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PLANE WAVEGUIDES WITH CORNERS IN THE
SMALL ANGLE LIMIT

MONIQUE DAUGE AND NICOLAS RAYMOND

ABSTRACT. The plane waveguides with corners considered here are infinite V-shaped strips
with constant thickness. They are parametrized by their sole opening angle. We study the
eigenpairs of the Dirichlet Laplacian in such domains when this angle tends to 0. We provide
multi-scale asymptotics for eigenpairs associated with the lowest eigenvalues. For this, we
investigate the eigenpairs of a one-dimensional model which can be viewed as their Born-
Oppenheimer approximation. We also investigate the Dirichlet Laplacian on triangles with
sharp angles. The eigenvalue asymptotics involve powers of the cube root of the angle, while
the eigenvector asymptotics include simultaneously two scales in the triangular part, and one
scale in the straight part of the guides.

1. INTRODUCTION AND MAIN RESULTS

1.1. Motivations. Quantum waveguides refer to meso- or nanoscale wires (or thin sheets)
inside electronic devices. They can be modelled by one-electron Schrodinger operators with
potentials having high contrast in their values. In many situations, such Schrodinger operators
can be approximated by a simple Laplace operator with Dirichlet conditions on the boundary
of the wires [15]. The presence of bound states is an undesirable effect which is nevertheless
frequent and useful to predict. The same Laplace-Dirichlet problems arise for TE (transverse
electric) modes in electromagnetic waveguides [9].

This is a well-known fact, from the papers [17, 15, 10, 11], that curvature makes discrete
spectrum to appear in waveguides. Moreover the analysis of this spectrum can be accurately
performed in the thin tube limit (in dimension 2 and 3, see [15, Section 5]). In fact, this
asymptotical regime corresponds to a semiclassical limit so that the standard techniques of
[24] could have been used to investigate that problem.

Since curvature induces discrete spectrum, this is then a natural question to ask what hap-
pens in dimension 2 when there is a corner (which corresponds to infinite curvature): Does
discrete spectrum always exist in this case? This question is investigated with the L-shape
waveguide in [18] where the existence of discrete spectrum is proved. For an arbitrary angle
too, this existence is proved in [3] and an asymptotic study of the ground energy is done when
¢ goes to 5 (where 0 is the semi-opening of the waveguide). Another question which arises is
the estimate of the lowest eigenvalues in the regime ¢ — 0. This problem is analyzed in [9]
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through matched asymptotic expansions and electromagnetic experiments. This is precisely
the question we tackle in this paper: We are going to prove rigorously complete asymptotic
expansions for the eigenpairs in plane waveguides with corner (also called “broken strips™) as
6 tends to 0. We have provided in [14] numerical experiments by the finite element method for
this situation too.

For the case of dimension 3, we can cite the paper [19] which deals with the Dirichlet
Laplacian in a conical layer. In this case, there is an infinite number of eigenvalues below the
essential spectrum. The other initial motivation for the present investigation is our previous
work [4] in which we study the Neumann realization on RY = {(s,t) € R? : ¢ > 0} of the
Schrodinger operator —9? — 9?7 + (t cos 6 — s sin §)? in the regime 6 — 0 (see also [28, 25]). It
turns out that the lowest eigenfunctions of this operator are concentrated near the cancellation
line of the potential, which also enlighten the link between a confining electric potential and a
strip with Dirichlet boundary conditions.

In our way towards the analysis of plane waveguides with corners, a natural step turns out
to be the study of the Dirichlet problem on isosceles triangles with small angle. This subject
is already dealt with in [20, Theorem 1] where four-term asymptotics is proved for the first
eigenvalue, whereas a three-term asymptotics for the second eigenvalue is provided in [20,
Section 2]. In fact the spectral analysis of triangles with small angles is not the sole way
to succeed in the study of waveguides. Nevertheless, as just mentioned, this problem has a
particular interest on its own and permits to enlighten the presentation of the proofs.

Finally, in the same vein, we can mention the papers [21, 22] whose results provide two-
term asymptotics for the thin rhombi and also [5] which deals with a regular case (thin ellipse
for instance), see also [6].

1.2. The Dirichlet Laplacian on the broken guide. Here we introduce the family of broken
guides €2y, parametrized by the angle #, and give basic properties of the spectrum of the positive
Laplacian with Dirichlet condition in §24. Then we state our main result related to the behavior
as 6 — 0 of the lowest eigenvalues of these operators.

1.2.1. Basic properties. Let us denote by (x1, z5) the Cartesian coordinates of the plane and
by 0 = (0, 0) the origin. The positive Laplace operator is given by —9? — 92. The domains
of interest are the “broken waveguides” which are infinite V-shaped open sets: For any angle
0 e (O, g) we introduce
(1.1) Oy = {(l’l,[lfg) € R?: 2 tanf < |1y < <x1 + —,WH) tan@} :

sin
Note that its width is independent from 6, normalized to 7, and # represents the (half) opening
of the V, see Fig. 1. The limit case where ¢ = 7 corresponds to the straight strip (—,0) x R.
The aim of this paper is the investigation of the lowest eigenvalues of the positive Dirichlet
Laplacian Agg in the small angle limit 6 — 0.

The operator Agf; is a positive unbounded self-adjoint operator with domain

Dom(AQ") = {v € Hy(Qp) : A € L*(Q)}.
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FIGURE 1. The broken guide 2y (here § = ). Cartesian and polar coordinates.

When ¢ = 7, we simply have Dom(Ag") = H? N Hg(€). In contrast, when 6 € (0,7), the
boundary of )y is not smooth, it is polygonal. The presence of the non-convex corner with
vertex 0 is the reason for the space Dom(Ag!") to be distinct from H* N H{ (). Nevertheless
this domain can be precisely characterized as follows. Let us introduce polar coordinates (p, )
centered at the origin, with ¢ = 0 coinciding with the upper part 2o = x; tan € of the boundary
of Q. Let x be a smooth radial cutoff function with support in the region x; tan 6 < |z5| and
x = 1 in a neighborhood of the origin. We introduce the explicit singular function

(1.2) @Dfing(xl,xg) = x(p) p™/* sin 7;—@, with w =2(m —0).
Then there holds, see the classical references [27, 23]:
(1.3) Dom(AQ") = (H?> N Hy(Qp)) @ [1g]
where [5 ] denotes the space generated by 5.
We denote by jigyi..(0) its n-th Rayleigh quotient, n > 1 (here || - || is the L? norm on {2y):

. V2
Heuin(0) = inf R
P1,...xp; independent in H} () vespan{yn,.... 15} I
We gather in the following statement several important preliminary properties for the spectrum
of AQ!". All these results are proved in the literature. We briefly indicate hereafter what are the
main arguments of the proofs, and where details can be found.

Proposition 1.1. (i) If 0 = £, ABZ has no discrete spectrum. lIts essential spectrum is the
closed interval [1,+00).

(ii) For any 0 € (0, %), the essential spectrum of AQ" coincides with [1, +00).

(iii) For any 0 € (0, ), the discrete spectrum of ABZ is nonempty and finite. In other words,
ABZ; has at least one eigenvalue below 1, but a finite number of them.

(iv) For any 0 € (0, 5) and any eigenvalue in the discrete spectrum of Agf;, the associated
eigenvectors 1 are even with respect to the horizontal axis: \(xq, —x3) = ¥(x1, x2).

(v) For any n > 1, the function 0 — pigi(0) is continuous and non decreasing on (0, 7).
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(vi) For any n > 1 and 0 such that jiuin(60) < 1, the function 6 — 16y, (0) is strictly
increasing on (0, 6.

Proof. (i) is a clear consequence of the separation of variables in (2, /5 = (—m,0) x R.

(ii) is a consequence of the fact that outside a compact set, {2y is the union of two strips
isometric to (0, +00) x (0, ).

(ii1) The fact that there are eigenvalues below the essential spectrum is known since [3]. See
also in [ 14, §4] another proof based on a more general argument developed in [15, 10, 11] for
waveguides with curvature. The fact that there is only a finite number of such eigenvalues is
proved in [14, §5] using a similar method as [30, Theorem 2.1].

