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Abstract. In this work, we analyze hierarchic hp finite element discretizations of the full, three-
dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional
solution, we give specific mesh design principles for the hp -FEM which allow to resolve the three-
dimensional boundary layer profiles at robust, exponential rate. We prove that, as the plate half-
thickness ε tends to zero, the hp -discretization is consistent with the three-dimensional solution
to any power of ε in the energy norm for the degree p = O(|log ε|) and with O(p4) degrees of
freedom.

1 Introduction

The numerical analysis of thin three-dimensional structures such as beams, plates and shells
is a basic problem in engineering. It amounts to solving numerically a problem of three-
dimensional elasticity in a ‘thin’ domain. The classical engineering approach to these problems
has been to replace the three-dimensional problem by simplified, lower-dimensional models
which are in turn solved numerically.

Lower dimensional models have been derived roughly speaking in three ways: by kinemati-
cal hypothesis, by asymptotic analysis or by energy projection. We refer to [4] for a survey and
references. Alternatively, in recent years, it has become possible to solve the three-dimensional
problems directly by high order finite element methods which afford anisotropic mesh refine-
ment [1, 2].

In the dimension reduction process, information is necessarily lost and the question arises
what the relation of the dimensionally reduced models to the original, three-dimensional prob-
lem is. Numerous models have been found to be consistent with the three-dimensional problem
in the limit of vanishing thicknessε . In the case of plate models, the order of consistency is,
however, only

√
ε , due to the boundary layers of the three-dimensional problem not being ac-

curately resolved by the plate model. This state of affairs cannot be improved by incorporation
of ‘higher-order’ kinematical hypotheses into the plate model, since near the edge region, the
deformation states are generically three-dimensional, as was shown in full asymptotic analyses
of the three-dimensional plate problem in [20].
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To achieve higher order asymptotic consistency in plate models, higher order kinematical
hypotheses in the interior of the plate must thus be coupled with full resolution of the three-
dimensional effects near the edge of the plate. This can be done byhp -Finite Element (FE)
discretization and was proposed first in [18]. To analyze the design of ahp -Finite Element
Discretization of the three-dimensional plate problem is the purpose of the present paper.

Relying on the full asymptotics of the three-dimensional solution of the plate problem [6,
7, 9], we show that it is possible to achieve consistency of the FE-approximation with the
three-dimensional solution to any order ofε with a properly designedhp -FE discretization.
It involves hierarchical plate models which are refined inside the boundary layer in a vicinity
of the edge to resolve the singularities, thereby abandoning the dimensional reduction point of
view. The degreep to achieve this isO(|log ε|) in general, withO(p) elements corresponding
to a numberN of degrees of freedom which is bounded byO(p4) .

Let us describe our results in more detail. On the family of thin platesω × (−ε, ε) , ε ∈
(0, ε0) , such hp -FE spaces are defined as follows: a fixed meshτω is designed on the mid-
surfaceω , so that there exists a layer of quadrilateral elements along its boundary∂ω . The
tensor three-dimensional meshT 0

ε := τω × (−ε, ε) is geometrically refined anisotropicly to
the edges∂ω × {−ε, ε} to obtain the new meshT p

ε with p layers of elements. Polynomials
of degreep on T p

ε form the discrete space.

If the boundary ofω is analytic, and if an analytic load is fixed, we prove in this paper that
the relative energy error between the three-dimensional solution and its Galerkin approximation
in the above described space is bounded for allK ≥ 1 by

C
(
εK + ε−1e−bp

)
(1.1)

with positive constantC and b independent ofε and p (but depending onK ).

We also prove that in certain cases (existence of underlyingC1 discrete spaces onω , or
membrane load), the factorε−1 in the bound (1.1) can be omitted, which means that, to achieve
a given bound to the relative error, a certain polynomial degreep , corresponding to a certain
numberN = O(p4) of degrees of freedomfixed independently of ε are sufficient.

These results are based on thehp FE-approximation of each piece of the two-scale expan-
sion of the solution displacementu(ε) : this expansion has two parts, the outer expansion part∑

k ε
kvk (regular profiles), and the inner expansion part

∑
k ε

kwk (boundary layer profiles).

In this paper, we also pay much attention to the transverse degrees of the polynomials in-
volved in the outer expansion part, which allows in particular to show that(3, 3, 2) transverse
degree outside the support of the load and away from the boundary layer is sufficient to obtain
estimate (1.1).

The outline of the paper is as follows: in§2, we set the problem and give a rough description
of the inner-outer expansion. Sections§3-5 are devoted to the outer part, whereas sections 6 and
7 are devoted to the inner part. We explain in more detail the structure of the outer part study
at the beginning of§3, and for the inner part, at the beginning of§6. The synthesis and the
conclusions are drawn in§8.
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2 The three-dimensional plate problem

2.a Domains and coordinates

The plate problem under consideration here is a boundary value problem of three-dimensio-
nal elastostatics which is set in the family of domains

Ωε = ω × (−ε,+ε),

where the midsurfaceω is open, bounded and has an analytic boundary∂ω . Let Γε
−+ be

their upper and lower facesω × {−+ε} and Γε
0 be their lateral faces∂ω × (−ε,+ε) . If x =

(x1, x2, x3) are the cartesian coordinates in the platesΩε , we will often denote byx∗ the
in-plane coordinates(x1, x2) ∈ ω and byα or β the indices in{1, 2} corresponding to the
in-plane variables. The dilatation along the vertical axis (X3 = ε−1x3 ) transformsΩε into the
fixed reference configurationΩ = ω × (−1,+1) :

x = (x∗, x3) ∈ Ωε = ω × (−ε,+ε) 
−→ X = (x∗, X3) ∈ Ω = ω × (−1,+1). (2.1)

In general, we will distinguish by a superscript˜ the vector fields defined in the “physical”
domainsΩε , from the scaled fields defined onΩ .

2.b Governing equations

We consider linearly elastic deformations of the plateΩε . The displacement̃u : Ωε → R
3

of the plate satisfies the equilibrium equations

Bũ = − div σ(ũ) = f̃ in Ωε, (2.2)

where f̃ are volume forces. We assume here thatf̃ is the restriction toω × (−ε,+ε) of a
function f which is analytic inω × (−ε0,+ε0) for a fixed ε0 > ε . Furthermore,σ(ũ) is
the stress tensor. It is expressed in terms of the infinitesimal strain tensore(ũ) by Hooke’s law
(here summation convention over repeated indices is used)

σij(ũ) = Aijklekl(ũ). (2.3)

We assume homogeneous and isotropic material, i.e.Aijkl = λδijδkl + µ(δikδjl + δilδjk) with
λ ≥ 0 and µ > 0 denoting the Lam´e-constants. On the facesΓε

−+ = ω × {−+ε} of the plate,
zero traction boundary conditions are given:

Gũ = σ(ũ)n = 0 on Γε
−+ (2.4)

wheren denotes the exterior unit normal vector onΓε
−+ .

Problem (2.2) – (2.4) is completed by boundary conditions on the lateral edgeΓε
0 : We

consider here for simplicity only Dirichlet boundary conditions, i.e. the plate is hard clamped,

ũ|Γε
0

= 0 (2.5)

and give the proofs of the results in this case. We emphasize, however, that our results will also
hold for all other sets of boundary conditions which lead to a meaningful variational formulation
of (2.2) – (2.4)cf [9].
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2.c Finite Element Approximation

The variational form of (2.2) – (2.5) is:Find ũ such that

ũ ∈H : a(ũ, ṽ) = L(ṽ) ∀ṽ ∈H. (2.6)

Here, the bilinear forma(·, ·) and the loadingL(·) are given by

a(ũ, ṽ) =

∫
Ωε

Ae(ũ) : e(ṽ) dx, L(ṽ) =

∫
Ωε

f̃ · ṽ dx.

The proper choice ofH incorporates the homogeneous essential boundary conditions onΓε
0 :

H =
{
ũ ∈ H1(Ωε)3 : ũ|Γε

0
= 0

}
.

Korn’s inequality implies that the bilinear forma(·, ·) in (2.6) is H 1 -coercive onH , and
hence for every smooth volume loading̃f exists a unique weak solutioñu ∈H of (2.6).

Finite Element approximations̃uN of ũ are obtained by energy projection: for any finite
dimensional subspaceHN ⊂H , we define

ũN ∈HN : a(ũN , ṽN) = L(ṽN ) ∀ṽN ∈HN . (2.7)

There exists a unique solutioñuN of (2.7), and this solution satisfies

∀ṽN ∈HN : ‖ũ− ũN‖E(Ωε)
≤ ‖ũ− ṽN‖E(Ωε)

(2.8)

where the energy norm is defined by‖ũ‖2

E(Ωε)
:= a(ũ, ũ) . Note that for allũ ∈ H we have

the bound‖ũ‖
E(Ωε)

≤ C‖ũ‖
H1(Ωε)

with a constantC > 0 independent ofε .

In this paper, we propose ahp design for the FE subspaceHN and estimate the approxi-
mation error (2.8) in dependence onε . This is based on a detailed asymptotic analysis of the
three-dimensional solutioñu in dependence onε .

2.d Asymptotics of the solution

The complete asymptotics of the solutioñu is easier to describe on the reference configu-
ration Ω and using the scaled displacementu(ε) and the scaled loadf(ε) according to

u(ε)(X) = (ũ1, ũ2, εũ3)(x) and f(ε)(X) = (f̃1, f̃2, ε
−1f̃3)(x).

Due to our analyticity assumption on the loading̃f , we have the (convergent) expansion

f (ε) =

∞∑
k=−1

εkfk(X) with


f−1 =

(
0, 0, f3(x∗, 0)

)
fk =

(Xk
3

k!
∂k3f∗(x∗, 0),

Xk+1
3

(k + 1)!
∂k3f3(x∗, 0)

)
, k ≥ 0.

(2.9)
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It may be deduced from the results in [9] thatu(ε) admits the asymptotic expansion at any
order

u(ε) ∼
∑
k≥−1

εkuk =
∑
k≥−1

εk(vk + χwk). (2.10)

The termsvk constitute theouter expansion part. They essentially satisfy the three-dimensional
equilibrium conditions (2.2) – (2.4). The complementing termswk are theboundary layer
terms which constitute theinner expansion part — the function χ(x∗) is a smooth cut-off
function which is identically equal to one in a vicinity of∂ω . The termswk compensate
nonhomogeneous edge-conditions in (2.5) due to thevk .

To state the estimates satisfied by the expansion (2.10), we introduce the unscaled sequence
of displacement fields on the physical domainΩε (note that it starts with powerε−2 )

ũ−2(x) =
(
0, 0, u−1

3

)
(X), ũk(x) =

(
uk1, u

k
2, u

k+1
3

)
(X), k ≥ −1. (2.11)

Theorem 2.1 For every ε > 0 let ũ(x) ∈ H be the unique solution of problem (2.6). Then
for every integer K ≥ 0 there holds for expansion (2.10)the error estimate in energy norm

‖ũ−
K−1∑
k=−2

εkũk‖
E(Ωε)

≤ C εK−1/2 (2.12)

where C > 0 is independent of ε , but depends on K .

Information about the first non-vanishing term in expansion (2.9) yields the behavior as
ε → 0 of the energy‖ũ‖

E(Ωε)
and allowsrelative energy error estimates:

Theorem 2.2 A) If f3(x∗, 0) �≡ 0 , ũ is bending dominated, its principal term is a Kirchhoff-
Love displacement, and ‖ũ‖

E(Ωε)
� ε−1/2 , therefore

‖ũ−
K−1∑
k=−2

εkũk‖
E(Ωε)

≤ C εK‖ũ‖
E(Ωε)

. (2.13)

B) If f 3(x∗, 0) ≡ 0 and f ∗(x∗, 0) �≡ 0 , the principal term of ũ is ũ0 , which contains a
membrane part and ‖ũ‖

E(Ωε)
� ε1/2 , therefore

‖ũ−
K∑
k=0

εkũk‖
E(Ωε)

≤ C εK‖ũ‖
E(Ωε)

. (2.14)

Based on (2.8), we will obtain an upper bound for the Finite Element error‖ũ− ũN‖E(Ωε)

by the triangle inequality:

‖ũ− ũN‖E(Ωε)
≤ ‖ũ−

K∑
k=−2

εkũk‖
E(Ωε)

+ min
ṽN ∈HN

‖
K∑

k=−2

εkũk − ṽN‖E(Ωε)
. (2.15)

Thus bounding the Finite Element error will be achieved by approximating the asymptotic terms
ũk from the Finite Element spaceHN .
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3 Structure of the outer expansion part

In this section, we essentially reformulate the results of [9,§3] providing a solution of equa-
tions (2.2) – (2.4), i.e. without lateral boundary conditions, in formal series algebras. This yields
a general description of the termsvk in (2.10) as coefficients of a formal seriesv[ε] satisfying
functional equations involving the formal seriesf [ε] with the coefficientsf k of (2.9) and a
formal seriesζ[ε] of two-dimensional generators. This “generating series”ζ[ε] satisfies itself
a functional equation insideω . We describe the four series of operatorsV[ε] , Q[ε] , A[ε]
and R[ε] involved in these functional equations.

