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Abstract

The finite element method approximates the spectrum of an opefaigrcom-
puting the spectra of a sequence of operataysdefined in terms of the finite ele-
ment spaces. For the case tisats compact, convergence of the approximate spec-
tra follows from the convergence &fy to S in the operator norm. We consider the
case thatS is non-compact, in which case such operator norm convergence can-
not take place, and the approximations may be polluted by spurious eigenvalues.
Pollution-free convergence of the eigenvalues can, however, be guaranteed outside
the essential numerical rangef S, which is related to the essential spectrum of
S. We present results for estimating this essential numerical range and apply them
to an algorithm for the buckling of three-dimensional bodies (that gives rise to a
non-compactS). Our results show, for instance, that for the example of a circular
disc, the algorithm will be free of spurious eigenvalues provided the body is thin
enough. The case that singularities in the stresses can lead to non-physical spectral
values being approximated is also investigated.
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1 Introduction

The finite element approximation of the solution of eigenvalue problems has a long
history. We refer, for example, to the monograph [2] and the references therein. The
approximation theory is generally developed in terms of the spectrum of an operator
S :V — V (V being an appropriate Sobolev space). The eigenvalues found by the
FEM form the spectrum of another operatdy, : Vy — Vy (Vn being the finite el-
ement subspace df'). When S is compact, the operatorSy converge toS in the
operator norm, and one can derive various optimal convergence results for the approxi-
mate eigenvalues and eigenvectors.

An example where eigenvalue problems arise is the determinationlafibef elas-
tic stability of a body, or more informally, the point at which the bdalyckles The math-
ematical formulation of this problem involves geometric non-linearities. One way to
treat it is by incremental/continuation methods (see e.g. [20] and the references therein),
where the required limit is determined as an inflection point in the load/displacement
curve. An alternative strategy is to linearize the problem and determine the critical mul-
tiple of the applied load at which the equations fail to have a unique solution. This com-
puted load can then be used as the starting point of a full non-linear analysis if needed.
This second approach gives rise to an eigenvalue problem.

Buckling analysis is generally performed for structures thatldran one dimension
(such asrods, plates, shells, etc.). Traditionally, Kirchhoff-type assumptions are imposed
on the displacements, to give a dimensionally-reduced model. This leads to the critical
loads being formulated as the eigenvaluesf a generalized eigenvalue problem of the
form

The = (A—AB)x =0, (1.2)

where typically A is a fourth-order differential operator anfd is a second-order one.
As aresult,, = A~ may be expressed as the eigenvalues of a compact opérasmd
the theory from [2] is applicable.

Here, we consider the mathematical analysis of a method developezaBo3nd
KIRALYFALVI in [23], and implemented in thép commercial code STRESS CHECK.
The underlying model is essentially one derived classically BfAFTZ [24]. This
formulation does not use dimensional reduction, but rather, works with the full three-
dimensional domain. The advantage is that topological details such as stiffeners, as
well as more general loads and boundary conditions (which may be inconsistent with
Kirchhoff-type assumptions), may now be modeled as well. The disadvantage is that
the operatorsA and B in (1.1) are nowboth of second order, so that the underlying
operatorsS is non-compact

The non-compactness @f can cause serious complications. First, the essential



spectrum ofS no longer has to be a subset{df} , as it must for compact . This means

that the spectrunw(S) of S may now contain, for example, eigenvalues of infinite
multiplicity, accumulation points, a continuous spectrum, etc. Also, convergence results
may no longer be guaranteed. Most serious of all, there might be spurious eigenvalues
present in the approximation, i.e.

py € 0(Sn), BN = poo & 0(5). (1.2)

Spurious eigenvalues are known to occur in many cases vghennon-compact,
for instance in problems in waveguides, magnetohydrodynamics, electromagnetics, etc.
(seee.qg. [12,9, 14, 17]). A classical example is the so-called Cosserat problem (see [15]
and the references therein), where

A=A, B=graddiv. (1.3)
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Figure 1. Approximate Cosserat e-values ferb

For the unit ball with homogeneous Dirichlet boundary conditions, it is known [15]
that the exact eigenvalues for the Cosserat problemrarenfultiplicity)

A=0,1 (m=o00) and A=n/2n+1) (m=n,n=12...). (1.4)

Figures 1 and 2 show the results opaversion eigenvalue computation from [22] for
this problem, using the code STRESS CHEGK= 5 and6 were used, with the sphere
divided into 7 hexahedra — the -axis just represents the numbering of the eigenvalues
— first, second, etc.). It is seen that the eigenvalues are completely ‘smeared, with
the results forp = 5,6 suggesting that foany \; € [0, 1], there exists a sequence of
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Figure 2. Approximate Cosserat e-values fer6

finite element approximations, converging to),. Hence, it is impossible to estimate
say the lowest positive eigenvalug = % This spectral pollutionis caused by the
eigenvalues of infinite multiplicity\ = 0,1 — essentially, the spurious eigenvalues
seqguences are created by approximations trying to converge to these limits.

For many problems, spurious eigenvalues may be removed by modifying the under-
lying finite element method, so that the approximating subspaces satisfy the property in
Remark 3.4 ahead. (Essentially, the operaigris designed to converge 9 not in the
operator norm, but a weaker one, which is sufficient for various desirable convergence
properties.) Such conditions were first introduced in [9], and recently developed in the
mixed method context in [4, 3]. (See also [2].) Implicit in this type of approach, how-
ever, is usually some underlying compactness iwhich can be exploited to satisfy the
necessary conditions. (For instance, in the examples considered in [9,/gs higher
order derivatives tha? for all except one unknown.) When this method is successful,
one obtains pollution-free convergence to essentiallyetiiee spectrum ofA .

For the buckling formulation (as for the Cosserat problem), however, the opé&rator
is observed to haveo underlying compactness, and trying to design spaces that fit the
criterion from [9] does not seem promising (see Remark 3.4). We therefore can only
expect to approximateart of the spectrum without pollution. In Section 3.3, we present
a key result on this by BscLoux [8] (see also [16, 18, 19]), which characterizes the
portion of the spectrum (the complement of the so-called ‘essential numerical range’ of
S) that can be approximated without pollution. In Section 4, we discuss two methods to
estimate the essential numerical range. The first is based on characterizing the set of
for which the operatofl, in (1.1) is elliptic, while the second is based on the weak form
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of the problem.

