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Abstract. The displacement of three-dimensional linearly elastic plate-like domains can
be expanded as a compound power series asymptotics, when the thickness parameter
tends to zero. The leading term in this expansion is the well-known Kirchhoff-Love
displacement eld, which is the solution to the limit case when . Herein we
focus our discussion on plate-like domains with either clamped or free lateral boundary
conditions, and characterize the loading conditions for which the leading term vanishes.
In these situations the rst non-zero term in the expansion appears for ,
or and is denoted as higher-order response of order , or respectively. The
mathematical analysis for higher-order responses is backed-up by numerical simulation
using the -version nite element method.

1 INTRODUCTION

Plate-like domains are three-dimensional structures with one of their dimensions, usually
denoted by “thickness” ( ), much smaller compared to the other two dimensions. In the
linear theory of elasticity, the displacements solution is of interest and can be consid-
ered as a function of the coordinates and of : . If the loadings behave
uniformly with respect to , see (2.2)-(2.3) later, it is natural to expand as an
asymptotic series in . It is now well understood that this problem has a singular pertur-
bation nature as giving rise to boundary layer effects, and that such an expansion
can be provided in the general form, compare with [8, 9, 11],

(1.1)



Detailed mathematical analysis on the asymptotics in thin isotropic plates, see [10, 4, 5]
for clamped plates and [6] for other lateral boundary conditions, makes it possible to ex-
plicitly quantify the various terms in the expansion (1.1). Moreover, numerical realization
of several terms in (1.1) has been presented in [7].
Herein we address plates with either hard-clamped or free lateral boundary conditions,

and based on the mathematical analysis in [3, 2] describe the loading conditions for which
the leading term vanishes in the expansion (1.1), providing a displacement field with
a first non-vanishing term which is not (that is zero too) but (or even or )
denoted as higher-order response of order (resp. or ). In these situations it may hap-
pen that a boundary layer term of the same order as the actual leading term appears in the
displacement field. In the same spirit than [7], we visualize these higher-order responses
using the -version of the finite element method.
This paper is organized as follows: In Section 2 we provide the necessary notations and

preliminaries followed by explicit details on the three-dimensional solution for clamped
and free plates. In Section 3 the necessary conditions on the loadings to provide higher-
order responses are summarized, followed by numerical visualization of the mathematical
analysis in Section 4. These numerical solutions are obtained using the -version finite
element method. We conclude in Section 5.

2 NOTATIONS AND PRELIMINARIES

2.1 The elasticity problem

We consider a thin elastic, isotropic and homogeneous three-dimensional domain de-
fined as follows:

with a regular domain,

and associated cartesian coordinates are , see Figure 1.
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Figure 1: Typical plate of interest and notations.

Let denote the components of the displacement and let denote the lin-
earized strain tensor , where . The stress tensor is
given by Hooke’s law where is the compliance tensor of an
isotropic material expressed in terms of the Lamé constants and :
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In the sequel we will use either the Lamé constants or the equivalent engineering material
coefficients:

Young modulus and Poisson ratio

The tractions (surface forces) are denoted by , where is the outward normal
vector on the domain’s boundary. We consider herein either clamped ( ), or free
( ) boundary conditions on the lateral face of the plate:

The tractions on the upper face of the plate ( ) and the corresponding
lower face of the plate ( ) are denoted by (corr. ). The volume
forces are denoted by .
With above notation, we may state the weak formulation of the elasticity problem for

the free plate:

Seek such that
(2.1)

whereas for the clamped plate one simply needs to seek a solution in the space ,
which are functions in with the additional constraint that on .
Of course, in the case of free boundary conditions the applied tractions and the

volume forces are supposed to be equilibrated versus the rigid displacements.

2.2 Scaled coordinates and assumptions on data

We denote by the Greek index the in-plane variables , by a curvilinear coordi-
nate along and by the distance to . We also use the subscripts and for the
normal and tangential components of a field on the boundary .
The subscript is used as condensed notation of in-plane variables. Thus we denote:

, , , and

It is convenient to represent all quantities of an asymptotic expansion in a fixed ref-
erence domain, thus we stretch the plate along the vertical axis and define the stretched
transverse variable

Moreover, a correct description of the boundary layer terms requires the introduction of the
stretched distance to :

In such an asymptotic analysis, it is natural to assume that the volume forces behave
as fixed profiles in the scaled vertical variable , compare with the reference work [1].
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Moreover, like in the previous works [3, 2, 6], we suppose that they are of order of in
the vertical direction, and of order in the in-plane directions, namely

(2.2)

with the data regular up to the boundary, i.e. .
Correspondingly we assume for the tractions on the upper and lower faces of the plate:

(2.3)

The above assumptions are the correct ones so that the scaled displacement
defined as has a limit (which is generically non-zero) as .
Note that, as we are in the framework of linearized elasticity, by superposition we can

construct displacement asymptotics for any volume forces and tractions
which can be expanded as power series of .