In section 4, we will deduce from the formulas stated in§3 new results about the properties of
the operators entering the formal series equations, concerning their action on analytic functions
in in-plane variables and polynomials in the transverse variable.

In section 5, we recall from [9] the series ofboundary conditions on ∂ω satisfied by the
formal seriesζ[ε] of two-dimensional generators. These boundary conditions complement the
functional equation insideω . We show that it has a uniqueanalytic solution, which yields
that thevk are uniquely determined polynomial functions inX3 with coefficients in analytic
fields onω . We deduce from this tensorial structure the approximation properties of a simple
p -version FEM onΩε for the outer part.

3.a General structure of the asymptotics

A comprehensive way of solving equations (2.2) – (2.4) on the reference domainΩ is the
use of formal series of operators and vector functions, as initiated in [11]. The basic notion is
the following: if A[ε] is a formal series with operator coefficients

A[ε] =
∑

k ε
kAk with Ak ∈ L (E,F ),

with E , F functional spaces, and ifb[ε] and c[ε] are formal series inE and F

b[ε] =
∑

k ε
kbk, bk ∈ E, and c[ε] =

∑
k ε

kck, ck ∈ F,

the equationA[ε]b[ε] = c[ε] means that

∀k ∈ N,
∑k

�=0 A
k−�b� = ck.

As prerequisite, we first expand the operatorsB and G in equations (2.2) – (2.4) cor-
responding to the scaled problem onΩ and we obtain the following problem without lateral
boundary conditions that we write in the form{

B[ε]v[ε] = f [ε] :=
∑

k≥−1 ε
kfk in Ω,

G[ε]v[ε] = 0 on Γ−+.
(3.1)

Then the results in [9,§3] can be reformulated following the lines of [11, 5, 10]:
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Theorem 3.1 (i) There exist a formal series of surface operators A[ε] with coefficients Ak

continuous from C ∞(ω)3 into itself and a formal series of reconstruction operators V[ε] with
coefficients Vk continuous from C ∞(ω)3 into C ∞(Ω)3 such that for any formal series ζ[ε]
of two-dimensional generators ζk ∈ C ∞(ω)3 satisfying the equation

A[ε]ζ[ε] = 0,

we obtain a solution v[ε] of problem (3.1)with f [ε] ≡ 0 by setting

v[ε] = V[ε]ζ[ε].

(ii) There exist a formal series of reduction operators R[ε] with coefficients Rk continu-
ous from C ∞(Ω)3 into C ∞(ω)3 and a formal series of solution operators Q[ε] with co-
efficients Qk continuous from C ∞(Ω)3 into itself such that for any formal series ζ[ε] of
two-dimensional generators satisfying the equation

A[ε]ζ[ε] = R[ε]f [ε], (3.2)

we obtain a solution v[ε] of problem (3.1)by setting

v[ε] = V[ε]ζ[ε] + Q[ε]f [ε]. (3.3)

3.b Series V[ε]

This series has only even terms: for all% ∈ N , V2�+1 ≡ 0 .

The first termV0 of V[ε] is the Kirchhoff-Love operator: forζ = (ζ∗, ζ3) ∈ C ∞(ω)3

there holds
V0ζ = (ζ∗ −X3∇∗ζ3, ζ3) (3.4)

and the second non-zero term has the explicit form

(V2ζ)α = p̄2(X3) ∂α div∗ ζ∗ + p̄3(X3) ∂α∆∗ζ3

(V2ζ)3 = p̄1(X3) div∗ ζ∗ + p̄2(X3) ∆∗ζ3

(3.5)

with p̄j for j = 1, 2, 3 the polynomials in the variableX3 of degreesj defined as

p̄1 = −pX3, p̄2 =
p

6

(
3X2

3 − 1
)
, p̄3 =

p + 2

6
X3

3 − 5p + 1

6
X3,

where p := λ/(λ + 2µ) . The next ones have the general form, for% = 2, 3, . . .

(V2�ζ)α = s̄2�(X3) ∂α∆�−1
∗ div∗ ζ∗ + t̄2�(X3) ∆�

∗ζα + s̄2�+1(X3) ∂α∆�
∗ζ3

(V2�ζ)3 = q̄2�−1(X3) ∆�−1
∗ div∗ ζ∗ + q̄2�(X3) ∆�

∗ζ3,
(3.6)

with s̄j , t̄j and q̄j polynomials of degreej (note that the definition of these polynomials
differs slightly from those introduced in [9,§3], but they play a quite similar role).
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3.c Series Q[ε]

Again, this series has only even terms: for all% ∈ N , Q2�+1 ≡ 0 .

The first termQ0 of Q[ε] is zero. The first non-zero term isQ2 and it coincides with
the operatorG introduced in [9,§3], that we recall now. For doing this we need two sorts of
primitive of an integrable functionu on the interval(−1,+1) :

Notation 3.2 Let us introduce:

• The primitive of u with zero mean value on (−1,+1)∮ x3

u dy3 :=

∫ x3

−1

u(y3) dy3 − 1

2

∫ +1

−1

∫ z3

−1

u(y3) dy3 dz3,

• The primitive of u which vanishes in −1 and 1 if u has a zero mean value on (−1,+1)
and which is even, resp. odd, if u is odd, resp. even∫ y3

− u dz3 :=
1

2

(∫ y3

−1

u(z3) dz3 −
∫ +1

y3

u(z3) dz3

)
.

Then for f ∈ C ∞(Ω)3 , we defineGf as

(Gf)3 = 0

(Gf)α =
1

2µ

∮ x3
[
−2

∫ y3

− fα +
( ∫ +1

−1

fα
)
y3

]
dy3 .

(3.7)

Next Q4 = WG + H , where the operatorW : v 
→ Wv is defined fromC ∞(Ω)3 into
itself by

(Wv)3 = −
∮ x3

(
λ̃

2µ
div∗ v∗ +

λ̃

λ

∫ y3

− ∂βeβ3(v)

)
dy3

(Wv)α = −
∮ x3

(
∂αW3v +

∫ y3

− (λ
µ
∂α3W3v +

λ + µ

µ
∂α div∗ v∗ + ∆∗vα

))
dy3.

(3.8)

In order to defineH , we need the auxiliary operatorF from C ∞(Ω)3 into C ∞(ω)3 :

(Fv)3 = µ

∫ +1

−1

∂βeβ3(v) dy3 ,

(Fv)α =
λ̃

2

∫ +1

−1

∫ y3

− ∂αβeβ3(v) dz3 dy3 .

(3.9)

Then for f ∈ C ∞(Ω)3 , we defineHf as

(Hf)3 =
1

2(λ + 2µ)

∮ x3
[(−2

∫ y3

− f3

)]
dy3

(Hf)α = −
∮ x3

[
∂αH3 +

1

µ
y3 (FG)α +

λ

µ

∫ y3

−
{
∂α3H3 − 1

2

∫ +1

−1

∂α3H3 dz3

}]
dy3 ,

(3.10)
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where, in the last line,H3 denotes(Hf)3 and (FG)α denotes
(
F (Gf)

)
α

.

With the convention thatW 0 is the identity and for anyk > 0 , W −k is zero, we have the
general formula forQ2�

Q2� = W 2�−2G + W 2�−4H. (3.11)

3.d Series A[ε]

The first term A0 of the formal operator seriesA[ε] is the block diagonal membrane-
flexion operator

A0 =

( −Lm 0
0 1

3
Lb

)
(3.12)

where – we recall thatp = λ/(λ + 2µ) :

Lm = µ

(
∆∗ 0
0 ∆∗

)
+ µ(2p + 1)

(
∂1

∂2

)
div∗ and Lb = 2µ(p + 1)∆2

∗ .

The terms of odd rank ofA[ε] are zero. The next non-zero termA2 is given by (using the
operatorsW and F introduced above, and denoting the triple(F1, F2, 0) by F∗ )

(A2ζ)α = 0 ,

(A2ζ)3 = −F3(WV2ζ)

and the generic terms of even order are,cf [9, Table 3.1]:

(A2�ζ)α = Fα(V2�ζ) ,

(A2�ζ)3 = −F3

(
WV2�ζ − 1

6µ
(3X2

3 − 1)F∗(V2�ζ)
)
.

3.e Series R[ε]

The first termR0 is given by

(R0f )α =
1

2

∫ +1

−1

fα(x∗, X3) dX3

(R0f )3 =
1

2

∫ +1

−1

(
f3 + X3 div∗ f ∗

)
(x∗, X3) dX3 .

The terms of odd rank ofR[ε] are zero. Relying again on [9, Table 3.1], we find successively

(R2f)α = −Fα(Q2f ) +
p

2

∫ +1

−1

X3 ∂αf3(x∗, X3) dX3 ,

(R2f )3 = F3(Q
4f )

and for % ≥ 2

(R2�f )α = −Fα(Q2�f) ,

(R2�f )3 = F3

(
Q2�+2f − 1

6µ
(3X2

3 − 1)F∗(Q2�f)
)
.
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4 Transverse degree and analyticity of the outer expansion operators

The aim of this section is to deduce from the above formulas for the seriesV[ε] , Q[ε] ,
A[ε] and R[ε] information on the way they act on polynomials in the transverse variableX3

and analytic functions in the in-plane variablesx∗ = (xα) . Moreover, by a factorization of
certain coefficients of these series, we will exhibit a simpler equivalent expression for equations
(3.2) and (3.3), where properties on polynomials and analytic functions are easier to deduce.

4.a In-plane and transverse degrees

We first remark that all the operatorsVk and Qk have the generic block form (obtained by
spitting the inplane and transverse components)

C =

(
C∗∗ C∗3
C3∗ C33

)
and that each operatorCij in the above matrix is a linear combination of operators of the form
J ◦ D where D is a partial derivative operator in the in-plane variablesx∗ with constant
coefficients andJ is a combination of derivations, integrations inX3 and multiplication by
polynomials inX3 . We adopt the following notation:deg∗(J ◦D) denotes the degree of the
operatorD , whereasdeg3(J ◦D) denotes the degree ofJ acting on polynomials inX3 : if
the degree ofJ is d , thenJ transforms a polynomial of degreen into a polynomial of degree
n− d . From these definitions, we deduce the natural notion of block degrees for an operatorC
as above. Inspecting formulas (3.6)-(3.11), we obtain

Lemma 4.1 For any even number k the block degrees of Vk and Qk are the following

deg∗(V
k) =

(
k k + 1

k − 1 k

)
and deg3(Vk) = −

(
k k + 1

k − 1 k

)
and

deg∗(Q
k) =

(
k − 2 k − 3
k − 3 k − 4

)
and deg3(Qk) = −

(
k k − 1

k − 1 k − 2

)
.

In particular Vk is a continuous operator from A (ω)3 into A (Ω)3 and Qk is continuous
from A (Ω)3 into itself. Moreover Vk and Qk are block-homogeneousin x∗ .

4.b Factorization by A0

For % ≥ 2 , the operatorsV2� can be factorized throughA0 : concerning the action on the
transverse componentζ3 this is clear from formulas (3.6); concerning the action on the in-plane
componentsζ∗ we note that the following formulas hold

∆∗ div∗ ζ∗ = 1
2µ(p+1)

div∗ Lmζ∗

and
∆2

∗ζα = 1
µ

∆∗(Lmζ∗)α − 2p+1
2µ(p+1)

∂α div∗(Lmζ∗) .