(iv) Since the domain and the operator are invariant by the symmetry x5 — —x5, the eigen-
vectors are even of odd with respect to the horizontal axis. An argument of monotonicity for
Dirichlet eigenvalues excludes the odd eigenvectors, see [14, §2.2] for details.

(v) The Rayleigh quotients are non-decreasing functions of 6 as a consequence of the pre-
vious point and a suitable change of variable which transform the operator —A in a domain
depending on 6 into an operator depending on # on a fixed domain, see [14, §3] for details.

(vi) If fGuin(fo) < 1, by points (v) and (ii), f1cuin () is an eigenvalue for all 6 € (0, 6]. The
same proof as in point (v) then shows that 1i¢,; () depend in an analytic way from 6 in (0, 6).
In addition, anticipating the result of Theorem 1.2, we find that the function  — gy (0) is
not constant so that we deduce from (v) that it is strictly increasing where it is analytic. 0

1.2.2. Statement of the main result. One of the main results of this paper is a complete as-
ymptotic expansion' of the eigenvalues figyi,(#) in powers of 6'/3. To state this result, we

need the following notation: For n > 1, let za(n) be the n-th zero of the inverse Airy function
A(z) = Ai(—z).

Theorem 1.2. For all Ny, there exists 0y > 0, such that for all 6 € (0, 6], ABZ has at least
Ny eigenvalues. These eigenvalues admit the expansions:
; . 1 _
Huin(0) 050 ZO’Y]%”HJ/?’ with V(%n =7 an =0, and %Aﬂ = 2(47?\/5) 2/3ZA(72,)
j

and the term of order j = 3 is not zero. The corresponding eigenvectors have multi-scale
expansions (see Section 6.3.1 for details).

1.3. Related questions. Inthe small angle limit the vertical line z; = 0 appears as a right bar-
rier for eigenmodes, cf. the computations in [14, §8]. In a first approach, this can be explained
by a one-dimensional approximation in the spirit of the Born-Oppenheimer approximation: It
is obtained by replacing —8%2 in the expression of ABS by its lowest eigenvalue on each slice
of )y at fixed x1. The effective potential thus obtained has a triangular well at z; = 0 (on the
left) and a barrier on the right. That is why it is quite natural to study first a similar 1D model
operator (see Section 3). The main interest is to exhibit for such a simple situation how the

! By the notation A(6) o > >0 ;077 (with a positive p) we mean that for any positive integer J we have
—0 =

the estimate
IA0) = Yo<j< s i677] < C;07FP for 6 small enough.
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zeros of the Airy function come into play and how two distinct scales are necessary to describe
eigenmodes. Moreover, as a by-product of our proofs, it turns out that the first two terms in

the eigenvalue asymptotics for Agg and its 1D approximation coincide.

Qg Q@

Tl’ig

FIGURE 2. Broken guide {2y with associated triangle Triy and sector Sy.

In the proof of Theorem 1.2, we will have to perform an accurate analysis of the spectral gap
separating the eigenvalues. This gap, as stated in Theorem 1.2, is of order #*/% and is related
to the difference between zeros of the Airy function (in other words the gap is determined as
soon as we have proved a two-term expansion). In order to succeed in the investigation, we
will have to estimate this gap by comparing with a simpler spectral problem. Here we have
to choose between several possibilities: Either we could compare with the spectrum of the
isosceles triangle Trip (with Dirichlet conditions), or we could compare with the spectrum of
the sector Sy (with Dirichlet conditions), see Fig. 2. The case of the sector is well-known in the
small angle limit (we find that the first two terms in the expansion of the eigenvalues coincide
with that of 116, (), see [16, 20]). Nevertheless, we have preferred to analyze the problem of
the triangle which is less known and which has an interest on its own (see [20]). In addition,
as it will be seen in the analysis, the reduction to the triangle (through estimates of Agmon
type) is slightly easier. A posteriori, the first two terms of the eigenvalues are the same as for
the sector. Finally, the option to provide a full investigation of the triangle permits to divide
difficulties inherent to each problem. This pedagogic perspective is also one of the motivations
to study a 1D model operator which roughly describes the spectral behavior of the waveguide.

1.4. Organization of the paper. In Section 2, we discuss the different reductions to sim-
plified operators and introduce the main notation used in this paper. We state all our results
related to eigenvalue asymptotics. In Section 3 we investigate through a construction of quasi-
modes and an ODE analysis the one dimensional toy model — 292+ W with the discontinuous
triangular potential W equal to —z when 2z < 0 and 1 when 2z > 0. In Section 4 we study a
one dimensional approximation of the Dirichlet problem on a triangle with small angle. By
Agmon estimates and a projection method, this leads in Section 5 to results on triangles in the
small angle limit. Finally, in Section 6, we perform a construction of quasimodes adapted to
waveguides and introduce in particular Dirichlet-to-Neumann operators to solve a transmis-
sion problem; we complete the proof by comparing with the triangle case. We conclude our
paper by discussing relations between the eigenvector asymptotics and the reentrant corner



hal-00663021, version 3 - 16 Oct 2012

6 MONIQUE DAUGE AND NICOLAS RAYMOND

singularity. We also discuss the extension of our results on X-shaped waveguides (crossing
straight wires).

2. REDUCTIONS

This section is devoted to the introduction of reduced and simplified operators that we will
consider throughout this paper. First we will use the symmetry of the waveguide to reduce
the investigation to an half-guide. This first simplification makes a discontinuity in boundary
conditions to appear at the origin O (see Figure 3). In fact, as will be seen later, this jump in
boundary conditions traps the eigenfunctions, which are localized in the left part of the guide.
Due to this localization, it makes sense to tackle the Dirichlet Laplacian on triangles Trig. We
also introduce a 1D approximation of Born-Oppenheimer type for the guides and the triangles.
This helps to understand the concentration of eigenfunctions near the origin. Finally we state
our results concerning eigenvalue asymptotics for all these model problems.

2.1. Half-guide and triangles.

2.1.1. The half-guide. As a consequence of the parity properties of the eigenvectors of ADZ,
cf. point (iv) of Proposition 1.1, we can reduce the spectral problem to the half-guide

2.1) Q;:{(l’l,xg) € Qy: 29 >0}
We define the Dirichlet part of the boundary by dp;, €2y = 92y N 9L, and the corresponding
variational space (the form domain)

HI%/I|x<Q;-) = {Qﬂ € HI(Q;_) : 1ﬂ =0 on 8DirQ;_}.

Mix

Then the new operator of interest, denoted by Am ,
0

is the Laplacian with mixed Dirichlet-

Neumann conditions on €2 . Its domain is:

Dom(ANY) = {1 € Hy (%) : Ay € L*(f) and o0 =0 on x5 = 0}.

Qg
Then the operators ABS and Ag"ﬁ have the same eigenvalues below 1 and the eigenvectors of
0

the latter are the restriction to 2 of the former.

2.1.2. Rescaling of the half-guide. In order to analyze the asymptotics  — 0, it is useful to
rescale the integration domain and transfer the dependence on 6 into the coefficients of the
operator. For this reason, let us perform the following linear change of coordinates:

(2.2) T =x1V2sin0, y=1z,v2cos8,

which maps Q onto Q:rr/ , Which will serve as reference domain, see Fig. 3. That is why we
set for simplicity

2.3) Q=0F,, i =00i 2, and Hy,(Q) = { € H(Q): ¢ =0 on JpiQ}.
Then, Ag‘g is unitarily equivalent to the operator defined on {2 by:

(2.4) Deui() := —25sin’0 92 — 2 cos*0 0,
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Neumann Neumann

FIGURE 3. The half-guide Q2 for § = Z and the reference domain ).

with Neumann condition on y = 0 and Dirichlet everywhere else on the boundary of 2. We
let h = tan @ ; after a division by 2 cos? ), we get the new operator:

202 2
(2.5) Leui(h) = —h70; — 8y,
with domain:

Dom(Laui(h)) = {¢ € Hyy () : Leui(h)y) € L*(Q) and dyp =0 on y = 0}.

2.1.3. The triangles. We will also need to introduce the triangular end of this waveguide:
(2.6) Trig = {(1’1,1172) ceQy: 1 < 0}

and the corresponding Dirichlet Laplacian denoted by A%{G.

