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Abstract

The finite element method approximates the spectrum of an operatorS by com-
puting the spectra of a sequence of operatorsSN defined in terms of the finite ele-
ment spaces. For the case thatS is compact, convergence of the approximate spec-
tra follows from the convergence ofSN to S in the operator norm. We consider the
case thatS is non-compact, in which case such operator norm convergence can-
not take place, and the approximations may be polluted by spurious eigenvalues.
Pollution-free convergence of the eigenvalues can, however, be guaranteed outside
the essential numerical rangeof S , which is related to the essential spectrum of
S . We present results for estimating this essential numerical range and apply them
to an algorithm for the buckling of three-dimensional bodies (that gives rise to a
non-compactS ). Our results show, for instance, that for the example of a circular
disc, the algorithm will be free of spurious eigenvalues provided the body is thin
enough. The case that singularities in the stresses can lead to non-physical spectral
values being approximated is also investigated.
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1 Introduction

The finite element approximation of the solution of eigenvalue problems has a long

history. We refer, for example, to the monograph [2] and the references therein. The

approximation theory is generally developed in terms of the spectrum of an operator

S : V → V (V being an appropriate Sobolev space). The eigenvalues found by the

FEM form the spectrum of another operatorSN : VN → VN (VN being the finite el-

ement subspace ofV ). When S is compact, the operatorsSN converge toS in the

operator norm, and one can derive various optimal convergence results for the approxi-

mate eigenvalues and eigenvectors.

An example where eigenvalue problems arise is the determination of thelimit of elas-

tic stabilityof a body, or more informally, the point at which the bodybuckles. The math-

ematical formulation of this problem involves geometric non-linearities. One way to

treat it is by incremental/continuation methods (see e.g. [20] and the references therein),

where the required limit is determined as an inflection point in the load/displacement

curve. An alternative strategy is to linearize the problem and determine the critical mul-

tiple of the applied load at which the equations fail to have a unique solution. This com-

puted load can then be used as the starting point of a full non-linear analysis if needed.

This second approach gives rise to an eigenvalue problem.

Buckling analysis is generally performed for structures that arethin in one dimension

(such as rods, plates, shells, etc.). Traditionally, Kirchhoff-type assumptions are imposed

on the displacements, to give a dimensionally-reduced model. This leads to the critical

loads being formulated as the eigenvaluesλ of a generalized eigenvalue problem of the

form

Tλx = (A − λB)x = 0, (1.1)

where typicallyA is a fourth-order differential operator andB is a second-order one.

As a result,µ = λ−1 may be expressed as the eigenvalues of a compact operatorS , and

the theory from [2] is applicable.

Here, we consider the mathematical analysis of a method developed by SZABO and

KIRALYFALVI in [23], and implemented in thehp commercial code STRESS CHECK.

The underlying model is essentially one derived classically by TREFFTZ [24]. This

formulation does not use dimensional reduction, but rather, works with the full three-

dimensional domain. The advantage is that topological details such as stiffeners, as

well as more general loads and boundary conditions (which may be inconsistent with

Kirchhoff-type assumptions), may now be modeled as well. The disadvantage is that

the operatorsA and B in (1.1) are nowboth of second order, so that the underlying

operatorS is non-compact.

The non-compactness ofS can cause serious complications. First, the essential
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spectrum ofS no longer has to be a subset of{0} , as it must for compactS . This means

that the spectrumσ(S) of S may now contain, for example, eigenvalues of infinite

multiplicity, accumulation points, a continuous spectrum, etc. Also, convergence results

may no longer be guaranteed. Most serious of all, there might be spurious eigenvalues

present in the approximation, i.e.

µN ∈ σ(SN), µN → µ∞ /∈ σ(S). (1.2)

Spurious eigenvalues are known to occur in many cases whenS is non-compact,

for instance in problems in waveguides, magnetohydrodynamics, electromagnetics, etc.

(see e.g. [12, 9, 14, 17]). A classical example is the so-called Cosserat problem (see [15]

and the references therein), where

A = ∆, B = grad div . (1.3)
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Figure 1: Approximate Cosserat e-values forp=5

For the unit ball with homogeneous Dirichlet boundary conditions, it is known [15]

that the exact eigenvalues for the Cosserat problem are (m=multiplicity)

λ = 0, 1 (m = ∞) and λ = n/(2n + 1) (m = n, n = 1, 2, . . .). (1.4)

Figures 1 and 2 show the results of ap version eigenvalue computation from [22] for

this problem, using the code STRESS CHECK (p = 5 and6 were used, with the sphere

divided into7 hexahedra — thex -axis just represents the numbering of the eigenvalues

— first, second, etc.). It is seen that the eigenvalues are completely ‘smeared,’ with

the results forp = 5, 6 suggesting that forany λs ∈ [0, 1] , there exists a sequence of
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Figure 2: Approximate Cosserat e-values forp=6

finite element approximationsλN converging toλs . Hence, it is impossible to estimate

say the lowest positive eigenvalueλ0 = 1
3

. This spectral pollutionis caused by the

eigenvalues of infinite multiplicityλ = 0, 1 — essentially, the spurious eigenvalues

sequences are created by approximations trying to converge to these limits.

For many problems, spurious eigenvalues may be removed by modifying the under-

lying finite element method, so that the approximating subspaces satisfy the property in

Remark 3.4 ahead. (Essentially, the operatorSN is designed to converge toS not in the

operator norm, but a weaker one, which is sufficient for various desirable convergence

properties.) Such conditions were first introduced in [9], and recently developed in the

mixed method context in [4, 3]. (See also [2].) Implicit in this type of approach, how-

ever, is usually some underlying compactness inS which can be exploited to satisfy the

necessary conditions. (For instance, in the examples considered in [9, 4],A has higher

order derivatives thanB for all except one unknown.) When this method is successful,

one obtains pollution-free convergence to essentially theentirespectrum ofA .

For the buckling formulation (as for the Cosserat problem), however, the operatorS

is observed to haveno underlying compactness, and trying to design spaces that fit the

criterion from [9] does not seem promising (see Remark 3.4). We therefore can only

expect to approximatepart of the spectrum without pollution. In Section 3.3, we present

a key result on this by DESCLOUX [8] (see also [16, 18, 19]), which characterizes the

portion of the spectrum (the complement of the so-called ‘essential numerical range’ of

S ) that can be approximated without pollution. In Section 4, we discuss two methods to

estimate the essential numerical range. The first is based on characterizing the set ofλ

for which the operatorTλ in (1.1) is elliptic, while the second is based on the weak form
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of the problem.

For arbitrary operators of equal orderA, B , the criteria we develop still may not

give us a region of the spectrum ofS where pollution-free convergence is guaranteed.