As a result we find that each operatorV := V2� for % ≥ 2 , and alsoV := WV2 , can be
factorized byA0 , i.e. that there exists a matrix partial differential operatorT such thatTA0

coincides withV . Combining with formulas givingA2� for % ≥ 1 , we obtain
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Lemma 4.2 For any % ≥ 1 , there exists a partial differential operator T 2� in x∗ such that
A2� = T 2�A0 . The operator T 2� is block-homogeneous of degree

deg∗ T
2� =

(
2% 2%− 1

2% + 1 2%

)
.

Therefore the equation (3.2):A[ε]ζ[ε] = R[ε]f [ε] , can be written

T [ε]A0ζ[ε] = R[ε]f [ε] where T [ε] = Id +
∑

�≥1 ε
2�T 2�.

The seriesT [ε] , since starting byT 0 = Id , is invertible in the formal series algebra and the
2% -th rank operator ofT [ε]−1 is a block homogeneous partial differential operator inx∗ of the
same degrees asT 2� . As R2� is also a block-homogeneous partial differential operator inx∗
of the same degrees asT 2� , setting R̆[ε] := T [ε]−1R[ε] , we obtain

Lemma 4.3 There is a series R̆[ε] =
∑

�≥0 ε
2�R̆2� such that equation (3.2) is equivalent to

A0ζ[ε] = R̆[ε]f [ε] (4.1)

The operator R̆2� is block-homogeneous and its block degree deg∗ R̆2� is equal to deg∗ T
2� ,

cf Lemma 4.2.

Moreover, since eachV2� for % ≥ 2 can be factorized byA0 , there exists a formal series
of operators,T ′[ε] =

∑
�≥2 ε

2�T ′ 2� such that

V[ε] = V0 + ε2V2 + T ′[ε]A0.

We check thatT ′ 2� is block-homogeneous of degree

deg∗ T
′ 2� =

(
2%− 2 2%− 3
2%− 3 2%− 4

)
.

Combining with the equation (4.1):A0ζ[ε] = R̆[ε]f [ε] , we obtain thatV[ε]ζ[ε] is equal to
(V0 + ε2V2)ζ[ε] + T ′[ε]R̆[ε]f [ε] . Setting Q̆[ε] := T ′[ε]R̆[ε] + Q[ε] , we have obtained

Lemma 4.4 There is a series Q̆[ε] =
∑

�≥1 ε
2�Q̆2� such that identity (3.3) can be written in

the new form

v[ε] = V̆[ε]ζ[ε] + Q̆[ε]f [ε], where V̆[ε] = V0 + ε2V2, (4.2)

cf (3.4), (3.5). The operator Q̆2� is block-homogeneous in x∗ and its block degrees are such
that deg∗ Q̆2� = deg∗ T

′ 2� , see above, and deg3 Q̆2� = deg3 V2� , cf Lemma 4.1.

Using operatorsG , W and H introduced in (3.7), (3.8), (3.10) we have for the first terms

Q̆2 = G and Q̆4 =
1

λ̃ + 2µ

(−r̄4∂α div∗ −r̄5∂α
3q̄3 div∗ 3q̄4

)
R0 + WG + H, (4.3)

where q̄3 , q̄4 , r̄4 and r̄5 are the polynomials ofX3 appearing in (3.6).
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5 The outer expansion and its p -approximation

In this section we prove that the formal generating seriesζ[ε] has analytic coefficients, and
we deduce that the termsvk of the outer expansion part are polynomial inX3 and analytic in
x∗ . Such a structure allows approximation by tensorp -version FE at an exponential rate.

5.a The analyticity of the generators

So far, the formal generating seriesζ[ε] is still not completely determined. We know that
it has to solve equation (3.2) which we proved to be equivalent to (4.1):A0ζ[ε] = R̆[ε]f [ε] .
Up to now, every equality was deduced from the elasticity equations onΩε without lateral
boundary conditions. Taking the lateral clamped condition into account and introducing the
two-scale Ansatz of the inner-outer expansion, it can be proved, see [6, 7, 9], that the series
ζ[ε] has also to satisfyboundary conditions on ∂ω .

Let s 
→ x∗(s) be an arclength coordinate along∂ω . By extension, we will also often write
s ∈ ∂ω . Translating the results of [9] with the formalism of [5, 10] we obtain that there exists a
formal series of trace operatorsδ[ε] with coefficientsδk(s; ∂s, ∂r) continuous fromC ∞(ω)3

into C ∞(∂ω)4 and a formal series of trace operatorsγ[ε] with coefficientsγk(s; ∂s, ∂r, ∂3)
continuous fromC ∞(Ω)3 into C ∞(∂ω)4 such that the 2D-generator formal seriesζ[ε] has to
solve δ[ε]ζ[ε] = γ[ε]f [ε] on ∂ω .

The dependence ons ∈ ∂ω of the operatorsδk and γk is only governed by the equation
of ∂ω which is an analytic curve. Thereforeδk is continuous fromA (ω)3 into A (∂ω)4 and
γk is continuous fromA (Ω)3 into A (∂ω)4 . The trace operatorδ0 is the Dirichlet trace of
A0 , cf (3.12):

δ0(ζ) =
(
ζ1, ζ2, ζ3, ∂nζ3

)∣∣
∂ω

.

and the first termsγ0 = γ1 = 0 .

Combining the results of [9] with our Lemmas 4.3 and 4.4 we obtain

Proposition 5.1 The outer expansion part v[ε] is given by

v[ε] =
(
V0 + ε2V2

)
ζ[ε] + Q̆[ε]f [ε], (5.1)

where ζ[ε] is solution of the series of boundary value problems on ω{
A0ζ[ε] = R̆[ε]f [ε] in ω

δ[ε]ζ[ε] = γ[ε]f [ε] on ∂ω.
(5.2)

The ellipticity and coercivity of the leading part(A0, δ0) in (5.2) implies, [17], that(A0, δ0)
is an isomorphism fromA (ω)3 onto A (ω)3 × A (∂ω)4 . Combining this with the analyticity
of f gives the analyticity of theζk in ω . Moreover the expression (2.9) of the coefficients of
f [ε] and the bound on the transverse degrees of the operatorsQ̆k , cf Lemma 4.4, yields that
the vk are polynomial inX3 with a bound for their degrees:
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Theorem 5.2 The series ζ[ε] of two-dimensional generators solution of (5.2)has coefficients
ζk ∈ A (ω)3 . The series v[ε] giving the outer expansion part is determined by formula (5.1).
The term vk is polynomial in X3 of degree deg3 v

k ≤ k + 1 , with analytic coefficients:

vk(X) =
k+1∑
�=0

X�
3 η

k,�(x∗), ηk,� ∈ A (ω)3 (5.3)

5.b Finite transverse degree

If f is a polynomial in all three variablesx , the transverse polynomial degree of the profiles
vk is in fact boundedindepently of k . This result is formalized by the notion of finite transverse
degree: We say that the outer expansion partv[ε] hasa finite transverse degree if there exists
an integerd ≥ 0 such that each termvk is polynomial in X3 with a degree≤ d . From
formulas (3.7)-(3.11), it is clear that a necessary condition forv[ε] to have a finite transverse
degree is that the seriesf [ε] defining the right hand side has itself a finite transverse degree.

For a field f depending polynomially on all variablesx1 , x2 and X3 we denote by
deg∗ f the two component vector of the in-plane degrees off ∗ and f3 , and by deg3 f the
two component vector of the transverse degrees. For a formal seriesf [ε] , deg∗ f [ε] is defined
as supk deg∗ f

k , and similarly fordeg3 f [ε] . As a consequence of Lemma 4.2 we obtain

Theorem 5.3 Let q , p′ ∈ N be two integers with q ≥ 1 . If

deg∗ f [ε] ≤ ( 2p′ 2p′ − 1 )� and deg3 f [ε] ≤ ( q q − 1 )� (5.4)

then the outer expansion part v[ε] has finite transverse degree and satisfies

deg3 v[ε] ≤ ( 2p′ + q + 2 2p′ + q + 1 )� . (5.5)

Proof. If deg∗ f ≤ ( 2p′ 2p′ − 1 )� , then for any integer% > p′ + 1 , Lemma 4.4 yields that
there holdsQ̆2�f = 0 , since Q̆2� is block-homogeneous of sufficient high degree. Therefore,
the transverse degree is provided by the action of

∑
k≤2(p′+1) ε

kQ̆k on f [ε] , whence (5.5).

Remark 5.4

(a) As all operatorsVk and Qk are differential inx∗ , thereforelocal in x∗ , the result of
Theorem 5.3 can be localized inx∗ : if for a subdomainω ′ ⊂ ω , the seriesf [ε]

∣∣
ω′×(−1,1)

depends polynomially onx1 , x2 , X3 and satisfies (5.4) onω′×(−1, 1) , then (5.5) holds
on ω′ × (−1, 1) .

(b) In particular, if f [ε]
∣∣
ω′×(−1,1)

≡ 0 , then deg3 v[ε] ≤ ( 3 2 )� in ω′ × (−1, 1) , and for

the special valueν = 0 of the Poisson ratio,deg3 v[ε] ≤ ( 3 0 )� in ω′ × (−1, 1) .

(c) If moreover,f [ε] represents a membrane volume force, thendeg3 v[ε] ≤ ( 2 1 )� in
ω′ × (−1, 1) .
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Remark 5.5 (a) For a constant bending volume force(0, 0, 1) there holdsdeg3 v[ε] ≤
( 3 4 )� .
The same is valid in the case when a constant bending load is applied on the upper and
lower faces,cf the formulas in [9].

(b) For a constant membrane volume force(a, b, 0) there holdsdeg3 v[ε] ≤ ( 2 1 )� .
This is still valid in the case of a constant membrane load on the upper and lower faces.

(c) Localized versions of all the above statements hold too.

5.c p -version approximation of the outer expansion

We now discuss the approximation of theunscaled outer expansion part̃v[ε] in the frame-
work of the p -version of Finite Elements. Since the seriesf [ε] starts with the degreek = −1 ,
see (2.9), such is also the case for the series of generatorsζ[ε] solution of problem (5.2). There-
fore the outer expansionv[ε] also starts withk = −1 , and the unscaled outer expansion is
defined as

ṽ(ε) =

∞∑
k≥−2

εkṽk(X) with

{
ṽ−2(x) =

(
0, 0, v−1

3

)
(X)

ṽk(x) =
(
vk1 , v

k
2 , v

k+1
3

)
(X), k ≥ −1.

(5.6)

By superposition, it suffices to investigate the approximation of the generic termṽk from a
suitable FE-space. This will rely on Theorem 5.2 above, which gives the structure of thevk .

Our approximation shall be based on an analytic regular partitionτω of ω , which isfixed
independently of ε and k : the mid-surfaceω is covered by a curvilinear partitionτω of tri-
angular or quadrilateral elementsκ , which are images of a reference elementκ̂ under analytic
element mapsmκ : κ̂ → κ ∈ τω which are diffeomorphisms. Two different reference elements
may be used in the design ofτω : a triangular reference elementκ̂T and a square onêκQ .

The meshτω is assumed to be regular, i.e. the intersection of two elementsκ , κ′ ∈ τω is
either empty, a vertex or an entire side and in the latter case, the common sideγ has the same
parametrization from both sides, i.e. for a common edgeγ = κ∩ κ′ holds: mκ′ ◦mκ(γ) = γ .

Proposition 5.6 Let ω ⊂ R
2 be a bounded domain with analytic boundary curve ∂ω . For any

polynomial degree p , define the FE-space

Sp(ω, τω) =
{
v ∈ C0(ω) : v|κ ◦mκ ∈ Qp(κ̂), κ ∈ τω

}
(5.7)

where Qp denotes the polynomials of total degree p if κ̂ is the triangle κ̂T and of separate
degree p if κ̂ is the square κ̂Q .

Then for any p ≥ 1 , there exists an interpolation operator ip : A (ω) → Sp(ω, τω) ,
v 
→ ipv such that if v|∂ω = 0 , also ipv|∂ω = 0 , and satisfying the uniform estimates

‖v − ipv‖L∞(ω)
+ ‖∇(v − ipv)‖

L∞(ω)
≤ Ce−bp (5.8)

where b , C > 0 are independent of p , and b depends only on the domain of analyticity of v .
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For a proof of this assertion, we refer to [16], for example.

We define next the FE space for the approximation of theṽk . To this end, denote byT 0
ε

the three dimensional mesh family inΩε which corresponds toτω , i.e.