For arbitrary operators of equal ordet, B, the criteria we develop still may not
give us a region of the spectrum 6f where pollution-free convergence is guaranteed.
(As we shall see, the Cosserat problem is one such example.) However, for the case of
buckling, we use the fact that such problems are of interest only when the domain is
thin in one direction. In Section 5, we show for a sequence of domains of thickhess
satisfying a uniform Korn-type inequality as— 0, that the essential numerical range
can be bounded independently of the thickness. Combining this with a result from [7],
which shows that the eigenvalues of interest behavediké*) for the model problem
of a thin plate then leads to our desired result of pollution-free eigenvalue approximation
for such problems. Section 5.2 contains numerical examples illustrating our results for
the case of a smooth domain.

Finally, in Section 6, we consider a case where the operat@ unbounded (which
can occur, e.g. if the domain has corners or edges). We analyze some computational
experiments to explain why one can still obtain buckling values of interest, even though
the problem is not well-posed.

2 The linear model for buckling

Let Q c R? denote the reference configuration of an elastic body, with the boundary
0f) being piecewise smooth. Suppo88, and 0f), are, respectively, the (disjoint)
portions of 92 where tractions and homogeneous displacements are to be specified.
(We could also specify inhomogeneous displacements or spring (Newton) conditions on
a portion of 02 — see [23].)

Let us define for any functions = {u;},v = {v;} on Q (indices range from 1 to 3,
repeated indices indicate summation), the bilinear form

a(u,v) = / Clijki Wi j Vg de, (2.1)
Q

where C' = {C;i;} is the tensor of elastic constants of the material apd= 0;u; .
This tensor is symmetric with respect to indiceg and k, [, and moreover satisfies

Cijr 0ij o > 0
for any matrix{«;;} . We define the admissible energy space by
V={uec H(Q)? u=00n00p},
(we use standard notation for Sobolev spat#s(2)) endowed with the norm
3 1
el = (3 0l
i,j=1
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(@sop #0, || - ||, is really anorm on’). Thena(,-) is bounded in this norm, and
by Korn inequality,a is strongly coercive.

Remark 2.1 In [23], the case))p = () is also treated, essentially by adding a (small)
perturbation term ta:(u, v) to make it coercive. We could assume this modification as
well when 92 p = () — see [23] for more details.

Suppose now that’ = {U%} is a pre-existing stress state in the body. (For instance,
o may be aresidualstress, created in the body while the material was cooling after
manufacture, or it could result e.g. from a thermal or other loading.) The sifess
already present in the reference configuration, it satisfies the equations of equilibrium
(which would include any possible pre-existing loads on the body) and it is assumed to
be independent of any subsequent displacements that the reference configuration may
undergo.

If the reference configuration is now perturbed by a small chafige V', the dual
of V' (which could be a change e.g, in body force, applied traction, thermal loading,
etc), then the work done by® due to the product terms of the Green-Lagrange strain
tensor cannot be neglected. The corresponding displacemeaty be expressed as the
solution of the following problem [23]. Find € V', satisfying, for allv € V',

/ Cijki Wi j Vg dx + / U?j Ui Um j dx = (F, ), (2.2)
Q Q

where (-, -) is the duality betweerl”” and V. The second (‘geometric’) term is the
above-mentioned work done hy’ . Writing

o’ = \o* (2.3)

for A scalar, we see that the second term can be expressedids, v) where

b(u,v) = — / O3 Ui U j dT.
Q

(Here,o* is called the ‘pre-buckling’ stress.)
Unless otherwise stated will be bounded orf). Then it is clear thab(-,-) is a
bounded bilinear form oy :

[b(u, v)| < IM.|ul, [|v (2.4)

ly»

where
M, = max|a()]. (25)
x717]

The case wheré) is only piecewise smooth (or where the type of boundary condition
changes) may result in @ which has unbounded singularities (such as at corners and
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edges), leading td/, in (2.5) being infinite. We discuss this case in Section 6, but note
that sincec™ is pre-determined, it could be chosen to be smooth even wkers not
smooth.

We now write (2.2) as probleriPy) below.

(P\) Findwu € V satisfying, for allv € V',
a(u,v) — Ab(u,v) = (F,v). (2.6)

We will say that (P,) is stably solvablef (P,) has a unigue solution for every
F € V', and there exists a constafit, independent ofF, such that

[ully, < CIFI,.- (2.7)

For instance,(F) is obviously stably solvable. Our goal will be to find the smallest
positive A (or the infimum of such\’s) for which (P, ) is notstably solvable. This\ is
called thelimit of elastic stability Physically, it represents the smallest multiple of the
pre-buckling stress™* for which a small perturbation in external conditions on the body
may cause it to buckle.

More generally, we consider the following question.

(Q) Find X € C for which (P,) is notstably solvable.

3 Some abstract results

Let V' be a (complex) separable Hilbert space, with the compact imbedding H .
Let (,-) be the inner product irf{ . Let the dual of\" be V', with the duality pairing
(-,-) being an extension df., -). Let a(-,-), b(-,-) be Hermitian, bounded, sesquilinear
forms onV xV with a(-, -) strongly coercive. We may then takeas Hilbertian product
on V and define problemi@)) as above. In this section, we redu@@) to a spectral
value problem, describe its spectrum, and consider its numerical approximation.

3.1 The spectral value problem

We define the operata$ : V' — V' by: Foranyw € V, Sw € V is the unique solution
of

a(Sw,v) = b(w,v) Yv e V. (3.1)
Lemma 3.1 S is a self-adjoint operator orV with inner producta.

Proof: Using the fact that(-,-), b(-,-) are Hermitian, we have

a(Su,v) = b(u,v) = b(v,u) = a(Sv,u) = a(u, Sv). (3.2)

7



The result follows. O

To see better what the operat6ris, let us define operatord : V. — V' B: V —
V' by
a(u,v) = (Au,v), b(u,v) = (Bu,v). (3.3)
Then A, A~! are homeomorphisms betwe&hand VV’, and (3.1) shows that
S=A"B. (3.4)

Note that sinced~!, B areboundegsoisS:V — V.
For anyu € C, we now define the operator

S, =pul — 8. (3.5)

Then theresolventp(S) of S [25] is the set of all € C for which S,, is anisomor-
phismfrom 1V onto V. The complement op(.5) is called thespectrunof S, denoted
by o(S). We have the following theorem.

Theorem 3.2 (P,) is not stably solvable foA € C if and only if \™! € o(S5).
Proof: We write (2.6) as the following equation i’ :

(A= \BJu=F. (3.6)

Since A # 0 (P, is always solvable), we may multiply equation (3.6) through by
A1A~! to obtain, withy = A\ 71,

(ul — S)u = pA—'F. (3.7)
Since A~! is a homeomorphism, the result follows easily by (3.6)-(3.7). O

Hence our problem reduces to finding the spectruny of

Remark 3.1 Note that;, = 0 could be a spectral value ¢f, which does not correspond
to any finite value of\ for which (P,) is not solvable.

