3 and ∂nζ0

3 = 0 on ∂ω. (5.1)

In order to proceed, it is useful to distinguish betweenmembraneandbendingdisplace-

ments and their corresponding surface generators. Recall that a displacementu = (u1, u2, u3)
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on Ω is a membrane displacement if the two in-plane componentsu1 andu2 are even in the

transverse variableX3, and if the third componentu3 is odd. The displacementu is a bending

displacement if, conversely,u1 andu2 are odd andu3 is even inX3.

With ζ = (ζ1, ζ2, ζ3), we denote(ζ1, ζ2, 0) by ζm and(0, 0, ζ3) by ζb. We see thatU0ζm is

membrane whereasU0ζb is bending. ThusU0ζm + U
0ζb = U

0ζ is the splitting ofU0ζ into

its membrane and bending parts.

The first residual equation, see (4.21), isL
0ζ0 = 0. With (4.18), this means thatLmζ

0
> = 0.

Taking the boundary conditions into account, we have obtained

Lmζ
0
> = 0 and ζ0

> = 0 on ∂ω.

Thereforeζ0
> = 0, which means thatζ0 = ζ0

b
.

The Dirichlet boundary conditions onu1 and the residual equation (4.22) also yield that

ζ1 = ζ1
b
.

The next residual equation is given in (4.29):L
0ζ2 + L

2ζ0 = λ0M
0ζ0. As we know that

ζ0 = ζ0
b

the third component of the above equation yields that (see Lemmas 4.2 and 4.3)
1
3
Lbζ

0
3 = λ0Pζ0

3 . Since the operatorLb is invertible fromH2
0 (ω) → H−2(ω), the equation

that we have obtained onζ0
3 is compatible with the Dirichlet boundary conditionζ0

3 ∈ H2
0 (ω)

which we have found in (5.1). Summarizing what we have obtained so far, we have:

Lemma 5.1 The first surface generatorsζ0 and ζ1 are of bending type, i.e.ζ0 = (0, 0, ζ0
3)

andζ1 = (0, 0, ζ1
3). The generatorζ0 is solution of the following problem1:

1
3
Lbζ

0
3 = λ0 Pζ0

3 , with ζ0
3 ∈ H2

0 (ω) (5.2)

Remark 5.2 We will find positive eigenvaluesλ0 for problem (5.2) if and only ifP is not

negative definite, in other words if the mean valuespαβ of the pre-existing stressesσαβ satisfy

Hypothesis 3.1 (ii).

We cannot go further, because from the expression forU
2ζ0

b
it follows that the condition

u2 = 0 on Γ0 would impose∂2
nζ0

3 = ∂3
nζ0

3 = 0 on ∂ω, a condition that cannot be fulfilled in

general. To go further we have to introduce boundary layer profiles in our analysis.

5.b Boundary layer terms

In order to fulfill the Dirichlet boundary condition onΓ0, we have to combine the general

outer expansion found in (4.30)-(4.32) with aninner expansionw[ε] = εw1 +ε2w2 + · · · with

exponentially decreasing profileswk, which are theboundary layer termsnaturally involved

in the solution asymptotics, see [9, 10] and [4, 3].

1The third component of the residual equation in (4.30) gives1

3
Lbζ

1

3
− (L3ζ0

b)3 = λ0Pζ1

3
+ λ1Pζ0

3
.
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For this, we use local coordinates(r, s) in a plane neighborhood of the lateral boundary

∂ω. Herer denotes the distance to∂ω ands the arclength along∂ω. The local basis at each

point in∂ω is given by the unit inner normaln and the unit tangent vectorτ . We letR be the

scaled distanceR = rε−1.

The boundary layer Ansatz is
∑

k≥0 εkwk(R, s, X3) whereR 7→ wk(R, s, X3) is exponen-

tially decreasing asR → +∞. Heres belongs to∂ω and (R, X3) to the half-stripΣ+ =

R+ × (−1, 1). We need suitable functional spaces of exponentially decreasing functions. We

use the notations:Σa,b := (a, b) × (−1, 1) andρ = min{ρ+, ρ−}, with ρ± the distance to the

corner(0,±1) of Σ+. For δ > 0 let Hδ(Σ
+) be the space ofL2(Σ+) functionsϕ, which are

smooth up to any regular point of the boundary ofΣ+ and satisfy

∀i, j ∈ N, eδR ∂i
R∂j

3ϕ ∈ L2(Σ1,∞)

∀i, j ∈ N, i + j 6= 0, ρi+j−1 ∂i
R∂j

3ϕ ∈ L2(Σ0,2).