(As we shall see, the Cosserat problem is one such example.) However, for the case of

buckling, we use the fact that such problems are of interest only when the domain is

thin in one direction. In Section 5, we show for a sequence of domains of thicknessd ,

satisfying a uniform Korn-type inequality asd → 0 , that the essential numerical range

can be bounded independently of the thickness. Combining this with a result from [7],

which shows that the eigenvalues of interest behave likeO(d2) for the model problem

of a thin plate then leads to our desired result of pollution-free eigenvalue approximation

for such problems. Section 5.2 contains numerical examples illustrating our results for

the case of a smooth domain.

Finally, in Section 6, we consider a case where the operatorB is unbounded (which

can occur, e.g. if the domain has corners or edges). We analyze some computational

experiments to explain why one can still obtain buckling values of interest, even though

the problem is not well-posed.

2 The linear model for buckling

Let Ω ⊂ R
3 denote the reference configuration of an elastic body, with the boundary

∂Ω being piecewise smooth. Suppose∂ΩT and ∂ΩD are, respectively, the (disjoint)

portions of ∂Ω where tractions and homogeneous displacements are to be specified.

(We could also specify inhomogeneous displacements or spring (Newton) conditions on

a portion of∂Ω — see [23].)

Let us define for any functionsu = {ui}, v = {vi} on Ω (indices range from 1 to 3,

repeated indices indicate summation), the bilinear form

a(u, v) =

∫
Ω

Cijkl ui,j vk,l dx, (2.1)

where C = {Cijkl} is the tensor of elastic constants of the material andui,j = ∂jui .

This tensor is symmetric with respect to indicesi, j andk, l , and moreover satisfies

Cijkl αij αkl ≥ 0

for any matrix{αij} . We define the admissible energy space by

V = {u ∈ H1(Ω)3, u = 0 on∂ΩD},

(we use standard notation for Sobolev spacesHk(Ω) ) endowed with the norm

‖u‖
V

:=
( 3∑

i,j=1

‖∂jui‖2
L2(Ω)

) 1
2
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(as ∂ΩD �= ∅ , ‖ · ‖
V

is really a norm onV ). Thena(·, ·) is bounded in this norm, and

by Korn inequality,a is strongly coercive.

Remark 2.1 In [23], the case∂ΩD = ∅ is also treated, essentially by adding a (small)

perturbation term toa(u, v) to make it coercive. We could assume this modification as

well when∂ΩD = ∅ — see [23] for more details.

Suppose now thatσ0 = {σ0
ij} is a pre-existing stress state in the body. (For instance,

σ0 may be aresidualstress, created in the body while the material was cooling after

manufacture, or it could result e.g. from a thermal or other loading.) The stressσ0 is

already present in the reference configuration, it satisfies the equations of equilibrium

(which would include any possible pre-existing loads on the body) and it is assumed to

be independent of any subsequent displacements that the reference configuration may

undergo.

If the reference configuration is now perturbed by a small changeF ∈ V ′, the dual

of V (which could be a change e.g, in body force, applied traction, thermal loading,

etc), then the work done byσ0 due to the product terms of the Green-Lagrange strain

tensor cannot be neglected. The corresponding displacementu may be expressed as the

solution of the following problem [23]. Findu ∈ V , satisfying, for allv ∈ V ,∫
Ω

Cijkl ui,j vk,l dx +

∫
Ω

σ0
ij um,i vm,j dx = 〈F , v〉, (2.2)

where 〈·, ·〉 is the duality betweenV ′ and V . The second (‘geometric’) term is the

above-mentioned work done byσ0 . Writing

σ0 = λσ∗ (2.3)

for λ scalar, we see that the second term can be expressed as−λb(u, v) where

b(u, v) = −
∫

Ω

σ∗
ij um,i vm,j dx.

(Here,σ∗ is called the ‘pre-buckling’ stress.)

Unless otherwise stated,σ0 will be bounded onΩ . Then it is clear thatb(·, ·) is a

bounded bilinear form onV :

|b(u, v)| ≤ 9M∗‖u‖V
‖v‖

V
, (2.4)

where

M∗ = max
x,i,j

|σ∗
ij(x)|. (2.5)

The case where∂Ω is only piecewise smooth (or where the type of boundary condition

changes) may result in aσ0 which has unbounded singularities (such as at corners and
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edges), leading toM∗ in (2.5) being infinite. We discuss this case in Section 6, but note

that sinceσ∗ is pre-determined, it could be chosen to be smooth even when∂Ω is not

smooth.

We now write (2.2) as problem(Pλ) below.

(Pλ) Find u ∈ V satisfying, for allv ∈ V ,

a(u, v) − λb(u, v) = 〈F , v〉. (2.6)

We will say that (Pλ) is stably solvableif (Pλ) has a unique solution for every

F ∈ V ′ , and there exists a constantC , independent ofF , such that

‖u‖
V
≤ C‖F‖

V ′ . (2.7)

For instance,(P0) is obviously stably solvable. Our goal will be to find the smallest

positiveλ (or the infimum of suchλ ’s) for which (Pλ) is notstably solvable. Thisλ is

called thelimit of elastic stability. Physically, it represents the smallest multiple of the

pre-buckling stressσ∗ for which a small perturbation in external conditions on the body

may cause it to buckle.

More generally, we consider the following question.

(Q) Find λ ∈ C for which (Pλ) is notstably solvable.

3 Some abstract results

Let V be a (complex) separable Hilbert space, with the compact imbeddingV ⊂ H .

Let (·, ·) be the inner product inH . Let the dual ofV be V ′ , with the duality pairing

〈·, ·〉 being an extension of(·, ·) . Let a(·, ·) , b(·, ·) be Hermitian, bounded, sesquilinear

forms onV ×V with a(·, ·) strongly coercive. We may then takea as Hilbertian product

on V and define problem(Q) as above. In this section, we reduce(Q) to a spectral

value problem, describe its spectrum, and consider its numerical approximation.

3.1 The spectral value problem

We define the operatorS : V → V by: For anyw ∈ V, Sw ∈ V is the unique solution

of

a(Sw, v) = b(w, v) ∀v ∈ V. (3.1)

Lemma 3.1 S is a self-adjoint operator onV with inner producta .

Proof: Using the fact thata(·, ·) , b(·, ·) are Hermitian, we have

a(Su, v) = b(u, v) = b(v, u) = a(Sv, u) = a(u, Sv). (3.2)
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The result follows. �

To see better what the operatorS is, let us define operatorsA : V → V ′, B : V →
V ′ by

a(u, v) = 〈Au, v〉, b(u, v) = 〈Bu, v〉. (3.3)

ThenA, A−1 are homeomorphisms betweenV andV ′ , and (3.1) shows that

S = A−1B. (3.4)

Note that sinceA−1, B arebounded, so isS : V → V .