3.2 Properties of the spectrum
We define the following components of the spectrum as in [13]:

(1) Discrete spectrum
04s(S) ={pn € C, ker S, # {0} and S, is a Fredholm operator frori7 into V' }
(2) Essential spectrum
oes(S) = {p € C, S, is not a Fredholm operator frov into V' }

Then the self-adjointness ¢f immediately gives the following theorem [25].
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Theorem 3.3 ¢(S) CR and o(S) = 0es(S) U gys(S) .
Pointsu € a44(S) are calleceigenvaluesand for these, we may find an eigenvector
0 # u € V forwhich S,u = 0, or equivalently, fory, # 0,
a(u,v) = p'b(u,v) Yo € V. (3.8)

Also, 1 = 0 is an eigenvalue if and only if there is an eigenvedicf v € V' for
which
b(u,v) =0 Yv € V. (3.9

We also define thB8rowder spectrunvg(.S) as the set of allx € o(S) for which
1 1S not an isolated eigenvalue of finite (algebraic) multiplicity. An important property
enjoyed by self-adjoint operators like is the following (Page 518 of [13]):

Oes(S) = 0B(S).

For the case thab is, in addition, compact, it is well-known thai(S) consists
only of eigenvalues of finite multiplicity with O being the only accumulation point (i.e.
oes(S) C {0}). However, the definition ofi(-,-), b(-,-) from Section 2 doesot lead
to a compacts.

Remark 3.2 Since here the spectrum is real (as will be any eigenvectors), we can reduce
everything to the real case. Therefore, we assume in the sequel, triadre real.

3.3 Finite element approximation

Let {Vx} be afamily of finite-dimensional subspacesof parameterized byV , which
will be identified with the dimension. We assume the following approximation property.

Yu € V,Juy € Vi such tha’%im |u —unll,, = 0. (3.10)

We now define an operatdty : Vy — Vi by: Foranyw € Vi, Syw € Vy is the
unique solution of
a(Syw,v) = b(w,v) Yv € Vy. (3.11)

Then Sy is the Galerkin approximation t§'. If we definelly : V' — Vy by
a(llyw,v) = a(w,v) Yv € Vy, (3.12)

then itis seen thaby = [IxS|y, .

Since Vy is finite-dimensional o (Sy) will consist only of eigenvalueg, . Non-
zero uy can be found by solving the finite-dimensional (generalized) eigenvalue prob-
lem: Find (ux, uy) = Ay, un) € R x Vi \ {0} satisfying, for allv € Vy,

a(uy,v) = Anb(uy,v). (3.13)
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Also, 0 will be an eigenvalue ofy if and only if 3uy € Viy \ {0} for which
bluy,v) =0 Yv € Vy. (3.14)

For the case that is compact it is well-known (see e.g. [2]) that the (non-zero)
eigenvalues ofSy converge to those of at optimal rates (as do the eigenvectors), and
there are no spurious eigenvalues. However, st@&not compact in our case, spurious
eigenvalues satisfying (1.2) may exist, like in the Cosserat problem. As mentioned in the
introduction, it is sometimes possible to design a finite element method which satisfies
certain conditions [9] for the pollution-free approximationadf non-zero eigenvalues.
This approach is discussed in Remark 3.4 at the end of this section, but it is not promis-
ing in our case. We therefore present an alternative theorem which characterizes those
eigenvalues that may be approximated without pollution when the standard finite ele-
ment method (3.13) is used, under only the assumption (3.10).

Let us define

Wes = [Hlln UeS(S>7 max 065(5)]7 A=C- Wes- (315)

Wes Is called theessential numerical rangef S. The following result is established in
[8, 18].

Theorem 3.4 Let A be a compact subset of.
(A) If Anco(S) = 0, then there exists an integé¥, > 0 and a constant” > 0 such that

ANo(Sy) = 0 forall N > N,

[(ul = Sx)vll, = Clvll,, VN > Ny, Vo € Vi, Y € A.

(B) If A is a neighborhood of an isolated € o45(.S) with finite algebraic multiplicity
m and ANa(S) = {u}, then there exists an integéy, > 0 such that forNv > Ny,
AnNao(Sy) consists of exactlyn eigenvalues:k;, %, . .. u% of Sy (counted according
to algebraic multiplicity). Moreovedimy ., py = u, for i =1,2,...m.

()

that (A) ensures there are no spurious eigenvalues in the approximation of the spectrum
that lies in A. On the other hand, as shown in [8], one can construct finite element
spaces such that there is a sequence of approximate eigenualusaverging teeach

I € Wes. This is what appears to be happening for the Cosserat problem in Figures 1
and 2: By (1.4), we have

We may also obtain optimal error estimates for— %Z’gluﬁﬂ . Note in particular

Wes = [07 1]
andeverynumber in[0, 1] may be a limit of a sequence of approximations.

Remark 3.3 The characterization (3.15) can be refined to yield a largesee [18, 19].
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Remark 3.4 Let us define the following norm for an operator br (or V).

1Sy = sap [ISvll,. (3.16)

veEVN, HvHvzl

It is shown in [9] that the following condition:
Jim |5 = Sy =0 (3.17)

combined with (3.10) is sufficient for Theorem 3.4 to hold over C. (In fact, (3.17)
is necessarys well for the property in [9] to hold.)

As stated in the introduction, (3.17), which is weaker than convergence in the op-
erator norm, can be made to hold for certain problems by designing the finite element
methods appropriately (see [9, 17]). A similar strategy for mixed methods may be found
in [4, 3]. Unlike the problems discussed in the above references, however, the buckling
problem and the Cosserat problem appear to have no inherent compactness to make such
an approach successful. For instance, it is easily verified that for the Cosserat problem,
condition (3.17) reduces to

lim sup inf ||Sv—wl,, =0, (3.18)

N—oo yeVy, HUHV:1 weVn

with S = A~!'B. Itis not apparent how to design finite element spaces for which (3.18)
will hold when A, B are as in (1.3). The situation for the general 3-d buckling problem
is analogous.

4 Estimation of the essential numerical range

Theorem 3.4 shows that in order to characterize the regiahat is free of spectral
pollution, we must estimate the essential numerical range given in (3.15), i.e. we must
characterize the essential spectrag(S). There holds

Theorem4.1For A € R, = 1/X € 0,(S) ifand only if 7\, = A — AB is not
Fredholm fromV into V.