In order to preserve the homogeneity of the elasticity system, we scale the ansatzw[ε]

back, cf (3.11), that is we setϕ[ε] = εϕ1 + ε2ϕ2 + . . . with ϕk
> = wk

> andϕk
3 = wk+1

3 for

all k ∈ N. In variables(R, s, X3) and unknownsϕ = (ϕR, ϕs, ϕ3) the interior and horizontal

boundary operatorsA(ε) andT(ε) are transformed into operators whoseε-expansion yields

formal series, see [3,§4]:

A[ε] =
∑

k
εkAk and T[ε] =

∑
k
εkTk

whereAk(R, s ; ∂R, ∂s, ∂3) is a partial differential system of order2 in the stretched domain

∂ω×Σ+ whereasTk(R, s ; ∂R, ∂s, ∂3) is a partial differential system of order1 on the horizontal

boundaries∂ω × γ±, with γ± = R+ × {x3 = ±1}. Similarly, the operatorsB(ε) andS(ε)

correspond to the formal seriesB[ε] andS[ε]. The counterpart of problem (4.3) In variables

(R, s, X3) and unknownϕ is
{

A[ε]ϕ[ε] = ε2λ[ε] B[ε]ϕ[ε] in Ω,

T[ε]ϕ[ε] = ε2λ[ε] S[ε]ϕ[ε] on Γ±.
(5.3)

The first termsA0 andT0 of A[ε] andT[ε] split respectively into 2D-Lamé and 2D-Laplace

operators in variables(R, x3) with Neumann boundary conditions:

(A0ϕ)R = µ ∆R,3ϕR + (λ + µ) ∂R

(
divR,3(ϕR, ϕ3)

)
, (T0ϕ)R = µ(∂3ϕR + ∂Rϕ3),

(A0ϕ)3 = µ ∆R,3ϕ3 + (λ + µ) ∂3

(
divR,3(ϕR, ϕ3)

)
, (T0ϕ)3 = (λ + 2µ)∂3ϕ3 + λ ∂RϕR

(A0ϕ)s = µ ∆R,3ϕs, (T0ϕ)s = µ∂3ϕs .

The following lemma states that, after the possible subtraction of a rigid motion, any trace

on the lateral boundaryΓ0 has a lifting in exponential decreasing displacement with zero

forces, see [4]:

17



Lemma 5.3

LetZ = span








1
0
0



 ,




0
1
0



 ,




0
0
1



 ,




−X3

0
R







 be the space of rigid motions onΣ+.

There existsδ > 0 such that there holds: For anyv ∈ C∞(Γ0)
3, there exist a uniqueϕ ∈

C∞
(
∂ω, Hδ(Σ

+)3
)

and a uniqueZ ∈ C∞(∂ω, Z) such that




A0(ϕ) = 0 in ∂ω × Σ+,

T0(ϕ) = 0 on ∂ω × γ±,

(ϕ−Z)|
t=0

+ v|
Γ0

= 0,

Since the space of traces ofC∞(∂ω, Z) onΓ0 coincides with the space ofDirichlet tracesof

theC∞(ω) Kirchhoff-Love displacements, it is possible to match the outer and inner expansion

via admissible boundary conditions on the surface generatorsζk.

Here, by Dirichlet traces we mean those associated with the pair (Lm,Lb) of the first non-

zero operators arising in the residual equations (4.31): the membrane operatorLm acts on

ζ> = (ζ1, ζ2) and the Dirichlet traces areγ0
m
ζ> = ζ>|∂ω

; the bending operatorLb is of order

4 and acts onζ3, its Dirichlet traces areγ0
b
ζ3 = (ζ3, ∂nζ3)|∂ω

. The whole trace operatorγ0 is

defined asγ0ζ = (γ0
m
ζ>,γ0

b
ζ3), cf (5.1).

With the help of Lemma 5.3 we can prove as in [3] the existence of a boundary operator

seriesγ[ε] = γ0 + εγ1 + . . . 2 such that if the generator seriesζ[ε] satisfies the boundary

condition

γ[ε]ζ[ε] = 0 on ∂ω,

then there exists a boundary layer seriesw[ε] in C∞
(
∂ω, Hδ(Σ

+)3
)

such that

• the corresponding seriesϕ[ε] solves (5.3),

• the traces ofw[ε] onΓ0 coincide with those ofu[ε] = U[ε]ζ[ε] in (4.32).

