hp-FEM for three-dimensional eastic plates

M. Dauge, C. Schwab

Abstract. In this work, we analyze hierarchic hp finite element discretizations of the full, three-
dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional
solution, we give specific mesh design principles for the hp -FEM which allow to resolve the three-
dimensional boundary layer profiles at robust, exponential rate. We prove that, as the plate half-
thickness ¢ tends to zero, the hp -discretization is consistent with the three-dimensional solution
to any power of ¢ in the energy norm for the degree p = ¢'(|loge|) and with & (p*) degrees of
freedom.

1 Introduction

The numerical analysis of thin three-dimensional structures such as beams, plates and shells
is a basic problem in engineering. It amounts to solving numerically a problem of three-
dimensional elasticity in a ‘thin’ domain. The classical engineering approach to these problems
has been to replace the three-dimensional problem by simplified, lower-dimensional models
which are in turn solved numerically.

Lower dimensional models have been derived roughly speaking in three ways: by kinemati-
cal hypothesis, by asymptotic analysis or by energy projection. We refer to [4] for a survey and
references. Alternatively, in recent years, it has become possible to solve the three-dimensional
problems directly by high order finite element methods which afford anisotropic mesh refine-
ment [1, 2].

In the dimension reduction process, information is necessarily lost and the question arises
what the relation of the dimensionally reduced models to the original, three-dimensional prob-
lem is. Numerous models have been found to be consistent with the three-dimensional problem
in the limit of vanishing thickness . In the case of plate models, the order of consistency is,
however, only,/c, due to the boundary layers of the three-dimensional problem not being ac-
curately resolved by the plate model. This state of affairs cannot be improved by incorporation
of ‘higher-order’ kinematical hypotheses into the plate model, since near the edge region, the
deformation states are generically three-dimensional, as was shown in full asymptotic analyses
of the three-dimensional plate problem in [20].
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To achieve higher order asymptotic consistency in plate models, higher order kinematical
hypotheses in the interior of the plate must thus be coupled with full resolution of the three-
dimensional effects near the edge of the plate. This can be dorig Hyinite Element (FE)
discretization and was proposed first in [18]. To analyze the design/of-&inite Element
Discretization of the three-dimensional plate problem is the purpose of the present paper.

Relying on the full asymptotics of the three-dimensional solution of the plate problem [6,
7, 9], we show that it is possible to achieve consistency of the FE-approximation with the
three-dimensional solution to any order ofwith a properly designed:p -FE discretization.
It involves hierarchical plate models which are refined inside the boundary layer in a vicinity
of the edge to resolve the singularities, thereby abandoning the dimensional reduction point of
view. The degree to achieve thisisZ(|loge|) in general, withd'(p) elements corresponding
to a numberN of degrees of freedom which is bounded &yp?) .

Let us describe our results in more detail. On the family of thin plaies (—¢,¢), ¢ €
(0,£0), such hp -FE spaces are defined as follows: a fixed meghis designed on the mid-
surfacew, so that there exists a layer of quadrilateral elements along its bouradaryThe
tensor three-dimensional mes#i® := 7, x (—¢,¢) is geometrically refined anisotropicly to
the edgesiw x {—¢,} to obtain the new mestZ? with p layers of elements. Polynomials
of degreep on .7” form the discrete space.

If the boundary ofw is analytic, and if an analytic load is fixed, we prove in this paper that
the relative energy error between the three-dimensional solution and its Galerkin approximation
in the above described space is bounded fo#al> 1 by

C(eK + efle’bp) (1.2)

with positive constant”' and b independent ot and p (but depending onK’).

We also prove that in certain cases (existence of underlygingdiscrete spaces om , or
membrane load), the facter! in the bound (1.1) can be omitted, which means that, to achieve
a given bound to the relative error, a certain polynomial degreeorresponding to a certain
number N = ¢'(p*) of degrees of freedorfixed independently of ¢ are sufficient.

These results are based on the FE-approximation of each piece of the two-scale expan-
sion of the solution displacemenit(¢) : this expansion has two parts, the outer expansion part
Y. efv* (regular profiles), and the inner expansion part <*w* (boundary layer profiles).

In this paper, we also pay much attention to the transverse degrees of the polynomials in-
volved in the outer expansion part, which allows in particular to show {B&i, 2) transverse
degree outside the support of the load and away from the boundary layer is sufficient to obtain
estimate (1.1).

The outline of the paper is as follows: §&, we set the problem and give a rough description
of the inner-outer expansion. Sectidi¥s5 are devoted to the outer part, whereas sections 6 and
7 are devoted to the inner part. We explain in more detail the structure of the outer part study
at the beginning of3, and for the inner part, at the beginningé®. The synthesis and the
conclusions are drawn K8.
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2 Thethree-dimensional plate problem

2.a Domainsand coordinates

The plate problem under consideration here is a boundary value problem of three-dimensio-
nal elastostatics which is set in the family of domains

OF =w x (—¢,+e),

where the midsurfaces is open, bounded and has an analytic boundary. Let I'S be
their upper and lower faces x {fec} and I be their lateral face®w x (—¢,+¢). If z =
(z1, z9, x3) are the cartesian coordinates in the plaf&s, we will often denote byz, the
in-plane coordinatesz;, z2) € w and by« or  the indices in{1,2} corresponding to the
in-plane variables. The dilatation along the vertical axi& (= =~ 'x3 ) transforms()¢ into the
fixed reference configuratiofl = w x (—1,+1):

r=(2y 23) €EQL =wx (—¢,+e) — X = (v, X3) € Q=wx(—1,41). (2.1)

In general, we will distinguish by a superscriptthe vector fields defined in the “physical”
domains )<, from the scaled fields defined dn.

2.b Governing equations

We consider linearly elastic deformations of the plée. The displacement: : Q¢ — R?
of the plate satisfies the equilibrium equations

Bu=—dive(a)=f in (2.2)

where f are volume forces. We assume here tifafs the restriction tow x (—e,+¢) ofa
function £ which is analytic in@ x (—¢¢, +&¢) for a fixed ¢, > ¢. Furthermore,o(a) is
the stress tensor. Itis expressed in terms of the infinitesimal strain te@orby Hooke’s law
(here summation convention over repeated indices is used)

O'Z'j(ﬂ) = Aijklekl(ﬁ). (23)

We assume homogeneous and isotropic material Ag, = \0;;j0r + 1(0ixdj1 + d;0,1) With
A >0 and x> 0 denoting the Lare‘constants. On the facds = w x {*¢} of the plate,
zero traction boundary conditions are given:

Gu=oc(un=0 on I (2.4)

where n denotes the exterior unit normal vector o1 .
Problem (2.2) — (2.4) is completed by boundary conditions on the lateral Eggewe
consider here for simplicity only Dirichlet boundary conditions, i.e. the plate is hard clamped,
. =0 (2.5)

and give the proofs of the results in this case. We emphasize, however, that our results will also
hold for all other sets of boundary conditions which lead to a meaningful variational formulation
of (2.2) — (2.4)cf [9].
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2.c Finite Element Approximation
The variational form of (2.2) — (2.5) i&%ind u such that
uec H: a(u,v) = L(v) Yv e H. (2.6)

Here, the bilinear formu(-, -) and the loadingL(-) are given by

o ®)= [ Ay @ an, 1@)= [ Foar
The proper choice off incorporates the homogeneous essential boundary conditiofi§ bn
H={ueH(Y)?: alp. = 0}.

Korn’s inequality implies that the bilinear form(-,-) in (2.6) is H' -coercive on H, and
hence for every smooth volume loading exists a unique weak solution € H of (2.6).

Finite Element approximation& y of w are obtained by energy projection: for any finite
dimensional subspacé&l y C H, we define

'ﬂN € HN . a(ﬂN,ﬁN) = L(%N) VgN € HN. (27)
There exists a unique solutioa, of (2.7), and this solution satisfies

VEN € Hy : Hﬂ — ﬂNHE(QE) < Hﬂ -0 (28)

where the energy norm is defined k|’
the bound||u]| ) < C||ull

By a(u,u). Note that for allu € H we have

HU(©F) with a constant”' > 0 independent ot .

In this paper, we propose &ap design for the FE subspadd y and estimate the approxi-
mation error (2.8) in dependence en This is based on a detailed asymptotic analysis of the
three-dimensional solutiom in dependence on.

2.d Asymptotics of the solution

The complete asymptotics of the solutian is easier to describe on the reference configu-
ration ©2 and using the scaled displacemant:) and the scaled loagf(¢) according to

w(e)(X) = (W, U, cti3)(x) and  f(e)(X) = (fi, for e fo) (@).

Due to our analyticity assumption on the Ioadi[fg we have the (convergent) expansion

-1 _ o
= i e £5(X) with - g?;o,f?)(x*,())) Xk (2.9)
k=—1 fk = <k—?a§f*(x*a ) (k_'_ ) 0kf3(x*, ))7 k > 0.
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It may be deduced from the results in [9] thats) admits the asymptotic expansion at any

order
g) ~ Z ehul = Z eF (vF + yw"). (2.10)

k>—1 k>—1

The termsv* constitute th@uter expansion part. They essentially satisfy the three-dimensional
equilibrium conditions (2.2) — (2.4). The complementing term$ are theboundary layer
terms which constitute thenner expansion part — the function x(z.) is a smooth cut-off
function which is identically equal to one in a vicinity dfw. The termsw® compensate
nonhomogeneous edge-conditions in (2.5) due touthe

To state the estimates satisfied by the expansion (2.10), we introduce the unscaled sequence
of displacement fields on the physical domé&in (note that it starts with power=2)

a () = (0,0,uz") (X), ' (x) = (uf, ub, uf™) (X), k> -1 (2.11)

Theorem 2.1 For every ¢ > 0 let u(x) € H be the unique solution of problem (2.6). Then
for every integer K > 0 there holds for expansion (2.10)the error estimate in energy norm

K-1
la— > M| gy < C 5712 (2.12)

k=-2

where C' > 0 isindependent of ¢, but dependson K .