Prior to the investigation of Lg,i(h), we are to going to study Lr;(h) which denotes the
same operator —h*J; — 97 with Dirichlet conditions on the triangular end Tri of the model
waveguide €24

(2.7) Tri:{(x,y)€R2:—7r\/§<m<0and\y\ <x+7r\/§}.

2.2. Born-Oppenheimer approximation and models. As mentioned at the beginning of this
section, we will use a projection method to analyze Lg,i(h). This method is based on the
original idea of Born and Oppenheimer (see [7]) which was used to study the Hamiltonian of
molecules (see [12, 29, 26]). By analogy with this situation, we can say that, in this paper,
x plays the role of the nuclei variables whereas y plays the role of the electrons and where h
would represent a mass ratio. The variable x is sometimes said to be the slow variable and y
the fast variable. Therefore we will broaden the ”molecular idea” to our waveguide situation.

2.2.1. Schridinger operators in one dimension. In the analysis of Lti(h) and Lg,(h), we
will see that its so-called Born-Oppenheimer approximation will play an important role:

(2.8a) Hpo,cu(h) = —h°02 + V(x),
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where
- (—7v3,0)
— — whenz € (—7mv2,0),
(2.8b) V(r) = Mw+f¢®2
3 when x > 0.

Remark 2.1. This “approximation” will be justified afterwards and will not be directly used
in the investigation. Nevertheless it already gives a non trivial insight of some fine structures
appearing in the analysis (such as the different scalings and the transmission problem between
the left and right parts of the waveguide).

This effective potential V' is obtained by replacing —85 in the expression of L, (h) by its
lowest eigenvalue on each slice of €2 at fixed . When h goes to zero, the behavior of the
ground eigenpairs of Hgo cui(h) is driven by the structure of the potential near its minimum,
attained at x = 0: In a neighborhood of z = 0, V' can be approximated by its left and right
tangents, which provides the approximate potential V,p, defined by

1 1
- — xr whenzx € (—mv2,0),
B 8  4m/2 ( V2 )
(2.9) Vapp(2) = .
3 when x > 0.

After the change of variables z = \/2x/(37) and the change of parameter k = 4h/(37/3),
we find the correspondence

3 1
(2.10) —W%+%M@~§%JMM@H§

where the toy model operator Hto, (k)[2; 0,] is defined as:

—z when z <0,

(2.11) Hioy(K) = —K*02 +W(z) with W(z) = { 1 whenz > 0.

This toy model invites us to recall the properties of the Airy operator.

2.2.2. The Airy function and its zeros. Let us recall the basic properties of the Airy operator,
i.e. the Dirichlet realization on L?(R_) of the operator —9? — 2. The electric potential tending
to infinity when 2 — —o0, this positive operator has compact resolvent. Thus, its spectrum
can be described as an increasing sequence of eigenvalues tending to +o00. Let us use the
traditional notation Ai for the Airy function. We recall that it satisfies:

—Ai" + zAi = 0.

All along this paper, we will use A the reverse Airy function, i.e. A(z) = Ai(—z). We recall
that A does not vanish on R_, is exponentially decreasing when z — —oco and that its zeros
(which are simple) form an increasing sequence of positive numbers tending to +oco.

Notation 2.2. The n-th zero of A are denoted by za(n).
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If (X, ¢,) is an eigenpair of the Airy operator, we have —¢y — z1), = A, hence the equation
—Y — (z+ A)ihn = 0. We deduce that there exists a number ¢(\) so that:

Ua(z) = c(NA(z + ).

With those remarks, we can see that the spectrum of the Airy operator is {za(n),n > 1} and
these eigenvalues are simple.

2.2.3. Born-Oppenheimer approximation on the triangle. Finally, let us introduce the Dirich-
let realization on L?((—m+/2,0)) of:

7T2

2.12 Heomi(h) = —h*0? + ————.

(2.12) 50,7 () 4(x 4 7/2)2

This operator is the Born-Oppenheimer “approximation” of the operator L+;(h) on the triangle
Tri. The proof that it is actually an approximation will be done in Subsection 5.4 through
the Feshbach projection: Indeed the operator Hgo 1+i(h) has the same two-term eigenvalue
asymptotics as the operator L+,;(h) on the triangle.

2.3. Asymptotic expansions of eigenvalues. We are now in position to state the results on
eigenvalue expansion that we have proved in this paper.

2.3.1. One-dimensional models. The lowest eigenvalues of the toy model (2.11) admit ana-
lytic expansions with respect to '/ (when & is small enough):

Theorem 2.3. For all Ny € N, there exists kg > 0 such that, for k € (0, ko), there exists
at least Ny eigenvalues of Hioy (k) below 1. Denoting by Aoy (k) the increasing sequence of
these eigenvalues, we have the converging expansions for 1 < n < Ny and k small enough:

+oo
Aoy (k) = K%/ Z i3 with first coefficient ag, = 2a(n).
=0
The corresponding eigenvectors have expansions in powers of k'/3 with the scales z/k*/* when

z < 0and z/h when z > 0, see (3.7)-(3.8).

As already mentioned we will meet in our investigation the Born-Oppenheimer approxima-
tions of L,i(h) and Lg,i(h). In order to compare the different asymptotics, let us state the
result about the eigenvalues of Hgo 1i(h):

~ . ~ 1 ~
213)  Asotin(h) ~ > Binh¥/* with By, = < and B1, = (47V2) " za(n),
h—0 = 8

and about the eigenvalues of Hgo cui(h):

. 1
(2.14) Xgocuin(h) ~ > 4h?? with 4o, = =, A1, = 0, and 4a,, = (47v/2) 24 (n).
h—0 = 8

Let us point out that this latter estimate will not be used to prove our main theorem (see
Theorem 2.6) but somehow reflects that Hgo Gui(%) is an approximation of Ly (h).
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2.3.2. Triangles. The lowest eigenvalues of the triangle Triy admit expansions at any order in
powers of §'/3. We first state the result for the scaled operator L;(h) introduced in §2.1.3:

Theorem 2.4. The eigenvalues of Lti(h), denoted by At ,(h), admit the expansions:
, 1
)\Tri,n(h) ~ Zﬁj,thB with ﬁo,n =3 ﬁl,n =0, and ﬁ2,n = (47T\/§)_2/3ZA(71)7
h—0 = 8

the terms of odd rank being zero for j < 8. The corresponding eigenvectors have expansions
in powers of h'/> with the two scales x/h*® and x/h, see (5.14).

In terms of the physical domain Trig, we deduce immediately from the previous theorem
that the eigenvalues of A%{e, denoted by fi1ii ,(0), admit the expansions:

. . 1 _
prin(0) ~ D BLO with B =2, 81, =0, and B3, =2(4mV2) " za(n),
320

the coefficients jA,n having the same properties as the 3, ,,. Performing the dilatation:
i’l = Sin29.ﬁ(31 i’g = sin29x2,

we transform Triy into a new isosceles triangle with angle oo = 26 and two sides with length ¢ =
2m. Let us denote by 7 () its Dirichlet eigenvalues. It is easy to see that the eigenvalues
satisfy the relation:

prvin(0) = (sin @) pgy; (@),
so that we find back the result of [20, Theorem 1].

Remark 2.5. As it will be seen in the proof, the existence of a non-zero coefficient f3g ,, at the
order 9 in the expansion of Ay, (h) reduces to the evaluation of an integral, see (5.12). If
Bo.n # 0, there is a nonzero odd term after O(«*/%) in the asymptotics of p— , (c).

2.3.3. Broken guides. Finally, we state the approximation result for the eigenvalues of the
scaled operator Lg,;(h) introduced in (2.5):

Theorem 2.6. For all Ny, there exists hg > 0, such that for h € (0, hg) the N first eigenvalues
of Lcui(h) exist. These eigenvalues, denoted by Agyin(h), admit the expansions:

' 1
AGuin(h) ~ Zvjmhﬂg with Yon = =, Yin =0, and vy, = (47v2)"2325(n)
h=0 o= 8

and the term of order h is not zero. The corresponding eigenvectors have expansions in powers
of h'/® with the scale x/h when x > 0, and both scales x/h*® and x/h when x < 0, see (6.12).