Summarizing, we obtain:

Lemma 5.4 Any formal series solution (ζ[ε], λ[ε]) of the residual boundary value problem
{

L[ε]ζ[ε] = ε2λ[ε]M[ε]ζ[ε] [ω],

γ[ε]ζ[ε] = 0 [∂ω].
(5.4)

yields a solutionu[ε] = U[ε]ζ[ε] of (4.3)and a solutionϕ[ε] of (5.3)such thatu[ε]+w[ε] = 0

onΓ0.

There exists a one to one correspondence between the solutions of (5.4) such thatζ0 6= 0

and the eigenpairs(η, λKL) of problem (5.2):

η ∈ H2
0 (ω) and 1

3
Lbη = λKL Pη. (5.5)

2The calculations in [4,§6] give thatγ1ζ = (γ1

mζ>,γ1

b
ζ3) with γ1

mζ> = (cm div ζ>, 0)|
∂ω

andγ1

b
ζ3 =

(0, cb∆ζ3)|∂ω
with cm andcb non-zero constants only depending on the Lamé coefficientsλ andµ.
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Lemma 5.5 (i) For each solution(ζ[ε], λ[ε]) of (5.4) with ζ0 6= 0, the pair (ζ0
3 , λ0) is an

eigenpair of problem(5.2).

(ii) Let (η, λKL) be an eigenpair of problem(5.5). If λKL is a simple eigenvalue, there exists

a unique solution(ζ[ε], λ[ε]) of (5.4) with λ0 = λKL andζ0 = (0, 0, η). If λKL is a multiple

eigenvalue of multiplicityd, there existd independent solutions(ζ[ε], λ[ε]) of (5.4)with λ0 =

λKL.

The proof of this result follows along the same lines as the proof of [3, Th.5.3].

5.c Quasi-mode estimates

The last step in the construction of quasi-modes is the cut-off of these series, leaving a

finite number of terms. Letζ[ε] andλ[ε] be as in Lemma 5.4, and let us consider the associated

solutionsu[ε] andw[ε]. Let χ = χ(r) be a smooth cut-off function which is equal to1 for

0 < r < r0 and to0 for r > r1 > r0, wherer1 is small enough so that the region0 < r < r1

is a well-defined tubular neighborhood of∂ω.

Let N ≥ 0 be an integer. We denote byu{N}(ε) the displacement field onΩ,

u{N}(ε) :=

N+5∑

k=0

εk
(
uk(x>, X3) + χ(r)wk(

r

ε
, s, X3)

)
.

We unscaleu{N}(ε) according to (3.11) and obtain the displacementuε
{N} on the thin plate

Ωε. Let λε
{N} be the finite sum

λε
{N} := ε2

N∑

k=0

εkλk

and letψε
{N} denote the residual

ψε
{N}(v) := aε

(
uε

{N},v
)
− λε

{N} bε
(
uε

{N},v
)
, v ∈ Vε.

With the notations of section 3.a we have

ψε
{N} =

(
Aε − λε

{N} Bε
)
uε

{N}.

Revisiting the construction ofu(ε) andw(ε), see also [3, Th6.1] we can prove that, if the first

termζ0 of ζ[ε] is not zero, the residue satisfies

‖ψε
{N}‖V ′

ε

≤ CεN+3‖uε
{N}‖Vε

(5.6)

We come back to the operatorYε (3.7), cf Theorem 3.3. Letyε
{N} be defined as(Qε)−1uε

{N}.

Combining (5.6) with (3.6), we obtain

‖λε
{N}Y

εyε
{N} − y

ε
{N}‖Hε

≤ CεN+1‖yε
{N}‖Hε

.
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Multipying by µε
{N} :=

(
λε
{N}

)−1
, we deduce, sinceµε

{N} = O(ε−2),

‖Yεyε
{N} − µε

{N}y
ε
{N}‖Hε

≤ CεN−1‖yε
{N}‖Hε

. (5.7)

In other words,(µε
{N},y

ε
{N}) is aO(εN−1) quasi-mode forYε. Lemma 3.4 gives that

dist
(
µε
{N}, σ(Yε)

)
≤ CεN−1.

Therefore we havedist
(
λε
{N}, σ

−1(Yε)
)
≤ CεN+1 and we can drop the last two termsεN+1λN−1

andεN+2λN in λε
{N} without modifying that conclusion:

dist
( N−2∑

k=0

ε2+kλk, σ
−1(Yε)

)
≤ CεN+1. (5.8)

Putting together (5.8) and Lemma 5.5 we finally obtain:

Theorem 5.6 Recall thatLb := (λ̂ + 2µ)∆2
> andP = −∂αp0

αβ∂β with

p0
αβ(x>) =

1

2

∫ 1

−1

σαβ(x>, X3) dX3.