Information about the first non-vanishing term in expansion (2.9) yields the behavior as
e — 0 of the enernguHE(QE and allowsrelative energy error estimates:

Theorem 2.2 A) If f,(z.,0) # 0, u isbending dominated, its principal termis a Kirchhoff-
Love displacementnd ”ﬂHE(QE) ~ ¢~1/2  therefore

K-1

la— 3" Mty < Ol (2.13)
k=-2

B) If fy(,,0) =0 and f,(z.,0) % 0, the principal term of % is %’ , which contains a

membrane part and |||, .., ~ /2 | therefore
K
i = 3 e < O il (2.14)
k=0

Based on (2.8), we will obtain an upper bound for the Finite Element éfior iy | , .,
by the triangle inequality:

K

1o =y ey < 1@ = et + min | Zaku ~Onl g, (2.15)
k=—2

Thus bounding the Finite Element error will be achieved by approximating the asymptotic terms
u”* from the Finite Element spacgl y .
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3 Structure of the outer expansion part

In this section, we essentially reformulate the results 0§39 providing a solution of equa-
tions (2.2) — (2.4), i.e. without lateral boundary conditions, in formal series algebras. This yields
a general description of the termg’ in (2.10) as coefficients of a formal serie$:| satisfying
functional equations involving the formal serigdc] with the coefficientsf* of (2.9) and a
formal series¢[¢] of two-dimensional generators. This “generating seri¢g] satisfies itself
a functional equation inside . We describe the four series of operatdvss], Qls], Al¢]
and R[¢] involved in these functional equations.

In section 4, we will deduce from the formulas stateéi3mew results about the properties of
the operators entering the formal series equations, concerning their action on analytic functions
in in-plane variables and polynomials in the transverse variable.

In section 5, we recall from [9] the series lodundary conditions on dw satisfied by the
formal series¢[e] of two-dimensional generators. These boundary conditions complement the
functional equation insidev. We show that it has a uniquanalytic solution, which yields
that the v* are uniquely determined polynomial functions ¥y with coefficients in analytic
fields onw . We deduce from this tensorial structure the approximation properties of a simple
p -version FEM on()¢ for the outer part.

3.a General structure of the asymptotics

A comprehensive way of solving equations (2.2) — (2.4) on the reference ddmasrthe
use of formal series of operators and vector functions, as initiated in [11]. The basic notion is
the following: if Ale] is a formal series with operator coefficients

Alg] = >, e84 with A, € Z(E,F),
with £, F' functional spaces, and iflc] and c[¢] are formal seriesin® and F
ble] =32, eF, bFe B, and cle] =3, ", FeF,
the equationAfe]ble] = c[¢] means that

VEEN, S5, AR = ck.

As prerequisite, we first expand the operatdssand G in equations (2.2) — (2.4) cor-
responding to the scaled problem 6h and we obtain the following problem without lateral
boundary conditions that we write in the form

{B[e]’u[e] = fl] =Y F  in Q

Glelvle] = 0 on TI. (3:1)

Then the results in [3] can be reformulated following the lines of [11, 5, 10]:
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Theorem 3.1 (i) There exist a formal series of surface operators A[e] with coefficients A*
continuous from ¢ > (w)? into itself and a formal series of reconstruction operators Ve| with
coefficients V* continuous from ©>°()? into 4>°(Q)3 such that for any formal series |e]
of two-dimensional generators ¢* € ¥ (w)* satisfying the equation

(i) There exist a formal series of reduction operators RJ[e] with coefficients R* continu-
ous from €>=(Q)? into ¥>(w)? and a formal series of solution operators Q] with co-
efficients Q* continuous from %>°(Q)? into itself such that for any formal series ([e] of
two-dimensional generators satisfying the equation

Afe]¢[e] = R[e]f[e], (3.2)
we obtain a solution ve| of problem (3.1) by setting

v[e] = V[elCe] + Qlel f[e]- (3.3)

3b Series V[¢]
This series has only even terms: for dle N, V2+1 =0,

The first termV? of V|e| is the Kirchhoff-Love operator: fo = ({,,(3) € ¢€*(w)?
there holds

VO = (¢, — X5V.(3, G3) (3.4)
and the second non-zero term has the explicit form

(V2C>a = ﬁ2(X3> aa div, C* + ﬁ3(X3) aaA*CS

: (3.5
(VQC)S = D (XS) div,{, + ]52(X3) AWE
with p; for 7 =1,2,3 the polynomials in the variablé(; of degrees; defined as
_ _ _ +2 op+1
P = —p X3, P2 = P (3X3 —1), P3 = il X3 - ul X3,
6 6 6
wherep := \/(\ + 2u) . The next ones have the general form, for 2,3, . ..
(V) = 520(X3) A div, €, + Too(X3) Alla + 5ar41(X3) 0. AL s (3.6)

(VHC)3 = qor1(X3) A div, €, +  Gae(X3) AL,

with 5;, ¢; and g; polynomials of degregj (note that the definition of these polynomials
differs slightly from those introduced in [93], but they play a quite similar role).
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3.c Series Qe

Again, this series has only even terms: for &k N, Q%' = 0.

The first term Q° of Qle] is zero. The first non-zero term iQ? and it coincides with
the operatorGG introduced in [9,83], that we recall now. For doing this we need two sorts of
primitive of an integrable function. on the interval(—1, +1):

Notation 3.2 Let usintroduce:
e Theprimitiveof u with zero mean valueon (—1,+1)

T3 +1
j{ udys = / u(ys) dy3——/ / u(ys) dys dzs,

e Theprimitiveof v whichvanishesin —1 and 1 if © hasazeromeanvalueon (—1,+1)
and which iseven, resp. odd, if « isodd, resp. even

Y3 1 Y3 +1
][ wdzg = = (/ u(z3) dzs —/ u(z3) ng) )
2 -1 Y3

Then for f € €~ (Q)?, we defineG f as
(Gf)s =

(Gf)a = { 2 {75+ / ) yg]dyg S

Next Q* = WG + H , where the operatolV : v — Ww is defined from%>(Q)? into
itself by

VAN N [Ys
(Wwo); = —f (2— div, v, + X (95653(1))) dys
oy v s - (3.8)
(Wo), = —7{ (%Ww —i-][ (; Op3W3v + Tu 0, div, v, + A*va)>dy3.
In order to definel , we need the auxiliary operatdr from €>°(Q)? into € (w)?:
+1
(Fv); = / Opeps(v) dys,
(3.9)

+1
(Fv)a = / ][ Onpeps(v) dzsdys .

Then for f € €>(0)%, we defineH f as

P

v 1 A [ I
(Hf)a = —f laaHS + p Y3 (FG)a + p ][ {aa:sHS - 5 OnsH3 dZ3H dys ,
-1
(3.10)
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where, in the last line; denotes(H f); and (FG), denotes(F(Gf))

With the convention that?? is the identity and for anyc > 0, W~* is zero, we have the
general formula forQ?*

o

Q¥ = WG + W*H. (3.11)
3.d Series A[¢]
The first term A° of the formal operator seried [¢] is the block diagonal membrane-
flexion operator
Ao (70 (3.12)
0 iLP '

where —we recall thap = \/(\ + 2u) :
e (B O Y fuep e (P )div.  and 1P =2u(p+ A2,
0 A, 0o
The terms of odd rank oA [¢] are zero. The next non-zero ter&? is given by (using the
operatorsiV and F' introduced above, and denoting the trigle;, F»,0) by F.)
(A2C)a = 07
(A%Q); = —F3(WV*()
and the generic terms of even order afd9, Table 3.1]:
(A*¢)a = Fa(V*CQ),

(A = —R(IWVHC - (X5 - ) RV
3.e Series R[¢]
The first termR? is given by
1 +1
(Rof)a = 3 oz, X3)dX;3
—1

+1
(Rf)s = %/1 (fs + X3 diva f,) (7., X3) d X5 .

The terms of odd rank oR[¢] are zero. Relying again on [9, Table 3.1], we find successively

p [T
®f). = ~FQH)+5 [ Xaoufilen X dxs,
~1
(R*f)s = F3(Q'f)
and for ¢ > 2

(Rf)a = —Fu(Q"F).
R¥f)s = FB(Q2f - L (3X3 - 1) R(Q¥))).
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4 Transverse degree and analyticity of the outer expansion operators

The aim of this section is to deduce from the above formulas for the s&fjes, Q[e],
Ale] and R[e] information on the way they act on polynomials in the transverse variahle
and analytic functions in the in-plane variables = (z,). Moreover, by a factorization of
certain coefficients of these series, we will exhibit a simpler equivalent expression for equations
(3.2) and (3.3), where properties on polynomials and analytic functions are easier to deduce.

4.a In-planeand transver se degrees

We first remark that all the operatohé* and Q* have the generic block form (obtained by
spitting the inplane and transverse components)

C** 0*3

©= (03* 033)
and that each operatdar;; in the above matrix is a linear combination of operators of the form
J o D where D is a partial derivative operator in the in-plane variables with constant
coefficients andJ is a combination of derivations, integrations i3 and multiplication by
polynomials in X3 . We adopt the following notationdeg, (/ o D) denotes the degree of the
operator D , whereasdeg,(.J o D) denotes the degree of acting on polynomials inX : if
the degree of/ is d, then J transforms a polynomial of degree into a polynomial of degree

n —d . From these definitions, we deduce the natural notion of block degrees for an opgérator
as above. Inspecting formulas (3.6)-(3.11), we obtain

Lemma 4.1 For any even number & the block degreesof V¥ and Q" arethe following

w [k k+1 s k; k+1
deg,(VF) = (k—l I and deg, (V") o
and
By k—2 k-3 k k;
deg*(Q )_ (k—3 k—4 and deg3 Q k .