Proof: Noting that A is an isomorphism fronV” into V', we see by multiplying (3.5)
by = *A that S, is Fredholm if and only if7), is Fredholm. The result follows easily
by the definition of the essential spectrum. O

We discuss two methods to characterize (or provide an estimate for) the &t of
such thatT, is Fredholm.
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4.1 Estimation using ellipticity of operators

The first method uses the fact that in applicatiaAs can be identified with partial dif-
ferential operators. For example, for the Cosserat problem, we obtain the second-order
operators given by (1.3). We may now consider the ellipticity or the non-ellipticity of
the operatofT), in the sense of Agmon Douglis Nirenberg [1]. Let us define

w1 = {A, Ty is not elliptic everywhere of2}

The choice ofessential boundary conditions V' (i.e. the parto2p wherewu sat-
isfies Dirichlet boundary conditions) determines boundary conditions for the operators
T, . We also have to check whether these boundary conditions are complementing or not
for T),. We thus define

we = {\, boundary conditions are not
complementing everywhere @i for 7)}.

Then, in the case when
0% is smooth and 0¢)p, is a connected component of2, (4.2)

T, is Fredholm (as an operator frofd?(Q2) NV into Ly(€2)) if and only if it is elliptic
on Q with complementing boundary conditions & (see e.g. Lemma 2 of [21]) i.e.
ifandonly if A & w; Uws,.

The setsv; andw, can be found by checking algebraic conditions (for instance
by setting the determinant of the symbol of the highest-order term¥s, db be zero).
See [15], where this procedure has been carried out for the Cosserat problem, yielding
wp = {0,1} andwy = {1/2} in the Dirichlet case (i.e. whefQ2,, coincides with the
whole boundaryof?).

In order to use Theorem 4.1, however, we need to consigeas an operator from
V into its dual (rather than front7?(Q) NV into Ly(92)). Theorem 4 of [21] says, es-
sentially, that this does not change the values débr which T, is Fredholm. However,
there are technicalities involved, which may be difficult to resolve, since sgacasd
V' have to be carefully defined to incorporate appropriate classes of boundary data (see
[21]).

Although we are not aware of a rigorous proof, we expect that (once again under
condition (4.1)) we have

Oes(S) = w1 Uws. (4.2)

See [10], where some of the technicalities are resolved for thelgaseA — A1 .
For the Cosserat problem with zero Dirichlet conditions, such a characterization has
been used in [15] to give.s(S) = {0,1/2,1}.
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However, applying this to the linear buckling problem brings more difficulties, since
the conditions (4.1) will not be satisfied in general. For instance, for the model case
of a thin circular plate, with the free boundary on the top and bottom surfaces and the
clamped condition on the lateral surface, we would have to consider a new ellipticity
condition along the edges of the plate, where the boundary is not smooth and the bound-
ary conditions change in nature, giving rise to a thirdsgt which has to be added to
the first two.

Moreover, without knowing the explicit form of* which occurs in the definition
of B, we cannot expect to find.(S) exactly. We therefore present a second approach
below, which is useful for estimating.s(.S), rather than characterizing it exactly.

4.2 Estimation using uniform coercivity

Here, we use the variational form of the problem rather than the operdtdss We
first note the following key result.

Lemma 4.2 Let A € R\{0} be such that/u € V,
a(u,u) = Ab(u, u) > Ciljulli, — Collully

with C; > 0, C, constants independent af ThenS, , = A~ — S is Fredholm from
V —-V.

Proof: The form
{u,v} — a(u,v) — Ab(u,v) + Co(u, v)

is strongly coercive or . Therefore, the operator
A—AB+Col :V =V
is invertible. Hence, composing by tA~! to the left,
A=) +CA AV SV

is invertible. Now A~! as an operator fron¥ into V' is compact. Therefore$,,, is
Fredholm. O

Lemma 4.2 leads to the following result.

Theorem 4.3 Let «, (3, be positive constants such that € 1,
2 2
a(u, u) = allul], —~llull, (4.3)

b w)] < Blull?. (4.4)

Thenoe(S) C [—2, 2]. Therefore the essential numerical rangé, C [—2, 2],
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Proof: For any A € R, we have, using (4.3) and (4.4),
a(u,u) — Ab(u,uw) > a(u,u) — |[A|[b(u,u)]
> a(u,u) — [A|Bllull;,
> (o= Bl —erlull,
Let |A\| < a/3. We may then take
Ci=a— B, Co=ay

in Lemma 4.2 to conclude that, /, is Fredholm. Hence) ! ¢ o0.(S) and the result
follows. O

At first glance, wheru(-, -) is strongly coercive, it might seem natural to take- 0
in (4.3). However, in this case, the theorem does not give any useful information, since
then theentire spectrumo (.S) will be a subset of the indicated interval. The usefulness
of the theorem arises when we are able to chopse( and thereby increase the value
of « for which (4.3) will still hold. We illustrate this by an application to the linear
buckling problem in the next section.

5 The buckling problem over thin domains

5.1 The theoretical framework

If we apply the results of Section 4.1 to our Cosserat problem example, we see by The-
orem 3.4 that the region of spectral pollution is limitediig; = [0, 1]. However, since

by (1.4) theentire spectrum lies iniV,,, we are unable to guarantee pollution-free con-
vergence to any of the eigenvalues of interest, and this is what is illustrated in Figures 1
and 2.

Turning to the buckling problem over a general three-dimensional domain, we see
that the structure of the equations is similar to the Cosserat problem. Depending on
the domain (and the pre-buckling stress), we cannot eliminate the possibility that a
similar situation (of the entire spectrum being polluted) may occur.

As stated in the introduction, however, physically interesting problems of buckling
occur over domains that athkin in one dimension (such as plates, shells, etc.). Sup-
pose we are given a sequence of such dom&ing , parameterized by the ‘thickness’
variabled € (0,1]. Then we assumé(),} satisfies the following weakniform Korn
inequality.

Korn Inequality3 constantsk’ > 0 andr > 0 such that the following inequality holds
uniformly vd € (0, 1],Vu € V':

lull}, < K(a(u, u) +d " [[ullL,q,)- (5.1)
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The above inequality (5.1) has been established with 2 for thin plates of the
form Q; = w x (-4, ) with w € R? in [6]. Similar results can be established for thin
shells (with regular mid-surface).

The following result holds for domains satisfying (5.1).