Under Hypothesis3.1, for each eigenvalueλKL of problem(5.5): 1
3
Lbη = λKL Pη with η ∈

H2
0 (ω), there existsC > 0 such that there holds:

∀ε ∈ (0, 1], dist
(
ε2λKL, σ−1(Yε)

)
≤ Cε3, (5.9)

whereσ−1(Yε) denotes the set of inverses of elements ofYε as in Theorem3.3.

Combining Theorems 2.4 and 5.6, we find

Corollary 5.6.1 There existsε0 > 0 such that for anyε ∈ (0, ε0) the minimumβε
min of the

positive part ofσ−1(Yε) coincides with the smallest buckling eigenvalueλε
min and belongs to

the regionΛ free of spectral pollution given by(2.13).

Proof: According to Theorem 2.4, the intervalΛ = (− 1
9KM0

, 1
9KM0

) is free from the essential

spectrum ofYε for all ε ∈ (0, 1]. Let λKL
min be the lowest positive eigenvalue of problem (5.5):

According to Hyposesis 3.1 (ii) the positive part of that spectrum is not empty, see Remark 5.2.

From (5.9) we deduce thatβε
min ≤ ε2λKL

min + Cε3. Therefore, for allε such that

ε2λKL
min + Cε3 <

1

9KM0

we are sure thatβε
min belongs to the discrete spectrum ofYε. �
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6 Numerical experiments

Let us now present numerical experiments that illustrate some of the results of the previous

sections. We consider an isotropic unit disc of thickness2ε, clamped on the circular lateral

part, withλ, µ corresponding to Young’s modulusE = 3 × 104 and Poisson ratioν = 0.3. It

is subjected to a body force of the form

F∗ = (fα(x>), εf3(x>)), (6.1)

together with tractionsT±
∗ applied to the top and bottom surfaces, of the form

T±
∗ = (εt±α (x>), ε2t±3 (x>)). (6.2)

Each pair(F∗, T∗) leads to a corresponding pre-existing stress state{σε
∗}. (We discuss, in the

next section, when these stress states will satisfy Hypothesis 3.1.)

We perform four families of experiments, based on the following four choices of(F∗, T∗).

(L1) F∗ ≡ 0, T+
∗ = (ε, ε, 0), T−

∗ = (−ε,−ε, 0).

(L2) F∗ ≡ 0, T+
∗ = (ε, ε, 0), T−

∗ = (ε, ε, 0).

(L3) F∗ = (−1,−1, 0), T+
∗ = (2ε, 2ε, 0), T−

∗ = (2ε, 2ε, 0).

(L4) F∗ = (−1,−1, 0), T+
∗ = (ε, ε, 0), T−

∗ = (ε, ε, 0).

As in [5], for each of the above loads, we reduce the computation to a quarter of the plate

by using symmetry boundary conditions on the plane lateral parts of the boundaryx1 = 0

andx2 = 0. This enforces symmetry in the solution on the full domain across these planes,

and we only compute approximations of those eigenvalues whose eigenvectors satisfy these

symmetries (roughly a quarter of the total number).

Each of the loads above will lead to boundary layers in the pre-existing stress stateσε
∗,

and one of the factors we investigate is the sensitivity of the computed eigenvalues to the

resolution of these layers. We therefore consider three different meshes, as shown in Figure

1, each with twelve elements in the quarter disc (six elements above the midsurface of the

disc, and six below). In Mesh UNIF, the layers are of thickness 0.5, 0.3 and 0.2. In Mesh

MID, the thicknesses are 0.65, 0.35− ε and ε, while in Mesh FIN, the refinement is even

more concentrated at the boundary, with thicknesses 1− 2ε, ε, ε. For each loading,σε
∗ is

first numerically computed by the program STRESS CHECK, using one of the above meshes.

Here, finer meshes will result in better resolution of the layers, i.e. in higher values ofM0 in

(2.11). This computedσε
∗ is then used as the pre-existing stress in each case, and the lowest 10

eigenvalues computed by STRESS CHECK, using the same mesh.

Let us begin with load L1, which results in a pre-existing stress that is ofpure bending

type. This load does not satisfy the requirement that the first termR0
m

in the series expansion

for the membrane resultant is non-zero, since

R0
m

:= −1
2

(
2fα + t+α + t−α

)
α=1,2

= (0, 0). (6.3)
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Figure 1: The three meshes on the quarter disc (top view)

Hence Hypothesis 3.1 (ii) will be violated (in fact, the terms in (3.2) will all be zero, as shown

in the Appendix). Consequently, the lowest eigenvalueλε
min will not necessarily satisfy (1.3).