In particular V¥ isa continuous operator from o7 ()3 into .27 (Q)® and Q’c IS continuous
from <7 (Q2)? intoitself. Moreover V¥ and QF are block- homogeneousl Ty

4b Factorization by A°

For ¢ > 2, the operatorsV?* can be factorized througlA® : concerning the action on the
transverse componegs this is clear from formulas (3.6); concerning the action on the in-plane
components{, we note that the following formulas hold

A, div, ¢, = 5 (p+1 div, L™,

and

Al = 5 ALPC)a — gty Oa div(L7C)

2u(p+1)
As a result we find that each operatbr := V% for ¢ > 2, and alsoV := WV?, can be
factorized by A?, i.e. that there exists a matrix partial differential operaforsuch that7'A°
coincides withV . Combining with formulas givingA % for ¢ > 1, we obtain
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Lemma4.2 For any ¢ > 1, there exists a partial differential operator 7% in z, such that
A% = T?*A° . The operator T is block-homogeneous of degree

w [ 20 20—1
deg*T_(%H 20 )

Therefore the equation (3.2 [¢]¢[e] = R[e| f[e] , can be written
T[e]A°C[e] = R[e]fle] where T[] =Id+ 3., e*T*.

The seriesT'[¢], since starting byT® = 1d , is invertible in the formal series algebra and the
2( -th rank operator ofT'[¢] ! is a block homogeneous partial differential operatorinof the
same degrees d6% . As R¥ is also a block-homogeneous partial differential operatar.in
of the same degrees &, settingR[e] := T[¢] 'R]¢], we obtain

Lemma4.3 Thereisaseries Rle] = 3., e2R? such that equation (3.2)is equivalent to

1%

A%Cle] = R[e]f[e] (4.1)

The operator R is block-homogeneous and its block degree deg, R2 isequal to deg, T,
cf Lemma 4.2

Moreover, since eaclV?‘ for ¢ > 2 can be factorized byA?, there exists a formal series
of operators,T"[e] = ., €*T"*" such that

Vie] = VO +&*V? + T'[] A°.
We check thatT” ?* is block-homogeneous of degree

o (20—-2 20-3
deg, T _(26—3 204 )

Combining with the equation (4.1)A%C[¢] = R[e] f[¢] , we obtain thatV[e|¢[¢] is equal to
(VO 4+ e2V2)¢[e] + T'[e|R[e) fle] . Setting Q[e] := T"'[¢]R[e] + Q[e] , we have obtained

Lemma 4.4 Thereisa series Q[e] = 3.,., £2Q? such that identity (3.3) can be written in
the new form -

vle] = V[elC[e] + Qle] fle], where Vel = VO + &2V, (4.2)

cf (3.4), (3.5) The operator Q¥ ishl ock-homogeneous in z. and its block degrees are such
that deg, Q* = deg, T' %, see above, and deg; Q* = deg, V2, cf Lemma 4.1

Using operatorsy, W and H introduced in (3.7), (3.8), (3.10) we have for the first terms

2 =G and Q*= -
Q Q A2

1 <—F48adiv* —750,

0
Smdiv. . 35, ) R+ WG+H,  (43)

where gz, ¢4, 74 and 75 are the polynomials ofX; appearing in (3.6).
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5 Theouter expansion and its p -approximation

In this section we prove that the formal generating se¢ies$ has analytic coefficients, and
we deduce that the terms® of the outer expansion part are polynomialiy and analytic in
x, . Such a structure allows approximation by tengeversion FE at an exponential rate.

5.a Theanalyticity of the generators

So far, the formal generating seri€$:| is still not completely determined. We know that
it has to solve equation (3.2) which we proved to be equivalent to (AAPX[e] = Rle]f[e].
Up to now, every equality was deduced from the elasticity equation®drwithout lateral
boundary conditions. Taking the lateral clamped condition into account and introducing the
two-scale Ansatz of the inner-outer expansion, it can be proved, see [6, 7, 9], that the series
¢le] has also to satisfigoundary conditionson Jw .

Let s — x,.(s) be an arclength coordinate alowy . By extension, we will also often write
s € Ow . Translating the results of [9] with the formalism of [5, 10] we obtain that there exists a
formal series of trace operatofdc] with coefficientsé”(s; d,, d,) continuous from#’ > (@)?
into ¥>°(0w)* and a formal series of trace operatoyg] with coefficientsv*(s; d;, 9., 9s)
continuous from®>(Q)? into > (dw)* such that the 2D-generator formal serigls] has to
solve é[¢|¢[e] = v[e] fle] on Ow .

The dependence on € dw of the operatorsy® and ~* is only governed by the equation
of dw which is an analytic curve. Therefod is continuous fromeZ (@)? into .7 (dw)* and
~* is continuous frome7 ()% into o7 (0w)*. The trace operatod’ is the Dirichlet trace of
A" cf (3.12):

60(C) = (Cla C27 C?n anCS) }Bw .
and the first termsy® = 4! = 0.

Combining the results of [9] with our Lemmas 4.3 and 4.4 we obtain

Proposition 5.1 The outer expansion part v[e| isgiven by
vfe] = (V°+ V)¢l + Qe ], (5.1)

where ([¢] issolution of the series of boundary value problemson w

{ A%[e] = REfl] in w (5.2)

6[clCle] = ~lelflel  on Ow.

The ellipticity and coercivity of the leading pafA’, §°) in (5.2) implies, [17], that A°, §°)
is an isomorphism frome7 ()3 onto 7 (w)3 x &7 (dw)* . Combining this with the analyticity
of f gives the analyticity of the'* in @. Moreover the expression (2.9) of the coefficients of
fle] and the bound on the transverse degrees of the oper@brsf Lemma 4.4, yields that
the v* are polynomial inX; with a bound for their degrees:
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Theorem 5.2 The series ([¢] of two-dimensional generators solution of (5.2) has coefficients
¢" € o7/ (@)*. The series vle] giving the outer expansion part is determined by formula (5.1)
Theterm v* ispolynomial in X3 of degree deg; v* < k + 1, with analytic coefficients:

k+1
VH(X) =D XM (), 0t e o (@) (5.3)
=0

5b Finitetransversedegree

If f isapolynomialin allthree variables, the transverse polynomial degree of the profiles
v* isin fact boundedndepently of k. This result is formalized by the notion of finite transverse
degree: We say that the outer expansion past hasa finite transverse degree if there exists
an integerd > 0 such that each term” is polynomial in X3 with a degree< d. From
formulas (3.7)-(3.11), it is clear that a necessary conditiondfat to have a finite transverse
degree is that the seriefls] defining the right hand side has itself a finite transverse degree.

For a field f depending polynomially on all variables,, x, and X5 we denote by
deg, f the two component vector of the in-plane degreesfofand f;, and by deg; f the
two component vector of the transverse degrees. For a formal sgeesdeg, f[¢] is defined
as sup,, deg, £, and similarly for deg, f[¢] . As a consequence of Lemma 4.2 we obtain

Theorem 5.3 Let ¢, p' € N betwo integerswith ¢ > 1. If
deg, fle] < (20 2p'—1)" and degy fle] <(q ¢—1)" (5.4)
then the outer expansion part v[e| hasfinite transverse degree and satisfies

degzv[e] < (20 +q+2 29 4+q+1)". (5.5)

Proof. If deg, f < (2p 2p —1 )T, then for any intege¥ > p’ + 1, Lemma 4.4 yields that
there holdsQ?* f = 0, since Q* is block-homogeneous of sufficient high degree. Therefore,
the transverse degree is provided by the actiod 0f_, ., e*QF on f[e], whence (5.5).m

Remark 5.4

(@) As all operatorsV* and Q* are differential inz, , therefordlocal in z, , the result of
Theorem 5.3 can be localized i, : if for a subdomainy’ C w, the seriesf|¢] W (—11)
depends polynomially om; , x5, X3 and satisfies (5.4) on’x(—1, 1), then (5.5) holds
onw x (—1,1).

(b) In particular, if f[e] w1 =0, then deg,v[e] < (3 2)' in ' x (—1,1), and for
the special valuer = 0 of the Poisson ratio,deg; v[e] < (3 0)" in ' x (—=1,1).

(c) If moreover, f[¢] represents a membrane volume force, théeg, v[e] < (2 1)7 in
W x (—=1,1).
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Remark 55 (a) For a constant bending volume ford®,0,1) there holdsdeg; v[e] <
(3 4)7.
The same is valid in the case when a constant bending load is applied on the upper and
lower facescf the formulas in [9].

(b) For a constant membrane volume for@e b, 0) there holdsdeg, vle] < (2 1) .
This is still valid in the case of a constant membrane load on the upper and lower faces.

(c) Localized versions of all the above statements hold too.

5.c p-version approximation of the outer expansion

We now discuss the approximation of ttvascaled outer expansion pard|¢] in the frame-
work of the p -version of Finite Elements. Since the serigs| starts with the degreé = —1,
see (2.9), such is also the case for the series of generétdrsolution of problem (5.2). There-
fore the outer expansiom[c]| also starts witht = —1, and the unscaled outer expansion is
defined as

v(e) = i "M(X)  with

k>—2

{ o %(2) = (0,0,05") (X) (5.6)

7 (2) = (vF, vk 05T (X)), k> -1
By superposition, it suffices to investigate the approximation of the generic #rrfrom a
suitable FE-space. This will rely on Theorem 5.2 above, which gives the structure of the

Our approximation shall be based on an analytic regular partitiof w , which isfixed
independently of ¢ and & : the mid-surfacew is covered by a curvilinear partition,, of tri-
angular or quadrilateral elements which are images of a reference elemeéntinder analytic
element mapsn,. : k — x € 7,, which are diffeomorphisms. Two different reference elements
may be used in the design of, : a triangular reference elemert and a square ong, .