Deducing the eigenvalues in the waveguide {2y (Theorem 1.2) is an obvious consequence of
this theorem.
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2.4. Notation and terminology. The L? norm will always be denoted by || - ||, in general
without mention of the integration domain. For a subset S C R and a point p € R, dist(.S, p)
is the distance between S and p, i.e. infseg |s — p|.

We denote by G(A) the spectrum of a self-adjoint operator A, by Gg(A) its essential spec-
trum, and by Gy;s(A) its discrete spectrum. An eigenmode (or eigenpair) of A is a pair (\, )
with ¢ in the domain of A, such that Ay = A\; then A is the eigenvalue and 1) the eigenvector.
A quasimode for A is a pair (), 1)) such that || Ay — M| < el|+)|| with e small; X is the quasi-

eigenvalue and v the quasi-eigenvector. The spectral theorem implies that dist(S(A), \) < e.

Domain Notation Variables Main operators
Scaled Triangle | Tri (2.7) z,y) 22) | Lyi(h) = —h*0; — 02

Rectangle Rec (5.2) u,t) (5.1) | Lrec(h) (5.3)
Half-strip Hst = R_ x (—=1,1) | (s, 1) (5.5) | X2, Lo;h*/3 (5.7)
0,1) (5.5) | X2, Nyshi (5.8)

Scaled half-guide | 2 (2.3)
Left half-strip Hlef = R_ x (0,1)

z,y) (2.2) | Lewi(h) = —h?*0% — 0}
s,t) >_; L2;h*/% Notation 6.2
t) >, N5'h/ Notation 6.2
,7) (6.2) | >, N3*h? Notation 6.2

Right half-strip | Hrig = R, x (0,1)

TABLE 1. Main notation for domains, variables and operators.

3. ToYy MODEL IN ONE DIMENSION

This subsection is devoted to the proof of Theorem 2.3 devoted to the spectral asymptotics
of the operator M., () defined in (2.11). This proof is divided into two steps. First, we
construct quasimodes for M., (), and second, we show that the lowest quasi-eigenvalues are
the approximations of the lowest eigenvalues of Hyoy () of the same rank.

3.1. Construction of quasimodes. In this section we prove in particular the following:

Proposition 3.1. For all Ny € N*, there exists ko > 0 and C' > 0 such that for k € (0, kg):

(3.1) dist (Sais(Hroy (), H2/3ZA(7L)) <Ck, n=1,---Ny.

Proof. The basic tool for the proof is the construction of quasimodes and the application of the
spectral theorem. Convenient quasimodes are given by power series in x'/3 of profiles at the
scales

3.2) s=#k"232 when 2 <0 (left) and o =#k"'z when z >0 (right).



hal-00663021, version 3 - 16 Oct 2012

12 MONIQUE DAUGE AND NICOLAS RAYMOND

More precisely we look for quasi-eigenfunctions ), in the form:

>0 Yier,j () kI3 when z <0
V() ~ - »

ijo (brig,j(a) K/ when 2 >0,
and quasi-eigenvalues in the form:

(3.4) a, ~ K3 Zaj/{j/g as Kk — 0.
j=0

(3.3)

The continuity conditions at z = 0 provide the formal identities:
{ ijo Wier,;(0) R/ = ijo Drig,;(0) K/
k2 ijo 95 Wet,5(0) AN ijo 95 Prig,; (0) K3,

and the formal eigen-equation is

(3.5)

(3.6) — K21(2) + W (2)Ye(2) = antle(2) 2z €R.
e Determination of . Collecting the terms in x*/3 in (3.6) and using (3.3)-(3.5) we obtain:
— @ 0(0) + Prigo(o) =0 for 0 >0, and @y, ,(0) =0,
{ —\Iff;f’o(s) — 5Wer0(s) = apWiero(s) for s <0, and Wi o(0) = Pyigo(0).

We deduce first that @,z 0 = 0 and thus V)£ o(0) = 0. This implies that ay is a zero of the
reverse Airy function A. At this stage we can choose a positive integer n, take ag = za(n) and
Wer o as the corresponding normalized eigenfunction gy,).

e Determination of ;. Collecting the terms in x, we get the equations:
— Py + Prig1 =0 foro >0, and <I>’rig,1(0) = \Iffefvo((]),
—Wie 1 — $Vier1 — aWier1 = a1 Wierg fors <0, and Wier1(0) = Pyig 1 (0).

We find first:

(I)rig,l(a) = —\I/fef’O(O)e_”.
Moreover we obtain the existence of a number a; and of an exponentially decreasing Wief ;
solution of the second equation with the help of the following lemma:

Lemma 3.2. Let n > 1. We denote by g,y an eigenvector of the operator —0? — s associated
with the eigenvalue zp(n) and normalized in L>(R_). Let f = f(s) be a real function with
exponential decay and let c € R. Then there exists a unique o € R such that the problem:

(—0? P zA(n)) g=[f+agm in R_, with g(0) = c,

has a solution with exponential decay. There holds
0
a=cg,y0) - / f(3) gy (s) ds.

e Further terms. A similar procedure can be reproduced at each step, providing the construc-
tion of @ ;, then «r; and Vi 5, for any j > 2.
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e Expressions for quasimodes. Relying on the previous iterative constructions we can set for
all integer J > 0

J+2 .
Z qjhﬂj(m) K)j/g when z S 0
0 R
G W) =1 9
Z Drig (i> K%+ Wief, 742(0) K3z X<E) when z >0,
K ’ K
j=0

where x is a smooth cutoff function equal to 1 near 0. By construction, 1/),[.;]] and its first
derivative are continuous in z = 0. Moreover 1&,&]] is exponentially decreasing as z — +o0.
Therefore it belongs to the domain of H4.y (). With this remark and taking the error introduced
by x into account, we get for all ko > 0:

J+2
(3.8) H (Htoy(li) — 523 (2a(n) + Z ajmJ/?’))szﬂ

i=1

’ < C(J,n, ko) K3, Yk < k.

Hence

| (Heoy (k) — /ﬁz/ng(n)) Uil € Cn, ko) 5, Yk < ko,
and the spectral theorem applies. In particular, for ~ small enough, the discrete spectrum of
Hioy (k) is not empty since Sess(Hioy (k) = [1, +00). O

Remark 3.3. We have proved in fact more than Proposition 3.1. The expression (3.7) of quasi-
modes and corresponding estimates (3.8) will provide an asymptotic expansion for the eigen-
vectors of Hiey (), once one knows Proposition 3.4 below.

3.2. Localization of the lowest eigenvalues. We now want to refine Proposition 3.1 by prov-
ing that the Ay ,,(k) are power series with respect to x!/% and whose coefficients are given by
(3.4). We begin to prove the following proposition:

Proposition 3.4. For all Ny € N*, there exists ko > 0 and C' > 0 such that for € (0, kg):
(3.9) Meoyn(K) — 6732a(n)| < Ck, n=1,-- N

Proof. Let Ny € N*. As a consequence of Proposition 3.1, we have in particular that, for all
k € (0, ko), the first N eigenvalues Aoy () (denoted by A, for shortness) exist and satisfy:
(3.10) Aul < C(No) 2, k€ (0,/0), n=1,--Np.

Let us denote by v, an eigenfunction associated with \,, so that (¢, ,,,) = 0 if n # m. For
z < 0 we have:

—f&px — 2 = A\pUn.

Thus, there exists a coefficient ¢, (k) such that:
(3.11) Un(2) = cn(K)A(K™2P2 4+ k723),), z<0.
For z > ( we have the equation —k*!! = \,1,,, hence the existence of d,,(k) such that:

(3.12) U (2) = dp(K)e™™ VI 250
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The transmission conditions at z = 0 imply:
n(R)AKTY3N) = dn(K),  cn(k)RYPA (K723N,) = —dn (k)1 — .
This implies:

(1/3

(313) A(/{_2/3)\n) = —ﬁ

AN (k723)\,).
We infer:
IA(K™23N,)| < C(N) 3.