Theorem 5.1 Let {Q;} be such that the uniform Korn inequalig.1) holds. Let the
pre-buckling stresg* have the bound\Z, asin(2.5). ThenVvd € (0, 1],

0es(S) C [~9K M,, 9K M,].

Proof: We apply Theorem 4.3, noting that (5.1) implies (4.3) is satisfied with-
K=',v=d™", and that (2.4) gives (4.4) with = 91/, . O

Theorem 5.1 shows that for such domains, there will be a regior, —9K M., ) U
(9K M,, o0) independent ofl, which is free of spectral pollution. (Note that without us-
ing (5.1) and Theorem 4.3 we could not conclude that the above region was independent
of d.) Let us denote

A = (=00, —fi) U (ts 5) D (=00, 9K M,) U (9K M, o0)  (5.2)

to be the maximal such pollution-free region. Then if the eigenvalues that are of interest
to us lie inside this domain, we will be able to recover them accurately. Note that we
are interested in thieighestvaluesy. in the spectrunv(.S), corresponding to the lowest
values of \. In terms of \, we may take ™ = 1/u=. to write the above maximal
region as

A= (=Ml A0 ). (5.3)

max’ max

Fortunately, in most practical cases of interest, we can expect for the lowest several
buckling eigenvalues; corresponding to domaify,,

A— 0 as d—0. (5.4)

Physically, this just expresses the fact that as the domain gets thinner, it will take a
smaller multiple of the pre-buckling stresg to make it buckle. (We are assuming we
are given an appropriate family of pre-buckling stres§es}, such that they converge
asd — 0 to an appropriater; .)

In [7], taking advantage of the spectral analysis in thin plates investigated in [5], we
prove (5.4) rigorously for the family of plates x (—g, g) mentioned above: We show
that as long as the pre-buckling stress has a non-zero membrane component (which is
the case of practical interest), the following estimate holds uniformby far the lowest
eigenvalue\;™™:

A — 2N < CdP (5.5)
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Here A" is the lowest eigenvalue of a limiting problem which is compactdas 0,

the operatorA in (1.1) essentially tends to the fourth-order Kirchhoff operator, while
remains second-order. Hence, the limitifigs compact, and the eigenvalugs = 1/

are well-separated from 0. Estimate (5.5) will hold for not just the minimum, but a whole
family of eigenvalues.

Remark 5.1 The existence of eigenvalues behavingdds, asd — 0 is related to
the possibility of excitingoending modes the thin structure. For example, we do not
expect such a behavior in the casel@imped elliptic shells

We therefore see by (5.3) and (5.5) that for the plate problem, svithot of pure-
bending type, we will obtain no spectral pollution in the desired minimum buckling
eigenvalues, once the thicknegss small enough. More generally, we have the follow-
ing theorem.

Theorem 5.2 Let {Q);} be a sequence of domains parameterized by a thickness param-
eter d, such that the uniform Korn’s inequali$.1) is satisfied. Then for any sequence

of eigenvalueg \;} satisfying(5.4), the finite element method gives pollution-free ap-
proximations (in the sense of Theor8m) for ¢ small enough.

5.2 Numerical results

We now present numerical experiments for a model problem that demonstrate that spec-
tral pollution will occur only for rather largée , well above the range of practical interest.

We take{Q2;} to be the family of isotropic circular plates of unit radius and uniform
thicknessd. Elastic constants are given iy = 3 x 10* andv = 0.3.

Let z. = (x1,z2) be the variables in the mid-surface, with origin at the center of the
circle, and letz; € (—£, ) be the variable in the thickness direction. The corresponding
components of the displacememntare (uy, us, us) = (u., ug). By varying d, we can
consider the difference between a thin plate and a cylindrical domain. The uniform Korn
inequality (5.1) will hold for this family of domains, with = 2.

The lateral boundary condition is soft simple support, i.e. the compangeig zero
along the lateral cylindrical boundary. The two circular faces are left free.

We load the disc by a uniform inward radial load of unity along the lateral cylindrical
boundary. This load is symmetric (membrane symmetry) with respect to the plane
0 and any planer; sin = x5 cosf.

Let > be the transverse symmetry operator definedifer (u., us3) by:

u 2R ((x*,xg) = (us (2, —3), —ug(x*,—xg))).

Then AY = ¥ A and since the pre-buckling stress originates from a loaghtisfying
Y(u) = u (i.e. a membrane load), we also obtain ti##f = ¥ B. This is also valid for
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the symmetries2y associated with the plang sin § = x5 cos 8. Therefore the buckling
eigen-spaces are invariant under battand —> and similarly for anyX:, .

d

SYM

SYM

Figure 3: The quarter disc with thicknegs

Using the symmetries of the domain, we take as computational domain the quarter of
the plate as shown in Figure 3, imposing a sliding edge boundary condition on the plane
lateral parts of the boundary; = 0 and z; = 0 (i.e. the displacement in the normal
direction to these planes &, so that symmetry is enforced in the solution on the full
domain(2, across these planes). We then compute approximations for those eigenvalues
whose eigenvectors satisfy these symmetries over the full domain (roughly a quarter of
the total number). The lowest eigenvalue for this example turns out to have a symmetric
eigenvector with respect to any plamesin § = x5 cos @, i.e. it is a radial eigenvector.

The resulting stress is calculated withelements using STRESS CHECK, with de-
greep = 8, for various values ofl. (The quarter of the plate is sliced into two halves,
each of which hag elements.) The calculated stress is used as the pre-buckling stress
o} in each case, and the lowelsi eigenvalues computed. Figure 4 shows the computed
eigenvalues.

It is observed that there is a valugl, . ~ 6600, such that eigenvalues that satisfy
A < A\t are computed accurately (as verified by comparisons with the results for lower

max

p, which are not shown here). However, no values\af )/ . are returned — instead,
these values simply seem to be ‘absorbed’ into the valug of . (Computing the lowest
50 eigenvalues also did not return anything larger than. .) Our interpretation of this
phenomenon is that} . € o.(S) and represents the smallest value\ofor which the
operatorA — AB is no longer elliptic with complementing boundary conditions. The
part of the spectrum that lies above, is subject to pollution, and we are unable to
recover it. For instance, fof = 1.4 and larger, thentirespectrum lies abova.’ .