The meshr,, is assumed to be regular, i.e. the intersection of two elements’ € 7, is
either empty, a vertex or an entire side and in the latter case, the commomn $ide the same
parametrization from both sides, i.e. for a common edge = N x’ holds: m,, o m,(y) = 7.

Proposition 5.6 Let w C R? be a bounded domain with analytic boundary curve dw . For any
polynomial degree p, define the FE-space

SP(w, ) = {v € COW) : v|,om, € Qu(R), k € T, } (5.7)

where (), denotes the polynomials of total degree p if x isthetriangle k and of separate
degree p if & isthesquare kq, .

Then for any p > 1, there exists an interpolation operator i, : </ (@) — SP(w,7,),
v — i,v suchthatif v|s, =0, also i,v|s, = 0, and satisfying the uniform estimates

o= il + 190 = 0, < Ce™ (5.8)

where b, C' > 0 areindependent of p, and b dependsonly on the domain of analyticity of v .
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For a proof of this assertion, we refer to [16], for example.
We define next the FE space for the approximation oftie To this end, denote by7°
the three dimensional mesh family fa. which corresponds ta,, , i.e.
TP ={K=rx(-¢ce):kET}, (5.9)
where K = MK(IA() with the reference elemert = % x (—1,1) and the element map
T = My (@, X3) = (me(T2), eX3) 1 K — K . (5.10)

On 7, we introduce the anisotropic tensor product FE-space
VPO, 70) = SP(w, 1) ® (Pq*(—e, £)? x qu(—e,e)) (5.11)

of transverse degree = (q. g3 )T M g = ¢ = q, we write VP9(Q°, 7°) instead.
Here follows the approximation result for the unscaled outer expansion:

Lemma 5.7 (i) Under the general assumption made in §2.b — the volume loading is the re-
striction of an analytic field f , the generic term " in the unscaled outer expansion (5.6) can
be approximated from V?4(Q¢, .7°) at an exponential ratein energy norm:

ok, e vP(QF, 7°) suchthat ||7" — 5’7VHE(QE) < Qe V2 bmin{pa} (5.12)

where C' > 0 isindependent of £, p and ¢, but dependson k& and f.
If v* dependsonlyon z, , thefactor e='/2 in (5.12)can be replaced by /2,
(ii) If, moreover, theload f satisfies, with even p; > 0 and with gy > 1

deg, f < (pr pr—1) and degsf<(qr gqr—1) (5.13)
then, provided the transverse degree q satisfies g > (ps+qr +2 pr+qr+1 )T , We have
Fo%, e vPI(QF, 7°) suchthat ||7" — 5’?VHE(QE) < Ce™V2etr, (5.14)
with the same improvement as above if v* dependsonlyon ., .

Proof. Letus fix k > —2 and a component? of ?" . Letus denotey := ¢, if i =1,2 and
q:=qs if i =3.
(i) From Theorem 5.2 and in particular representation (5.3), we have the existerice 6f
functionsn’ € &/ (W), £ =0,...,k + 2 such that
k42 Zan £
~ o _3 ¢
) =3 (2) '),

Let us denote byj, an approximation of analytic functions op-1,1] by polynomials of
degree< ¢ at exponential rate. We denote hy the monomialX; — X{ and we set

k+2

(L) (@) =3 (17) (2) (i) a2,

=0
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with 4, the interpolation operator of Proposition 5.6. It is then obvious thé} ,v¥) belongs
to SP(w, 7,) ® P,(—¢,¢) and that there holds

108 = (L) (X1 < Cet im0,
Going back toQ* , we find, with the same constant

|oF — ﬂpyq'ﬁfﬂ < Ce 2 bmin{p.a)

) + 5_1”5? - jp,q,ﬁf”

L2(w,H'(—¢,¢) HY(w,L2(—¢,e))

Estimate (5.12) is easily deduced (with the improvementifdepends only on:, ).
(ii) Under the assumption (5.13) ofi, Theorem 5.3 yields that
degyvle] < (pr+ar+2 prtar+1) .

The assumption ovey gives that the transverse degreef is less thang. Therefore, it
suffices to set

) =3 (2)' e

to obtain the interpolant satisfying estimate (5.14). [ ]

For K > 0, let us denote by?m the truncated series of the outer expansion

K
o = N7 ot (5.15)
k=-2

As a consequence of Lemma 5.7, and taking into accountidhat= (0,0, ;') only depends
on z, , we obtain immediately the estimate for any > 0:

Joi | € VP, 70 suchthat B — o, ) < CeTetminibal - (5.16)

]
[
Relying on Theorem 2.2, we can now deduce from (Sr&@jive error estimates:

Theorem 5.8 Let K > 0. Letthevolumeload f besuchthat f(z.,0) #0.
A If fs(x,,0) # 0, we have, with constants b, C' > 0 independent of ¢ and (p, q) but
dependingon K :

Foi | € VP, 7°) suchthat (B - ) < CeTet 0D ) (51T)

E(Qf
A.l1) If, moreover, there exists a family of interpolation operators 7;, with values in the sub-
space of SP(w,7,) of C' functions, and still satisfying exponential estimates (5.8), then the
approximation bound in (5.17)can be replaced with Ce~tmintr-a} ||z | @)

B) If f4(2.,0) =0 and f,(z.,0) # 0, then, again, the approximation bound in (5.17)can
be replaced with Ce—bmin{l’yq}l|ﬂl|E(Qa) :

c) If, moreover, the conditions of Lemma 5.7 (ii) are satisfied, then e —*™*{»-4} can be replaced
by e~ everywhere.
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Proof. A) Inthat case, the energy norWﬂHE(QE) is equivalent tos~'/2 | which, together with
(5.16), gives (5.17). We note that this “low” energy is due to the structure of the first terms in
the outer expansion series: Indeed

e 4 e = e 2 (—a3VL(, Q)

*

with ¢ = ¢;*(z.) . For non-zeroC , its energy is0’(¢~1/2) , whereas, in general the energy of
its interpolates ~2(—x34,(V.(), i,¢) is €(¢~*/?), because the interpolate is not a Kirchhoff-
Love displacement.

If a C' interpolation operatoi;, does exist, then we may choose?(—xz3 V.(i;(), i,¢) as
interpolate and, thus, recover robustness as 0 .

B) In the situation of dominating membrane load, the energy norm ah ¢ is equivalent to
/2 and the outer expansion series starts with the energy of which is a7(s'/?), and, by

superposition we obtain from Lemma 5.7 the boufid!/2e-*™ir{r.a} for (5.16), whence the
statement of Theorem 58. [ ]

6 Propertiesof the boundary layer profiles (inner expansion)

Now, we study the inner expansion part in (2.10), that is, the sum of the boundary layer
terms eFw" . It is in fact easier to consider unscaled terg’s defined as:

@" = (o1, ¢5, 05) = (Wi, wy, ws™).
In a similar way as for the outer expansion, the texatsare determined as coefficients of a for-
mal seriesple| satisfying functional equations: We first reformulate results from [9, 5]. Then
we will deduce from these results, analyticity properties for the profiles in weighted spaces.
Finally, in section 7, we construct thigp -approximation of the profiles.

6.a Prerequisite

We introduce in a tubular neighborhood C w of dw the usual boundary fitted coordi-
nates(s,r): if x.(s) denotes a parametric representatiordoef, any x, € % can be written
in a unique way asr, = z.(s) — rn(s) for some0 < s < length(dw) and 0 < r < 1
with 7, sufficiently small, if n(s) denotes the exterior unit normal vector o at s. With
r, we associate further the stretched variallle= r/c . The terms of the inner expansion are
profiles, i.e.o" = ©*(s, R, X3) . To the profilesp® we associate theifs, R, X3) component
functions (%, k., ©F) .

The boundary condition in (5.2) on the two-dimensional generator sérigsdoes not
ensure that the outer expansion paft| satisfies the lateral boundary conditions (2.5), but that
the inner-outer expansion does: There exist operator sdriels and O[] such that thep”
are the coefficients of the serigslc] given by

ple] = @[e]C[e] + O[] flel. (6.1)

We first give the functional equations solved by (6.1). Next, we define functional spaces of
exponentially decreasing functions at infinity ah' .
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EXPANSION OF OPERATORS IN STRETCHED TUBULAR COORDINATESIN tubular coordi-
nates(s, r, z3) associated with components, u,., u3), the interior operatoB (2.2) is trans-
formed into an operato#4(s, r; s, 0, 0,.,) and the horizontal boundary operat6r (2.4) into
9 (s,r;0s,0r, Oy ) . In the stretched tubular coordinatés R, X3) , these operators become

B(s,Re; 05, "0r, e '0x,), and 4(s,Re; O5,¢ '0r, e '0x,).

The Taylor expansion aiz = 0 of the coefficients of the above operators provides the operator
valued formal series
Ble|=> A" and G| => fg*
k k

where the #*(s, R; 0,,0r,05) are partial differential systems of order in the stretched
domaindw x ¥ F whereas the?*(s, R; 0, 0r, 05) are partial differential systems of order

on its horizontal boundarie8w x v, wherev, = Rt x {X3 = £1} denotes the horizontal
boundaries of* ; all operators depend polynomially of .