Since k~%/3),, is bounded, see (3.10), and the zeros of the Airy function being isolated and
simple, we deduce that for all n € {1,---, Ny}, there exists p = p(n, ) such that:

7250 = za(p)| < C(No)w'™.

Note that p is bounded too. It remains to prove that p = n for x small enough. In view
of Proposition 3.1, it suffices now to prove than if s is small enough and n # m (with n,
m < Np), the integers p(n, k) and p(m, k) are distinct. Let us prove this by contradiction.
Since the considered sets of integers n, m and p are finite, the negation of what we want to
prove can be written as
dm,n,p €N, Vk; >0, drk € (0,r) suchthat p(m,k)=p(n,k)=np.
The eigenfunctions can be taken in the form:
) A(k=232 + k723)\) when 2 <0
Yi(z) = B for 57 =m,n,
A(k7230,) e #VITA when 2> 0,

and we have
(W, ) = / A(™232 + k72BN )AGR32 + k723N,) dz + O(K°?) = 0.
2<0
A rescaling leads to:

S C(N(])H

/ Az + K72BN) Az 4+ 5723 N\,) dz
2<0

By assumption, k22X, = za(p) + O(k'/?) and k= 23\,, = za(p) + O(k/?). For j = n, m,
A being Lipschitz on (—oo, M] for all M, there exists D(Ny) > 0 such that for all z < 0:

A(z + £723)) — A(z + za(p))| < D(No)&'3, for j=m,n,
so that:
/ Az 4+ 72BN )A(z + k723 N,) dz — / A%(z + 24(p)) dz
2<0 z<0

We deduce:

S D(NQ)K,I/s.

Vi1 >0, 3k € (0,x,) such that < D(Ny)&'/?

/ (et a(p) d

which leads to a contradiction and ends the proof of Proposition 3.4. 0
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3.3. Proof of Theorem 2.3. Let us observe that Proposition 3.4 allows to separate the first /Vy
eigenvalues when x < kg. Let us write § = x'/3. We let:

so that A, (6) is uniformly bounded forn = 1,..., Ny and § < r,

1.2

An(8) 1= 62 oy (0%),
1/3

0.8

0.6

0.4

0.2

— — — Essential spectrum

First eigenvalues - 4
‘‘‘‘‘ Analytic extension

FIGURE 4.

The first two eigenvalues Aoy,1 and Aoy 2

0.5 1 15

as functions of § = '/

3

1.01 T T T
— — — Essential spectrum
First eigenvalue
__________________________________ Analytic extension
Y 1.005 H

— — - Essential spectrum
Second eigenvalue
‘‘‘‘‘ Analytic extension

0.995

0.99

0.985

— e - - - - -]

0.88
048 049 05 051 052 053 054 055

FIGURE 5. The eigenvalues Ay 1 (left) and Ay 2 (right) as functions of § =

0.98
056 0.57 058 094 095 096 097 098 0.99

/3, zoom near the bottom of the essential spectrum.

We rewrite (3.13) in the form:

(3.14)

ACLL(5)) = -

1

1.01

1.02 103 104
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We know that A is analytic and, using again the simplicity of its zeros, we can apply the
analytic implicit function theorem near 6 = 0 and for all n € {1,---, Ny}, which, together
with (3.7)-(3.8) and Proposition 3.4, ends the proof of Theorem 2.3.

Remark 3.5. From (3.14), we can deduce that the 5\n(5 ) are solutions of the analytic equation:

(3.15) (1= 02N)AN)2 = 82A (V)2 =0
This equation provides an analytic extension of the functions ¢ 5\”(5), hence of Aoy, =

82X, (0), in the sense of analytic curves. We represent in Figures 4 and 5 the first two eigenval-
ues and their analytic extensions. Taking the continuity and monotonicity of the eigenvalues
with respect to J into account, we can see that any branch which starts by 6 — \(0) =
52zp + O(63) represents an eigenvalue while A\(§) is less that 1. Beyond 1, the Rayleigh quo-
tient stays = 1, but the curve A(9) has an analytic extension as a continuation of a branch of
roots of the equation (3.15).

4. BORN-OPPENHEIMER APPROXIMATION FOR THE TRIANGLE

This section is devoted to the analysis of Hgo 1i(h) defined in (2.12). We are going to
prove:

Theorem 4.1. The eigenvalues of Hgo 1i(h), denoted by Ao 1vi.n(h), admit the expansions:
. . . 1 .
ABo,Trin(h) ~ Zﬁj,nhzj/?’, with  fon = = and By, = (47v2)"22a(n).
h—0 = 8

Again, the proof is essentially organized in two steps. The first step is the construction of
quasimodes which proves that quasi-eigenvalues are close to true eigenvalues. The second step
uses Agmon type exponential localization for true eigenvectors to prove that true eigenvalues
are close to quasi-eigenvalues.

4.1. Quasimodes. In this subsection, we construct quasimodes and prove the proposition:

Proposition 4.2. For all Ny € N*, there exists hg > 0 and C' > 0 such that for h € (0, hg):

4.1) dist <6dis(HBO,Tri(h>>7 % + h2/3(477'\/§)_2/3ZA(n)) <ChY3, n=1,---N,.

Proof. The proper scale in z is h?/3 as can be seen by approximating the potential in z = 0
by its tangent and recognizing the Airy operator. Thus, we will construct quasimodes vy, as
functions of s = h~2/3z: We look for quasimodes (A, ¢;,) in the form of series

Ap ~ Zéjh2j/3 and ¢h(l’> ~ Z \I]j(s>h2j/3
320 320

in order to solve Hgo 1ri(h)Yn = Antly in the sense of formal series. A Taylor expansion at
x = 0 of the potential V' yields:

; 1 1
Heo1i(h) ~ —h*02 + E Viel, with Vyp=- and V} = ———,
BO,T( ) = J 0 3 1 477-\/5
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which, in s variable, becomes
1 : :
(4.2) Hsomi(h) ~ g + W2 (= 05+ Vis) + > WPVl
Jj=2
The construction of the terms By and W, is similar (even simpler) than for Proposition 3.1.

e The expansion (4.2) yields that 5, = L, and collecting the terms in 2%/® and we obtain:

43 — W(s) — ——Wg(s) = B1Wo(s) Vs <0 and Wo(0) = 0.

(4.3) o(s) 3 o(s) = B1%o(s) 0(0)

Thus for any chosen positive integer n we can take 3 = (47wv/2)~2/325(n) together with
(4.4) Wo(s) = A((4nv2) 35 + za(n)).

e Collecting the terms in h*/? we obtain

—U () + VisUy(s) — (101 (s) = B0y — Vas® Ty Vs <0 and Uy(0) = 0.
The compatibility condition states that B2<\I/0, Vo) = Vo(s?Wy, ¥y). This determines 3y and
implies the existence of a unique solution ¥; € L*(R_) such that (¥, ¥g) = 0.

e This procedure can be continued at any order and determines (Bj, U,) at each step. This
construction depends on the choice of the integer n and can be done for any positive integer n.

e To conclude, we consider a smooth non-negative cutoff function \'¢ satisfying:

4.5) () =1 forzxe <— +oo> and () =0 forz < —m,

s
\/éa

and introduce for any .J > 0 the quasimode (53, L, m) with:

M“

(4.6) Z ﬁ h2j/3 and w Ief \I/] <h2/3>h2y/3

Thanks to this cut-off ¢h satisfies Dirichlet condition in —7/2, and in 0 by construction.

Using the exponential decay of x +— ‘lfj(h‘z/ 32:) and the definition of W; and Bj, we get for
any hy > 0 the existence of C'(n, J, hy) > 0 such that:

4.7) H(HBO,T,i(h)— LJ])@{]H < C(n, J, ho) 2D ik € (0, o).

J=0

This proves the existence of quasimodes at any order and ends the proof of Proposition4.2. [

4.2. Agmon estimates. In this subsection, we prove Agmon estimates (see [1, 2]) for the
eigenfunctions of Hgo 1i(h). The role of Agmon estimates is to replace an explicit knowledge
of the solution at infinity like in (3.11)-(3.12) by suboptimal exponential estimates.