In Figure 5, we plot the computed eigenvalues as functions. dfhe slopes clearly
demonstrate th&(d?) behavior predicted by (5.5). This shows that whiis small, we
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Value of eigenvalue

Value of eigenvalue

First 10 eigenvalues for various thicknesses

10 T T T T T T T T
; -+
/
/ o © © d=0.05
/
- o - d=0.10
10°¢ —e—  d=0.20 4
[ * d=0.40
- k= - d=0.80
— d=1.40
D
101 L L L L L L L L
1 2 3 4 5 6 7 8 9 10
Number of eigenvalue
Figure 4: The first ten eigenvalues for differeht
" Variation of eigenvalues with thickness
10 T T
10°F E
first e—value
—— third e—value
10°F —=— fifth e-value 4
—— seventh e—value
—— ninth e—value
101 L L
1077 107" 10° 10"

Thickness d

Figure 5: TheO(d?) behavior of the physical eigenvalues
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can expect to calculate several buckling modes, before the cut-off maximup of~

6600 is reached. Asl increases, these buckling multiples increase as well, and fewer of
them can be calculated, until we reach a critical thickness (afdeutl.4 in this case),
where all we can calculate is',_, the point where ellipticity is lost.

Ld.Fct.= 4.2759e+ Ld.Fct.= 1.9674e+
Run=4 Run=4
Fnc. = Ux Fnc. = Ux
Max = 2.7566e-01 Max = 3.2871e-01
Min = -2.7570e-01 Min = -3.2885e-01
2.7566e-01 3.2871e-01
2.2053e-01 2.6295e-01
1.6539e-01 1.9719e-01
1.1025e-01 1.3144e-01
5.5117e-02 6.5683e-02
-1.9129e-05 -7.2278e-05
-5.5155e-02 -6.5828e-02
-1.1029e-01 -1.3158e-01
-1.6543e-01 -1.9734e-01
T -2.2056e-01 . -2.6309e-01
L L
-2.7570e-01 -3.2885e-01
Ld.Fct.= 2.2877e+ Ld.Fct.= 3.4166e+
Run =4 Run =4
Fnc. = Ux Fnc. = Ux
Max = 3.0109e-01 Max = 2.8729e-01
Min = -3.0137e-01 Min = -2.8748e-01
3.0109e-01 2.8729e-01
2.4084e-01 2.2981e-01
1.8059e-01 1.7233e-01
1.2035e-01 1.1486e-01
6.0102e-02 5.7379e-02
-1.4379e-04 -9.7997e-05
-6.0390e-02 -5.7575e-02
-1.2064e-01 -1.1505e-01
-1.8088e-01 -1.7253e-01
T -2.4113e-01 T -2.3001e-01
L L
-3.0137e-01 -2.8748e-01

Figure 6: The first four eigenvectorg,= 0.2

The difference between ‘physical’ and ‘non-physical’ (likg,. ) modes comes out
quite clearly when we examine the corresponding eigenvectors (which represent the
buckling deformations). Figures 6-9 show this difference, whereithe&omponent
of the first four buckling eigenvectors are plotted tbe= 0.2, 0.4, 0.8 and 1.4, which
have4, 3, 1 and 0 physical eigenvalues respectively. There is a marked difference in
the corresponding deformations. We note in particular that, as expected, the physical
buckling modes have the bending symmetry (ize. is odd with respect to the plane
x3 = 0) whereas no such anti-symmetry is visible for the non-physical modes.
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2.7691e+

Max = 3.7544e-01
Min = -3.7608e-01

3.7544e-01
3.0029e-01
2.2514e-01
1.4998e-01
7.4832e-02
-3.2049e-04
-7.5473e-02
-1.5063e-01
-2.2578e-01
-3.0093e-01
-3.7608e-01

Ld.Fct.= 6.4778e+
Run =4

Fnc. = Ux

Max = 3.2645e-01
Min = -3.2334e-01

3.2645e-01
2.6147e-01
1.9649e-01
1.3151e-01
6.6535e-02
1.5549e-03
-6.3425e-02
-1.2840e-01
-1.9338e-01
-2.5836e-01
-3.2334e-01

Ld.Fct.= 6.6112e+(

Ux
2.0165e-01
Min = -3.1597e-01

2.0165e-01
1.4989e-01
9.8123e-02
4.6361e-02
-5.4008e-03
-5.7163e-02
-1.0892e-01
-1.6069e-01
-2.1245e-01
-2.6421e-01
-3.1597e-01

Ld.Fct.= 6.6144e+(
Run=4

Fnc. = Ux

Max = 1.8215e-01
Min = -2.7775e-01

1.8215e-01
1.3616e-01
9.0169e-02
4.4180e-02
-1.8095e-03
-4.7799e-02
-9.3788e-02
-1.3978e-01
-1.8577e-01
-2.3176e-01
-2.7775e-01

Figure 7: The first four eigenvectorg,= 0.4

Ld.Fct.= 5.1569e+
Run =4

Fnc. = Ux

Ma 3.6542e-01
Min = -3.6742e-01

3.6542e-01
2.9214e-01
2.1885e-01
1.4557e-01
7.2287e-02
-9.9704e-04
-7.4281e-02
-1.4757e-01
-2.2085e-01
-2.9413e-01
-3.6742e-01

Ld.Fct.= 6.5809e+
Run =4

Fnc. = Ux

Max = 1.7081e-01
Min = -3.3841e-01

1.7081e-01
1.1989e-01
6.8966e-02
1.8045e-02
-3.2877e-02
-8.3798e-02
-1.3472e-01
-1.8564e-01
-2.3656e-01
-2.8748e-01
-3.3841e-01

Ld.Fct.= 6.5956e+

Max = 4.6343e-01
Min = -1.5727e-01

4.6343e-01
4.0136e-01
3.3929e-01
2.7722e-01
2.1515e-01
1.5308e-01
9.1007e-02
2.8937e-02
-3.3133e-02
-9.5203e-02
-1.5727e-01

Ld.Fct.= 6.6052e+(
Run=4

Fnc. = Ux

Max = 1.7752e-01
Min = -2.0781e-01

1.7752e-01
1.3898e-01
1.0045e-01
6.1918e-02
2.3385e-02
-1.5148e-02
-5.3682e-02
-9.2215e-02
-1.3075e-01
-1.6928e-01
-2.0781e-01

Figure 8: The first four eigenvectorg,= 0.8
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Ld.Fct.= 6.5567e+( Ld.Fct.= 6.5691e+(

Run=4

Fnc. = Ux Ux

Max = 1.7012e-01 2 3.6463e-01

Min = -3.3267e-01 Min = -1.7578e-01
1.7012e-01 3.6463e-01
1.1984e-01 3.1059e-01
6.9565e-02 2.5655e-01
1.9285e-02 2.0251e-01
-3.0994e-02 1.4847e-01
-8.1274e-02 9.4426e-02
-1.3155e-01 4.0385e-02
-1.8183e-01 -1.3655e-02
-2.3211e-01 -6.7696e-02
-2.8239e-01 -1.2174e-01
-3.3267e-01 -1.7578e-01