For anyµ ∈ C , we now define the operator

Sµ = µI − S. (3.5)

Then theresolventρ(S) of S [25] is the set of allµ ∈ C for which Sµ is an isomor-

phismfrom V onto V . The complement ofρ(S) is called thespectrumof S , denoted

by σ(S) . We have the following theorem.

Theorem 3.2 (Pλ) is not stably solvable forλ ∈ C if and only if λ−1 ∈ σ(S) .

Proof: We write (2.6) as the following equation inV ′ :

(A − λB)u = F . (3.6)

Since λ �= 0 (P0 is always solvable), we may multiply equation (3.6) through by

λ−1A−1 to obtain, withµ = λ−1 ,

(µI − S)u = µA−1F . (3.7)

SinceA−1 is a homeomorphism, the result follows easily by (3.6)-(3.7). �

Hence our problem reduces to finding the spectrum ofS .

Remark 3.1 Note thatµ = 0 could be a spectral value ofS , which does not correspond

to any finite value ofλ for which (Pλ) is not solvable.

3.2 Properties of the spectrum

We define the following components of the spectrum as in [13]:

(1) Discrete spectrum

σds(S) = {µ ∈ C, ker Sµ �= {0} andSµ is a Fredholm operator fromV into V }

(2) Essential spectrum

σes(S) = {µ ∈ C, Sµ is not a Fredholm operator fromV into V }

Then the self-adjointness ofS immediately gives the following theorem [25].
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Theorem 3.3 σ(S) ⊂ R and σ(S) = σes(S) ∪ σds(S) .

Pointsµ ∈ σds(S) are calledeigenvalues, and for these, we may find an eigenvector

0 �= u ∈ V for which Sµu = 0 , or equivalently, forµ �= 0 ,

a(u, v) = µ−1b(u, v) ∀v ∈ V. (3.8)

Also, µ = 0 is an eigenvalue if and only if there is an eigenvector0 �= u ∈ V for

which

b(u, v) = 0 ∀v ∈ V. (3.9)

We also define theBrowder spectrumσB(S) as the set of allµ ∈ σ(S) for which

µ is not an isolated eigenvalue of finite (algebraic) multiplicity. An important property

enjoyed by self-adjoint operators likeS is the following (Page 518 of [13]):

σes(S) = σB(S).

For the case thatS is, in addition, compact, it is well-known thatσ(S) consists

only of eigenvalues of finite multiplicity with 0 being the only accumulation point (i.e.

σes(S) ⊂ {0}) . However, the definition ofa(·, ·) , b(·, ·) from Section 2 doesnot lead

to a compactS .

Remark 3.2 Since here the spectrum is real (as will be any eigenvectors), we can reduce

everything to the real case. Therefore, we assume in the sequel thatλ, V are real.

3.3 Finite element approximation

Let {VN} be a family of finite-dimensional subspaces ofV , parameterized byN , which

will be identified with the dimension. We assume the following approximation property.

∀u ∈ V,∃uN ∈ VN such thatlim
N→∞

‖u − uN‖V
= 0. (3.10)

We now define an operatorSN : VN → VN by: For anyw ∈ VN , SNw ∈ VN is the

unique solution of

a(SNw, v) = b(w, v) ∀v ∈ VN . (3.11)

ThenSN is the Galerkin approximation toS . If we defineΠN : V → VN by

a(ΠNw, v) = a(w, v) ∀v ∈ VN , (3.12)

then it is seen thatSN = ΠNS|VN
.

SinceVN is finite-dimensional,σ(SN) will consist only of eigenvaluesµN . Non-

zero µN can be found by solving the finite-dimensional (generalized) eigenvalue prob-

lem: Find (µN , uN) = (λ−1
N , uN) ∈ R × VN \ {0} satisfying, for allv ∈ VN ,

a(uN , v) = λNb(uN , v). (3.13)
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Also, 0 will be an eigenvalue ofSN if and only if ∃uN ∈ VN \ {0} for which

b(uN , v) = 0 ∀v ∈ VN . (3.14)

For the case thatS is compact, it is well-known (see e.g. [2]) that the (non-zero)

eigenvalues ofSN converge to those ofS at optimal rates (as do the eigenvectors), and

there are no spurious eigenvalues. However, sinceS is not compact in our case, spurious

eigenvalues satisfying (1.2) may exist, like in the Cosserat problem. As mentioned in the

introduction, it is sometimes possible to design a finite element method which satisfies

certain conditions [9] for the pollution-free approximation ofall non-zero eigenvalues.

This approach is discussed in Remark 3.4 at the end of this section, but it is not promis-

ing in our case. We therefore present an alternative theorem which characterizes those

eigenvalues that may be approximated without pollution when the standard finite ele-

ment method (3.13) is used, under only the assumption (3.10).

Let us define

Wes = [min σes(S), max σes(S)], Λ = C − Wes. (3.15)

Wes is called theessential numerical rangeof S . The following result is established in

[8, 18].

Theorem 3.4 Let ∆ be a compact subset ofΛ .

(A) If ∆∩σ(S) = ∅ , then there exists an integerN0 > 0 and a constantC > 0 such that

∆ ∩ σ(SN) = ∅ for all N ≥ N0

‖(µI − SN)v‖
V

≥ C‖v‖
V

∀N ≥ N0, ∀v ∈ VN , ∀µ ∈ ∆.

(B) If ∆ is a neighborhood of an isolatedµ ∈ σds(S) with finite algebraic multiplicity

m and ∆ ∩ σ(S) = {µ}, then there exists an integerN0 > 0 such that forN ≥ N0 ,

∆∩σ(SN) consists of exactlym eigenvaluesµ1
N , µ2

N , . . . µm
N of SN (counted according

to algebraic multiplicity). Moreover,limN→∞ µi
N = µ , for i = 1, 2, . . . m .

We may also obtain optimal error estimates for|µ − 1
m

Σm
i=1µ

i
N | . Note in particular

that (A) ensures there are no spurious eigenvalues in the approximation of the spectrum

that lies in Λ . On the other hand, as shown in [8], one can construct finite element

spaces such that there is a sequence of approximate eigenvaluesµN converging toeach

µ∞ ∈ Wes . This is what appears to be happening for the Cosserat problem in Figures 1

and 2: By (1.4), we have

Wes = [0, 1]

andeverynumber in[0, 1] may be a limit of a sequence of approximations.

Remark 3.3 The characterization (3.15) can be refined to yield a largerΛ , see [18, 19].
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Remark 3.4 Let us define the following norm for an operator onVN (or V ).

‖S‖
N

= sup
v∈VN , ‖v‖

V
=1

‖Sv‖
V
. (3.16)

It is shown in [9] that the following condition:

lim
N→∞

‖S − SN‖N
= 0 (3.17)

combined with (3.10) is sufficient for Theorem 3.4 to hold overΛ = C . (In fact, (3.17)

is necessaryas well for the propertyθ in [9] to hold.)