Here we prove two kinds of estimates: near + = 0 and near x = —7+/2. In the analysis of
triangles (cf. Section 5.2), we will meet the same estimates. Let us consider an eigenpair (\, )
of Hgo, 1ri(h). The Agmon identity writes, for some Lipschitz function @ to be determined:

0
(4.8) / R%10,(e®V)|? + V(2)|e® > — h2|d'e®|? — N (e®)|* dz = 0.

—7V2
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It is a consequence of Proposition 4.2 that the lowest N, eigenvalues \ of Hgo 1+ (h) satisfy:
(4.9) A — & <Toh?,

for some positive constant ['y depending on V.

4.2.1. Agmon estimates near x = (. We use (4.8) and the convexity of V' to get the inequality:

0 1 x
2 D2 @ )12 215 P2 AN
/_7r 2h |0 (e®Y)|* + (8 1 \/5) le®|* — h*|P"e®|* — A|(e®y)|"dz <0

With (4.9), we deduce:

0
/ - 9“"ﬁ|e‘1>z/;|2 — R2®e?|? — Ch23| (%) 2 da < 0.
S ¥y

This leads to the choice
®(z) = nh”a]?,
for a number 77 > 0 to be chosen small enough. We get:
‘ || 9 , 2/3 AP
/_wﬁ(m_in |z| — Ch )|e Y|*dx <0.
For 7 small enough, we obtain the existence of 77 > 0 such that:

0
/ (7la] — CR¥3) |2 dx < .

—V2

Splitting the integral into the parts —7v/2 < 2 < —Dh?? (where ® is unbounded) and
—Dh?? < & < 0 (where ® is bounded) with 7D — C' = d > 0, we find:

—Dh?/3 —Dh2/3
/ d h*3 ey do < / (i|z| — Ch*?) |e®y|* dw

™2 —7mV2

0

0
g/ (7|z] + Ch*3) |e®y? do < éh2/3/ |2 d.

—Dh2/3 —Dh2/3
We deduce the proposition:
Proposition 4.3. Let 'y > 0. There exist hg > 0, Cy > 0 and 1y > 0 such that for h € (0, hy)
and all eigenpair (\,vV)) of Heo 1i(h) satisfying |\ — X| < Toh®/?, we have:

0
/ enoh’l\x\3/2(|¢|2 + |h2/38xw|2) dz < Coll9]|*.

—V2
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4.2.2. Agmon estimates near x = —mv2. We use again (4.8) and (4.9):
0 2 1
h20, (e®)|? + (W———) |2 — 2| @ e — Ch¥3|(e® )2 da < 0.
P (T = ) - R - CH et e <
We take:
®(x) = —ph~'In (D_l(x + 7T\/§)),
where we choose p € (0, ) so that there holds:

0
/ (@ )@ VD) - ;) P2 — O3 ()2 de < 0,
_7“/5

and D > 0 large enough so that
2

T 2)D2 L
< TR 8~
Then we split the integral into the parts —7v/2 < z < —7/2 + D (where ® is unbounded)

and —mv/2 4+ D < 2z < 0 (where ® is bounded) and the same procedure as in the previous
paragraph leads to the proposition:

Proposition 4.4. Let I'y > 0 and py € (0,%). There exist hg > 0, Cy > 0 such that for any
h € (0, ho) and all eigenpair (X, ¥) of Heo 1i(h) satisfying |\ — | < Toh*/®, we have:

0
/ (z+ 72 ([ + [0 0,0f2) de < Gl
—V2

4.3. Proof of Theorem 4.1. Let us fix N, and consider the N, first eigenvalues of Hgo 1i(h)
denoted by A\, = Ao Trin(h). Foreach n € {1,--- Ny}, we choose a normalized 1), in the
eigenspace of )\, so that (¢, ¥,,) = 0 for n # m. Let us introduce the space:

QENO(h) = Spaﬂ(?/)b cee 777DN0)-
We recall that, for h small enough, (4.9) holds. We can write:

HBO,Tri(h'>¢n = )\rﬂbn
so that (the 1), are orthogonal in L? and for the quadratic form), for all ) € &y, (h):

Qeo.min(¥) < An [0

For ¢, small enough we introduce a smooth cutoff function  being 0 for |z + 71/2| < ¢( and
1 for | + mv/2| > 2. Proposition 4.4 implies that:

Qeo.mrin(x¥) < (Any + O(hX))|Ixv|%.

Then, the convexity of the potential allows to write:

1 1
<(_h2ag v g) w,w> < (oo + O e

where we have used the convexity. The dimension of & y, (h) is Iy so that, with the properties
of the Airy operator and the mini-max principle, we get:

1
3 + (4mV2) 72 (No) < Ay + O(R™).
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This is true for all fixed /Vy and, combined with Proposition 4.2, provides the separation of the
lowest eigenvalues of Hgo 1i(h):

1
Neoin(h) = (5 + ATV zpm) )| < CRY.

Finally, with (4.6)-(4.7), we obtain Theorem 4.1.

4.4. Born-Oppenheimer approximation for the waveguide. Let us end this section by an
informal analysis of the spectrum of the operator Hgo cui(2) defined in (2.8). This investiga-
tion is not necessary in our way to prove Theorem 2.6, but it already gives a flavor of the ideas
to analyze L, (h). We can obtain the asymptotic expansions of the eigenvalues of Hgo cui(h)
by combining the analysis for H;, (h) and for Hgo 1i(h). Indeed we can perform a quasimode
construction like for Hqoy(h) and Hgo 1+i(h) by solving a transmission problem between the
negative half-axis and the positive half-axis. For that purpose, we establish the following Ag-
mon type estimate which states that the eigenfunctions of Hgo cui(h) do not penetrate in the
region z > () more than at the scale h.

Proposition 4.5. Let (X, 1)) be an eigenpair of Hpo,cui(h) such that |\ — | < Ch*/3. There
exist « > 0, hg > 0 and C' > 0 such that for all h € (0, hy), we have:

/ 6ah*1x<|w|2 + |hax¢|2> dzdy < C1||77b||2
x>0

Thanks to the latter estimate we cut off the part of the eigenfunctions living on x > (0 modulo
a remainder of order O(h>°). This allows the comparison of Hgo ui(h) with Hgo 1+(h) and
provides the proof that all the lowest eigenvalues of Hgo cui(/) are described by the quasimode
construction. In Section 6.2 a similar analysis will be done for the whole waveguide.

5. TRIANGLE WITH DIRICHLET BOUNDARY CONDITION

The aim of this section is to prove Theorem 2.4. As usual, the proof will be divided into two
main steps: a construction of quasimodes and the use of the true eigenfunctions of Lr;(h) as
quasimodes for the Born-Oppenheimer approximation in order to obtain a lower bound for the
true eigenvalues.

We first perform a change of variables to transform the triangle into a rectangle:

Y

5.1 w=1x€ (—m/2,0), t=—>— € (-1,1).
6D (-mv2.0), t=—L e (-1
so that Tri is transformed into
(5.2) Rec = (—7v/2,0) x (=1, 1).
The operator L1,;(h) becomes:

t 2 1
5.3 Lrec(R)(u,t;0y,0,) = —h*(0y — ————=0;) — ———— 07,
63 Lnalb)w 0000 = 1 (0 - s a) — s d
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with Dirichlet boundary conditions on ORec. The equation Lti(h)y, = By, is transformed
into the equation

Lrec(h)iby = Biibn - with Oy (u, t) = 1y (, ).

5.1. Quasimodes. This subsection is devoted to the proof of the following proposition.

Proposition 5.1. There are sequences (3} ) ;>0 for any integer n > 1 so that there holds:
Forall Ny € Rand J € N, there exists hg > 0 and C' > 0 such that for h € (0, hy)

J
5-4) dist (Gd;s(ﬁm(h)), Zﬁj,nhj/3> < CRYTVB p =1, N,.
=0

Moreover, we have: [3,,, = é, Bin =0, and Bo, = (47V/2)"232p(n).