Ld.Fct.= 6.5892e+ .= 6.6128e+

Run =4

Fnc. = Ux Ux

Max = 2.1313e-01 2.2003e-01

Min = -1.4261e-01 Min = -3.1512e-01
2.1313e-01 2.2003e-01
1.7756e-01 1.6652e-01
1.4198e-01 1.1300e-01
1.0641e-01 5.9487e-02
7.0834e-02 5.9718e-03
3.5260e-02 -4.7544e-02
-3.1389e-04 -1.0106e-01
-3.5888e-02 -1.5457e-01
-7.1462e-02 -2.0809e-01
-1.0704e-01 -2.6161e-01
-1.4261e-01 -3.1512e-01

Figure 9: The first four eigenvectorg,= 1.4
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6 The case of unbounded*

So far, we have considered that is bounded. However, if the region has corners

or edges, then this condition could be violated. For instance, the algorithm in STRESS
CHECK uses a representativé that is first computed by considering the equations of
equilibrium on the body under any external forces (or displacements) that are applied,
and then inputs this pre-buckling stress into the eigenvalue calculation. Consequently,
we may expect™ (if calculated with infinite accuracy) to be unbounded at edges and
corners.

For unboundedr*, we see thatV/, in (2.5) is infinite, so that the form(-, -) is un-
bounded, and the three-dimensional buckling problem is not well-formulated. However,
the dimensionally reduced (Kirchhoff) case can still be well-posed. This is because now
A will be fourth-order andB second-order, so that the energy space will be a subset of
H?(Q) rather thanH'(2). Although b(-,-) will not be bounded in thei7'(©2) norm,
it might still be bounded in the energy norm, since with proper boundary conditions
a singularity that is not too strong can be absorbed into/iHé?) norm. Hence the
Kirchhoff limit gives a bounded, compact eigenvalue problem, and we can compute its
lowest positive eigenvaluay". See [7], where the above is illustrated for a thin plate.

Although (5.5) may not hold when the domain is not smooth, we expect that for finite
thicknesses, there will still be a sequence of eigenva{uéd"} that converge to\J"",
as in the smooth case. The purpose of the engineering calculation is generally to find
this A7 for given d > 0. Of course, oncel > 0, we are not in the Kirchhoff limit,
and the problem becomes ill-posed due to loss of boundedness. Applying Theorem 5.1,
we will be able to find\7"™ provided (see (5.3))

AT e A e, AT < \E (6.1)

max*

However, as the stress becomes unboundedj}.e— oo, we expect\!, — 0 which
will preclude (6.1) from holding.

In actual practice, however, our computed stress may be large but is never unbounded,
since we do not have infinite accuracy but 4ée C V' instead. We can therefore expect
asequencéo™(NV)} for which the maximum\/, (V) in (2.5) tends to (but never attains)
infinity as N — oo (see (6.3) for anl»({2) estimate). The corresponding.,. () in
(5.3) can be expected to degenerate to 0, as observed in the numerical example below.
By (6.1), our computation oA can then only succeed if

AP < At (N). (6.2)

max

Equation (6.2) suggests that in order to obtain pollution-free approximatioxjgtowe
should either have small enough (which we have already seen in the previous section),
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or, paradoxically, the level of discretizatioN not too large. This is observed in the
numerical experiments that follow.

A
-1
1 '
2/ || T R —
1 T +1
o
v 0
B<—><—> B<—><—>
1 1 1 1

Figure 10: Cracked panels.
(@) Panel AE =3 x 107, v = 0) (b) Panel B £ = 3 x 101 v = 0.3)

We first consider Panel A (Figure 6(a)), which is the top right quarter of a rectangular
panel with a symmetric center crack (the angle to the horizontal shown in the figure is
5 degrees). We use symmetry conditions at the base BO and the side AB. Soft simple
support boundary conditions are applied on the top face AC and the panel is subjected
to a uniform traction of -1 on this face (and symmetrically, on the bottom face). The
strongest singularity will now lie at the vertex of the crack, which must be resolved to
compute the representative pre-buckling strgssiccurately. We therefore ugg geo-
metric refinement in the vicinity of this vertex (see [11]) with the number of geometric
layers denoted by and the polynomial degree in each elemenphigo thatN ~ np?).

By [11], we can expect the following exponential estimate for the approximation to the
pre-buckling stress.
lo* = 0" (Nl < CeT7 ¥ (6.3)

After o*(N) has been calculated, it is used in the buckling formulation to find the
corresponding buckling eigenvalues. Figure 11 shows the computations of the lowest
two eigenvalues for varioug whenp is fixed at 8 and the number of layersis varied.

We make the following observations:

1. Asinthe smooth case, the lowest buckling eigenvalffé¢ — 0 at the rateO(d?).
The same is observed for the next eigenvalue.

2. The computed eigenvalues (say™) have already converged for = 1 layer,
so that they do not require much refinement at the vertex. This may be explained
by buckling being a global phenomenon, which is not very sensitive on exactly
recovering the singularity at the vertex.

23



Convergence of spurious eigenvalues

10 ¢ T

all d, spurious
d=0.20,
d=0.20,
d=0.10,
, mode2
, model

model
mode2
model

, mode2

Computed eigenvalue

Number of layers, n

Figure 11: Computed eigenvalues for cracked panel

3. As in the smooth case, there is an ‘absorbing’ valfie, such that no eigenvalue
over A\ can be recovered, ankf’, . is independent off .

max

max

Unlike the smooth case\"

max

tion. In fact, we observe

(N) depends on the amount of discretiza-

Ao

max(N>’ ~ Ceivn? (6-4)

ie. AL..(N) tends exponentially to O with the number of layers. This is con-
sistent with (6.3) and our explanation above — the larger is the baupdV)
(which increases exponentially te ), the smaller will be\!  (which decreases

max
exponentially to 0).

. Figure 11 clearly illustrates the condition (6.2) that must hold for the successful

computation of the required buckling eigenvalues. Due to the concentrated power

of the hp version in resolving singularities, the danger is over- rather than under-
refinement. Of course, no matter what method is used (é.gor p version),
similar results (of\ _ being reached) will be observed once the refinement has

max

proceeded far enough.

Let us mention that we computed between 20 and 50 eigenvalues in each case. Once

/\+

max

was reached, all the remaining computed eigenvalues above it were about the same.