T 0
ε :=

{
K = κ× (−ε, ε) : κ ∈ τω

}
, (5.9)

whereK = MK(K̂) with the reference element̂K = κ̂× (−1, 1) and the element map

x = MK(x̂∗, X3) = (mκ(x̂∗), εX3) : K̂ → K . (5.10)

On T 0
ε , we introduce the anisotropic tensor product FE-space

V p,q(Ωε,T 0
ε ) = Sp(ω, τω) ⊗

(
Pq∗(−ε, ε)2 × Pq3(−ε, ε)

)
(5.11)

of transverse degreeq = ( q∗ q3 )� . If q∗ = q3 = q , we write V p,q(Ωε,T 0
ε ) instead.

Here follows the approximation result for the unscaled outer expansion:

Lemma 5.7 (i) Under the general assumption made in §2.b — the volume loading is the re-
striction of an analytic field f , the generic term ṽk in the unscaled outer expansion (5.6)can
be approximated from V p,q(Ωε,T 0

ε ) at an exponential rate in energy norm:

∃ṽkN ∈ V p,q(Ωε,T 0
ε ) such that ‖ṽk − ṽkN‖E(Ωε)

≤ Cε−1/2e−bmin{p,q}, (5.12)

where C > 0 is independent of ε , p and q , but depends on k and f .

If vk depends only on x∗ , the factor ε−1/2 in (5.12)can be replaced by ε1/2 .

(ii) If, moreover, the load f satisfies, with even pf ≥ 0 and with qf ≥ 1

deg∗ f ≤ ( pf pf − 1 )� and deg3 f ≤ ( qf qf − 1 )� (5.13)

then, provided the transverse degree q satisfies q ≥ ( pf + qf + 2 pf + qf + 1 )� , we have

∃ṽkN ∈ V p,q(Ωε,T 0
ε ) such that ‖ṽk − ṽkN‖E(Ωε)

≤ Cε−1/2e−bp, (5.14)

with the same improvement as above if vk depends only on x∗ .

Proof. Let us fix k ≥ −2 and a component̃vki of ṽk . Let us denoteq := q∗ if i = 1, 2 and
q := q3 if i = 3 .

(i) From Theorem 5.2 and in particular representation (5.3), we have the existence ofk + 3
functionsη� ∈ A (ω) , % = 0, . . . , k + 2 such that

ṽki (x) =

k+2∑
�=0

(x3

ε

)�

η�(x∗).

Let us denote byjq an approximation of analytic functions on[−1, 1] by polynomials of
degree≤ q at exponential rate. We denote byπ� the monomialX3 
→ X�

3 and we set(
Ip,qṽ

k
i

)
(x) =

k+2∑
�=0

(
jqπ

�
)(x3

ε

) (
ipη

�
)
(x∗),
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with ip the interpolation operator of Proposition 5.6. It is then obvious that
(
Ip,qṽ

k
i

)
belongs

to Sp(ω, τω) ⊗ Pq(−ε, ε) and that there holds

‖vki −
(
Ip,qṽ

k
i

)
(X)‖

H1(Ω)
≤ Ce−bmin{p,q}.

Going back toΩε , we find, with the same constantC

‖ṽki − Ip,qṽ
k
i ‖L2(ω,H1(−ε,ε)) + ε−1‖ṽki − Ip,qṽ

k
i ‖H1(ω,L2(−ε,ε)) ≤ Cε−1/2e−bmin{p,q}.

Estimate (5.12) is easily deduced (with the improvement ifvk depends only onx∗ ).

(ii) Under the assumption (5.13) onf , Theorem 5.3 yields that

deg3 v[ε] ≤ ( pf + qf + 2 pf + qf + 1 )� .

The assumption overq gives that the transverse degree ofṽki is less thanq . Therefore, it
suffices to set (

Ipṽ
k
i

)
(x) =

q∑
�=0

(x3

ε

)� (
ipη

�
)
(x∗),

to obtain the interpolant satisfying estimate (5.14).

For K ≥ 0 , let us denote bỹv[K] the truncated series of the outer expansion

ṽ[K] =

K∑
k=−2

εkṽk. (5.15)

As a consequence of Lemma 5.7, and taking into account thatṽ−2 = (0, 0, ζ−1
3 ) only depends

on x∗ , we obtain immediately the estimate for anyK ≥ 0 :

∃ṽ[K]
N ∈ V p,q(Ωε,T 0

ε ) such that ‖ṽ[K] − ṽ[K]
N ‖

E(Ωε)
≤ Cε−3/2e−bmin{p,q}. (5.16)

Relying on Theorem 2.2, we can now deduce from (5.16)relative error estimates:

Theorem 5.8 Let K ≥ 0 . Let the volume load f be such that f(x∗, 0) �≡ 0 .
A.I) If f 3(x∗, 0) �≡ 0 , we have, with constants b , C > 0 independent of ε and (p, q) but
depending on K :

∃ṽ[K]
N ∈ V p,q(Ωε,T 0

ε ) such that ‖ṽ[K] − ṽ[K]
N ‖

E(Ωε)
≤ Cε−1e−bmin{p,q}‖ũ‖

E(Ωε)
. (5.17)

A.II ) If, moreover, there exists a family of interpolation operators i ′p with values in the sub-
space of Sp(ω, τω) of C1 functions, and still satisfying exponential estimates (5.8), then the
approximation bound in (5.17)can be replaced with Ce−bmin{p,q}‖ũ‖

E(Ωε)
.

B) If f3(x∗, 0) ≡ 0 and f ∗(x∗, 0) �≡ 0 , then, again, the approximation bound in (5.17)can
be replaced with Ce−bmin{p,q}‖ũ‖

E(Ωε)
.

C) If, moreover, the conditions of Lemma 5.7 (ii) are satisfied, then e−bmin{p,q} can be replaced
by e−bp everywhere.
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Proof. A) In that case, the energy norm‖ũ‖
E(Ωε)

is equivalent toε−1/2 , which, together with
(5.16), gives (5.17). We note that this “low” energy is due to the structure of the first terms in
the outer expansion series: Indeed

ε−2ṽ−2 + ε−1ṽ−1
∗ = ε−2(−x3∇∗ζ, ζ)

with ζ = ζ−2
3 (x∗) . For non-zeroζ , its energy isO(ε−1/2) , whereas, in general the energy of

its interpolateε−2(−x3 ip(∇∗ζ), ipζ) is O(ε−3/2) , because the interpolate is not a Kirchhoff-
Love displacement.

If a C1 interpolation operatori′p does exist, then we may chooseε−2(−x3 ∇∗(i′pζ), i′pζ) as
interpolate and, thus, recover robustness asε → 0 .

B) In the situation of dominating membrane load, the energy norm ofũ on Ωε is equivalent to
ε1/2 and the outer expansion series starts withṽ0 the energy of which is aO(ε1/2) , and, by
superposition we obtain from Lemma 5.7 the boundCε1/2e−bmin{p,q} for (5.16), whence the
statement of Theorem 5.8B).

6 Properties of the boundary layer profiles (inner expansion)

Now, we study the inner expansion part in (2.10), that is, the sum of the boundary layer
terms εkwk . It is in fact easier to consider unscaled termsϕk defined as:

ϕk = (ϕk
1, ϕ

k
2, ϕ

k
3) := (wk

1 , w
k
2 , w

k+1
3 ).

In a similar way as for the outer expansion, the termsϕk are determined as coefficients of a for-
mal seriesϕ[ε] satisfying functional equations: We first reformulate results from [9, 5]. Then
we will deduce from these results, analyticity properties for the profiles in weighted spaces.
Finally, in section 7, we construct thehp -approximation of the profiles.

6.a Prerequisite

We introduce in a tubular neighborhoodU ⊂ ω of ∂ω the usual boundary fitted coordi-
nates(s, r) : if x∗(s) denotes a parametric representation of∂ω , any x∗ ∈ U can be written
in a unique way asx∗ = x∗(s) − rn(s) for some 0 ≤ s < length(∂ω) and 0 ≤ r ≤ r0

with r0 sufficiently small, if n(s) denotes the exterior unit normal vector to∂ω at s . With
r , we associate further the stretched variableR = r/ε . The terms of the inner expansion are
profiles, i.e.ϕk = ϕk(s, R,X3) . To the profilesϕk we associate their(s, R,X3) component
functions (ϕk

s , ϕ
k
R, ϕ

k
3) .

The boundary condition in (5.2) on the two-dimensional generator seriesζ[ε] does not
ensure that the outer expansion partv[ε] satisfies the lateral boundary conditions (2.5), but that
the inner-outer expansion does: There exist operator seriesΦ[ε] and Θ[ε] such that theϕk

are the coefficients of the seriesϕ[ε] given by

ϕ[ε] = Φ[ε]ζ[ε] + Θ[ε]f [ε]. (6.1)

We first give the functional equations solved by (6.1). Next, we define functional spaces of
exponentially decreasing functions at infinity onΣ+ .
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EXPANSION OF OPERATORS IN STRETCHED TUBULAR COORDINATES. In tubular coordi-
nates(s, r, x3) associated with components(us, ur, u3) , the interior operatorB (2.2) is trans-
formed into an operatorB(s, r; ∂s, ∂r, ∂x3) and the horizontal boundary operatorG (2.4) into
G (s, r; ∂s, ∂r, ∂x3) . In the stretched tubular coordinates(s, R,X3) , these operators become

B(s, Rε ; ∂s, ε
−1∂R, ε

−1∂X3), and G (s, Rε ; ∂s, ε
−1∂R, ε

−1∂X3).

The Taylor expansion atR = 0 of the coefficients of the above operators provides the operator
valued formal series

B[ε] =
∑
k

εkBk and G [ε] =
∑
k

εkG k

where theBk(s, R ; ∂s, ∂R, ∂3) are partial differential systems of order2 in the stretched
domain∂ω × Σ+ whereas theG k(s, R ; ∂s, ∂R, ∂3) are partial differential systems of order1
on its horizontal boundaries∂ω × γ−+ , where γ−+ = R

+ × {X3 = −+1} denotes the horizontal
boundaries ofΣ+ ; all operators depend polynomially onR .

Therefore, each coefficient of the matricesBk and G k is a finite sum of terms of the form
a(s)Rn∂is∂

j
R∂

l
3 , with i+ j + % less than2 for Bk and less than1 for G k . As a consequence

of the analyticity of the boundary ofω , the coefficientss 
→ a(s) belong toA (∂ω) .

The first termsB0 and G 0 are explicitly given by:

(B0ϕ)s = µ∆R,3ϕs, (G 0ϕ)s = µ∂3ϕs .

(B0ϕ)R = µ∆R,3ϕR + (λ + µ) ∂R(∂RϕR + ∂3ϕ3), (G 0ϕ)R = µ(∂3ϕR + ∂Rϕ3),

(B0ϕ)3 = µ∆R,3ϕ3 + (λ + µ) ∂3(∂RϕR + ∂3ϕ3), (G 0ϕ)3 = (λ + 2µ)∂3ϕ3 + λ ∂RϕR .

We note the splitting into 2D-Laplace and 2D-Lam´e operators in variables(R, x3) with Neu-
mann boundary conditions.

The seriesϕ[ε] is associated withzero volume and surface loads, which is written as:{
B[ε]ϕ[ε] = 0 in ∂ω × Σ+,

G [ε]ϕ[ε] = 0 on ∂ω × γ−+.
(6.2)

SPACES OF EXPONENTIALLY DECREASING FUNCTIONS. The profilesϕk(s, R,X3) are ex-
ponentially decreasing asR → ∞ and belong to a class of weighted spaces inΣ+ . These
spaces depend on two real parametersδ > 0 and β ∈ (0, 1) . The parameterδ describes the
exponential decay at infinity andβ the regularity near the two corners(0,−+1) of Σ+ .

We denote byρ−+ the distance to the corners(0,−+1) and setρ = min{1, ρ+ρ−} . Let first
H∞
β,δ(Σ

+) be the space ofC∞(Σ+) functionsϕ , which are smooth up to any regular point of
the boundary ofΣ+ , are exponentially decreasing asR → ∞ and satisfy the growth estimates
near (0,−+1) in the following sense

eδR ϕ ∈ L2(Σ+) and ∀� ∈ N
2, |�| > 0, eδR ρ|�|−1−β ∂|�|

R,3ϕ ∈ L2(Σ+).