Therefore, each coefficient of the matrice®” and ¢* is a finite sum of terms of the form
a(s)R"OL0%0% , with i+ j + ¢ less than2 for %" and less than for ¥*. As a consequence
of the analyticity of the boundary af , the coefficientss — a(s) belong to.o/ (0w) .

The first terms#" and ¥° are explicitly given by:

(‘%O(p)s = U AR,Sgpsa (go(P)s = /,683@3 .
(B°p)r = L ARr3or + (A + 1) Or(Orpr + O5¢3), (9°p)r = u(ds0r + Orps),
(B°p)3 = wArsws + (A + 1) 03(Orpr + O303), (9°p)3 = (X + 2) 0303 + A\ OroR .

We note the splitting into 2D-Laplace and 2D-Lamoperators in variable§R, x3) with Neu-
mann boundary conditions.

The seriesp|¢] is associated witkero volume and surface loads, which is written as:

{%’[5]50[5] = 0 in JwxXT, 6.2

Gelple] = 0 on OJw X 4.

SPACES OF EXPONENTIALLY DECREASING FUNCTIONS The profilesp®(s, R, X3) are ex-
ponentially decreasing aB — oo and belong to a class of weighted spacesiih. These
spaces depend on two real parameters 0 and 3 € (0,1). The parametep describes the
exponential decay at infinity and the regularity near the two corne(8, +1) of X+ .

We denote byp, the distance to the cornef$, 1) and setp = min{1, p,p_}. Let first
H%5(X) be the space o">(X+) functions ¢, which are smooth up to any regular point of
the boundary o1 , are exponentially decreasing &— oo and satisfy the growth estimates
near (0, 1) in the following sense

R e LT and VLeN? [£ >0, eFpH-1-F 8}53@ c L*(xH).

Then we define the corresponding displacement spagg(X") := H55(X1)°.
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The space for the right hand sides is defined along similar linesREg{>*) be the space
of triples (¥, ") € €>°(XT) x €>°(v+) which satisfy

VEeN?, SR pEFITEgN e [X(SY) and R plF20 gt e [2(v.).
Then we define the corresponding space for right hand sides:

ﬁfé?a@*) = {(‘I’JP) € E?a(ZJr)S}-

These spaces are convenient to solve problem (6.2) coupled with lateral boundary conditions
because there hold the two following lemmas.

Lemma6.1l Let 0 >0 and 3 € (0, 1) befixed. Forany & andany ¢ € (0w, H55(X")),
there holds:

(B p, G p) € o (0w, RT5(XT)) forany & < 6.

This is a straightforward consequence of the structure of the coefficients of the opeztors
and ¢* (analytic in s and polynomial inR).

Lemma6.2 Let 6, > 0 bethe smallest exponent arising from the Papkovich-Fadle eigenfunc-
tions, see [12]. Let 5, € (0,1) bethe smallest real part of the corner singularity exponents
associateed with the corners (0, £1) of T for the operator (£°,%°) with Dirichlet bound-
ary conditionson R = 0, see[15,8] Forany 0 < B < o and 0 < § < &y, for any
(T, 9) € R3;(X1), andany P € 4°°([-1,1])* there exist a unique ¢ € $75(X") anda
uniquerigid displacement Z such that

Bo+¥ = 0 in XF

o+ = 0 in Uy (6.3)

(go—Z)‘R:()#—P = 0.

This result is proved in [7, 9, 5]. Let us denote by
Z°(¥,+,P) the solutiony of problem (6.3).
If (®,)) belongs to.er (0w, R%5(X")) and P belongs to.e/ (0w, €>°([-1,1])*) , then s —
Z°(¥(s),v(s),P(s)) defines an elemenp € o7 (0w, H5 (X)), which is still denoted by
Z°(W,4,P) . In particular, if the right hand sidé¥, ), P) has a tensor product form
a(s)(¥'(R, X3), ¢/ (R), P'(Xy))

then Z°(¥, ¢, P) = a(s)¢'(R, X3) with ¢’ = Z°(¥',4',P’) since (#°,4°) does not
depend ons.
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6.b Series ®[¢] and Ol¢]

As the boundary layer profiles are expresseghscaled components, we have to define the
unscaled version of operatorf€[s] and Qle]. This only consists in dividing the transverse
component by . This amounts to define

V[e] = D[]V]e] and Q[e] = D[e]Qle]
where we have seD[s] = e 'D_; + Dy, with
D_l(u*,u;),) = (0,U3) and Do(u*,u;),) = (’U,*, O)

Note that for anyk > 1, V* and Q* are nonzero operators.

We have now all material for the definition of the formal operator sefigs] and ©|c
present in (6.1). Beyond the equation8c]®[c] = 0, Y[e]®[e] = 0, Be|Of¢] = 0

9[£]®[e] = 0 corresponding to system (6.2), they satisfy tlgt] + V[e] and O[¢] + Qe
takes their values in a rigid displacement series.

The zero-order operatord” and ®° vanish. For anyk > 1, there holds

|
)

k k
Ve € €@, ®F¢ = 5?()(2:@%'“4’ S glettc, Vi \m) (6.4)
=1

(=1

and
k

k

Vf e @), O°f = (@0(2%"@’“—% S g'ety, Qi yro). (6.5)
/=1 /=1

Gathering all information about the structure of serd&| and Q[e] the decomposition of

operators%* and ¢* in tensor product terms, and of solutions of problems (6.3) we obtain:

Lemma6.3 Let 5 and / beasinLemma 6.2

(i) For any integer k£ > 1, thereexistsaninteger L = L(k) andforany ¢ = 1,..., L expo-
nentially decreasing fields ™ € $3;(X") and partial differential operators §**(s; d,d,)
on Ow with analytic coefficientson dw such that

L
¢ = Z @ (R, X3) 8%(5:05,0,)¢ o
(=1

Each " isthesolution Z2°(¥*¢ " P*!) of problem(6.3)wherethe P**(X3) aretriples
of polynomials, and (¥** ") = (b ¥ g ) with ¥ < k, ¢/ < L(K),and b, g
matrix operators with coefficients of the form R”@}QQ (with |m| <2 for b and <1 for g).
(i) If f depends polynomially on X5 (with degree deg, f), for any integer k£ > 1, there
existsan integer J = J(k,degy f) andforany j = 1,...,.J exponentially decreasing fields
0" ¢ $55(XT) and partial differential operators v*(s; ds,9,, d5) on dw x (—1,1) with
analytic coefficientson dw such that

J
OFf = 0"(R, X;3) 7" (s;0,,0,, 0

j=1

)f ’8w><(—1,1) :
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Each 6"/ is the solution 22°(®"7, "7 P*7) of a problem (6.3) where the P*7(X3) are
triples of polynomials, and (¥*7, 7)) = (b @7 g0 7") with k' < k, j' < J(K',degs f),
and b, g matrix operators as above.

6.c Analyticregularity of the boundary layer profiles

Lemma 6.3 states that the generating layer profiéd(R, X3) and 8*7(R, X3) are solu-
tions of problem (6.3) with sets of data coming from generating terms of lower degree. There-
fore, we obtain by recursion that they are analytic in the interiobdf. To estimate the rate
of convergence ofip -FE approximations of the boundary layer profiles, however, we quantify
the analytic regularity of** and 87 in the interior of ©*. We need for this an analytic
version of the space$ ;s and K7 .

Definition 6.4 For real parameters 0 < 3 < 1, 0 > 0, definethe space $75(X*) asthe set
ofal p € H5,(X*) for which there existsa constant C' > 0 such that

Ve e N’ €] >0 [ P0g sl iy, < CHTE (6.6)

L2(3+

Analogously, we denote by £7,(X") the space of triples (¥, ¢*) for which there exist C' > 0
such that

VeeN? | plt=Fot (| ) < Clé+1pl (6.7)

L2(s+
and

vee N || e"plH PO st L,k < CHITE (6.8)
As before, we denote by $555(5F) = H75(S+)% and likewise &7,(SF).

With these definitions we can now prove the two following lemmas, which are the analytic
version of lemmas 6.1 and 6.2.

Lemma6.5 Let 6 >0 and 3 € (0,1) befixed. For any k andany ¢ € o/ (0w, H75(37)),
there holds: (%", 9" ) € o (0w, Ry (S1)) forany & < 6.

Lemma6.6 With § > 0 and 8 € (0,1) asinLemma6.2, for any (¥, ) € K5 4(="), and
any P € /([-1,1])* thesolution ¢ = %°(¥, 4, P) belongsto H7,(S*).