Proof. We want to construct quasimodes ([}, ) for the operator Lv;(h)(0,, 0,). It will be
more convenient to work on the rectangle Rec with the operator Lgec(h)(u,t; 0y, 0;). We
introduce the new scales

(5.5) s=h"?%u and o=h"lu,

and we look quasimodes (3, 1) in the form of series

(5.6) B> Bk and by (u,t) ~ > (W(s,t) + (0, 1)) WP
Jj=0 Jj=0

in order to solve ERec(h)z/A)h = 5;11/3;1 in the sense of formal series. As will be seen hereafter, an
Ansatz containing the scale »~2/3u alone (like for the Born-Oppenheimer operator HeoTi(h))
is not sufficient to construct quasimodes for Lge.(h). Expanding the operator in powers of h?/3,
we obtain the formal series:

1
272

(5.7) ERec(h)(h2/3s,t; h=2/30;, ) ~ Z Ezjhzj/3 with leading term L, = 07

Jj=0
and in powers of h:
. . 1
(5.8)  Lrec(h)(ho,t; R 0,,0;) ~ Z./\fgjhj with leading term N = —02 — %@2
Jj=0

In what follows, in order to finally ensure the Dirichlet conditions on the triangle Tri, we will
require for our Ansatz the boundary conditions, for any 5 € N:

(5.10) U,(s,£1) =0, s<0 and &,(o,£1)=0, o <0.
More specifically, we are interested in the ground energy A = % of the Dirichlet problem for

L on the interval (—1, 1). Thus we have to solve Dirichlet problems for the operators N — %
and L, — 3 on the half-strip

(5.11) Hst = R_ x (—1,1),
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and look for exponentially decreasing solutions. The situation is similar to that encountered in
thin structure asymptotics with Neumann boundary conditions. The following lemma shares
common features with the Saint-Venant principle, see for example [13, §2].

Lemma 5.2. We denote the first normalized eigenvector of Lo on HY((—1,1)) by cy:

col#) = cos (%t) |

Let F = F(o,t) be a function in L*(Hst) with exponential decay with respect to o and let
G € H*?*((—1,1)) be a function of t with G(41) = 0. Then there exists a unique v € R such
that the problem

(J\fo _ %) O =F in Hst, ®(0,+1) =0, ®(0,1) = G(t) +vco(t),

admits a (unique) solution in H?(Hst) with exponential decay. There holds
0,1 1

N / / Flo, ) oco(t) dodt — / G(t) eolt) dt.
—c0 J—1 -1

The following two lemmas are consequences of the Fredholm alternative.

Lemma 5.3. Let F' = F(s,t) be a function in L*(Hst) with exponential decay with respect to
s. Then, there exist solution(s) V such that:

1
(EO — g) U =F in Hst, W(s,£1)=0

if and only if (F(s,-),co), = 0 for all s < 0. In this case, ¥(s,t) = U (s,t) + g(s)co(t)
where U satisfies <\Il(s, ), co> . = 0 and has also an exponential decay.

Then, we will also need a rescaled version of Lemma 3.2.

Lemma 5.4. Let n > 1. We recall that zp(n) is the n-th zero of the reverse Airy function, and
we denote by

Iin) = A((47T\/§)_1/38 + ZA(TL))

the eigenvector of the operator —0° — (4m+/2)~'s with Dirichlet condition on R_ associated
with the eigenvalue (47+/2) "2/ 25(n). Let f = f(s) be a function in L*(R_) with exponential
decay and let ¢ € R. Then there exists a unique 3 € R such that the problem:

<_a§ N ; s\/i _ (4W\/§)—2/32A(n)) g= f + 59(71) in ]R_, with g(O) =C,
s

has a solution in H*(R_) with exponential decay.

Now we can start the construction of the terms of our Ansatz (5.6).
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e Terms in h°. The equations provided by the constant terms are:
LWy = BoWo(s,t), No®o = BoPo(s,1)

with boundary conditions (5.9)-(5.10) for j = 0, so that we choose 5, = é and Uy(s,t) =
go(8)co(t). The boundary condition (5.9) provides: ®y(0,¢) = —go(0)co(t) so that, with
Lemma 5.2, we get go(0) = 0 and &y = 0. The function gy (s) will be determined later.

e Terms in h'/3. Collecting the terms of order h'/3, we are led to:
(Lo — Bo)Vy = 1Wo— L1V = 51Ty, (Ny— Bo)Py = 1Py — NPy =0

with boundary conditions (5.9)-(5.10) for j = 1. Using Lemma 5.3, we find 5; = 0, Uy (s,t) =
gl(S)Co(t), 91(0) = (0 and (I)l =0.

o Terms in h*/3. We get:
(Lo — Bo)Vs = B2Vg — LoWy, (Ny— Bo)Py =0,
where £y = —0? + ﬁi 0? and with boundary conditions (5.9)-(5.10) for j = 2. Lemma 5.3

S
provides the equation in s variable

((BaWg — LoW(s, ~)),co>t =0, s<0.

Taking the formula Wy = go(s)co(%) into account this becomes

anls) = (-2 = 25 ) )

This equation leads to take (3, = (4m/2)~%/32a(n) and for g, the corresponding eigenfunction
9(n)- We deduce (Lo — [y)Wo = 0, then get Wy (s, t) = ga(s)co(t) with go(0) = 0 and O, = 0.

o Terms in h/3. We get:
(Lo — Bo)Vs = B3V + B0y — LWy,  (Ny — Bo)Ps =0,

with boundary conditions (5.9)-(5.10) for j = 3. The scalar product with ¢y (Lemma 5.3)
and then the scalar product with gy (Lemma 5.4) provide f3 = 0 and g; = 0. We deduce:
W3(s,t) = ga(s)co(t), and g3(0) = 0, d3 = 0.

o Terms in h*/3. We get:
(Lo — Bo)Vy = BaVg + PoWs — LyWo — LoWs, (Ny — Fy)Ps =0,

where

V2 3

— 10,0y — —
P 44

and with boundary conditions (5.9)-(5.10) for j = 4. The scalar product with ¢, provides
an equation for g, and the scalar product with gy determines ;. By Lemma 5.3 this step
determines Uy = Ui + ¢o(t)g4(s) with a non-zero W5 and g4(0) = 0. Since by construction
<\Ifi(0, s Co> , = 0, Lemma 5.2 yields a solution ¢4 with exponential decay. Note that it also
satisfies (®4(c,-), ¢p), = 0 forall o < 0.

242
L, = 570y,
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o Terms in h°/3. We get:
(Lo — Bo)¥s = BV + BoW3 — LoVs,  (Ny — Bo)Ps =0,
and with boundary conditions (5.9)-(5.10) for j = 5. We find 85 = 0, g3 = 0, U5 = g5(s)co(t),
95(0) = 0, @5 = 0.
o Terms in h3. We get:
(Lo — Bo)¥s = sV + LaWs + oWy — LoVy — LyVs, (N — fo)Ps = [2P4,
and with boundary conditions (5.9)-(5.10) for j = 6. This determines f3s, g4, Y5 = V5 +
co(t)gs(s), gs(0) = 0, and Pg with exponential decay due to the orthogonality of ®, to ¢.
o Terms in h"/3. We get:
(Lo = Bo)W7 = 7 + BoWs5 — LoV5,  (Ny — fo)P7 = —N3Py,
where

Ng W\/,ta (% \/_

and with boundary conditions (5.9)-(5.10) for j = 7. We take 87 = 0, g5 = 0, Uy = g7(s)co(?).
Then, Lemma 5.2 induces a value for the trace g;(0) so that there exists ®; with an exponential
decay. Note that if there holds:

(5.12) / (N3D,) (0, t) oco(t) dodt # 0,
Hst

we would deduce by Lemma 5.2 that g;(0) # 0.

2
—F=0;,

o Terms in h®/3. We get:
(Lo — Bo)Vs = PsVo+ BV + BsVy + SoVs — LsWo — LeWo — LUy — LoV,
(No — Bo)Ps = B4Py + B2Ps.