Then we define the corresponding displacement spaceH∞
β,δ(Σ

+) := H∞
β,δ(Σ

+)3 .
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The space for the right hand sides is defined along similar lines: LetK∞
β,δ(Σ

+) be the space
of triples (Ψ, ψ−+) ∈ C ∞(Σ+) × C ∞(γ−+) which satisfy

∀� ∈ N
2, eδR ρ|�|+1−β ∂|�|

R,3Ψ ∈ L2(Σ+) and eδR ρ|�|+1/2−β ∂|�|
R,3ψ

−+ ∈ L2(γ−+).

Then we define the corresponding space for right hand sides:

K∞
β,δ(Σ

+) :=
{

(Ψ,ψ) ∈ K∞
β,δ(Σ

+)3
}
.

These spaces are convenient to solve problem (6.2) coupled with lateral boundary conditions
because there hold the two following lemmas.

Lemma 6.1 Let δ > 0 and β ∈ (0, 1) be fixed. For any k and any ϕ ∈ C ∞(∂ω,H∞
β,δ(Σ

+)) ,
there holds:

(Bkϕ,G kϕ) ∈ A (∂ω,K∞
β,δ′(Σ

+)) for any δ′ < δ .

This is a straightforward consequence of the structure of the coefficients of the operatorsBk

and G k (analytic in s and polynomial inR ).

Lemma 6.2 Let δ0 > 0 be the smallest exponent arising from the Papkovich-Fadle eigenfunc-
tions, see [12]. Let β0 ∈ (0, 1) be the smallest real part of the corner singularity exponents
associateed with the corners (0,−+1) of Σ+ for the operator (B0,G 0) with Dirichlet bound-
ary conditions on R = 0 , see [15, 8]. For any 0 < β < β0 and 0 < δ < δ0 , for any
(Ψ,ψ) ∈ K∞

β,δ(Σ
+) , and any P ∈ C ∞([−1, 1])3 there exist a unique ϕ ∈ H∞

β,δ(Σ
+) and a

unique rigid displacement Z such that
B0ϕ+ Ψ = 0 in Σ+

G 0ϕ+ψ = 0 in γ+ ∪ γ−

(ϕ−Z)
∣∣
R=0

+ P = 0.

(6.3)

This result is proved in [7, 9, 5]. Let us denote by

R0(Ψ,ψ,P) the solutionϕ of problem (6.3).

If (Ψ,ψ) belongs toA (∂ω,K∞
β,δ(Σ

+)) and P belongs toA (∂ω,C ∞([−1, 1])3) , then s 
→
R0(Ψ(s),ψ(s),P(s)) defines an elementϕ ∈ A (∂ω,H∞

β,δ(Σ
+)) , which is still denoted by

R0(Ψ,ψ,P) . In particular, if the right hand side(Ψ,ψ,P) has a tensor product form

a(s)
(
Ψ′(R,X3),ψ

′(R),P′(X3)
)

then R0(Ψ,ψ,P) = a(s)ϕ′(R,X3) with ϕ′ = R0(Ψ′,ψ′,P′) since (B0,G 0) does not
depend ons .
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6.b Series Φ[ε] and Θ[ε]

As the boundary layer profiles are expressed inunscaled components, we have to define the
unscaled version of operatorsV[ε] and Q[ε] . This only consists in dividing the transverse
component byε . This amounts to define

Ṽ[ε] = D[ε]V[ε] and Q̃[ε] = D[ε]Q[ε]

where we have setD[ε] = ε−1D−1 + D0 , with

D−1(u∗, u3) = (0, u3) and D0(u∗, u3) = (u∗, 0).

Note that for anyk ≥ 1 , Ṽk and Q̃k are nonzero operators.

We have now all material for the definition of the formal operator seriesΦ[ε] and Θ[ε]
present in (6.1). Beyond the equationsB[ε]Φ[ε] = 0 , G [ε]Φ[ε] = 0 , B[ε]Θ[ε] = 0 ,
G [ε]Θ[ε] = 0 corresponding to system (6.2), they satisfy thatΦ[ε] + Ṽ[ε] and Θ[ε] + Q̃[ε]
takes their values in a rigid displacement series.

The zero-order operatorsΦ0 and Θ0 vanish. For anyk ≥ 1 , there holds

∀ζ ∈ C ∞(ω)3, Φkζ = R0
( k∑

�=1

B�Φk−�ζ ,
k∑

�=1

G �Φk−�ζ , Ṽkζ
∣∣
Γ0

)
(6.4)

and

∀f ∈ C ∞(Ω)3, Θkf = R0
( k∑

�=1

B�Θk−�f ,
k∑

�=1

G �Θk−�f , Q̃kf
∣∣
Γ0

)
. (6.5)

Gathering all information about the structure of seriesV[ε] and Q[ε] the decomposition of
operatorsBk and G k in tensor product terms, and of solutions of problems (6.3) we obtain:

Lemma 6.3 Let β and δ be as in Lemma 6.2.
(i) For any integer k ≥ 1 , there exists an integer L = L(k) and for any % = 1, . . . , L expo-
nentially decreasing fields ϕk,� ∈ H∞

β,δ(Σ
+) and partial differential operators δk,�(s; ∂s, ∂r)

on ∂ω with analytic coefficients on ∂ω such that

Φkζ =
L∑
�=1

ϕk,�(R,X3) δ
k,�(s; ∂s, ∂r)ζ

∣∣
∂ω

.

Each ϕk,� is the solution R0(Ψk,�,ψk,�,Pk,�) of problem (6.3)where the Pk,�(X3) are triples
of polynomials, and (Ψk,�,ψk,�) = (bϕk′, �′, gϕk′, �′) with k′ < k , %′ ≤ L(k′) , and b , g

matrix operators with coefficients of the form Rn∂
|m|
R,3 (with |m| ≤ 2 for b and ≤ 1 for g ).

(ii) If f depends polynomially on X3 (with degree deg3 f ), for any integer k ≥ 1 , there
exists an integer J = J(k, deg3 f ) and for any j = 1, . . . , J exponentially decreasing fields
θk,j ∈ H∞

β,δ(Σ
+) and partial differential operators γ k,j(s; ∂s, ∂r, ∂3) on ∂ω × (−1, 1) with

analytic coefficients on ∂ω such that

Θkf =
J∑

j=1

θk,j(R,X3) γ
k,j(s; ∂s, ∂r, ∂3)f

∣∣
∂ω×(−1,1)

.
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Each θk,j is the solution R0(Ψk,j,ψk,j,Pk,j) of a problem (6.3) where the Pk,j(X3) are
triples of polynomials, and (Ψk,j,ψk,j) = (bθk

′, j′, g θk
′, j′) with k′ < k , j ′ ≤ J(k′, deg3 f ) ,

and b , g matrix operators as above.

6.c Analytic regularity of the boundary layer profiles

Lemma 6.3 states that the generating layer profilesϕk,�(R,X3) and θk,j(R,X3) are solu-
tions of problem (6.3) with sets of data coming from generating terms of lower degree. There-
fore, we obtain by recursion that they are analytic in the interior ofΣ+ . To estimate the rate
of convergence ofhp -FE approximations of the boundary layer profiles, however, we quantify
the analytic regularity ofϕk,� and θk,j in the interior of Σ+ . We need for this an analytic
version of the spacesH∞

β,δ and K∞
β,δ .

Definition 6.4 For real parameters 0 ≤ β ≤ 1 , δ > 0 , define the space HA
β,δ(Σ

+) as the set
of all ϕ ∈ H∞

β,δ(Σ
+) for which there exists a constant C > 0 such that

∀� ∈ N
2, |�| > 0 ‖eδRρ|�|−1−β∂�

R,3ϕ‖L2(Σ+)
≤ C |�|+1�! (6.6)

Analogously, we denote by KA
β,δ(Σ

+) the space of triples (Ψ, ψ−+) for which there exist C > 0
such that

∀� ∈ N
2 ‖eδRρ|�|+1−β∂�

R,3Ψ‖
L2(Σ+)

≤ C |�|+1�! (6.7)

and
∀� ∈ N

2 ‖eδRρ|�|+1/2−β∂�
R,3ψ

−+‖
L2(γ−+)

≤ C |�|+1�! (6.8)

As before, we denote by HA
β,δ(Σ

+) = HA
β,δ(Σ

+)3 and likewise KA
β,δ(Σ

+) .

With these definitions we can now prove the two following lemmas, which are the analytic
version of lemmas 6.1 and 6.2.

Lemma 6.5 Let δ > 0 and β ∈ (0, 1) be fixed. For any k and any ϕ ∈ A (∂ω,HA
β,δ(Σ

+)) ,
there holds: (Bkϕ,G kϕ) ∈ A (∂ω,KA

β,δ′(Σ
+)) for any δ′ < δ .

Lemma 6.6 With δ > 0 and β ∈ (0, 1) as in Lemma 6.2, for any (Ψ,ψ) ∈ KA
β,δ(Σ

+) , and
any P ∈ A ([−1, 1])3 the solution ϕ = R0(Ψ,ψ,P) belongs to HA

β,δ(Σ
+) .

Proof. To this end, forp, q ∈ N , we defineΣp,q = (p, q) × (−1, 1) , Σp = (p,∞) × (−1, 1) ,
γ−+
p,q := (p, q) × {−+1} and γ−+

p := (p,∞) × {−+1} . Then we may split for exampleΣ+ in
Σ0,2 ∪ Σ2 . We establish the analytic regularity (6.6) inΣ0,2 and in Σ2 separately.

Step i: Analytic estimates in the half-strip Σ2 = (2,∞) × (−1, 1) .
For anyβ ∈ R and B0,G 0 as in (6.3), we have the equivalence{

B0ϕ+ Ψ = 0 in Σ+

G 0ϕ+ψ = 0 in γ+ ∪ γ−
⇐⇒

{
B0

β(eβRϕ) + eβRΨ = 0 in Σ+

G 0
β (eβRϕ) + eβRψ = 0 in γ+ ∪ γ−

where (B0
β ,G

0
β ) is an elliptic operator pencil depending onβ with constant coefficients and

principal part(B0,G 0) .
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By the ellipticity and analyticity of the dataΨ,ψ in Σ1 , we have for anyp ≥ 3 and every
� = (%R, %3) ∈ N

2 for ϕ̃ := eβRϕ the analytic regularity estimate, see [17]

1

�!
‖∂�

R,3ϕ̃‖L2(Σp−1,p+1)
≤ C |�|+1

( ∑
|n|≤(|�|−2)+

1

n!
‖∂n

R,3(B0
βϕ̃)‖

L2(Σp−2,p+2)
+ ‖ϕ̃‖

L2(Σp−2,p+2)

)
+ C |�|+1

( ∑
|n|≤(|�|−1)+

1

n!
‖∂nR

R (G 0
β ϕ̃)‖

L2(γ−
+

p−2,p+2)
+ ‖ϕ̃‖

L2(γ−
+

p−2,p+2)

)
where the constantC depends onβ , but not onp ≥ 3 or on � . Summing up forp ≥ 3 , we
get that

1

�!
‖∂�

R,3ϕ̃‖L2(Σ2)
≤ C |�|+1

( ∑
|n|≤(|�|−2)+

1

n!
‖∂n

R,3(B0
βϕ̃)‖

L2(Σ1)
+ ‖ϕ̃‖

L2(Σ1)

)
+ C |�|+1

( ∑
|n|≤(|�|−1)+

1

n!
‖∂nR

R (G 0
β ϕ̃)‖

L2(γ−
+

1 )
+ ‖ϕ̃‖

L2(γ−
+

1 )

)
which also reads

1

�!
‖∂�

R,3(eβRϕ)‖
L2(Σ2)

≤ C |�|+1
( ∑
|n|≤(|�|−2)+

1

n!
‖∂n

R,3(eβRB0ϕ)‖
L2(Σ1)

+ ‖eβRϕ‖
L2(Σ1)

)
+ C |�|+1

( ∑
|n|≤(|�|−1)+

1

n!
‖∂nR

R (eβRG 0ϕ)‖
L2(γ−

+

1 )
+ ‖eβRϕ‖

L2(γ−
+

1 )

)
.