2.3 The three-dimensional solution

Due to the symmetry properties of isotropic plates, it is well known that the displacements
can be split into a bending part and a membrane (or stretching) part according to

is the solution of (2.1) corresponding to the bending parts of the volume forces
and tractions , and similarly for the membrane.
We are going to describe now, based on [6] (see also the presentation in [7]), the asymp-

totic expansion of under the assumptions (2.2)-(2.3). This expansion involves
three sorts of terms:

i) Kirchhoff-Love displacements,
ii) Displacements with zero integral mean value

iii) Boundary layer terms exponentially decreasing as .

The Kirchhoff-Love displacements are expressed by generator functions with three
components only depending on in-plane variables, namely the mem-
brane ones are generated by and the bending ones by . We agree to
denote

(2.4)

(2.5)
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Though containing , definition (2.5) reveals to be the most convenient one. Note that the
scaled displacement is independent of . We denote in a natural way

Under assumptions (2.2)-(2.3), the displacement solution of (2.1) can be expanded as:

(2.6)

Remark. Compared to the general expansion (1.1), we see that can be identified to
, and for any , is identified to the sum .

Thus the expansions of the bending and membrane parts are:

(2.7)
(2.8)

Therefore the leading terms modulo in the expansion (2.7)-(2.8) are as follows:

(2.9)

(2.10)

where the symbol means that the remainder is uniformly bounded by .

Remark. The displacements with zero integral mean value appear in (2.9) and (2.10)
as

(2.11)

(2.12)

They are in fact completely determined by .

Remark. In the hard-clamped case the first membrane boundary-layer term , resp.
bending , is only present if is non-zero on , resp. on . In
the free situation and is present only if is non-zero on .
Visualization of these profiles is provided in [7].
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2.4 Membrane and bending equations for the generators

The generator functions and are defined on and they are solutions to the follow-
ing problems. is solution of the “membrane equation”:

(2.13)

whereas solves the “bending equation”:

(2.14)

with and with right hand sides and only depending on the
data and in problem (2.1).
The right hand side of (2.13) for is given by:

and the right hand side of (2.14) for is:

For , we have simply and , whereas for formulas are
much more involved and require the introduction of several new notations. For the sake of
completeness, we simply quote them from [3].
Let denote the -th moment with respect to of :

and let us introduce the primitives

Nowwe need two functions of the data : and . These functions are part of
formulas giving not only the right hand sides for , see (2.18), but also the first non-zero
term in the presence of a higher-order response, see 3. In the examples that we illustrate,
the relevant components of and are simple polynomial functions, see
the corollaries in 3. The function is defined in by

and (2.15)
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The function is defined in by

and

(2.16)

where the operator : is defined from into by

and (2.17)

Finally the right hand sides of equations (2.13) and (2.14) for are given by

and
(2.18)

2.5 Boundary conditions for the generators

The boundary conditions for the generators on depend of course on the specified
boundary conditions on the lateral face of the plate.

(i) FOR THE HARD CLAMPED PLATE: the boundary operators are the Dirichlet conditions
associated with the membrane and bending operators in (2.13) and (2.14). For and
, the boundary conditions are:

for the bending equation and for the membrane equation.

, , for the membrane equation and , ,
for the bending equation, where and are non-zero universal
coefficients.

(ii) FOR THE FREE PLATE: the boundary operators are the Neumann conditions associ-
ated with the correct bilinear forms corresponding to the membrane and bending operators
in (2.13) and (2.14).
For these are: For the membrane equation

(2.19)
(2.20)

and for the bending equation

(2.21)

(2.22)
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where denotes the curvature of . The generating function satisfies homogeneous
boundary conditions like in (2.19)-(2.20). Since equation (2.13) for is also homo-
geneous, then is identically zero.

For the bending equation

(2.23)
(2.24)

where is a universal coefficient and depends on special traces of
as well as on and .