Hence, even forε small enough, the conditionλε
min ∈ Λ may be violated, and we may get

spectral pollution.

In Tables 1 and 2, we have tabulated the first ten eigenvalues computed using the meshes

UNIF and FIN respectively. (In this and all the computationsthat follow, the polynomial

degree used over each element isp = 8.)

0.004 0.008 0.016 0.032 0.064 0.128 0.256
2.566e3 9.481e3 2.582e4 2.194e4 1.149e4 1.124e4 9.697e3
5.275e3 1.730e4 3.225e4 2.273e4 1.507e4 1.168e4 1.007e4
9.091e3 2.437e4 3.271e4 2.275e4 1.510e4 1.179e4 1.017e4
9.460e3 2.600e4 3.327e4 2.435e4 1.603e4 1.224e4 1.018e4
1.400e4 3.035e4 3.344e4 2.599e4 1.703e4 1.242e4 1.072e4
1.441e4 3.083e4 3.492e4 2.657e4 1.720e4 1.302e4 1.075e4
1.824e4 3.223e4 3.520e4 2.800e4 1.755e4 1.308e4 1.084e4
1.898e4 3.408e4 3.573e4 2.934e4 1.857e4 1.341e4 1.108e4
2.003e4 3.428e4 3.642e4 2.948e4 1.928e4 1.348e4 1.143e4
2.068e4 3.469e4 3.726e4 2.974e4 1.931e4 1.418e4 1.149e4

Table 1: First ten computed eigenvalues for variousε, Load L1, mesh UNIF

We plot these values in Figure 2. We observe, first of all, thatfor largeε, the eigenvalues

all coalesce together, which is a symptom typical of spectral pollution (indicating that what

we are recovering are values from the essential spectrum — see [5]). In fact, when mesh

FIN is used, this clumping together is observed for all values of ε, both large and small.

The separation observed in the eigenvalues with mesh UNIF for smaller values ofε, shows,

moreover, that these eigenvalues are highly dependent on the mesh. Finally, there is noO(ε2)

behavior observed, as will be seen for loads L2 and L3 ahead. The conclusion is that in the
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0.004 0.008 0.016 0.032 0.064 0.128 0.256
8.141e3 8.212e3 8.325e3 8.495e3 8.686e3 8.940e3 9.380e3
8.172e3 8.242e3 8.353e3 8.520e3 8.760e3 9.022e3 9.451e3
8.191e3 8.255e3 8.355e3 8.539e3 8.858e3 9.402e3 1.016e4
8.263e3 8.327e3 8.425e3 8.575e3 8.884e3 9.443e3 1.020e4
8.471e3 8.536e3 8.634e3 8.789e3 9.070e3 9.613e3 1.052e4
8.530e3 8.596e3 8.696e3 8.858e3 9.152e3 9.665e3 1.075e4
8.760e3 8.810e3 8.876e3 8.990e3 9.241e3 9.923e3 1.079e4
8.780e3 8.854e3 8.951e3 9.064e3 9.299e3 9.964e3 1.081e4
8.808e3 8.874e3 8.985e3 9.213e3 9.586e3 1.028e4 1.091e4
8.861e3 8.917e3 9.037e3 9.261e3 9.648e3 1.035e4 1.116e4

Table 2: First ten computed eigenvalues for variousε, Load L1, mesh FIN

absence of Hypothesis 3.1, the recovered eigenvalues may not be physically relevant.

Next, we consider loads L2 and L3, each of which gives a{σε
∗} of purely membrane type.

As indicated in the next section, Hypothesis 3.1 is now satisfied with thenon-zero membrane

resultant

R0
m

:= −1
2

(
2fα + t+α + t−α

)
α=1,2

= (−1,−1). (6.4)

In this case, the presence or absence of body forces does not make much of a difference in

the resulting eigenvalues, due to the fact that the resultant is the same for both cases. Tables

3 and 4, both based on mesh MID, illustrate this. Also, it turns out that using the meshes

UNIF and FIN gives very similar results (the tables are not reproduced here). This lack of

mesh-dependence suggests that even with the refinement usedhere, the boundary layer effects

have still not been resolved sufficiently for the computedM0 in (2.11) to cause a problem. (We

note that the computational results in [5] dealt with a different case of infinite stresses — this

time, due to corner singularities. It was shown that if the mesh is sufficiently refined around

the corner, then the essential spectrum does eventually predominate, giving spectral pollution.