Noting that∂�
R,3(eβRϕ) = eβR(∂R + β)nR∂n3

3 ϕ , we can deduce from the last estimate that

1

�!
‖eβR∂�

R,3ϕ‖L2(Σ2)
≤ C |�|+1

( ∑
|n|≤(|�|−2)+

1

n!
‖eβR∂n

R,3(B0ϕ)‖
L2(Σ1)

+ ‖eβRϕ‖
L2(Σ1)

)
+ C |�|+1

( ∑
|n|≤(|�|−1)+

1

n!
‖eβR∂nR

R (G 0ϕ)‖
L2(γ−

+

1 )
+ ‖eβRϕ‖

L2(γ−
+

1 )

)
.

Whenceϕ ∈ HA
β,δ(Σ2) if (B0ϕ,G 0ϕ) belongs toKA

β,δ(Σ1) and if eβRϕ is in L2(Σ1) .

Step ii: Analytic estimates in Σ0,2 .
Since the differential operatorsB0,G 0 in (6.3) have constant coefficients and are in divergence
form, and sinceP is analytic onR = 0 , |X3| ≤ 1 , the regularity theory of Babuˇska and Guo
[13, 14] (see also [3, Th.IV.1]) implies thatϕ ∈ HA

β,δ(Σ0,2) .

Then, combining Lemma 6.5 and Lemma 6.6 we prove by induction onk ≥ 1 :

Lemma 6.7 Notations are as in Lemma 6.3 and β and δ as in Lemma 6.2. Then for any
integer k ≥ 1 all the boundary layer profiles ϕk,� and θk,j belong to HA

β,δ(Σ
+) and estimates

(6.6)hold with a constant C > 0 depending on k .

7 hp -Approximation of the boundary layer profiles

Unscaling expansion (2.10) we obtain that the termsũk (2.11) of the expansion of̃u are
the sum of the outer terms̃vk and of the inner termsχϕk . In this section, we investigate the
approximation of the inner expansion termsχϕk by mapped piecewise polynomials.
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7.a hp -Approximation of layer profiles on the half-strip Σ+

For the approximation of the profilesϕk , we subdivideΣ+ into three regions

Σ+
I := (0, 2) × (−1, 1), Σ+

II := (2, R̂) × (−1, 1), Σ+
III := (R̂,∞) × (−1, 1) (7.1)

where R̂ ≥ 3 is an integer at our disposal which will be selected below. In each subregion
Σ+
ν , ν ∈ {I, II, III} , we introduce a FE-meshMν as follows.

In Σ+
I , we need a parametern which is an integer≥ 1 : M n

I consists of axiparallel
quadrilaterals with hanging nodes which are geometrically refined toward the “corners” ofΣ+

with n layers and a grading ratioσ ∈ (0, 1) , cf (7.19) below (see [19, Chapter 4], for more
details on geometric meshes with hanging nodes).

fig6.1.ps
145 × 64 mm

X3 = 1

X3 = −1
R = 2 R̂

R

X3

Σ+
IIIΣ+

IIΣ+
I

Fig. 7.1: The regions Σ+
ν , ν ∈ {I, II, III}, of Σ+ and

the meshes M n
I with n = 3, σ = 0.5, MII and MIII

In Σ+
II , we define

MII :=
{

(i, i + 1) × (−1, 1) : i = 2, . . . , R̂− 1
}

(7.2)

and finally, MIII = {(R̂,∞) × (−1, 1)} . The mesh M n in Σ+ is the union of the meshes in
the subregions:

M n = M n
I ∪ MII ∪ MIII .

We next define the hp -FE space in Σ+ which we will use to approximate the profiles. Let
p be an integer ≥ 1 . We denote by Qp the usual spaces of polynomials of degree p in each
variable and we define

Sp(Σ+,M n) :=
{
ϕ ∈ H1(Σ+) : ϕ|K ∈ Qp(K) ∀K ∈ M n, ϕ(R, ·) = 0 for R > R̂

}
. (7.3)

The next theorem addresses the approximation of the boundary layer profile space HA
β,δ(Σ

+)
from Sp(Σ+,M n) and is the main result of this subsection.
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Theorem 7.1 Let ϕ ∈ HA
β,δ(Σ

+) for β ∈ (0, 1) and δ > 0 , be a boundary layer profile.
Then there exist C > 0 and b > 0 such that, for any p ≥ 1

∃ϕp ∈ Sp(Σ+,M p)3 such that ‖ϕ−ϕp‖H1(Σ+)
≤ C

(
e−bp + e−δR̂

)
. (7.4)

Remark. Note that the number n of layers in the geometric mesh M n
I is taken equal to p .

Proof. To prove Theorem 7.1 we construct ϕp separately in each subdomain Σ+
ν , for ν

in {I, II, III} . The following Lemma of approximation on the model square Q̂ = (−1, 1) ×
(−1, 1) will be used throughout.

(i) ESTIMATES IN THE MODEL SQUARE.

fig6.2.ps
112 × 34 mm

γ̂2 γ̂4

γ̂3

Q̂

γ̂1

Fig. 7.2: Q̂ and notation

Lemma 7.2 Notation as in Figure 7.2. Let π0
p : L2(−1, 1) → Qp(−1, 1) denote the L2 -

projection and define π1
pu for u ∈ H1(−1, 1) by

(π1
pu)(x) := u(−1) +

∫ x

−1

(π0
p−1u

′)(ξ) dξ ,

and denote by Π̂p := π1
p π

2
p the tensor product interpolant on Q̂ (here π2

p is the analogue of

π1
p in the vertical direction). Then, for any u ∈ H 1+k(Q̂) , k > 0 , holds

Π̂pu = u at the vertices of Q̂ , (7.5)

Π̂pu
∣∣
γ̂i

= π1
p(u|γ̂i

), i = 1, 3 and Π̂pu
∣∣
γ̂i

= π2
p(u|γ̂i

), i = 2, 4 (7.6)

and, for any p ≥ 1 and 0 ≤ s ≤ min(p, k) the estimates

‖∇(u− Π̂pu)‖2

L2(Q̂)
≤ C Φ(p, s) ‖Ds+1u‖2

L2(Q̂)
, (7.7)

‖u− Π̂pu‖2

L2(Q̂)
≤ C

Φ(p, s)

p(p + 1)
‖Ds+1u‖2

L2(Q̂)
. (7.8)

Here ‖Dku‖2

L2(Q̂)
=

∑
|α|=k ‖Dαu‖2

L2(Q̂)
. The constant C > 0 is independent of s and p ,

and Φ is given by

Φ(p, s) :=
(p− s)!

(p + s)!
+

1

p(p + 1)

(p− s + 1)!

(p + s− 1)!
, 0 ≤ s ≤ p .
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(ii) ESTIMATES IN Σ+
I . Next, we address the interpolation on geometric meshes.

fig6.3.ps
120 × 64 mm

X3

R

Fig. 7.3: Geometric mesh M n
I in Σ+

I with hanging nodes •

Lemma 7.3 In Σ+
I = (0, 2) × (−1, 1) , consider the geometric mesh M n

I shown in Fig. 7.3.
Then, for u ∈ Hk+1(Σ+

I ) and p ≥ 1 , exists Π̃u ∈ Sp(Σ+
I ,M

n
I ) such that Π̃u is continuous

in Σ+
I and that there hold the following estimates for any 0 ≤ s ≤ min(p, k)

‖u− Π̃u‖2

L2(Σ+
I )

≤ C
∑

K∈M n
I

(hK
2

)2s+2 Φ(p, s)

p + 1
‖Ds+1u‖2

L2(K)
, (7.9)

‖∇(u− Π̃u)‖2

L2(Σ+
I )

≤ C
∑

K∈M n
I

(hK
2

)2s

Φ(p, s) ‖Ds+1u‖2

L2(K)
. (7.10)

Proof. For K ∈ M n
I , let FK : Q̂ → K be the affine element map. Define

(Πu)|K :=
(

Π̂p (u ◦ FK)
)
◦ F−1

K .

Then applying Lemma 7.2 elementwise and a scaling argument imply (7.9), (7.10). By (7.5),
(7.6), Πu is continuous across edges which do not contain hanging nodes. It remains therefore
to remove jumps of the interpolant on edges with hanging nodes.

fig6.4.ps
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Fig. 7.4: Mesh patch with hanging node •
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Assume now that we are on an edge with hanging node as shown in Fig. 7.4.

Denote γij := K̂i ∩ K̂j and by [u− Πu]ij = −[πu]ij the jump of u− Πu across γij .
By (7.6), [u−Πu]23 ≡ 0 and [Πu]ij ∈ Qp(γij) . We remove the discontinuity by lifting [Πu] .
Put

V (ξ) := −(ξ2 + 1)

{
[Πu]12(ξ1) on K̂2 ,

[Πu]13(ξ1) on K̂3 .

Now [Πu]23 = 0 implies that V ∈ C0(K̂2 ∪ K̂3) and

‖∇V ‖
L2(K̂2∪K̂3)

≤ C
∥∥[
πu

]∥∥
H1/2(γ12∪γ13)

, (7.11)

with C independent of p . The Trace Theorem in K̂ implies

‖[πu]‖
H1/2(γ12∪γ13)

= ‖[u− πu]‖
H1/2(γ12∪γ13)

≤ ‖(u− Πu)+‖
H1/2(γ12∪γ13)

+ ‖(u− Πu)−‖
H1/2(γ12∪γ13)

≤ C
∑3

i=1 ‖u− Πu‖
H1(K̂i)

.

(7.12)

Put

Π̃u :=

{
Πu in K̂1

V + Πu in K̂2 ∪ K̂3 .
(7.13)

Then Π̃u ∈ C0(K̂) by construction and from (7.11)-(7.12) we obtain

‖∇(u− Π̃u)‖
L2(K̂)

≤ C
3∑

i=1

‖∇(u− Πu)‖
L2(K̂i)

.

Concerning the L2 estimate we have

‖V ‖
L2(K̂2∪K̂3)

≤ C ‖[u− Πu]‖
L2(γ12∪γ13)

≤ C
{‖(u− Πu)+‖

L2(γ12∪γ13)
+ ‖(u− Πu)−‖

L2(γ12∪γ13)

}
≤ C

∑3
i=1

(‖u− Πu‖
L2(K̂i)

+ ‖u− Πu‖1/2

L2(K̂i)
‖∇(u− Πu)‖1/2

L2(K̂i)

)
and we arrive at

‖u− Π̃u‖
L2(K̂)

≤ C
∑3

i=1

(‖u− Πu‖
L2(K̂i)

+ ‖u− Πu‖1/2

L2(K̂i)
‖∇(u− Πu)‖1/2

L2(K̂i)

)
.

Now assume that Ki are of size h . To obtain error estimates, we first use (7.7), (7.8) and then
we scale K̂ , K̂i to this size. Summing over all patches in Figure 6.3 gives (7.9)-(7.10) since
in the geometric mesh M n

I the modification V in (7.11) is applied at most twice per element.

Later on, we have the problem that if K ∈ M n
I abuts at the vertices (0,−+1) , then the layer

profile ϕ does not belong to H2(K)3 , in general. Let us denote by K+
11 the element K ∈ M n

I

such that (0, 1) ∈ K , and likewise for K−
11 with (0,−1) . Put

Σ̃+
I := Σ+

I \ (
K+

11 ∪K−
11

)
, M̃ n

I :=
{
K ∈ M n

I : K �= K−+
11

}
.

Then if u ∈ Hk+1(Σ̃+
I ) we obtain like for Lemma 7.3 that the interpolation estimates (7.9) –

(7.10) hold with M n
I replaced by M̃ n

I and Σ+
I by Σ̃+

I .
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To deal with the corner singularities we rely on, see eg. [19]:

Lemma 7.4 (Hardy-type estimate)
Let Q = (0, h)2 and assume that u ∈ H1(Q) satisfies for a γ ∈ (0, 1) :

|u|2
H2

γ(Q)
:=

∫
Q

r2γ |D2u|2 dx < ∞ . (7.14)

Then u ∈ C0(Q) and the bilinear interpolant JQu satisfies the estimate

‖u− JQu‖H1(Q)
≤ Ch1−γ|u|

H2
γ(Q)

. (7.15)

We proceed to hp -approximation. Let ϕ belong to HA
β,δ(Σ

+) for β ∈ (0, 1) and δ > 0 . We
note that ϕ belongs to H 2

γ(Q)3 for γ = 1 − β .