3 HIGHER ORDER RESPONSES

Under special loading conditions, which will be described in the sequel, the leading term
in the expansion (2.6) vanish, i.e. the generator , providing a displacement field of
higher order. We agree to define the order of the response according to:

Definition 3.1 With the assumptions (2.2)-(2.3) and if , we call order of the re-
sponse the smallest integer such that at least one of the three terms , or
involved in expansion (2.6) is not zero.

Readers interested in more detailed proofs of the results stated herein are referred to
[12]. The displacement asymptotic expansion for hard clamped plates is first considered
followed by free plate lateral boundary conditions. We also highlight the difference in the
higher-order responses due to the different lateral boundary conditions.

3.1 Hard clamped plates

From equations (2.13)-(2.14) for and the associated homogeneous boundary condi-
tions, it is clear that if and are zero, then . In this case, as and
are zero too and the boundary data of depends linearly on , we also have .
Formulas (2.11)-(2.12) yield that . Moreover, as also depends linearly on ,
it is zero too. Thus the order of the response is at least .

Theorem 3.2 [3] For any loading such that and , and that
either or or is not identically zero, the order of the response is . The
rst non-zero term in the expansion (2.6) of is

(3.1)

As corollaries of Theorem 3.2 we exhibit special load conditions to excite order
responses in bending and membrane solutions.
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Corollary 3.3 [3] Let , , and
representing a bending load. Then we have an order response and the expan-

sion of the displacement starts like:

(3.2)

with .

Corollary 3.4 [3] Let , , representing a
membrane load. Then we have an order response and the expansion of starts
like:

(3.3)

with .

We may have higher orders than :

Theorem 3.5 [3] For any loading case which satises and

i

then and , and the order of the answer is .

As corollaries of Theorem 3.5 we exhibit special load conditions to excite order
responses in bending and membrane solutions. Then first non-zero term in the expansion
(2.6) of is

(3.4)

Corollary 3.6 [3] Let and . Then we have an order response
and the expansion of the displacement starts like:

(3.5)

Here is a non-zero even polynomial of degree 4 in .

Corollary 3.7 Let , . Then we have an order response and the
expansion of the displacement starts like in (3.5).
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Corollary 3.8 [3] Let , and . Then we have an order
response and the expansion of the displacement starts like

(3.6)

with .

Remark. There exist loads and which may generate fourth order response. Specific
loadings for this case can be found in [3]. But if the loads are not identically zero and
satisfy (2.2)-(2.3), we cannot have order responses or larger.

3.2 Free plates

Theorem 3.9 [2] For any loading and such that , in and
on , the order of the response is . If either

or or or one of the boundary conditions for is not identically zero,
then the order of the response is and the expansion of starts like in (3.2)-(3.3).

Theorem 3.10 [2] The order of the response is if and only if the generators ,
, and additionally . This is exactly the case if and

i

Then the expansion of starts like in (3.5)-(3.6).

Comparing Theorem 3.10 (for the free plate) with Theorem 3.5 (for the hard clamped
plate) one notices that if a loading produces an order response for the free plate then the
same loading will produce a higher-order response for the hard clamped plate as well, but
contrary there exist loadings which produce a higher-order response in the hard-clamped
plate and does not produce it in the free plate, see [12].

4 NUMERICAL VISUALIZATION OF HIGHER-ORDER RESPONSES

The theoretical results are visualized by computing functionals associated with the dis-
placement field for free and hard clamped lateral boundary conditions, and for various
loadings exciting the higher order terms. The computations are done within the finite ele-
ment code Stress Check. We consider a rectangular plate with dimensions as
shown in Figure 2. The material properties are: Poisson ratio and Young modu-
lus . All lateral boundary conditions are either free or hard clamped, thus there
are two axes of symmetry, so that only a quarter of the plate may be analyzed, namely plate

, with symmetry boundary conditions on and .

Stress Check is a trade mark of Engineering Software Research and Development, Inc., 10845 Olive
Blvd., Suite 170, St. Louis, MO 63141, USA

10



4

1

2!

x1

A B
C

DE

F
G

x2

x3

x2

Figure 2: Rectangular plate under consideration.