A similar effect may be anticipated here, if we resolve the boundary layer sufficiently. Hence,

paradoxically, too much refinement is detrimental to recovering the physical eigenvalues.)

We plot the first five eigenvalues for load L3 in figure 3. (The plot for L2 is similar.)

Now theO(ε2) behavior is clearly observed. Moreover, we see that when thethickness gets

sufficiently large, the computed eigenvalues begin to coalesce, indicating that the required

eigenvalues no longer lie inΛ.

As shown in [5], the difference between physical and non-physical eigenvalues can be quite

clearly seen by examining their eigenvectors — non-physical eigenvectors have a markedly

local character, where not much variation is observed over the domain. In Figure 4, we plot

these eigenvectors corresponding to the first three computed eigenvalues for load L3, using the

mesh MID. The plots are for the componentu3 on the midplane of the disc. We note that the
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Figure 2: First 10 eigenvalues plotted againstε, load L1

0.004 0.008 0.016 0.032 0.064 0.128 0.256
1.861e0 7.444e0 2.975e1 1.187e2 4.694e2 1.798e3 6.130e3
7.383e0 2.951e1 1.177e2 4.662e2 1.795e3 6.246e3 1.460e4
8.956e0 3.574e1 1.423e2 5.605e2 2.114e3 6.884e3 1.621e4
1.174e1 4.672e1 1.857e2 7.309e2 2.758e3 9.011e3 1.717e4
1.604e1 6.346e1 2.500e2 9.670e2 3.500e3 1.028e4 1.742e4
1.786e1 7.104e1 2.816e2 1.098e3 4.023e3 1.144e4 1.759e4
2.033e1 8.059e1 3.179e2 1.221e3 4.267e3 1.215e4 1.777e4
2.530e1 9.938e1 3.793e2 1.402e3 4.808e3 1.303e4 1.873e4
2.572e1 1.009e2 3.981e2 1.536e3 5.447e3 1.430e4 1.917e4
3.108e1 1.225e2 4.779e2 1.792e3 5.961e3 1.517e4 1.972e4

Table 3: First ten computed eigenvalues for variousε, Load L2, mesh MID

plots on the top and bottom surfaces (not shown here) are verysimilar, as can be expected from

the theory: From our construction of quasi-modes in Section5, we know that each eigenvector

η = η(x>) of problem (5.5) gives rise to a buckling eigenvector with its transverse component

u3(x) = η(x>) + O(ε).

The four rows (from top to bottom) give the results forε = 0.004, 0.064, 0.128, 0.256 re-

spectively. Forε = 0.004 and 0.064, the buckling modes are the physical ones. For ε = 0.128,

however, the second eigenvector is clearly non-physical, as are the first and third eigenvectors

for ε = 0.256. It is also interesting to note the presence of an axisymmetric mode at the first

place (certainly corresponding to an axisymmetric 2-d eigenvectorη as in (5.5)) forε = 0.004,
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0.004 0.008 0.016 0.032 0.064 0.128 0.256
1.861e0 7.442e0 2.975e1 1.187e2 4.697e2 1.802e3 6.114e3
7.381e0 2.950e1 1.177e2 4.662e2 1.796e3 6.244e3 1.480e4
8.954e0 3.574e1 1.423e2 5.604e2 2.113e3 6.864e3 1.505e4
1.174e1 4.671e1 1.857e2 7.309e2 2.760e3 9.002e3 1.515e4
1.604e1 6.344e1 2.497e2 9.669e2 3.499e3 1.024e4 1.543e4
1.785e1 7.103e1 2.816e2 1.098e3 4.025e3 1.138e4 1.560e4
2.033e1 8.058e1 3.178e2 1.221e3 4.265e3 1.212e4 1.586e4
2.529e1 9.935e1 3.792e2 1.402e3 4.808e3 1.297e4 1.754e4
2.571e1 1.009e2 3.981e2 1.536e3 5.449e3 1.422e4 1.763e4
3.107e1 1.224e2 4.779e2 1.792e3 5.959e3 1.512e4 1.787e4

Table 4: First ten computed eigenvalues for variousε, Load L3, mesh MID

0.064 and 0.128.

Finally, we consider load L4, which is designed to give a zeroresultant,

R0
m

:= −1
2

(
2fα + t+α + t−α

)
α=1,2

= (0, 0). (6.5)

leading to a cancellation of the right hand side in equation (7.7) ahead. As a result of this, the

magnitude ofσε
∗ (and henceu) will drop in order, leading to a corresponding increase in the

magnitude of the eigenvalues, compared to the previous loadings. In Tables 5 and 6, we have

tabulated the eigenvalues computed using meshes UNIF and FIN respectively, for this case.