Proof. To this end, forp, ¢ € N, we defineX, , = (p,¢q) x (—1,1), ¥, = (p,00) x (—1,1),
g = (p.q) x {£1} and v, := (p,00) x {£1}. Then we may split for exampl&* in
Y02 U Xy . We establish the analytic regularity (6.6) iy, » and in 2, separately.
Stepi: Analytic estimatesin the half-strip X5 = (2,00) x (=1,1).
Forany s € R and #°,4" asin (6.3), we have the equivalence

Bo+¥ = 0 in Bt BY(ePlo)+ PP = 0 in Tt
{ Gp+1p = 0 in v Uy { G(ePRp)+ e = 0 in 4 Un

where (%‘g, %’) is an elliptic operator pencil depending gh with constant coefficients and
principal part(#°,%°) .
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By the ellipticity and analyticity of the data + in X, , we have for anyp > 3 and every
£ = (lp,l3) € N% for ¢ := e’Fp the analytic regularity estimate, see [17]

1, 1
1 - le|+1 1 Aan 0 ~ 7
L e (| (2) 1022 o, s+ 1@l s, )
n|<(1€—2)+
1
+ (J'”“( — || 0% (95 ¢ + + )
Mgej_m el LG/l N =l P

where the constant’ depends on3, but not onp > 3 oron £. Summing up forp > 3, we
get that

1 . | R, - -
EHa]g,EBLPHLZ(ZQ) S OleH—l( Z E HaR,?)('%,gso) HLQ(Zl) + HCPHL2(21)>
In|<(l£]-2)+

1. .. .
Ll (D DR [/ S e = Iy

Im|<(l€]-1)+

which also reads

1 1
10 D)y < CO (D 0RO gy + 1 )

In|<(1€l-2)+ ]
O I, s + e, ).
<1,

Noting that 95, ;(e?F ) = e"#(0r + 3)"205% ¢ , we can deduce from the last estimate that

1 1 n
E HeﬁRaé,?)(loHLQ(EQ) S O|E|+1 < Z m”eﬂRaR,?)(‘%ocp)HLQ + HeﬁRLpHLZ (21 )

In|<(|€-2)+ )
C|2|+1< 2 l1ePRgnR (0 ﬁR )
" n|<%1) il 05 QO)HLQ( ‘)+H HLQ(f)
> —L)+

Whencey € $75(32) if (2°0,9%p) belongs toR7;(21) and if e’ isin L2(%,).
Step ii: Analytic estimatesin %, .
Since the differential operator®®, ¢° in (6.3) have constant coefficients and are in divergence

form, and sinceP is analyticonR = 0, | X3| < 1, the regularity theory of Balska and Guo
[13, 14] (see also [3, Th.IV.1]) implies thas € 57 5(o2) - m

Then, combining Lemma 6.5 and Lemma 6.6 we prove by inductioh on1 :

Lemma 6.7 Notations are as in Lemma 6.3and § and ¢ asin Lemma 6.2 Then for any
integer % > 1 all theboundary layer profiles ¢** and 6 belongto $7;(X*) and estimates
(6.6) hold with a constant C' > 0 dependingon & .

7 hp-Approximation of the boundary layer profiles

Unscaling expansion (2.10) we obtain that the teriafs (2.11) of the expansion of: are
the sum of the outer term&” and of the inner termsc” . In this section, we investigate the
approximation of the inner expansion terpg* by mapped piecewise polynomials.
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7.a hp-Approximation of layer profileson the half-strip X+

For the approximation of the profileg* , we subdivideX* into three regions
= (0,2) x (=1,1), = (2,R) x (-1,1), Xf = (R,00) x (-1,1)  (7.1)

where R > 3 is an integer at our disposal which will be selected below. In each subregion
¥t , v e {ILII,LIII}, we introduce a FE-mesh7, as follows.

In ¥, we need a parameter which is an integer> 1: .#;" consists of axiparallel
quadrilaterals with hanging nodes which are geometrically refined toward the “cornexs” of
with n layers and a grading ratie € (0,1), cf (7.19) below (see [19, Chapter 4], for more
details on geometric meshes with hanging nodes).

X3

X3:1+

X3:—1+

~

S5 O R=2 oh R X

Fig. 7.1: TheregionsX !, v € {I, 11,111}, of X" and
the meSheS%In withn = 3,0 = 0.5, %H and %HI

In X}, wedefine
My =i +1) x (~1,1):i=2,...,R—1} (7.2)

andfinally, . = {(R,00) x (=1,1)}. Themesh .#™ in £+ isthe union of the meshesin
the subregions:
M" = A" AU A

We next define the hp -FE spacein X1 which we will use to approximate the profiles. Let
p beaninteger > 1. Wedenote by 2, the usual spaces of polynomials of degree p in each
variable and we define

SPSt, A7) = {ga e H'(SY) : ¢l € 2,(K) VK € 4™, o(R,") = 0for R > fz} . (7.3

The next theorem addresses the approximation of the boundary layer profile space $ g{ s(Xh)
from S?(X*,.#™) and isthe main result of this subsection.
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Theorem 7.1 Let ¢ € $H75(XF) for 5 € (0,1) and J > 0, be a boundary layer profile.
Thenthereexist C' > 0 and b > 0 suchthat, for any p > 1

e, € S, P suchthat o — @, < Cle + e 0RY. (7.4)

Remark. Note that the number » of layersin the geometric mesh .#|* istaken equal to p.

Proof.  To prove Theorem 7.1 we construct ¢, separately in each subdomain X, for v

in {I,II, 111} . The following Lemma of approximation on the model square Q= (—1,1) x
(—1,1) will be used throughout.

(i) ESTIMATES IN THE MODEL SQUARE.

~

Y3

V2 @ V4

M
Fig. 7.2: @ and notation

Lemma7.2 Notation as in Figure 7.2. Let 7) : L*(—1,1) — 2,(—1,1) denote the L*-
projection and define 7 u for u € H'(—1,1) by

(ru)(a) = u(-1)+ [

-1

xT

(772—1“,)(5) dg,

and denote by ﬁp .= m, 7, the tensor product interpolant on Q (here 7 is the analogue of

7, inthe vertical direction). Then, for any u € HY*(Q), k> 0, holds

ﬁpu =u atthe vertices of @, (7.5)
ﬁpu}% =m,(ul5,), i=1,3 and ﬁpu}% = m2(ulg,), i=2,4 (7.6)
and, forany p > 1 and 0 < s < min(p, k) the estimates
=~ 2 s 2
HV(U - HPU)HL2(@) S CCI)(]D, S) ||D —HUHLQ(Q) ) (77)
5.2 D(p, ) s+1, 112
Hu - HPUHL2(©) < C p(p + 1) HD uHLQ(@) : (78)

Here ||Dku]|;@) = > \ak HD“uHiQ@). The constant C' > 0 isindependent of s and p,
and ¢ isgiven by

(p—s)!+ 1 (p—s+1)
(p+s)! pp+1) (p+s—1!

d(p,s) = 0<s<p.
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(i) ESTIMATES IN X" . Next, we address the interpolation on geometric meshes.

X3

Fig. 7.3: Geometric mesh ;" in 3;" with hanging nodes e

Lemma7.3 In I = (0,2) x (—1,1), consider the geometric mesh .#7* shownin Fig. 7.3.
Then, for u € H’““(Eﬂ and p > 1, exdsts Ilu € SP(X;, .#") suchthat IIu iscontinuous
in 3} and that there holdthefollovving estimates for any 0 < s < min(p, k)

B 25+2 cI)(p, ) D+,
o =Tl < C 30 (%) L ID Nl (79)
Ke.a
V= T)% < € 5 (%) a8 Dl (710
Kea*

Proof. For K € .4, let Fi : @ — K be the affine element map. Define
() ¢ 1= (T, (w0 Fro)) o Fic"

Then applying Lemma 7.2 elementwise and a scaling argument imply (7.9), (7.10). By (7.5),
(7.6), ITu iscontinuous across edges which do not contain hanging nodes. It remains therefore
to remove jumps of the interpolant on edges with hanging nodes.

(—1,1) (1,1)

(_170)
L & K, Ky

(_L _1) (17 _1)
Fig. 7.4: Mesh patch with hanging node e
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Assume now that we are on an edge with hanging node as shownin Fig. 7.4.

Denote ~;; := KN K and by [u — Ilu);; = —[wu];; thejumpof u — ITu across ~;; .

By (7.6), [u—1Ilujss = 0 and [Iu];; € 2,(v;;) . We remove the discontinuity by lifting [Iu] .
Put

[uli2(&) on Ks,

V() =—(&+1 ~
©) &+ ){ [Muli3(§1) on Ky

Now [[Tu]»; = 0 impliesthat V € C°(K, U K4) and

YVl aom < C NIl ramsy (7.12)
with C' independent of p. The Trace Theorem in K implies
Tl ey = M= Tl g2
S H(U - Hu)—’—HHIN(’YlQU%?’) + H(U - Hu)_HHl/Q(mgU'ym) (712)
< C XL llu—Tull,, g,
Put R
~ ITu in K,
MMy := SN (7.13)
V"—HU in KQUKg.

Then Ilu € CO(IA( ) by construction and from (7 11)-(7.12) we obtain

IV (= )l 2 ) < OZ IV (=Tl 2z, -
Concerning the L? estimate we have
IVl sy < C =Tl
= C{H v Hu) HL2 (712Umi3) H(u N Hu>_HL2(712U’Yla) }
1/2 1/2
< O X0 (lu—Tul oy + lu—=Tul L V(0 =T 45 )

and we arrive at

1/2 1/2
=Tl o ) < € S0y (=Tl e+ llu—Tall e[V (w = T[] )

12(RK;) L2(K;) L2(K;)

Now assumethat K; areof size h. To obtain error estimates, we first use (7.7), (7.8) and then
wescale K, K; tothissize. Summing over all patchesin Figure 6.3 gives (7.9)-(7.10) since
in the geometric mesh .#;" the modification V' in (7.11) is applied at most twice per element.

Later on, we have the problem that if K € .#* abuts at the vertices (0, =1), then the layer
profile ¢ doesnotbelongto H?(K)?,ingeneral. Let usdenoteby K7 theelement K € ./
suchthat (0,1) € K, and likewisefor K5, with (0,—1). Put

5=\ (KL UKy ), #={Kedy: K+#K}.
Thenif u € H*(S;}) we obtain like for Lemma 7.3 that the interpolation estimates (7.9) —
(7.10) hold with . replaced by ///1 and = by S
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To deal with the corner singularitieswe rely on, see eg. [19]:

Lemma 7.4 (Hardy-type estimate)
Let Q = (0,h)* and assumethat v € H'(Q) satisfiesfora v € (0,1):

|u|22@) = / r® |D*ul? dz < oo (7.14)
v Q

Then u € C°(Q) and the bilinear interpolant Jou satisfies the estimate

Ju = Jaul s g < CH 7l (7.15)

H3(Q) ~

We proceed to hp -approximation. Let ¢ belong to 5§f5(2+) for 5€(0,1) and § > 0. We
notethat ¢ belongsto H2(Q)* for y=1-73.