As stated in the introduction, (3.17), which is weaker than convergence in the op-

erator norm, can be made to hold for certain problems by designing the finite element

methods appropriately (see [9, 17]). A similar strategy for mixed methods may be found

in [4, 3]. Unlike the problems discussed in the above references, however, the buckling

problem and the Cosserat problem appear to have no inherent compactness to make such

an approach successful. For instance, it is easily verified that for the Cosserat problem,

condition (3.17) reduces to

lim
N→∞

sup
v∈VN , ‖v‖

V
=1

inf
w∈VN

‖Sv − w‖
V

= 0, (3.18)

with S = A−1B . It is not apparent how to design finite element spaces for which (3.18)

will hold when A, B are as in (1.3). The situation for the general 3-d buckling problem

is analogous.

4 Estimation of the essential numerical range

Theorem 3.4 shows that in order to characterize the regionΛ that is free of spectral

pollution, we must estimate the essential numerical range given in (3.15), i.e. we must

characterize the essential spectrumσes(S) . There holds

Theorem 4.1 For λ ∈ R, µ = 1/λ ∈ σes(S) if and only if Tλ = A − λB is not

Fredholm fromV into V ′ .

Proof: Noting thatA is an isomorphism fromV into V ′ , we see by multiplying (3.5)

by µ−1A that Sµ is Fredholm if and only ifTλ is Fredholm. The result follows easily

by the definition of the essential spectrum. �

We discuss two methods to characterize (or provide an estimate for) the set ofλ ’s

such thatTλ is Fredholm.
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4.1 Estimation using ellipticity of operators

The first method uses the fact that in applications,A, B can be identified with partial dif-

ferential operators. For example, for the Cosserat problem, we obtain the second-order

operators given by (1.3). We may now consider the ellipticity or the non-ellipticity of

the operatorTλ in the sense of Agmon Douglis Nirenberg [1]. Let us define

ω1 = {λ, Tλ is not elliptic everywhere onΩ}

The choice ofessential boundary conditionsin V (i.e. the part∂ΩD whereu sat-

isfies Dirichlet boundary conditions) determines boundary conditions for the operators

Tλ . We also have to check whether these boundary conditions are complementing or not

for Tλ . We thus define

ω2 = {λ, boundary conditions are not
complementing everywhere on∂Ω for Tλ}.

Then, in the case when

∂Ω is smooth and ∂ΩD is a connected component of∂Ω , (4.1)

Tλ is Fredholm (as an operator fromH2(Ω) ∩ V into L2(Ω) ) if and only if it is elliptic

on Ω with complementing boundary conditions on∂Ω (see e.g. Lemma 2 of [21]) i.e.

if and only if λ �∈ ω1 ∪ ω2 .

The setsω1 and ω2 can be found by checking algebraic conditions (for instanceω1

by setting the determinant of the symbol of the highest-order terms ofTλ to be zero).

See [15], where this procedure has been carried out for the Cosserat problem, yielding

ω1 = {0, 1} and ω2 = {1/2} in the Dirichlet case (i.e. when∂ΩD coincides with the

whole boundary∂Ω ).

In order to use Theorem 4.1, however, we need to considerTλ as an operator from

V into its dual (rather than fromH2(Ω) ∩ V into L2(Ω) ). Theorem 4 of [21] says, es-

sentially, that this does not change the values ofλ for which Tλ is Fredholm. However,

there are technicalities involved, which may be difficult to resolve, since spacesV and

V ′ have to be carefully defined to incorporate appropriate classes of boundary data (see

[21]).

Although we are not aware of a rigorous proof, we expect that (once again under

condition (4.1)) we have

σes(S) = ω1 ∪ ω2. (4.2)

See [10], where some of the technicalities are resolved for the caseTλ = A − λI .

For the Cosserat problem with zero Dirichlet conditions, such a characterization has

been used in [15] to giveσes(S) = {0, 1/2, 1} .
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However, applying this to the linear buckling problem brings more difficulties, since

the conditions (4.1) will not be satisfied in general. For instance, for the model case

of a thin circular plate, with the free boundary on the top and bottom surfaces and the

clamped condition on the lateral surface, we would have to consider a new ellipticity

condition along the edges of the plate, where the boundary is not smooth and the bound-

ary conditions change in nature, giving rise to a third setω3 , which has to be added to

the first two.

Moreover, without knowing the explicit form ofσ∗ which occurs in the definition

of B , we cannot expect to findσes(S) exactly. We therefore present a second approach

below, which is useful for estimatingσes(S) , rather than characterizing it exactly.

4.2 Estimation using uniform coercivity

Here, we use the variational form of the problem rather than the operatorsA, B . We

first note the following key result.

Lemma 4.2 Let λ ∈ R\{0} be such that∀u ∈ V ,

a(u, u) − λb(u, u) ≥ C1‖u‖2
V − C2‖u‖2

H

with C1 > 0, C2 constants independent ofu . ThenS1/λ = λ−1I − S is Fredholm from

V → V .

Proof: The form

{u, v} → a(u, v) − λb(u, v) + C2(u, v)

is strongly coercive onV . Therefore, the operator

A − λB + C2I : V → V ′

is invertible. Hence, composing byλ−1A−1 to the left,

(λ−1I − S) + C2λ
−1A−1 : V → V

is invertible. NowA−1 as an operator fromV into V is compact. Therefore,S1/λ is

Fredholm. �

Lemma 4.2 leads to the following result.

Theorem 4.3 Let α, β, γ be positive constants such that∀u ∈ V ,

a(u, u) ≥ α‖u‖2

V
− γ‖u‖2

H
, (4.3)

|b(u, u)| ≤ β‖u‖2

V
. (4.4)

Thenσes(S) ⊂ [−β
α
, β

α
] . Therefore the essential numerical rangeWes ⊂ [−β

α
, β

α
] .
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Proof: For anyλ ∈ R , we have, using (4.3) and (4.4),

a(u, u) − λb(u, u) ≥ a(u, u) − |λ||b(u, u)|
≥ a(u, u) − |λ|β‖u‖2

V

≥ (α − |λ|β)‖u‖2

V
− αγ‖u‖2

H
.

Let |λ| < α/β . We may then take

C1 = α − |λ|β, C2 = αγ

in Lemma 4.2 to conclude thatS1/λ is Fredholm. Hence,λ−1 /∈ σes(S) and the result

follows. �
At first glance, whena(·, ·) is strongly coercive, it might seem natural to takeγ = 0

in (4.3). However, in this case, the theorem does not give any useful information, since

then theentirespectrumσ(S) will be a subset of the indicated interval. The usefulness

of the theorem arises when we are able to chooseγ > 0 and thereby increase the value

of α for which (4.3) will still hold. We illustrate this by an application to the linear

buckling problem in the next section.