A three dimensional -version finite element model is constructed having two ele-
ments in the thickness direction, four elements in the direction and six elements in the
direction. In the neighborhood of the edges, the mesh is graded so that there are two

elements of dimension each. See Figure 3 for a typical mesh for and Fig-
ure 4 for and hard clamped lateral boundary conditions. The finite element

Figure 3: Finite element mesh for the plate with .

model is constructed parametrically so that the value of may vary, and we change it
from 0.1 ( ) to 0.001 ( ). Although not visible in Figure 4, there are two
elements across the thickness and two elements each of dimension in the neighborhood
of the boundary. The -level over each element has been increased from 1 to 8 and the
trunk space has been used (see [13]). There are 12,568 degrees of freedom at . An
advantage of using -version finite element methods is this possibility of having “needle
elements” in the boundary layer zone with aspect ratios as large as 10,000 without sig-
nificant degradation in the numerical performance. An exponential convergence rate is
obtained without thickness-locking phenomenon visible (due to the use of high-order ele-
ments) and the convergence of the computed data has been examined as well for increasing
-levels in order to evaluate the reliability of the numerical results.
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Figure 4: Finite element mesh and boundary conditions for the plate with .

By considering (2.7)-(2.8), one notices that in the generic case the displacement field is
dominated by the Kirchhoff-Love components, in particular the transversal bending com-
ponent of is much larger than any other component of the displacement. In
contrast to that, for the higher-order responses the operators and play an important
role in the expansion of the displacement field, see (3.1)-(3.3) and (3.4)-(3.6). In order
to be able to visualize single terms in the expansion for the considered examples and in
particular to extract constants with respect to as well as expressions with vanishing
integral mean value, we introduce for and the following quantities

(4.1)

where is the i-th Legendre polynomial. Since are constants in then they are
-orthogonal to ( ). In contrast to that, the expressions are orthogonal

to . Based on the parity properties of the membrane and bending parts, the quantities
vanish either for all even or for all odd values of depending on the type and on

the component of the displacement field under consideration. The quantities in (4.1) will
enable us to visualize in the higher-order response, the single parts in the leading terms and
in particular to make the appearing boundary layer effects visible.

4.1 Hard clamped plate, bending response of order

The first example which we consider should be understood as a motivating example in order
to indicate the existence of higher-order responses and their significance. The loadings for
this example read: , , , with a real parameter. In the
following we are going to change such that the existence of a higher-order response will
be visible. For , the loading is as in Corollary 3.7, thus one expects to behave
as as . For any other , the “bending” solution, with the Kirchhoff-Love
vertical component like is expected as .

12



To be able to obtain a global information about the behavior of the displacement field
we introduce a global -norm (on the whole plate)

(4.2)

We expect that for and for , tends to infinity with an order
as predicted by (2.7), but for , will converge to zero with an order .
This should also have some influence for close to one, but the change for from
tending to infinity with an order to tending to zero with an order should
be smooth (with maybe high gradients) with respect to the change of near .
Indeed, as expected by the mathematical analysis, the numerical results shown in Figure 5
demonstrate this behavior.
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Figure 5: for various as .

4.2 Hard clamped plate, bending response of order

The second example which we consider is a bending example and the loadings are the
following: , , , . This loading according to
Corollary 3.3 produces an order response.
In Figure 6 we present the functional along the line ,
, i.e. with respect to the physical distance to the lateral boundary. Since is orthog-

onal to the constant (over the thickness) terms , we expect that will vary in
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Figure 6: Hard Clamped .

the boundary layer zone only due to the presence of the boundary layer term in the
leading term of the asymptotic expansion and then will vanish as we move inside the plate.
We moreover expect to see how the width of the boundary layer varies in dependence of
, since we have chosen a representation in the physical variable. It can be noticed that
indeed the boundary layer is only active in a strip of a width of order in the vicinity of
the lateral boundary.
However such an evaluation does not allow a comparison of the single functionals

for different values of in the boundary layer zone. That is the reason why in
the following the functionals are always evaluated with respect to the stretched
distance . So we evaluate on a set of equidistant points along the line

, . We notice in this case, as shown in Figure 7, that the curves
for different values of overlap, i.e they are independent of . Moreover, is
almost zero for , which manifests a rapidly decreasing profile. All of this is in
accordance with the prediction of the mathematical analysis.
In Figure 8 we present with respect to the physical variable . We expect

to see only, since all the other terms are of higher order. Moreover, if we can see a
boundary layer zone at all, it should be of width as in Figure 6. But as said above in
order to be able to visualize the boundary layer behavior we are interested in the evaluation
with respect to the stretched variable , which we present in Figure 9.
Since is nothing but the integral mean value of across the thickness, we

now expect to see the influence of both and . At the first look one would expect
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Figure 7: Hard Clamped vis. stretched distance.