Without loss of generality, we consider only ///Af’g, the upper half X3 > 0 of //Af‘ We
number the elementsinthismeshby K;;, 1 <i<n and j =1 if ¢ =1 (vertex element)
and 1 < j < 3 otherwise, where i = 2 inthe layer surrounding the vertex element, i = n in
the largest element layer. For any K;;, ¢ > 2, denote by

hij = dlam(KZ]), Tij = dlSt (Kij7 (0, ]_)) . (716)
Then thereexists A\ € (0, 1), independent of n, st.
hij < Arij and Vo e Kij, 1y < p(r) <rij+2h; < (24 A)ry;. (7.17)

Now consider a layer profile ¢ € ﬁgf s(X1). Then atypical term in the error bounds (7.10)
can be estimated as follows:

A 2s AT 28 (1 s—1— s
(3) 05 [ 1DePds < (F) 0y [ oD
Kij Kij
< i 28@( 8)7"2(1 H s—1-6 ps+1 H
— 2 pa /0 (p L2(K

(7.18)

Now, since the mesh is geometric with grading ratio 0 < ¢ < 1,foral 2 < i < n and
1 <j<3,weadsohave

anfiJrl < rij < \/50,77,714’1. (719)

Summing the error over all K;; giveswith (7.18) and (7.19) in (7.10) with the regularity (6.6)
that

~ 9 n A\ 2s (i <
IV -To) gy < C D <§) O(p, 5) 2D OF 2 (5 4 1)1
=2

MOy 2542
< CP(p,s) <7> (s 4 1)1 g2 D0=5) Z o2

2O 2542
< C(p,s) (7) (s + 1)1,

If wetake s = ap foran o € (0,1), Stirling’sformulaimplies that

st 0P () <82 e () T 0t iy
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where
(1 B )l_a 2a
Fla,d) = (1+ )+ (ad)
Sincefor d > 1
. 1
0I<rlO}I<11 F(Oé,d) - F(Oémin,d) - Fmin < 17 Omin = m < 17
we get
Ad\ 2«
®(p, ap)(s + 1) <7> f<op Flin -
Then
- 9 -
HV(LP - HSO)HLQ(ifr) < Cp3 Flflin < Ce 20

since F, < 1, for some C', b > 0 independent of p. Analogous bounds hold for the L?
norm of ¢ — Il . Summarizing, we obtain that there exist C' and b > 0, such that for any
@ €955(ST) andany n and p

=~ 2 =~ 2 _

It remains to estimate the error on Ky, , the vertex element: recalling that any ¢ in 55{5(2+)
belongsto Hﬁ(Ku) for v =1— 3, wededuce from Lemma 7.4 that

lp = TreonPll s,y < C ™7 (7.21)

Now a continuousinterpolant in X; isobtained by joining the bilinear interpolant Jy,, and

ﬁgo continuously on K1, N S , by liftingsin Ky U Ko . Finally, estimates (7.20) and (7.21)
yield the hp type approximation estimate if we choose

n=mp.

(iii) ESTIMATES IN 7 . Consider now the approximationin Xf: = (2, R) x (—1,1) . Wewrite

R
2 2
||90 - SopHHl(E?i) = 22 ||90 - SopHHl(Ki)

where K; = (i,i + 1) x (=1,1) € .. Applying again Lemma 7.2, we construct ¢,
elementwise. By (7.6), ¢, iscontinuousin ¥} and

9 s+1 2
o= @ < CO5) D6,

The analytic regularity $5; of ¢ in 5, cf (6.6), then gives
I = @yl 10y < CBp,5) X405 4+ 1) e (7.22)
Choosing again s = amin p asin X7, wefind

lo = @yllm g, < Ce>, =2, R. (7.23)
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Summing (7.23) over all i, we get for constants C', b > 0 independentof R and &
2 —2b

Remark. The bound (7.23) indicates that the polynomial degree p necessary for the boundary
layer approximation in X;; may actually decrease with i: we only need bp; + 07 > Poax s
whence p; > b~ (pmay — 04) for i =2, ..., R issufficient to ensure (7.24).

(iv) ESTIMATES IN ©7, . Finally, we discuss the region Xf;, = (R + 1,00) x (—1,1). Here
we choose ¢, = 0 and get from (6.6) with [£] = 1

le = ol ) = Il ) < Ce™". (7.25)

The choice ¢, = 0 in X} introduces ajump

0#[p— @) =—lp,] € 2,(-1,1) on {R=R+1}x (-1,1).
We lift thisjump into the last element Kz = (R,R+1)x (-1,1) € ¥ by
V(R, X3) = (R— R)[p,](X3), (R, X3)€ Kp. (7.26)
Then, (¢, — V)(}A% +1,X3) =0, and thereis C' > 0 independent of R andof p,suchthat
||V||H1(K§) < OH[Sop]HLQ({ﬁLJrl}X(,Ll)) :
Since cpp]wn = 0, we have by the trace theoremin K
H [Sop] HLQ({R—i-l}X( 1 1)) H [SD Sop] HLQ({R—i-l}X( 1 1))

rs i (7.27)
< Clle = @yl g,y S CerD),

(v) CoNcCLUSION. Thisyields a continuous approximation ¢, € SP(X7*, .#*) which satisfies
(7.4), if we combine al 3 approximationsin X . Theorem 7.1 is proved. |

Corollary 7.5 Let ¢ € 5;{5(Z+) for 3 € (0,1) and 6 > 0, be a boundary layer profile.
On the scaled strip X, let ° bedefined as ¢°(r, z3) := (e~ 'r, e x3) . Then, if we take
R =p,wehave

Jpp € SP(eXt, e ?)’ suchthat || — Lp;HHl(€Z+) <Ce.

Proof. Let ¢, be the approximant of ¢ given by Theorem 7.1, and let ; be defined as
@5 (r,x3) == @, (e, e wg) . Scaling r = e R, 23 = ¢ X3 implies dRdX3 = e drdas
and there holds

HSO - (PpHLQ(E-&-) = g—leoe - 9016;||L2(EE+) and |§0 - (Pp|H1(E+) = |90€ - SOZ‘Hl(sZ*') :
Theorem 7.1 impliesthe assertion. |
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7.b hp-Finite Element spacein ¢

To prove approximation results in the three dimensional domain Q¢ for layer profiles 1 of
the tensor form v = (s)e (R, X3) with v € &/ (0w) and ¢ € 33%5@*) , we define first the
Finite Element space.

Our approximation shall be based on aregular partition 7, of w likethat used in §5.c, with
the new request that 7,, has one layer of quadrilateral elements along its boundary as we are
going to describe. Let us define the tubular layer

wp = {z. € w: dist(z,,0w) < po} (7.28)

where p, ischosen less than one half of the minimal radius of curvature of Ow .

Let L bethelength of thecurve dw andlet s — (z1(s),z2(s)) beananalytic, L -periodic
parametric representation of dw . The mapping m(s,r) given by

m(s,r) = (z1(s) — rah(s), za(s) +rai(s)) (7.29)

isan analytic map of (0, L) x (0, pp) onto w, .

In w, afixed, regular partition 7, isintroduced asfollows, see Fig 7.5: partition the interval
(0, L) inafixed number of subintervals 7; := (s;—1,8;), i=1,...,1, 0= < $1 < ... <
s; = L,andset s} := m(7; x (0,p0)), i = 1,...,1. Theremaining interior wy := w\w,
is then covered by a fixed curvilinear partition 7, of triangular or quadrilateral elements «
which are images of areference element % under analytic element maps mj,: & — & € 7,, .

S1 = So

Fig. 7.5: Boundary fitted mesh 7, inthe midsurface w

For each integer n > 1 we define now a three-dimensional mesh .7 corresponding to
themesh .#™ inthe haf-strip X1 constructed in the previous subsection to resolve the layer
profiles, cf Fig. 6.1.

(@ In Qf := wy x (—&,¢), we pick tensorized elements K| := r{ x (—¢,¢), Kk € T,
which are fixed, i.e. independent of n (their number is also independent of ¢ ).
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(b) Inthethree-dimensional boundary layer region €2 = wy, x (—¢,¢), weselect 7" tobe
the tensor product of e.Z™ inthe (r, z3) -plane timestheintervals 7; along ow :

Zn’Qi = m(mw ® Sj/") N, (7.30)

where 75, = {r; : 1 = 1,...,1} and m(s,r,a3) = (m(s,r),z3) . In order for this
mesh to be well defined, we assume

eR < py, (7.31)

which ensures that the internal boundary Q¢ N Q5 is covered by m(e.#m ® 7o.) -

Each element K € 7" isthen theimage of ahexahedral or prismatic reference element under
an analytic element map

T = MK(‘//E\*uX?)) = (mK(‘//p\*)u €CLK(X3)), (732)
where my isanayticand ax(-) isaffine.
The hp -FE spaces SP(Q2°, 7") arethen defined by
SP(Q°, 7" = {u e HY(Q): wo My € 2°(K), K € 7"} (7.33)

where K denotes a hexahedral or prismatic reference element of unit size.