Without loss of generality, we consider only M̃ n
I,+ , the upper half X3 > 0 of M̃ n

I . We
number the elements in this mesh by Kij , 1 ≤ i ≤ n and j = 1 if i = 1 (vertex element)
and 1 ≤ j ≤ 3 otherwise, where i = 2 in the layer surrounding the vertex element, i = n in
the largest element layer. For any Kij , i ≥ 2 , denote by

hij = diam(Kij), rij = dist
(
Kij , (0, 1)

)
. (7.16)

Then there exists λ ∈ (0, 1) , independent of n , s.t.

hij ≤ λ rij and ∀x ∈ Kij , rij ≤ ρ(x) ≤ rij + 2hij ≤ (2 + λ) rij . (7.17)

Now consider a layer profile ϕ ∈ HA
β,δ(Σ

+) . Then a typical term in the error bounds (7.10)
can be estimated as follows:(h

2

)2s

Φ(p, s)

∫
Kij

|Ds+1ϕ|2 dx ≤
(λr

2

)2s

Φ(p, s) r−2(s−1−β)

∫
Kij

ρ2(s−1−β)|Ds+1ϕ|2 dx

≤
(λ

2

)2s

Φ(p, s) r2(1−β) ‖ρs−1−βDs+1ϕ‖2

L2(Kij)
.

(7.18)
Now, since the mesh is geometric with grading ratio 0 < σ < 1 , for all 2 ≤ i ≤ n and
1 ≤ j ≤ 3 , we also have

σn−i+1 ≤ rij ≤
√

2σn−i+1. (7.19)

Summing the error over all Kij gives with (7.18) and (7.19) in (7.10) with the regularity (6.6)
that

‖∇(ϕ− Π̃ϕ)‖2

L2(Σ̃+
I )

≤ C
n∑
i=2

(λ
2

)2s

Φ(p, s) σ2(1−β)(n−i+1) C2s+2(s + 1)!2

≤ C Φ(p, s)
(λC

2

)2s+2

(s + 1)!2 σ2(n+1)(1−β)
n∑
i=2

σ−2(1−β)i .

≤ C Φ(p, s)
(λC

2

)2s+2

(s + 1)!2 .

If we take s = αp for an α ∈ (0, 1) , Stirling’s formula implies that

Φ(p, s)(s + 1)!2
(λC

2

)2s

≤ (p− s)!

(p + s)!
(s + 1)!2

(λC
2

)2s+2 s=αp

≤ C p3
(
F (α, λC/2)

)p
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where

F (α, d) :=
(1 − α)1−α

(1 + α)1+α
(αd)2α .

Since for d > 1

min
0<α<1

F (α, d) = F (αmin, d) = Fmin < 1, αmin =
1√

1 + d2
< 1 ,

we get

Φ(p, αp)(s + 1)!2
(λd

2

)2αp

≤ C p3 F p
min .

Then

‖∇(ϕ− Π̃ϕ)‖2

L2(Σ̃+
I )

≤ C p3 F p
min ≤ C e−2bp

since Fmin < 1 , for some C , b > 0 independent of p . Analogous bounds hold for the L2

norm of ϕ − Π̃ϕ . Summarizing, we obtain that there exist C and b > 0 , such that for any
ϕ ∈ HA

β,δ(Σ
+) and any n and p

‖ϕ− Π̃ϕ‖2

L2(Σ̃+
I )

+ ‖∇(ϕ− Π̃ϕ)‖2

L2(Σ̃+
I )

≤ C e−2bp . (7.20)

It remains to estimate the error on K11 , the vertex element: recalling that any ϕ in HA
β,δ(Σ

+)
belongs to H2

γ(K11) for γ = 1 − β , we deduce from Lemma 7.4 that

‖ϕ− JK11ϕ‖H1(K11)
≤ C σn(1−β) . (7.21)

Now a continuous interpolant in Σ+
I is obtained by joining the bilinear interpolant JK11ϕ and

Π̃ϕ continuously on K11 ∩ Σ̃+
I , by liftings in K21 ∪K23 . Finally, estimates (7.20) and (7.21)

yield the hp type approximation estimate if we choose

n = p .

(iii) ESTIMATES IN Σ+
II . Consider now the approximation in Σ+

II = (2, R̂)×(−1, 1) . We write

‖ϕ− ϕp‖2

H1(Σ+
II)

=

R̂∑
i=2

‖ϕ− ϕp‖2

H1(Ki)

where Ki = (i, i + 1) × (−1, 1) ∈ MII . Applying again Lemma 7.2, we construct ϕp

elementwise. By (7.6), ϕp is continuous in Σ+
II and

‖ϕ− ϕp‖2

H1(Ki)
≤ C Φ(p, s) ‖Ds+1ϕ‖2

L2(Ki)
.

The analytic regularity HA
β,δ of ϕ in Σ+

II , cf (6.6), then gives

‖ϕ−ϕp‖2

H1(Ki)
≤ C Φ(p, s)C2(s+1)(s + 1)!2 e−2δi . (7.22)

Choosing again s = αmin p as in Σ+
I , we find

‖ϕ−ϕp‖2

H1(Ki)
≤ C e−2(bp+δi), i = 2, . . . , R̂ . (7.23)
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Summing (7.23) over all i , we get for constants C , b > 0 independent of R̂ and ε

‖ϕ−ϕp‖2

H1(Σ+
II)

≤ C e−2bp. (7.24)

Remark. The bound (7.23) indicates that the polynomial degree p necessary for the boundary
layer approximation in Σ+

II may actually decrease with i : we only need bpi + δi ≥ pmax ,
whence pi ≥ b−1(pmax − δi) for i = 2, . . . , R̂ is sufficient to ensure (7.24).

(iv) ESTIMATES IN Σ+
III . Finally, we discuss the region Σ+

III = (R̂ + 1,∞) × (−1, 1) . Here
we choose ϕp ≡ 0 and get from (6.6) with |�| = 1

‖ϕ−ϕp‖2
H1(Σ+

III)
= ‖ϕ‖2

H1(Σ+
III)

≤ C e−2δR̂ . (7.25)

The choice ϕp ≡ 0 in Σ+
III introduces a jump

0 �= [ϕ− ϕp] = −[ϕp] ∈ Qp(−1, 1) on {R = R̂ + 1} × (−1, 1) .

We lift this jump into the last element KR̂ = (R̂, R̂ + 1) × (−1, 1) ∈ Σ+
II by

V (R,X3) = (R− R̂)[ϕp](X3), (R,X3) ∈ KR̂ . (7.26)

Then, (ϕp − V )(R̂ + 1, X3) = 0 , and there is C > 0 independent of R̂ and of p , such that

‖V ‖
H1(K

R̂
)
≤ C‖[ϕp]‖L2({R̂+1}×(−1,1))

.

Since ϕp|Σ+
III

≡ 0 , we have by the trace theorem in KR̂

‖[ϕp]‖L2({R̂+1}×(−1,1))
= ‖[ϕ−ϕp]‖L2({R̂+1}×(−1,1))

≤ C ‖ϕ− ϕp‖H1(K
R̂

)

(7.23)

≤ C e−(bp+δR̂) .
(7.27)

(v) CONCLUSION. This yields a continuous approximation ϕp ∈ Sp(Σ+,M p) which satisfies
(7.4), if we combine all 3 approximations in Σ+

ν . Theorem 7.1 is proved.

Corollary 7.5 Let ϕ ∈ HA
β,δ(Σ

+) for β ∈ (0, 1) and δ > 0 , be a boundary layer profile.
On the scaled strip εΣ+ , let ϕε be defined as ϕε(r, x3) := ϕ(ε−1r, ε−1x3) . Then, if we take
R̂ = p , we have

∃ϕε
p ∈ Sp(εΣ+, εM p)3 such that ‖ϕε − ϕε

p‖H1(εΣ+)
≤ C e−bp .

Proof. Let ϕp be the approximant of ϕ given by Theorem 7.1, and let ϕε
p be defined as

ϕε
p(r, x3) := ϕp(ε

−1r, ε−1x3) . Scaling r = εR , x3 = εX3 implies dR dX3 = ε−2 dr dx3

and there holds

‖ϕ−ϕp‖L2(Σ+)
= ε−1‖ϕε − ϕε

p‖L2(εΣ+)
and |ϕ− ϕp|H1(Σ+)

= |ϕε − ϕε
p|H1(εΣ+)

.

Theorem 7.1 implies the assertion.
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7.b hp -Finite Element space in Ωε

To prove approximation results in the three dimensional domain Ωε for layer profiles ψ of
the tensor form ψ = γ(s)ϕ(R,X3) with γ ∈ A (∂ω) and ϕ ∈ HA

β,δ(Σ
+) , we define first the

Finite Element space.

Our approximation shall be based on a regular partition τω of ω like that used in §5.c, with
the new request that τω has one layer of quadrilateral elements along its boundary as we are
going to describe. Let us define the tubular layer

ωb =
{
x∗ ∈ ω : dist(x∗, ∂ω) < ρ0

}
(7.28)

where ρ0 is chosen less than one half of the minimal radius of curvature of ∂ω .

Let L be the length of the curve ∂ω and let s 
→ (
x1(s), x2(s)

)
be an analytic, L -periodic

parametric representation of ∂ω . The mapping m(s, r) given by

m(s, r) :=
(
x1(s) − r x′

2(s), x2(s) + rx′
1(s)

)
(7.29)

is an analytic map of (0, L) × (0, ρ0) onto ωb .

In ω , a fixed, regular partition τω is introduced as follows, see Fig 7.5: partition the interval
(0, L) in a fixed number of subintervals τi := (si−1, si) , i = 1, . . . , I , 0 = s0 < s1 < . . . <
sI = L , and set κib := m

(
τi × (0, ρ0)

)
, i = 1, . . . , I . The remaining interior ω0 := ω\ωb

is then covered by a fixed curvilinear partition τω of triangular or quadrilateral elements κi0
which are images of a reference element κ̂ under analytic element maps mi

0 : κ̂ → κi0 ∈ τω .

fig6.6.ps
106 × 59 mm
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κi0

Fig. 7.5: Boundary fitted mesh τω in the midsurface ω

For each integer n ≥ 1 we define now a three-dimensional mesh T n
ε corresponding to

the mesh M n in the half-strip Σ+ constructed in the previous subsection to resolve the layer
profiles, cf Fig. 6.1:

(a) In Ωε
0 := ω0 × (−ε, ε) , we pick tensorized elements K i

0 := κi0 × (−ε, ε) , κi0 ∈ τω ,
which are fixed, i.e. independent of n (their number is also independent of ε ).
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(b) In the three-dimensional boundary layer region Ωε
b ≡ ωb × (−ε, ε) , we select T n

ε to be
the tensor product of εM n in the (r, x3) -plane times the intervals τi along ∂ω :

T n
ε |Ωε

b
:= m

(
τ∂ω ⊗ εM n

) ∩ Ωε
b , (7.30)

where τ∂ω = {τi : 1 = 1, . . . , I} and m(s, r, x3) =
(
m(s, r), x3

)
. In order for this

mesh to be well defined, we assume

εR̂ < ρ0 , (7.31)

which ensures that the internal boundary Ωε
b ∩ Ωε

0 is covered by m(εMIII ⊗ τ∂ω) .

Each element K ∈ T n
ε is then the image of a hexahedral or prismatic reference element under

an analytic element map

x = MK

(
x̂∗, X3) = (mK(x̂∗), εaK(X3)

)
, (7.32)

where mK is analytic and aK(·) is affine.

The hp -FE spaces Sp(Ωε,T n
ε ) are then defined by

Sp(Ωε,T n
ε ) =

{
u ∈ H1(Ωε) : u ◦MK ∈ Qp(K̂), K ∈ T n

ε

}
(7.33)

where K̂ denotes a hexahedral or prismatic reference element of unit size.

7.c hp -Boundary Layer Approximation in Ωε

Let us define now the approximations of the profiles ψ = γ(s)ϕ(r/ε, x3/ε) . Here γ(s) is
an analytic, L -periodic function independent of ε , therefore can be approximated by polyno-
mials at an exponential rate:

Lemma 7.6 Let γ be analytic and L -periodic in s . Let Sp
per(∂ω, τ∂ω) denote the space of

continuous, L -periodic piecewise polynomial functions of degree p in (0, L) . Then for any
integer p ≥ 1 there exist interpolants jpγ ∈ Sp

per(∂ω, τ∂ω) such that

‖γ − jpγ‖H1(0,L)
≤ Ce−bp . (7.34)

Here b > 0 depends only on the domain of analyticity of γ .