Similar results are obtained for our second experiment, on Panel B in Figure 6. Here,
the entire plate is used, with the side AB perpendicular to the crack (which forms a
5 degree opening) now clamped, and the remaining boundary free. The loading is now
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Ld.Fct.= 2.7511e+ Ld.Fct= 3.585
Run=7 Run=7

Fnc. = Ux Fnc. = Ux

Max = 1.9225e-01 Max = 1.6166e-01
Min = -1.9235e-01 Min = -1.6187e-01

1.9225e-01 1.6166e-01
1.5379e-01 1.2931e-01
1.1533e-01 9.6957e-02
6.4604e-02
3.2251e-02
-1.0286e-04
-3.2456e-02
-6.4810e-02
-9.7163e-02
-1.2952e-01
-1.6187e-01

7.6870e-02

3.8409e-02
-5.1595e-05
-3.8512e-02
-7.6973e-02
-1.1543e-01
-1.5389e-01
-1.9235e-01

Ld.Fct.= 8.2059e+ Ld.Fet.= 1.0568
Run=7 Run=7

Fnc. = Ux Fnc. = Ux

Max = 1.1671e-01 Max = 3.2060e-01
Min = -1.1290e-01 Min = -3.3117e-01

3.2060e-01
2.5542e-01
1.9025e-01
1.2507e-01
5.9893e-02
-5.2846e-03
-7.0462e-02
-1.3564e-01
-2.0082e-01
-2.6599e-01
-3.3117e-01

1.1671e-01
9.3748e-02
7.0787e-02
4.7827e-02
2.4866e-02
1.9059e-03
-2.1055e-02
-4.4015e-02
-6.6975e-02
-8.9936e-02
-1.1290e-01

Figure 12: Computed eigenvectors for cracked panel with(0.1 andn = 1 layer

through a body force which is applied towards the midline throughout the body, i.e. -1 on
the top half of the panel, and +1 on the lower half of the panel. Once again the strongest
singularity occurs at the vertex of the crack, and we perférprefinement withn

layers. Spurious eigenvalues show up for much smallemd » in this experiment,

and in Figures 12-14 we show the first few eigenvectors this timelfer 0.1, with
approximation degree = 8 andn = 1,2 and 3 layers, respectively (the eigenvalue
convergence, not shown here, gives a graph similar to Figure 11).

For n = 2 the first two computed eigenvalues are physical, while the third one is
spurious. Figure 13 shows the difference in the corresponding buckling modes. While
the first two are global eigenvectors, the nature of the third is very local, with everything
occurring close to the singularity. This is seen in the detail of an element from the
innermost layer.

When we look atn = 3, all the eigenvectors are local, corresponding to spurious
eigenvalues. Here, the refinement is already too strongland N) has been reached,
with the result that none of the desired buckling eigenvalues can be computed. This
shows that examination of the eigenvectors can be a usgosterioritool in determin-
ing whether a computed eigenvalue is physically relevant or not.

Remark 6.1 Let us point out that even in the example of the disc in Section 5, the
stresses*, if computed exactly, would be unbounded along edges. We do not see the
influence of this unboundedness because the discretization is not strong enough near the
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Ld.Fct.= 2.7705e+ Ld.Fct.= 3.5921e+

Run=7 Run=7
Fnc. = Ux Fnc. = Ux
Max = 1.9293e-01 Max = 1.5898e-01
Min = -1.9290e-01 Min = -1.5910e-01
1.9293e-01 1.5898e-01
1.5434e-01 1.2717e-01
1.1576e-01 9.5365e-02
7.7179e-02 6.3557e-02
3.8596e-02 3.1748e-02
1.3113e-05 -6.0141e-05
-3.8570e-02 -3.1869e-02
-7.7152e-02 -6.3677e-02
-1.1574e-01 -9.5485e-02
-1.5432e-01 -1.2729e-01
-1.9290e-01 -1.5910e-01
4.9518e+ Ld.Fct.= 4.9518e+

X
3.0387e-02 Max = 2.6964e-04

Min = -3.1155e-02 Min = -2.6990e-03
3.0390e-02 2.6964e-04
2.4235e-02 -2.7227e-05
1.8080e-02 -3.2409e-04
1.1925e-02 -6.2095e-04
5.7700e-03 -9.1782e-04
-3.8500e-04 -1.2147e-03
-6.5400e-03 -1.5115e-03
-1.2695e-02 -1.8084e-03
-1.8850e-02 -2.1053e-03
-2.5005e-02 -2.4021e-03
-3.1160e-02 -2.6990e-03

Figure 13: Computed eigenvectors for cracked panel with(0.1 andn = 2 layers

Ld.Fct.= 2.0857e+ Ld.Fct.= 2.1099e+
Rul Rul
1.2923e-02 1.3320e-02
Min = -1.4820e-02 Min = -4.5844e-03
1.2923e-02 1.3320e-02
1.0149e-02 1.1529e-02
7.3747e-03 9.7389e-03
4.6004e-03 7.9485e-03
1.8261e-03 6.1581e-03
-9.4817e-04 4.3676e-03
-3.7225e-03 2.5772e-03
-6.4968e-03 7.8682e-04
-9.2711e-03 -1.0036e-03
-1.2045¢-02 -2.7940e-03
-1.4820e-02 -4.5844e-03
Ld.Fct.= 2.1149e+ Ld.Fct.= 2.1149e+
n=7 un=7
Fnc. X
9.2407e-03 Max = 9.0918e-05
Min = -2.5072e-02 2] Min = -2.6697e-04
9.2407e-03 9.0918e-05
5.8094e-03 5.5129e-05
2.3781e-03 1.9341e-05
-1.0532e-03 -1.6448e-05
-4.4846e-03 -5.2236e-05
-7.9159e-03 -8.8025e-05
-1.1347e-02 -1.2381e-04
-1.4779e-02 -1.5960e-04
-1.8210e-02 -1.9539e-04
-2.1641e-02 -2.3118e-04
-2.5072e-02 -2.6697e-04

Figure 14: Computed eigenvectors for cracked panel with(0.1 andn = 3 layers
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boundary to resolve the edge singularities. On the other hand, the pre-buckling stress
o* Is supposed to be representative of the typical physical stresses acting on the body,
and it could be argued that the non-boundedness only arises because we use the linear
theory (for convenience) to solve for it. However, similar problems occur even if the
pre-buckling stress is bounded but with bouhf] (in equation (2.5)) large enough. In

fact, in experiments where a reentrant corner (e.g. point O in Figure 10(b)) is replaced by
a rounded fillet of very small radius, one observes that the phenomena discussed above
remain essentially unchanged.
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