The mentioned increase in order due to there being a zero resultant is clearly seen.

0.004 0.008 0.016 0.032 0.064 0.128 0.256
5.809e3 2.364e4 7.842e4 1.231e5 1.319e5 1.307e5 1.200e5
1.974e4 7.740e4 1.927e5 2.214e5 2.176e5 2.016e5 1.536e5
4.371e4 1.583e5 2.789e5 2.933e5 2.871e5 2.501e5 1.602e5
4.565e4 1.603e5 2.980e5 3.083e5 3.083e5 2.604e5 1.605e5
6.859e4 2.228e5 3.231e5 3.405e5 3.405e5 2.833e5 1.758e5
8.057e4 2.683e5 3.837e5 3.770e5 3.770e5 2.850e5 1.782e5
9.257e4 2.763e5 3.990e5 4.282e5 4.282e5 3.102e5 1.817e5
1.185e5 3.391e5 4.267e5 4.382e5 4.382e5 3.272e5 1.826e5
1.249e5 3.780e5 4.511e5 4.537e5 4.537e5 3.285e5 1.838e5
1.549e5 3.967e5 4.911e5 4.765e5 4.765e5 3.355e5 1.845e5

Table 5: First ten computed eigenvalues for variousε, Load L4, mesh UNIF

We plot these numbers in figure 5. The leveling out of the eigenvalues once again occurs

due to the limit ofΛ being reached, leading to non-physical eigenvalues being recovered. It

may be also noticed that for small values ofε, the eigenvalues are mesh-dependent.
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Figure 3: First 5 eigenvalues plotted againstε, load L3

0.004 0.008 0.016 0.032 0.064 0.128 0.256
7.108e3 2.858e4 9.220e4 1.331e5 1.355e5 1.318e5 9.957e4
2.829e4 1.061e5 2.127e5 2.238e5 2.190e5 1.983e5 1.016e5
4.251e4 1.501e5 2.805e5 2.932e5 2.883e5 2.021e5 1.134e5
9.629e4 2.739e5 3.238e5 3.180e5 2.959e5 2.024e5 1.150e5
1.650e5 2.937e5 3.480e5 3.500e5 3.333e5 2.258e5 1.202e5
2.462e5 4.128e5 4.001e5 3.934e5 3.592e5 2.290e5 1.323e5
4.628e5 4.580e5 4.294e5 4.455e5 3.954e5 2.507e5 1.334e5
5.538e5 5.189e5 4.795e5 4.673e5 4.038e5 2.613e5 1.353e5
6.961e5 5.662e5 5.183e5 4.931e5 4.169e5 2.626e5 1.354e5
8.280e5 5.930e5 5.604e5 5.346e5 4.270e5 2.650e5 1.368e5

Table 6: First ten computed eigenvalues for variousε, Load L4, mesh FIN

In Figure 6, we plot the corresponding eigenvectors, which more clearly illustrate the spec-

tral pollution. The first two rows are forε = 0.004, with the meshes MID and FIN respectively.

We observe that the eigenvectors are now mesh-dependent, indicating that even for such low

values ofε, the computed eigenvalues may be spurious. Forε = 0.064 (Row 3) and 0.128

(Row 4), the presence of spurious eigenvectors is clear. Ourconclusion is that for this loading,

spectral pollution starts at smaller values ofε compared to the cases of L2 and L3, in relation

with the fact that the eigenvalues are much larger for L4. Note also that the shape invariance

clearly visible in Figure 4 (related to the asymptotic limitof eigenvectors) disappears here

anyway.
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Figure 4: Midplane plot ofu3 for first three eigenvectors, load L3, mesh MID.
ε = 0.004 (row 1), 0.064 (row 2), 0.128 (row 3), 0.256 (row 4)

27



0.004 0.008 0.016 0.032 0.064 0.128 0.256
5000

10000

20000

50000

100000

200000

500000

ε

λ

Mesh UNIF
Mesh FIN

Figure 5: First 10 eigenvalues plotted againstε, load L4
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Figure 6: Midplane plot ofu3 for first three eigenvectors, load L4.
Row 1: ε = 0.004, mesh MID, Row 2:ε = 0.004, mesh FIN, Row 3:ε = 0.064, mesh FIN,
Row 4: ε = 0.128, mesh FIN
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7 Appendix

In this section, we discuss the form of the pre-buckling stressσε
∗ that is induced by choosing

a loading of the form (6.1),(6.2) used in the numerical experiments in Section 6. In particular,

we investigate the limitσ0
∗, asε → 0, taken in the sense of regular terms (without taking the

boundary layer into account).