7.c hp-Boundary Layer Approximation in Q¢

Let us define now the approximations of the profiles ¢ = v(s)p(r/e, x3/<) . Here ~(s) is
an analytic, L -periodic function independent of ¢, therefore can be approximated by polyno-
mials at an exponential rate:

Lemma7.6 Let v beanalyticand L -periodicin s. Let SP (0w, Ts,) denote the space of

per

continuous, L -periodic piecewise polynomial functions of degree p in (0, L). Then for any
integer p > 1 there exist interpolants j,v € S, (0w, 75,) such that

per

1y = 37l g0, p) < Ce™ (7.34)
Here b > 0 depends only on the domain of analyticity of ~ .
We can now construct the hp -approximation of a generic boundary layer profile ) .
Proposition 7.7 For po asin (7.28), assume that the integer p satisfies
ep < po, (7.39)

and that the mesh .#? in ©* issuchthat R = p. Let 1 = y(s)@(R, X3) With v € /(0w)
and a layer profile ¢ € 5§5(2+) with 3 € (0,1) and 6 > 0. Let ¢° be defined as
Ve (s, 1, x3) := (s, r,e " x3) . Then there exists an interpolant

Iop® € SP(QF, T7P),  with supportin Qf
such that there holds the error bound, with constants C', b > 0 independent of ¢ and p
19" = 20"l ey < Ce. (7.36)
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Proof. Definein €
(Iph™) (5,7, 23) == (5,7)(5) 3 (1 23) (7.37)

with j, defined in Lemma 7.6 and «;, in Corollary 7.5. Evidently, condition (7.35) implies
that the support of _¢#,,4° iscontained in €2} , and we have the estimate

qus - /p"pEHHl(QS) = H’l,bEHHl(QS) < Ce ool < Ce™r
where we used (7.35) and the exponential decay of the profile ¢ (R, X3) with respectto R.

Inthe boundary layer €25 , we may go back to the stretched tubular coordinates (s, R, X3) . The
application x — (s, R, X3) maps f onto the product (0, L) x (0, pp/e) x (—1,1). With

(p®)(s, R, X3) := (jp7)(5) ¢, (R, X3)
thereholds (_#Z,%°)(s, r, x3) = (_Zp¥)(s,e r,e1x3) , hence
||"7bS - /p"’bEHHl(QEb) = H'I/" - jp”’bHH1((O,L)X(O,po/s)x(fl,l))
< H'I/" - jp”’bHHl((O,L)XZ‘*) :
Therefore, it is sufficient to bound the right hand side. There holds
1% = 2ol 0npmny, = 172 = 669 @l oy

< H(7 - jp’Y)QOHH1((07L)XZ+) + "7(90 - (pp>HH1((07L)><Z+)

< Hﬁy - jp’YHHl(QL) HSDHHI(E-&-) + HVHHI(O,L) H‘p - (ppHHl(Z+)

Lemma 7.6 and Theorem 7.1 with R = p yield finaly the exponential bound Ce~%” . |

For K >0, let usdenote by @!"! the truncated series of the inner expansion

K

W ="y (r)et (s, e e ), (7.38)
k=0

where the profiles " are the coefficients of the series ¢[c] = ®[c]¢[e] + Ole] fle] , see (6.1).
Note that, although the series {[¢] and f[e] start with £ = —1, the series ¢[e] starts with
k = 0 because the operators ®" and ©* are zeroforany k < 0.

Thefinal result onthe hp approximation of the inner expansion now reads

Theorem 7.8 For the definition of the discrete space S?(€°, .7P) we assume that ep < py
and R =p. Let K> 0. Letthevolumeload f besuchthat f(x.,0) # 0. Then we have,
with constants b, C' > 0 independent of ¢ and p but dependingon K :

Jwyy | € s7(7, 7F) suchthat (| — @i, . < CeVe|fu| (7.39)

E(Qs) "

Proof. (i) Let ustake k < K . First recall that according to (6.1), ¢* = S3b  ®°¢F +
©°f ¢ and that according Lemmas 6.3 and 6.7 each term of the above sum is itself a linear
combination of terms of the form ¢ = ~(s)p(R, X3) with v € &7 (0w) and ¢ € 33%(2*)
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for 5 € (0,1) and some 6 > 0. Therefore Proposition 7.7 applies. We note that x can be
chosen such that x(r) =1 for 0 < r < py, x(r) =0 for r > 2p,. Therefore, asin €,
x(r) ¢* = ", there holds

||X(T) Sok - /PSOICHE(Q@ = ||90k - /PSOICHE(Q@ <C Hﬁok - /psokHI_p(Qi) < Ce™.

In Qf, Z,¢" =0 by construction. Therefore

X)€" = 700"l ey < X 51 ) < Ce*
Whence the upper bound C' e~ on Qf since R= D.
(ii) By superposition we find that for any K, < K the partial sum satisfies:

K K
|2 %)@t = > " Al gy < O™

k=Ko k=Ko
(i) If f5(z,,0) # 0, thentheenergy normof u isequivalentto ~'/2 andtheinner expansion
startswith Ky = 0, whence (7.39).

(i) If fi(z,,0) =0,then £, (x,,0) % 0 and thentheenergy normof u isequivalentto ¢'/2.
Moreover theinner expansion startswith Ky = 1, whence (7.39). |

8 hp-Approximation of 3-d plates

To obtain the hp -approximation of the full problem (2.2) — (2.5), it suffices to combine the
results of theorems 5.8 and 7.8.

For this, we only haveto notethat for any n > 1 the geometric boundary layer meshes .7."
defined in §7.b are refinements of the regular mesh .77° defined in §5.c, provided .7 is based
on the same boundary fitted mesh 7, on w . Moreover we have the inclusion

VRUQ©, 70 € SP(SE, T (8.)
foradl ¢g<p,n>1,and > 0.
Asacorollary of theorems 5.8 and 7.8, we obtain our main results, namely a-priori estimates
for hp -approximations of the three-dimensional plate problem.
Theorem 8.1 Let ) = wx (—¢,¢) beaplateof thickness 2e and midsurface w withanalytic
boundary, andlet f = f|,. beavolumeloadingwhere f isanalyticin wx (—¢o,20) for some
g9 > ¢ > 0 and such that ﬂwx o isnot identically 0. We consider the hp -approximation

uy Of the three dimensional solution w of the hard clamped plate problem (2.2) - (2.5) based
on the subspace of dimension N = &(p?)

Hy = {vn € S0, T2, On|pyp(eny =0} (8.2)
(i) There holdsfor every K > 0 the error bound
||’H' - ﬂNHE(QE) < CK(gK + 5_1 e_bp)HﬁHE(Qs) (83)

for some b, Cx > 0 independentof c,p ase — 0, p — 0.
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(ii) If the condition of Theorem 5.8 A.11) is satisfied, or if fgij{o} = 0, then we have the robust
estimate of the error bound

@ — Tin ey < Ol + ) [ (8.4)

E(Qf)

Proof. Using Theorem 2.1 and the triangle inequality (2.15), we only haveto estimate the hp -
approximation of the asymptotic expansion ZkK}Q e*u” of thethree-dimensional solution % .
Since, according to notations (5.15) and (7.38), we have

Zeu: —i—w”

k=-2

thesum E[K] +wl N ! of thei nterpol ants constructed in theorems 5.8 and 7.8 yields an interpol ant

u]?] inthe space S?(Q2¢, 77)3 . It remainsthe problem of the trace of 17,%(] on I'j which could
be non-zero.

By construction, for any & > —2, thetraceof ¥" + @" on I'g iszero. In particular, the traces
of 2 and v ' are zero, and thanks to the property of the interpolation operator ip IN w,cf
Proposition 5.6, the interpolants 6@, of ¥" for k = —2,—1 can be chosen with zero traces
on I'; with the same error bound. We have the same situation for £ = 0 in the case when

fa(x,,0) = 0. Therefore we have to consider the trace:

K

DDCACAERTIN

k=Ko
with Ky = 0 if fs(z.,0) # 0 and K, = 1 otherwise. Let usfix & > K, . Inspecting the
constructions and proofs in §5.c and §7.a, 7.c, and taking advantage that in the layer (2; the
finite elements are tensorial in the three directions, we find that there also hold error bounds
inthenorm H'(T'§). When scaed to dw x (—1,1), these estimates are uniform with respect
to ¢, and scaled back to I'§ = dw x (—¢,¢) their behavior in ¢ is 0(¢7'/2). In p, we till
have the exponential rate, cf (5.14) and (7.36), which means that the interpolants %, and w?%,

satisfy
[[Ca)

whence, as (V" + ")

<Ce 2™ and ||(¢F — k) < Ce M2t

FEHHl FE) —_ FaHHl FE) —

e =0

< CeV2etr,

~k ~k
(A ] N[
Let us consider the lifting
05 (5,7, x3) = (U +Wh)(s,0,23) (1 —7/pe) in Q and 0 in Q.
This defines an element of S7(Q¢, 777)® which also satifies the estimate

1165l < Ce12etr,

H(QF)

Then the element of S?(Q°, 77)* defined as ¥, + wh — (% isaninterpolant of 4" in Hy .
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The extra contribution to the error is

||§:ng ooy S CM0 V2,

k=Ko
Combining with the behavior of the energy of w in Q¢ as ¢ — 0, wefinally obtain (8.3) and
(8.4). |

Corollary 8.2 For every K > 0 thereis C, > 0 such that

< Cefl|aul ase—0, (8.5

i~ @n] .

E(Q°)
provided that p > C, |loge| inthe general case (i) of Theorem 8.1 and provided p > C, in
the case (ii) of the same theorem.

The preceding results assumed that the transverse degree of S?(Q2°, .7.") isincreased uni-
formly throughout the domain. If, however, the volume load f[s] vanishes or is constant
in subdomains, substantial simplifications are possible, if the transverse polynomial degree is
taken variable.

Remark 8.3

(i) If the plate deforms due to a constant bending volume force (0,0, 1), (8.3) —(8.5) hold
even if deg3(HN) = (i) inal /‘ié C wp .
(if) For a constant membrane volume force (a,b,0) throughout Q°, (8.3) — (8.5) hold if

deg3(HN) = (?) in wo -
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