that because of the presence of in the asymptotic expansion would hold and
moreover, it would be larger than . But as it can be seen from Figure 9 this
is not true and turns out to be the correct value. The reason for this is that we
have evaluated with respect to the stretched variable , while in fact
depends on the physical distance . But, if one develops in its Taylor series with
respect to around , then in this series the constant (in ) vanishes because of
the lateral Dirichlet condition on , and the Taylor series starts with a linear (in
) part. Considering now the Taylor series of with respect to the stretched variable

(around ), i.e. we replace any in the series above by , it turns out
that the asymptotic expansion of indeed starts with , such that is the correct
choice. In Figure 9 there is almost no boundary layer behavior visible, which means that
dominates .
In Figure 10 we visualize . We expect to see the influence of all the three

terms , and which are contained in the leading term of the expansion.
But in fact varies in the boundary layer zone due to effect of the boundary
layer profile and becomes constant as we move away from the boundary inside the
plate, which is the effect of . Indeed, tends to in the interior of
the plate which is the exact value of , i.e. represents the leading term
in the expansion of outside the boundary layer zone. Here we recall that it holds

, compare Corollary 3.3. The explanation why we cannot see
is similar to the one in Figure 9. Since in the boundary layer zone, there

coincides with , which vanishes for because of the lateral Dirichlet
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Figure 8: Hard Clamped .

condition on . But this means that the Taylor series of in around
starts with the linear term and hence the Taylor series in starts altogether

with and thus is in fact not present in the leading term.
In Figure 11 we present . In contrast to Figure 10 where we only saw and
here we really would expect to see the influence of all the three terms ,

and which build up the leading term of the expansion. The reason for this difference
is that in the boundary layer zone coincides with due to the fact there.
In contrast to in the previous graph, now is in general non-zero for ,
compare Theorem 5.1 of [3], so that its Taylor series with respect to around
starts with the constant term and hence now should be visible in the graph. Indeed this fact
can be stated in the figure. In the boundary layer zone we see varying due to
the effect of . Although becomes more or less constant as we move inside
the plate, this constant cannot be only the effect of , since the value of the constant is
approximately and not as in the previous graph. This discrepancy is in
fact produced by the presence of in the leading term, or better by the constant
term of its Taylor series in in the same manner as it is explained above.
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Figure 9: Hard Clamped .
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Figure 10: Hard Clamped .
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Figure 11: Hard Clamped .
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4.3 Hard clamped plate, membrane response of order

The next example is a membrane one with the loadings: , , ,
, which in accordance with Corollary 3.4 produces an order response.

The values of the considered functionals are for independent of which
indicates that the asymptotic expansion starts in accordance with the analysis with . We
first consider the first component of the displacement field . The behavior of the second
component is very similar.
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Figure 12: Hard Clamped .

In Figure 12 we present . The graph shows clearly the existence of a bound-
ary layer profile in the leading term of the expansion. This boundary layer profile is only
present in a vicinity of the lateral boundary. Since in this case is simply a multiple
of the Legendre polynomial , compare Corollary 3.4, and is of course a constant in
, tends to a constant as we move away from the boundary, representing the

presence of .
In Figure 13 shows, as in the preceding graph, a boundary layer behavior

in a vicinity of the lateral boundary but then in contrast to it becomes zero outside the
boundary layer, since as said above is a multiple of and hence orthogonal to .
In Figure 14 we visualize with the help of the behavior of the third compo-

nent of the displacement field . We see a boundary layer behavior in a neighborhood
of the lateral boundary and then the considered functional tends to zero as we move away
from the boundary. The same behavior is visible for (not presented herein).
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Figure 13: Hard Clamped .
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Figure 14: Hard Clamped .
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4.4 Hard clamped vis free lateral boundary conditions

The last example which we investigate shows the influence of the lateral boundary condi-
tions on the higher-order responses. We consider the following bending loadings: ,

, . In accordance with Corollary 3.6 this loading produces an order
response in the hard clamped plate, but according to Theorems 3.9 and 3.10 only an

order response in the free plate.
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Figure 15: Hard Clamped .