5 The buckling problem over thin domains

5.1 The theoretical framework

If we apply the results of Section 4.1 to our Cosserat problem example, we see by The-

orem 3.4 that the region of spectral pollution is limited toWes = [0, 1] . However, since

by (1.4) theentirespectrum lies inWes , we are unable to guarantee pollution-free con-

vergence to any of the eigenvalues of interest, and this is what is illustrated in Figures 1

and 2.

Turning to the buckling problem over a general three-dimensional domain, we see

that the structure of the equations is similar to the Cosserat problem. Depending on

the domain (and the pre-buckling stressσ∗ ), we cannot eliminate the possibility that a

similar situation (of the entire spectrum being polluted) may occur.

As stated in the introduction, however, physically interesting problems of buckling

occur over domains that arethin in one dimension (such as plates, shells, etc.). Sup-

pose we are given a sequence of such domains{Ωd} , parameterized by the ‘thickness’

variabled ∈ (0, 1] . Then we assume{Ωd} satisfies the following weakuniform Korn

inequality.

Korn Inequality∃ constantsK > 0 and r ≥ 0 such that the following inequality holds

uniformly ∀d ∈ (0, 1],∀u ∈ V :

‖u‖2

V
≤ K

(
a(u, u) + d−r‖u‖2

L2(Ωd)

)
. (5.1)
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The above inequality (5.1) has been established withr = 2 for thin plates of the

form Ωd = ω × (−d
2
, d

2
) with ω ∈ R

2 in [6]. Similar results can be established for thin

shells (with regular mid-surface).

The following result holds for domains satisfying (5.1).

Theorem 5.1 Let {Ωd} be such that the uniform Korn inequality(5.1) holds. Let the

pre-buckling stressσ∗ have the boundM∗ as in(2.5). Then∀d ∈ (0, 1] ,

σes(S) ⊂ [−9KM∗, 9KM∗].

Proof: We apply Theorem 4.3, noting that (5.1) implies (4.3) is satisfied withα =

K−1, γ = d−r , and that (2.4) gives (4.4) withβ = 9M∗ . �

Theorem 5.1 shows that for such domains, there will be a region(−∞,−9KM∗) ∪
(9KM∗,∞) independent ofd , which is free of spectral pollution. (Note that without us-

ing (5.1) and Theorem 4.3 we could not conclude that the above region was independent

of d .) Let us denote

Λ = (−∞,−µ−
min) ∪ (µ+

min,∞) ⊃ (−∞,−9KM∗) ∪ (9KM∗,∞) (5.2)

to be the maximal such pollution-free region. Then if the eigenvalues that are of interest

to us lie inside this domain, we will be able to recover them accurately. Note that we

are interested in thehighestvaluesµ in the spectrumσ(S) , corresponding to the lowest

values ofλ . In terms ofλ , we may takeλ±
max = 1/µ±

min to write the above maximal

region as

Λ̃ = (−λ−
max, λ

+
max). (5.3)

Fortunately, in most practical cases of interest, we can expect for the lowest several

buckling eigenvaluesλd corresponding to domainΩd ,

λd → 0 as d → 0. (5.4)

Physically, this just expresses the fact that as the domain gets thinner, it will take a

smaller multiple of the pre-buckling stressσ∗
d to make it buckle. (We are assuming we

are given an appropriate family of pre-buckling stresses{σ∗
d} , such that they converge

asd → 0 to an appropriateσ∗
0 .)

In [7], taking advantage of the spectral analysis in thin plates investigated in [5], we

prove (5.4) rigorously for the family of platesω × (−d
2
, d

2
) mentioned above: We show

that as long as the pre-buckling stress has a non-zero membrane component (which is

the case of practical interest), the following estimate holds uniformly ind for the lowest

eigenvalueλmin
d :

|λmin
d − d2λmin

0 | ≤ Cd3. (5.5)
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Here λmin
0 is the lowest eigenvalue of a limiting problem which is compact: asd → 0 ,

the operatorA in (1.1) essentially tends to the fourth-order Kirchhoff operator, whileB

remains second-order. Hence, the limitingS is compact, and the eigenvaluesλ0 = 1/µ0

are well-separated from 0. Estimate (5.5) will hold for not just the minimum, but a whole

family of eigenvalues.

Remark 5.1 The existence of eigenvalues behaving asd2λ0 as d → 0 is related to

the possibility of excitingbending modesin the thin structure. For example, we do not

expect such a behavior in the case ofclamped elliptic shells.

We therefore see by (5.3) and (5.5) that for the plate problem, withσ∗ not of pure-

bending type, we will obtain no spectral pollution in the desired minimum buckling

eigenvalues, once the thicknessd is small enough. More generally, we have the follow-

ing theorem.

Theorem 5.2 Let {Ωd} be a sequence of domains parameterized by a thickness param-

eter d , such that the uniform Korn’s inequality(5.1) is satisfied. Then for any sequence

of eigenvalues{λd} satisfying(5.4), the finite element method gives pollution-free ap-

proximations (in the sense of Theorem3.4) for d small enough.

5.2 Numerical results

We now present numerical experiments for a model problem that demonstrate that spec-

tral pollution will occur only for rather larged , well above the range of practical interest.

We take{Ωd} to be the family of isotropic circular plates of unit radius and uniform

thicknessd . Elastic constants are given byE = 3 × 104 andν = 0.3 .

Let x∗ = (x1, x2) be the variables in the mid-surface, with origin at the center of the

circle, and letx3 ∈ (−d
2
, d

2
) be the variable in the thickness direction. The corresponding

components of the displacementu are (u1, u2, u3) = (u∗, u3) . By varying d , we can

consider the difference between a thin plate and a cylindrical domain. The uniform Korn

inequality (5.1) will hold for this family of domains, withr = 2 .

The lateral boundary condition is soft simple support, i.e. the componentu3 is zero

along the lateral cylindrical boundary. The two circular faces are left free.

We load the disc by a uniform inward radial load of unity along the lateral cylindrical

boundary. This load is symmetric (membrane symmetry) with respect to the planex3 =

0 and any planex1 sin θ = x2 cos θ .

Let Σ be the transverse symmetry operator defined foru = (u∗, u3) by:

u
Σ�−→

(
(x∗, x3) �→

(
u∗(x∗,−x3), −u3(x∗,−x3)

))
.

Then AΣ = ΣA and since the pre-buckling stress originates from a loadu satisfying

Σ(u) = u (i.e. a membrane load), we also obtain thatBΣ = ΣB . This is also valid for
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the symmetriesΣθ associated with the planex1 sin θ = x2 cos θ . Therefore the buckling

eigen-spaces are invariant under bothΣ and−Σ and similarly for anyΣθ .

d

SYM

SYM

Figure 3: The quarter disc with thicknessd

Using the symmetries of the domain, we take as computational domain the quarter of

the plate as shown in Figure 3, imposing a sliding edge boundary condition on the plane

lateral parts of the boundaryx1 = 0 and x2 = 0 (i.e. the displacement in the normal

direction to these planes is0 , so that symmetry is enforced in the solution on the full

domainΩd across these planes). We then compute approximations for those eigenvalues

whose eigenvectors satisfy these symmetries over the full domain (roughly a quarter of

the total number). The lowest eigenvalue for this example turns out to have a symmetric

eigenvector with respect to any planex1 sin θ = x2 cos θ , i.e. it is a radial eigenvector.