We assume that the pre-existing loading has the form

F∗ =
(
fα(x>, X3), εf3(x>, X3)

)
, T±

∗ = (εt±α (x>), ε2t±3 (x>)). (7.1)

(HereX3 is the scaled vertical variablex3ε
−1.) The pre-buckling displacementuε

∗ solves

Finduε
∗ ∈ H1(Ωε)3 such that∀v ∈ H1(Ωε)3

∫

Ωε

Ae(uε
∗) : e(v) dx =

∫

Ωε

F∗ · v dx +

∫

Γ+

T+
∗ · v dx> +

∫

Γ−

T−
∗ · v dx>. (7.2)

According to [4], the outer part, i.e., outside the boundarylayer, of the asymptotics of the

solutionuε
∗ asε → 0 takes the form

uε
∗ ' ε−1u0

KL,b + u0
KL,m + u1

KL,b + ε(u1
KL,m + u2

KL,b + v1
∗) + . . .

. . . + εk(uk
KL,m + uk+1

KL,b + vk
∗) + · · ·

(7.3)

where

• uk
KL,b anduk

KL,m are the bending and membrane parts onΩε of the Kirchhoff-Love

displacement with generatorζk
∗ = ζk

∗,m + ζk
∗,b, see sec. 5.a, namely

uk
KL,b = (−X3∂1ζ

k
∗,3, X3∂2ζ

k
∗,3, ζk

∗,3) and uk
KL,m = (ζk

∗,1, ζk
∗,2, 0).

• vk
∗ = vk

∗(x>, X3), i.e. does not depend onε in the scaled domainΩ.

The formula forv1
∗ is

v1
∗(x>, X3) =

λ

6(λ + 2µ)

(
0, 0, −6X3 div> ζ

0
∗,> + (3X2

3 − 1) ∆>ζ0
∗,3

)
. (7.4)

Then we can check that the stressesσε
∗ of the expansion (7.3) have the form,

(σε
∗)αβ

(x) = σαβ(x>, X3) + O(ε),

(σε
∗)α3

(x) = ε σα3(x>, X3) + O(ε2),
(σε

∗)33
(x) = ε2σ33(x>, X3) + O(ε3),

(7.5)

which, when compared with (3.1), show that the first part of Hypothesis 3.1 will hold in the

limit.

It remains to discuss the second part of Hypothesis 3.1, which is the core of our assumption

which says thatσαβ is a genuine principal part in the sense of (3.3). Accordingly, let us

compute

σαβ(x>, X3) = −X3(2µ∂αβ + δαβλ̂∆>)ζ0
∗,3 + 2µeαβ(ζ0

∗,m) + δαβλ̂ div> ζ
0
∗,m. (7.6)
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We note that−X3(2µ∂αβ + δαβλ̂∆>)ζ0
∗,3 is the bending contribution toσαβ and that it has

a null average across the thickness, whereas2µeαβ(ζ0
∗,m) + δαβλ̂div> ζ

0
∗,m is the membrane

contribution. Hence, (3.2) gives

p0
αβ = 2µeαβ(ζ0

∗,m) + δαβλ̂ div> ζ
0
∗,m.

According to [4] again, the membrane Kirchhoff-Love generator ζ0
∗,m is the solution of the

boundary value problem on the midsurfaceω, – see (4.17) for the plain stress operatorLm:

Findζ0
∗,m ∈ H1

0 (ω)2 such that

Lmζ
0
∗,m(x>) = −

1

2

(∫ 1

−1

fα(x>, X3)dX3 + t+α (x>) + t−α (x>)
)
, x> ∈ ω. (7.7)

Hence,ζ0
∗,m, and consequentlyp0

αβ, can be expected to be non-zero, provided the right hand

side of (7.7) is non-zero. This is clearly the case when the resultantR0
m

is non-zero, as in the

case of Loads L2 and L3 (see (6.4)). As explained in Remark 3.2, we can therefore conclude

that Hypothesis 3.1 (ii) will (in general) hold for all such cases where the first term of the

membrane resultant of the pre-existing load is not identically zero.

We note also thatp0
αβ clearly vanishes whenR0

m
= 0 as for loads L1 and L4, showing that

Hypothesis 3.1 (ii) is violated for these cases.

References
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