In Figure 15 one notices the behavior of in the hard clamped case. Con-
vergence for is noticed (and small values of , which is not that fast as )
although would be the correct value predicted by the analysis. But this can be ex-
plained analogously to Figure 9 by the Taylor expansion of with respect to around

and the fact that due to the boundary condition on , this Taylor series
starts with the linear term and hence altogether in with .
For the free lateral boundary conditions we first consider the behavior of as

shown in Figure 16. As predicted by the analysis here is the right choice. In
contrast to the hard clamped situation now the constant part of the Taylor series of with
respect to around is present and non-zero for free lateral boundary conditions.
In comparison with the preceding graph now the dramatic influence of the lateral boundary
condition on the higher-order response is visible which manifests itself in the discrepancy
of the values of in the considered lateral boundary conditions ( in the free
and in the hard clamped case). We emphasize that although the same loading is
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Figure 16: Free .

considered in both cases of lateral boundary conditions, the asymptotic expansion in the
hard clamped case starts with two powers of later than in the free one.
Actually the discrepancy of the -powers in the asymptotic expansions is indeed only

one power of , since one more -power is due to the different behavior of the Taylor
series of the leading generators in the two different cases of boundary conditions. This
different behavior is due to the fact that we evaluate the functionals with respect to the
scaled variable although in reality the leading generators in the expansion depend
on the physical variable . That this is indeed the explanation can be seen easily by first
subtracting from its limit value for and then dividing the result once
more by , see Figure 17. Then the curves of the corresponding different -values do
overlap. This action corresponds to a proceeding in which we neglect the constant term
in the Taylor expansion of with respect to around , hence starting with
the linear term as in the hard clamped situation. Then of course we would have
analogously to the hard clamped case, which reveals that we have indeed only one power
of deviation in the asymptotic expansions and the other power is due to the evaluation
of the functionals with respect to the ‘wrong’ variable.
The reason for the dramatic change in the asymptotic expansion depending on the lat-

eral boundary conditions is exclusively due to the presence of the Kirchhoff-Love term
in the free situation. This fact is verified by the two graphs in Figures 18-19, where we
show the behavior of the functional for hard clamped and free lateral boundary
conditions. Let us recall that the Kirchhoff-Love terms are orthogonal to and thus are
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Figure 17: Free .

invisible in . We see that apart from the boundary layer profiles which clearly
have to differ from each other, the same behavior independent of the lateral boundary con-
ditions is noticed. In both cases tends to the same constant as we move away
from the boundary layer zone which is due to the presence of .
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5 CONCLUSIONS

If the first moments of the loading are zero, the limit Kirchhoff-Love displacement van-
ishes. But the three-dimensional displacement is not zero and the knowledge of a number
of terms in the asymptotic expansion is necessary if one wants to understand the nature of
the response of the thin structure. Contrary to the standard case, the first non-zero term
combines in general a Kirchhoff-Love displacement with a boundary layer term and a dis-
placement resulting from higher-order moments of the loading.
We can quantify this fact by an evaluation of the orders of magnitude of the elastic

energy of the different terms involved in standard and higher-order re-
sponses. For a standard response, the energy of the limit Kirchhoff-Love displacement
is , like that of the further term , compare (2.6), (2.11)-(2.12), and the bound-
ary layer term has a energy. But for a response of order , the energy of
the Kirchhoff-Love displacement is , less than the energy of which
is , and still less than the energy of which is , compare (3.1). The
comparison is similar for responses of order .
Concerning the loading cases that we numerically investigated, computations were al-

ways in accordance with the structure of the first non-zero term in the asymptotics as fore-
cast by the theory. From the practical point of view, it is important to realize that bending
loading conditions may exist such that the vertical displacement does not approach infin-
ity as the thickness of the plate tends to zero (Kirchhoff-Love behavior), but may even
approach to zero.
Thus, higher-order responses yield less energetic displacements (the energy has the

same behavior than in the case when the plate is fixed on one of its faces ). But the
maximum energy is concentrated in a boundary layer term and in displacement resulting
from higher-order moments of the loading.
An important question resulting from the presented analysis is associated with dimen-

sionally reduced plate models, i.e., if one of the explicit bending loading conditions would
have been applied to a plate model, would it manifest the higher order response as the corre-
sponding 3-D plate? Unfortunately, this question remains open (except for the Kirchhoff-
Love model which one knows it cannot mimic the boundary layers zone), because the
tractions cannot be specified on dimensionally reduced plate models.
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