The resulting stress is calculated with8 elements using STRESS CHECK, with de-

greep = 8 , for various values ofd . (The quarter of the plate is sliced into two halves,

each of which has4 elements.) The calculated stress is used as the pre-buckling stress

σ∗
d in each case, and the lowest10 eigenvalues computed. Figure 4 shows the computed

eigenvalues.

It is observed that there is a value,λ+
max ∼ 6600 , such that eigenvalues that satisfy

λ < λ+
max are computed accurately (as verified by comparisons with the results for lower

p , which are not shown here). However, no values ofλ > λ+
max are returned — instead,

these values simply seem to be ‘absorbed’ into the value ofλ+
max . (Computing the lowest

50 eigenvalues also did not return anything larger thanλ+
max .) Our interpretation of this

phenomenon is thatλ+
max ∈ σes(S) and represents the smallest value ofλ for which the

operatorA − λB is no longer elliptic with complementing boundary conditions. The

part of the spectrum that lies aboveλ+
max is subject to pollution, and we are unable to

recover it. For instance, ford = 1.4 and larger, theentirespectrum lies aboveλ+
max .

In Figure 5, we plot the computed eigenvalues as functions ofd . The slopes clearly

demonstrate theO(d2) behavior predicted by (5.5). This shows that whend is small, we
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can expect to calculate several buckling modes, before the cut-off maximum ofλ+
max ∼

6600 is reached. Asd increases, these buckling multiples increase as well, and fewer of

them can be calculated, until we reach a critical thickness (aboutd = 1.4 in this case),

where all we can calculate isλ+
max , the point where ellipticity is lost.

 -2.8748e-01

 -2.3001e-01

 -1.7253e-01

 -1.1505e-01

 -5.7575e-02

 -9.7997e-05

  5.7379e-02

  1.1486e-01

  1.7233e-01

  2.2981e-01

  2.8729e-01

Ld.Fct.=   3.4166e+03
Run = 4
Fnc. = Ux
Max =   2.8729e-01
Min =  -2.8748e-01

 -3.0137e-01

 -2.4113e-01

 -1.8088e-01

 -1.2064e-01

 -6.0390e-02

 -1.4379e-04

  6.0102e-02

  1.2035e-01

  1.8059e-01

  2.4084e-01

  3.0109e-01

Ld.Fct.=   2.2877e+03
Run = 4
Fnc. = Ux
Max =   3.0109e-01
Min =  -3.0137e-01

 -3.2885e-01

 -2.6309e-01

 -1.9734e-01

 -1.3158e-01

 -6.5828e-02

 -7.2278e-05

  6.5683e-02

  1.3144e-01

  1.9719e-01

  2.6295e-01

  3.2871e-01

Ld.Fct.=   1.9674e+03
Run = 4
Fnc. = Ux
Max =   3.2871e-01
Min =  -3.2885e-01

 -2.7570e-01

 -2.2056e-01

 -1.6543e-01

 -1.1029e-01

 -5.5155e-02

 -1.9129e-05

  5.5117e-02

  1.1025e-01

  1.6539e-01

  2.2053e-01

  2.7566e-01

Ld.Fct.=   4.2759e+02
Run = 4
Fnc. = Ux
Max =   2.7566e-01
Min =  -2.7570e-01

Figure 6: The first four eigenvectors,d = 0.2

The difference between ‘physical’ and ‘non-physical’ (likeλ+
max ) modes comes out

quite clearly when we examine the corresponding eigenvectors (which represent the

buckling deformations). Figures 6-9 show this difference, where theu1 component

of the first four buckling eigenvectors are plotted ford = 0.2 , 0.4 , 0.8 and 1.4 , which

have4 , 3 , 1 and 0 physical eigenvalues respectively. There is a marked difference in

the corresponding deformations. We note in particular that, as expected, the physical

buckling modes have the bending symmetry (i.e.u1 is odd with respect to the plane

x3 = 0 ) whereas no such anti-symmetry is visible for the non-physical modes.
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 -1.8577e-01
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 -4.7799e-02
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  4.4180e-02

  9.0169e-02

  1.3616e-01

  1.8215e-01

Ld.Fct.=   6.6144e+03
Run = 4
Fnc. = Ux
Max =   1.8215e-01
Min =  -2.7775e-01

 -3.1597e-01

 -2.6421e-01

 -2.1245e-01

 -1.6069e-01

 -1.0892e-01
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 -5.4008e-03

  4.6361e-02
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Ld.Fct.=   6.6112e+03
Run = 4
Fnc. = Ux
Max =   2.0165e-01
Min =  -3.1597e-01

 -3.2334e-01

 -2.5836e-01
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 -1.2840e-01
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  1.5549e-03
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Run = 4
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 -1.5063e-01

 -7.5473e-02
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  7.4832e-02

  1.4998e-01

  2.2514e-01

  3.0029e-01

  3.7544e-01

Ld.Fct.=   2.7691e+03
Run = 4
Fnc. = Ux
Max =   3.7544e-01
Min =  -3.7608e-01

Figure 7: The first four eigenvectors,d = 0.4

 -2.0781e-01
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 -1.3075e-01

 -9.2215e-02

 -5.3682e-02

 -1.5148e-02

  2.3385e-02
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  1.0045e-01

  1.3898e-01

  1.7752e-01

Ld.Fct.=   6.6052e+03
Run = 4
Fnc. = Ux
Max =   1.7752e-01
Min =  -2.0781e-01

 -1.5727e-01

 -9.5203e-02

 -3.3133e-02

  2.8937e-02

  9.1007e-02

  1.5308e-01

  2.1515e-01

  2.7722e-01

  3.3929e-01

  4.0136e-01

  4.6343e-01

Ld.Fct.=   6.5956e+03
Run = 4
Fnc. = Ux
Max =   4.6343e-01
Min =  -1.5727e-01

 -3.3841e-01

 -2.8748e-01

 -2.3656e-01

 -1.8564e-01

 -1.3472e-01

 -8.3798e-02
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  1.8045e-02

  6.8966e-02
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Ld.Fct.=   6.5809e+03
Run = 4
Fnc. = Ux
Max =   1.7081e-01
Min =  -3.3841e-01