We can now construct the hp -approximation of a generic boundary layer profile ψ .

Proposition 7.7 For ρ0 as in (7.28), assume that the integer p satisfies

εp < ρ0 , (7.35)

and that the mesh M p in Σ+ is such that R̂ = p . Let ψ = γ(s)ϕ(R,X3) with γ ∈ A (∂ω)
and a layer profile ϕ ∈ HA

β,δ(Σ
+) with β ∈ (0, 1) and δ > 0 . Let ψε be defined as

ψε(s, r, x3) := ψ(s, ε−1r, ε−1x3) . Then there exists an interpolant

Jpψ
ε ∈ Sp(Ωε,T p

ε )3, with support in Ωε
b

such that there holds the error bound, with constants C , b > 0 independent of ε and p

‖ψε − Jpψ
ε‖

H1(Ωε)
≤ C e−bp . (7.36)
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Proof. Define in Ωε
b

(Jpψ
ε)(s, r, x3) := (jpγ)(s)ϕε

p(r, x3) (7.37)

with jp defined in Lemma 7.6 and ϕε
p in Corollary 7.5. Evidently, condition (7.35) implies

that the support of Jpψ
ε is contained in Ωε

b , and we have the estimate

‖ψε − Jpψ
ε‖

H1(Ωε
0)

= ‖ψε‖
H1(Ωε

0)
≤ Ce−δρ0/ε ≤ Ce−δp

where we used (7.35) and the exponential decay of the profile ϕ(R,X3) with respect to R .

In the boundary layer Ωε
b , we may go back to the stretched tubular coordinates (s, R,X3) . The

application x 
→ (s, R,X3) maps Ωε
b onto the product (0, L) × (0, ρ0/ε) × (−1, 1) . With

(Jpψ)(s, R,X3) := (jpγ)(s)ϕp(R,X3)

there holds (Jpψ
ε)(s, r, x3) = (Jpψ)(s, ε−1r, ε−1x3) , hence

‖ψε − Jpψ
ε‖

H1(Ωε
b)

� ‖ψ − Jpψ‖H1((0,L)×(0,ρ0/ε)×(−1,1))

≤ ‖ψ − Jpψ‖H1((0,L)×Σ+)
.

Therefore, it is sufficient to bound the right hand side. There holds

‖ψ − Jpψ‖H1((0,L)×Σ+)
= ‖γϕ− (jpγ)ϕp‖H1((0,L)×Σ+)

≤ ‖(γ − jpγ)ϕ‖
H1((0,L)×Σ+)

+ ‖γ(ϕ−ϕp)‖H1((0,L)×Σ+)

≤ ‖γ − jpγ‖H1(0,L)
‖ϕ‖

H1(Σ+)
+ ‖γ‖

H1(0,L)
‖ϕ− ϕp‖H1(Σ+)

Lemma 7.6 and Theorem 7.1 with R̂ = p yield finally the exponential bound Ce−bp .

For K ≥ 0 , let us denote by w̃[K] the truncated series of the inner expansion

w̃[K] =

K∑
k=0

εkχ(r)ϕk(s, ε−1r, ε−1x3), (7.38)

where the profiles ϕk are the coefficients of the series ϕ[ε] = Φ[ε]ζ[ε] + Θ[ε]f [ε] , see (6.1).
Note that, although the series ζ[ε] and f [ε] start with k = −1 , the series ϕ[ε] starts with
k = 0 because the operators Φk and Θk are zero for any k ≤ 0 .

The final result on the hp approximation of the inner expansion now reads

Theorem 7.8 For the definition of the discrete space Sp(Ωε,T p
ε ) we assume that εp < ρ0

and R̂ = p . Let K ≥ 0 . Let the volume load f be such that f (x∗, 0) �≡ 0 . Then we have,
with constants b , C > 0 independent of ε and p but depending on K :

∃w̃[K]
N ∈ Sp(Ωε,T p

ε ) such that ‖w̃[K] − w̃[K]
N ‖

E(Ωε)
≤ Cε1/2e−bp‖ũ‖

E(Ωε)
. (7.39)

Proof. (i) Let us take k ≤ K . First recall that according to (6.1), ϕk =
∑k

�=1 Φ�ζk−� +
Θ�f k−� and that according Lemmas 6.3 and 6.7 each term of the above sum is itself a linear
combination of terms of the form ψ = γ(s)ϕ(R,X3) with γ ∈ A (∂ω) and ϕ ∈ HA

β,δ(Σ
+)



§ 8. hp -APPROXIMATION OF 3-D PLATES 33

for β ∈ (0, 1) and some δ > 0 . Therefore Proposition 7.7 applies. We note that χ can be
chosen such that χ(r) ≡ 1 for 0 ≤ r ≤ ρ0 , χ(r) ≡ 0 for r ≥ 2ρ0 . Therefore, as in Ωε

b ,
χ(r)ϕk ≡ ϕk , there holds

‖χ(r)ϕk − Jpϕ
k‖

E(Ωε
b)

= ‖ϕk − Jpϕ
k‖

E(Ωε
b)
≤ C ‖ϕk − Jpϕ

k‖
H1(Ωε

b)
≤ C e−bp.

In Ωε
0 , Jpϕ

k ≡ 0 by construction. Therefore

‖χ(r)ϕk − Jpϕ
k‖

E(Ωε
0)
≤ ‖χ(r)ϕk‖

H1(Ωε
0)
≤ Ce−δR̂.

Whence the upper bound C e−bp on Ωε
0 since R̂ = p .

(ii) By superposition we find that for any K0 ≤ K the partial sum satisfies:

‖
K∑

k=K0

εkχ(r)ϕk −
K∑

k=K0

εkJpϕ
k‖

E(Ωε)
≤ CεK0e−bp

(iii) If f3(x∗, 0) �≡ 0 , then the energy norm of ũ is equivalent to ε−1/2 and the inner expansion
starts with K0 = 0 , whence (7.39).

(iv) If f3(x∗, 0) ≡ 0 , then f ∗(x∗, 0) �≡ 0 and then the energy norm of ũ is equivalent to ε1/2 .
Moreover the inner expansion starts with K0 = 1 , whence (7.39).

8 hp -Approximation of 3-d plates

To obtain the hp -approximation of the full problem (2.2) – (2.5), it suffices to combine the
results of theorems 5.8 and 7.8.

For this, we only have to note that for any n ≥ 1 the geometric boundary layer meshes T n
ε

defined in §7.b are refinements of the regular mesh T 0
ε defined in §5.c, provided T 0

ε is based
on the same boundary fitted mesh τω on ω . Moreover we have the inclusion

V p,q(Ωε,T 0
ε ) ⊂ Sp(Ωε,T n

ε ) (8.1)

for all q ≤ p , n ≥ 1 , and ε > 0 .

As a corollary of theorems 5.8 and 7.8, we obtain our main results, namely a-priori estimates
for hp -approximations of the three-dimensional plate problem.

Theorem 8.1 Let Ωε = ω×(−ε, ε) be a plate of thickness 2ε and midsurface ω with analytic
boundary, and let f̃ = f

∣∣
Ωε be a volume loading where f is analytic in ω×(−ε0, ε0) for some

ε0 > ε > 0 and such that f
∣∣
ω×{0} is not identically 0 . We consider the hp -approximation

ũN of the three dimensional solution ũ of the hard clamped plate problem (2.2) - (2.5) based
on the subspace of dimension N = O(p4)

HN =
{
ṽN ∈ Sp(Ωε,T p

ε )3, ṽN
∣∣
∂ω×(−ε,ε) = 0

}
. (8.2)

(i) There holds for every K ≥ 0 the error bound

‖ũ− ũN‖E(Ωε)
≤ CK(εK + ε−1 e−bp)‖ũ‖

E(Ωε)
(8.3)

for some b, CK > 0 independent of ε, p as ε → 0 , p → ∞ .
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(ii) If the condition of Theorem 5.8 A.II) is satisfied, or if f 3

∣∣
ω×{0} ≡ 0 , then we have the robust

estimate of the error bound

‖ũ− ũN‖E(Ωε)
≤ CK(εK + e−bp)‖ũ‖

E(Ωε)
. (8.4)

Proof. Using Theorem 2.1 and the triangle inequality (2.15), we only have to estimate the hp -
approximation of the asymptotic expansion

∑K
k=−2 εkũk of the three-dimensional solution ũ .

Since, according to notations (5.15) and (7.38), we have
K∑

k=−2

εk ũk = ṽ[K] + w̃[K]

the sum ṽ
[K]
N +w̃

[K]
N of the interpolants constructed in theorems 5.8 and 7.8 yields an interpolant

ũ
[K]
N in the space Sp(Ωε,T p

ε )3 . It remains the problem of the trace of ũ[K]
N on Γε

0 which could
be non-zero.

By construction, for any k ≥ −2 , the trace of ṽk + w̃k on Γε
0 is zero. In particular, the traces

of ṽ−2 and ṽ−1 are zero, and thanks to the property of the interpolation operator ip in ω , cf
Proposition 5.6, the interpolants ṽkN of ṽk for k = −2,−1 can be chosen with zero traces
on Γε

0 with the same error bound. We have the same situation for k = 0 in the case when
f 3(x∗, 0) ≡ 0 . Therefore we have to consider the trace:

K∑
k=K0

εk(ṽk +ϕk)
∣∣
Γε

0

with K0 = 0 if f 3(x∗, 0) �≡ 0 and K0 = 1 otherwise. Let us fix k ≥ K0 . Inspecting the
constructions and proofs in §5.c and §7.a, 7.c, and taking advantage that in the layer Ωε

b the
finite elements are tensorial in the three directions, we find that there also hold error bounds
in the norm H1(Γε

0) . When scaled to ∂ω × (−1, 1) , these estimates are uniform with respect
to ε , and scaled back to Γε

0 = ∂ω × (−ε, ε) their behavior in ε is O(ε−1/2) . In p , we still
have the exponential rate, cf (5.14) and (7.36), which means that the interpolants ṽkN and w̃k

N

satisfy

‖(ṽk − ṽkN)
∣∣
Γε

0
‖
H1(Γε

0)
≤ C ε−1/2e−bp and ‖(ϕk − w̃k

N)
∣∣
Γε

0
‖
H1(Γε

0)
≤ C ε−1/2e−bp,

whence, as (ṽk +ϕk)
∣∣
Γε

0
= 0 :

‖(ṽkN + w̃k
N)

∣∣
Γε

0
‖
H1(Γε

0)
≤ C ε−1/2e−bp.

Let us consider the lifting

%kN (s, r, x3) := (ṽkN + w̃k
N )(s, 0, x3) (1 − r/ρ0) in Ωε

b and 0 in Ωε
0.

This defines an element of Sp(Ωε,T p
ε )3 which also satifies the estimate

‖%kN‖H1(Ωε)
≤ C ε−1/2e−bp.

Then the element of Sp(Ωε,T p
ε )3 defined as ṽkN + w̃k

N − %kN is an interpolant of ũk in HN .
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The extra contribution to the error is

‖
K∑

k=K0

εk%kN‖E(Ωε)
≤ C εK0−1/2e−bp.

Combining with the behavior of the energy of ũ in Ωε as ε → 0 , we finally obtain (8.3) and
(8.4).

Corollary 8.2 For every K ≥ 0 there is C∗ > 0 such that

‖ũ− ũN‖E(Ωε)
≤ C εK‖ũ‖

E(Ωε)
as ε → 0 , (8.5)

provided that p ≥ C∗ | log ε| in the general case (i) of Theorem 8.1 and provided p ≥ C∗ in
the case (ii) of the same theorem.

The preceding results assumed that the transverse degree of Sp(Ωε,T n
ε ) is increased uni-

formly throughout the domain. If, however, the volume load f [ε] vanishes or is constant
in subdomains, substantial simplifications are possible, if the transverse polynomial degree is
taken variable.

Remark 8.3

(i) If the plate deforms due to a constant bending volume force (0, 0, 1) , (8.3) – (8.5) hold
even if deg3(HN) =

(
3
4

)
in all κi0 ⊂ ω0 .

(ii) For a constant membrane volume force (a, b, 0) throughout Ωε , (8.3) – (8.5) hold if
deg3(HN) =

(
2
1

)
in ω0 .
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