 -3.6742e-01

 -2.9413e-01
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  2.1885e-01

  2.9214e-01

  3.6542e-01

Ld.Fct.=   5.1569e+03
Run = 4
Fnc. = Ux
Max =   3.6542e-01
Min =  -3.6742e-01

Figure 8: The first four eigenvectors,d = 0.8
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Run = 4
Fnc. = Ux
Max =   2.2003e-01
Min =  -3.1512e-01

 -1.4261e-01

 -1.0704e-01

 -7.1462e-02

 -3.5888e-02

 -3.1389e-04

  3.5260e-02

  7.0834e-02
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Run = 4
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Run = 4
Fnc. = Ux
Max =   1.7012e-01
Min =  -3.3267e-01

Figure 9: The first four eigenvectors,d = 1.4
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6 The case of unboundedσ∗

So far, we have considered thatσ∗ is bounded. However, if the regionΩ has corners

or edges, then this condition could be violated. For instance, the algorithm in STRESS

CHECK uses a representativeσ∗ that is first computed by considering the equations of

equilibrium on the body under any external forces (or displacements) that are applied,

and then inputs this pre-buckling stress into the eigenvalue calculation. Consequently,

we may expectσ∗ (if calculated with infinite accuracy) to be unbounded at edges and

corners.

For unboundedσ∗ , we see thatM∗ in (2.5) is infinite, so that the formb(·, ·) is un-

bounded, and the three-dimensional buckling problem is not well-formulated. However,

the dimensionally reduced (Kirchhoff) case can still be well-posed. This is because now

A will be fourth-order andB second-order, so that the energy space will be a subset of

H2(Ω) rather thanH1(Ω) . Although b(·, ·) will not be bounded in theH1(Ω) norm,

it might still be bounded in the energy norm, since with proper boundary conditions

a singularity that is not too strong can be absorbed into theH2(Ω) norm. Hence the

Kirchhoff limit gives a bounded, compact eigenvalue problem, and we can compute its

lowest positive eigenvalueλmin
0 . See [7], where the above is illustrated for a thin plate.

Although (5.5) may not hold when the domain is not smooth, we expect that for finite

thicknesses, there will still be a sequence of eigenvalues{λmin
d } that converge toλmin

0 ,

as in the smooth case. The purpose of the engineering calculation is generally to find

this λmin
d for given d > 0 . Of course, onced > 0 , we are not in the Kirchhoff limit,

and the problem becomes ill-posed due to loss of boundedness. Applying Theorem 5.1,

we will be able to findλmin
d provided (see (5.3))

λmin
d ∈ Λ̃, i.e. λmin

d < λ+
max. (6.1)

However, as the stress becomes unbounded, i.e.M∗ → ∞ , we expectλ+
max → 0 which

will preclude (6.1) from holding.

In actual practice, however, our computed stress may be large but is never unbounded,

since we do not have infinite accuracy but useVN ⊂ V instead. We can therefore expect

a sequence{σ∗(N)} for which the maximumM∗(N) in (2.5) tends to (but never attains)

infinity as N → ∞ (see (6.3) for anL2(Ω) estimate). The correspondingλ+
max(N) in

(5.3) can be expected to degenerate to 0, as observed in the numerical example below.

By (6.1), our computation ofλmin
d can then only succeed if

λmin
d < λ+

max(N). (6.2)

Equation (6.2) suggests that in order to obtain pollution-free approximations toλmin
d , we

should either haved small enough (which we have already seen in the previous section),
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or, paradoxically, the level of discretizationN not too large. This is observed in the

numerical experiments that follow.
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Figure 10: Cracked panels.
(a) Panel A (E = 3 × 107, ν = 0 ) (b) Panel B (E = 3 × 1010, ν = 0.3 )

We first consider Panel A (Figure 6(a)), which is the top right quarter of a rectangular

panel with a symmetric center crack (the angle to the horizontal shown in the figure is

5 degrees). We use symmetry conditions at the base BO and the side AB. Soft simple

support boundary conditions are applied on the top face AC and the panel is subjected

to a uniform traction of -1 on this face (and symmetrically, on the bottom face). The

strongest singularity will now lie at the vertex of the crack, which must be resolved to

compute the representative pre-buckling stressσ∗ accurately. We therefore usehp geo-

metric refinement in the vicinity of this vertex (see [11]) with the number of geometric

layers denoted byn and the polynomial degree in each element byp (so thatN ∼ np2 ).

By [11], we can expect the following exponential estimate for the approximation to the

pre-buckling stress.

‖σ∗ − σ∗(N)‖
L2(Ω)

≤ Ce−γ 5√N . (6.3)

After σ∗(N) has been calculated, it is used in the buckling formulation to find the

corresponding buckling eigenvalues. Figure 11 shows the computations of the lowest

two eigenvalues for variousd whenp is fixed at 8 and the number of layersn is varied.

We make the following observations:

1. As in the smooth case, the lowest buckling eigenvalueλmin
d → 0 at the rateO(d2) .

The same is observed for the next eigenvalue.

2. The computed eigenvalues (sayλmin
d ) have already converged forn = 1 layer,

so that they do not require much refinement at the vertex. This may be explained

by buckling being a global phenomenon, which is not very sensitive on exactly

recovering the singularity at the vertex.
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Figure 11: Computed eigenvalues for cracked panel

3. As in the smooth case, there is an ‘absorbing’ valueλ+
max such that no eigenvalue

over λ+
max can be recovered, andλ+

max is independent ofd .

4. Unlike the smooth case,λ+
max = λ+

max(N) depends on the amount of discretiza-

tion. In fact, we observe

|λ+
max(N)| ∼ Ce−γn, (6.4)

i.e. λ+
max(N) tends exponentially to 0 with the number of layers. This is con-

sistent with (6.3) and our explanation above — the larger is the boundM∗(N)

(which increases exponentially to∞ ), the smaller will beλ+
max (which decreases

exponentially to 0).

5. Figure 11 clearly illustrates the condition (6.2) that must hold for the successful

computation of the required buckling eigenvalues. Due to the concentrated power

of the hp version in resolving singularities, the danger is over- rather than under-

refinement. Of course, no matter what method is used (e.g.h or p version),

similar results (ofλ+
max being reached) will be observed once the refinement has

proceeded far enough.

Let us mention that we computed between 20 and 50 eigenvalues in each case. Once

λ+
max was reached, all the remaining computed eigenvalues above it were about the same.

Similar results are obtained for our second experiment, on Panel B in Figure 6. Here,

the entire plate is used, with the side AB perpendicular to the crack (which forms a

5 degree opening) now clamped, and the remaining boundary free. The loading is now
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 -3.3117e-01

 -2.6599e-01

 -2.0082e-01

 -1.3564e-01

 -7.0462e-02

 -5.2846e-03

  5.9893e-02

  1.2507e-01

  1.9025e-01

  2.5542e-01

  3.2060e-01

Ld.Fct.=   1.0568e+09
Run = 7
Fnc. = Ux
Max =   3.2060e-01
Min =  -3.3117e-01

 -1.1290e-01

 -8.9936e-02

 -6.6975e-02

 -4.4015e-02

 -2.1055e-02

  1.9059e-03

  2.4866e-02

  4.7827e-02

  7.0787e-02

  9.3748e-02

  1.1671e-01

Ld.Fct.=   8.2059e+08
Run = 7
Fnc. = Ux
Max =   1.1671e-01
Min =  -1.1290e-01

 -1.6187e-01

 -1.2952e-01

 -9.7163e-02

 -6.4810e-02

 -3.2456e-02

 -1.0286e-04

  3.2251e-02

  6.4604e-02

  9.6957e-02

  1.2931e-01

  1.6166e-01

Ld.Fct.=   3.5856e+08
Run = 7
Fnc. = Ux
Max =   1.6166e-01
Min =  -1.6187e-01

 -1.9235e-01

 -1.5389e-01

 -1.1543e-01

 -7.6973e-02

 -3.8512e-02

 -5.1595e-05

  3.8409e-02

  7.6870e-02

  1.1533e-01

  1.5379e-01

  1.9225e-01

Ld.Fct.=   2.7511e+08
Run = 7
Fnc. = Ux
Max =   1.9225e-01
Min =  -1.9235e-01

Figure 12: Computed eigenvectors for cracked panel withd = 0.1 andn = 1 layer

through a body force which is applied towards the midline throughout the body, i.e. -1 on

the top half of the panel, and +1 on the lower half of the panel. Once again the strongest

singularity occurs at the vertex of the crack, and we performhp refinement withn

layers. Spurious eigenvalues show up for much smallerd and n in this experiment,

and in Figures 12-14 we show the first few eigenvectors this time ford = 0.1 , with

approximation degreep = 8 and n = 1, 2 and 3 layers, respectively (the eigenvalue

convergence, not shown here, gives a graph similar to Figure 11).

For n = 2 the first two computed eigenvalues are physical, while the third one is

spurious. Figure 13 shows the difference in the corresponding buckling modes. While

the first two are global eigenvectors, the nature of the third is very local, with everything

occurring close to the singularity. This is seen in the detail of an element from the

innermost layer.

When we look atn = 3 , all the eigenvectors are local, corresponding to spurious

eigenvalues. Here, the refinement is already too strong, andλmax(N) has been reached,

with the result that none of the desired buckling eigenvalues can be computed. This

shows that examination of the eigenvectors can be a usefula posterioritool in determin-

ing whether a computed eigenvalue is physically relevant or not.

Remark 6.1 Let us point out that even in the example of the disc in Section 5, the

stressesσ∗ , if computed exactly, would be unbounded along edges. We do not see the

influence of this unboundedness because the discretization is not strong enough near the
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 -2.6990e-03

 -2.4021e-03

 -2.1053e-03

 -1.8084e-03

 -1.5115e-03

 -1.2147e-03

 -9.1782e-04

 -6.2095e-04

 -3.2409e-04

 -2.7227e-05

  2.6964e-04

Ld.Fct.=   4.9518e+08
Run = 7
Fnc. = Ux
Max =   2.6964e-04
Min =  -2.6990e-03

 -3.1160e-02

 -2.5005e-02

 -1.8850e-02

 -1.2695e-02

 -6.5400e-03

 -3.8500e-04

  5.7700e-03

  1.1925e-02

  1.8080e-02

  2.4235e-02

  3.0390e-02

Ld.Fct.=   4.9518e+08
Run = 7
Fnc. = Ux
Max =   3.0387e-02
Min =  -3.1155e-02

 -1.5910e-01

 -1.2729e-01

 -9.5485e-02

 -6.3677e-02

 -3.1869e-02

 -6.0141e-05

  3.1748e-02

  6.3557e-02

  9.5365e-02

  1.2717e-01

  1.5898e-01

Ld.Fct.=   3.5921e+08
Run = 7
Fnc. = Ux
Max =   1.5898e-01
Min =  -1.5910e-01

 -1.9290e-01

 -1.5432e-01

 -1.1574e-01

 -7.7152e-02

 -3.8570e-02

  1.3113e-05

  3.8596e-02

  7.7179e-02

  1.1576e-01

  1.5434e-01

  1.9293e-01

Ld.Fct.=   2.7705e+08
Run = 7
Fnc. = Ux
Max =   1.9293e-01
Min =  -1.9290e-01

Figure 13: Computed eigenvectors for cracked panel withd = 0.1 andn = 2 layers

 -2.6697e-04

 -2.3118e-04

 -1.9539e-04

 -1.5960e-04

 -1.2381e-04

 -8.8025e-05

 -5.2236e-05

 -1.6448e-05

  1.9341e-05

  5.5129e-05

  9.0918e-05

Ld.Fct.=   2.1149e+08
Run = 7
Fnc. = Ux
Max =   9.0918e-05
Min =  -2.6697e-04

 -2.5072e-02

 -2.1641e-02

 -1.8210e-02

 -1.4779e-02

 -1.1347e-02

 -7.9159e-03

 -4.4846e-03

 -1.0532e-03

  2.3781e-03

  5.8094e-03

  9.2407e-03

Ld.Fct.=   2.1149e+08
Run = 7
Fnc. = Ux
Max =   9.2407e-03
Min =  -2.5072e-02

 -4.5844e-03

 -2.7940e-03

 -1.0036e-03

  7.8682e-04

  2.5772e-03

  4.3676e-03

  6.1581e-03

  7.9485e-03

  9.7389e-03

  1.1529e-02

  1.3320e-02

Ld.Fct.=   2.1099e+08
Run = 7
Fnc. = Ux
Max =   1.3320e-02
Min =  -4.5844e-03

 -1.4820e-02

 -1.2045e-02

 -9.2711e-03

 -6.4968e-03

 -3.7225e-03

 -9.4817e-04

  1.8261e-03

  4.6004e-03

  7.3747e-03

  1.0149e-02

  1.2923e-02

Ld.Fct.=   2.0857e+08
Run = 7
Fnc. = Ux
Max =   1.2923e-02
Min =  -1.4820e-02

Figure 14: Computed eigenvectors for cracked panel withd = 0.1 andn = 3 layers
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boundary to resolve the edge singularities. On the other hand, the pre-buckling stress

σ∗ is supposed to be representative of the typical physical stresses acting on the body,

and it could be argued that the non-boundedness only arises because we use the linear

theory (for convenience) to solve for it. However, similar problems occur even if the

pre-buckling stress is bounded but with boundM∗ (in equation (2.5)) large enough. In

fact, in experiments where a reentrant corner (e.g. point O in Figure 10(b)) is replaced by

a rounded fillet of very small radius, one observes that the phenomena discussed above

remain essentially unchanged.
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