This determines g, gg and Ug = \If§ + cogs, the trace gs(0) and the exponentially decreasing
solution ®g.

o Terms in h?/3. We get:
(Lo — Po)Wg = BoVo + BoU7 — LoWr,  (Ny — Bo) Dy = Loy — N3P

We find g, g7 and then Wy = W + cog9 and go(0), ®y. Note that if g7(0) # 0, i.e. if (5.12)
holds, we would deduce that 3y # 0.

e Continuation. The construction of the further terms goes on along the same lines. This
leads to define the quasimodes for Lt (h):

J
(5.13) =g,
=0

( (h2/3’56+€r\/_> +¢j<%’%ﬂ'\/§)) B3,

M“

(5.14) ' (z

J=0
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where \'*f is defined in (4.5). The conclusion follows from the spectral theorem. UJ

5.2. Agmon estimates. On our way to prove Theorem 2.4, we now state Agmon estimates
like for Hgo vi(h). Let us first notice that, due to Proposition 5.1, the lowest eigenvalues of
L1 (h) still satisfy an estimate like (4.9). It turns out that we have the following lower bound,

for all ¢ € Dom(Qrip):
_ 2 2 m
Quan(v) = [ 10,01 T

Thus, the analysis giving Propositions 4.3 and 4.4 applies exactly in the same way and we
obtain:

2
0] dady.

Proposition 5.5. Let Iy > 0. There exist hg > 0, Cy > 0 and 1y > 0 such that for h € (0, hy)
and all eigenpair (\,v)) of L1i(h) satisfying |\ — 1| < Toh*?, we have:

/ e (g2 120,07 dady < Collw®
Tri

Proposition 5.6. Let I'y > 0. There exist hg > 0, Cy > 0 and py > 0 such that for h € (0, hg)
and all eigenpair (A, ) of L1i(h) satisfying |\ — £| < Toh*/®, we have:

/ (o +mvVD ([ + 1h 8l dady < Gl
Tri

5.3. Approximation of the first eigenfunctions by tensor products. In this subsection, we
will work with the operator Lgec(h) rather than L+,;(h). Let us consider the first N eigenvalues
of Lgec(h) (shortly denoted by \,,). In each corresponding eigenspace, we choose a normalized
eigenfunction v, so that (¢, 1,,) = 0if n # m. As in Section 4.3, we introduce:

En,(h) = span(z/?l, . ,@ENO).

Let us define Q%.. the following quadratic form:

~ 1 - 1, -
(I]?ec(w) = /Rec <%|8ﬂp|2 - g‘w|2> (U+7T\/§) dudt,

associated with the operator L3, = Id, ® (=507 — 1) on L?(Rec, (u + mv/2)dudt). We

consider the projection on the eigenspace associated with the eigenvalue 0 of —2%83 —
s

(5.15) Mot (u, t) = ((u, ), ¢o), Co(t)

where we recall that ¢y(t) = cos (5t). We can now state a first approximation result:

1.
5

Proposition 5.7. There exist hy > 0 and C > 0 such that for h € (0, hy) and all ) € &y, (h):
0 < QRec(w) < C1h2/3||772||2

and
1(Id = TTo)3b|| + [|8:(1d — o)l < CR* (]|
Moreover, 1y : &y, (h) — (€, (h)) is an isomorphism.
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Proof. 1f ’Q/A) = ’l/A)n, we have:
QRec,h(¢n) = )\nH'QDnHZ

From this we infer:
R 1 R
Qnucs(i) < (301 ) [l

The orthogonality of the ﬁn (in L? and for the quadratic form) allows to extend this inequality
to ) € €, (h):
Qneald) < (§+ 007 ) 1P

This clearly implies:

Rec(¢) < Ch2/3||¢H2

I1y1) being in the kernel of LY., we have:
%ec(lp) = Rec((Id HO)@M
If we denote by u» the second eigenvalue of the 1D operator —ﬁ@f — é, we get by the

min-max principle:
Rec(Id = o)) > puol|(Id — TIo ).
Now the conclusions are standard. O

5.4. Reduction to the Born-Oppenheimer approximation. In this section, we prove The-
orem 2.4 by using the projections of the true eigenfunctions (Ily1),,) as test functions for the
Born-Oppenheimer approximation. Let us consider an eigenpair (A, ) of L,(h) such that

(4.9) holds. We let ¢h(u, t) = 1 (x, y). Then, (), 1)) satisfies:
2 (aQ 2t0,,0; 2t0, N 202 ) - 1
u—l—7rxf (u+7mv2)2  (u+mV2)? (u + 7/2)2
The main idea is to determine the (differential) equation satisfied by H0¢. In other words we
will compute and control the commutator between the operator and the projection II,. For

that purpose, a few lemmas will be necessary. The first one is an estimate established in the
original coordinates (z, y) in the triangle Tri:

Lemma 5.8. Forall k € N, there exist hy > 0 and C > 0 such that we have, for h € (0, h):

————=—} = M.

/ (2 + 7v/3) 0,0 dedy < Cllb|1.
Tri

Proof. The equation satisfied by v is:
(—h?0? — 85)1/} = \1.
Multiplying by (24 7+/2)7*, taking the scalar product with v and integrating by parts we find:

[ o mv o0 dudy <€ [ (ot mvDF(0F + 2+ 7D w001 dody
Tri

Tri
Using the Agmon estimates of Proposition 5.6 with py/h > k + 1 we deduce the lemma. [



hal-00663021, version 3 - 16 Oct 2012

PLANE WAVEGUIDES WITH CORNERS IN THE SMALL ANGLE LIMIT 27
We can now prove:

Lemma 5.9. There exist hy > 0 and C' > 0 such that we have, for h € (0, hy):

|{w+va) .00, w®) || <cn .

t ‘ ‘ L2(du)
Proof. Integrating by parts in ¢ for any fixed v € (—7v/2,0), we find:

1

{(w+ wv3) 10,00, clt)) | <€ [ (et wvB ol dt

1
1 1/2
<C (/ (u+7r\/§)_2|8u1/)|2dt) .
1
To have the lemma, it remains to prove that

/ (u+ 7V2) 2|02 dudt < czﬂ/ (2 dud.
Rec

Rec

We have:
R ) 2
/ (u+ 7V2) 72|01 |* dudt = / (z 4+ mv2)73 (&B + L) Y| dxdy
Rec Tri T+ 71'\/§
and we apply Lemma 5.8 to control the term in J,. We end the proof using the Agmon esti-
mates of Proposition 5.6. U

The same kind of computations yields:

Lemma 5.10. There exist hy > 0 and C' > 0 such that we have, for h € (0, hy):

< Cll4l.

L2(du)

H <(u +V2) 20,0, co(t)>

t
Finally, we have:

Lemma 5.11. There exist hy > 0 and C' > 0 such that we have, for h € (0, hy):

H<(u+7r\/§)‘2t28t2@2, co(t)> < |19

t ‘ ‘ L2(du)
From Lemmas 5.9, 5.10 and 5.11, and from Proposition 5.7, we infer:

Proposition 5.12. Let I'y > 0. There exist ho > 0 and C > 0 such that for h € (0, hg) and all
eigenpair (\,¥) of Lti(h) satisfying |\ — 1| < Toh*?, we have:
2

22, T p
H( ha"+4(u+7r\/§)2 A)HW

' < Ch|Tod.
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e Proof of Theorem 2.4. We deduce, from Proposition 5.12, for alln € {1,--- | Ny}:

7T2

1292 N

From this inequality, we infer, for all ) € &y, (h):

1292 m ;
( WO 4(u+7r\/§)2) Hov

< (Mo (h) + OR) || Tt .

< (Atino (h) + Ch) ||

and thus: R R
Qo mi.n(IloY)) < (Ating (h) + Ch)|[Tgep].
It remains to apply the min-max principle to the Ny dimensional space I1o& y, (k) (see Propo-

sition 5.7) and Theorem 4.1 to get the separation of eigenvalues. Then, the conclusion follows
from Proposition 5.1.

6. EIGENPAIR ASYMPTOTICS FOR THE WAVEGUIDE

In this section, we prove Theorem 2.6. Firstly, we construct quasimodes and secondly we
use Agmon estimates reduce to the triangle case. On the left, Lg,;(h) writes, in the coordinates
(u,t) defined in (5.1):

t 2 1
6.1 L (h) = —h? (8u — 78) - ?
(6.1) Gui(R) u+7ﬁ/§f (u—|—7rx/§)2t
and on the right, we let:
y—x
6.2 u=x, T=
(6.2) 2

and the operator writes:

63 casim = (3, Lg0) ot
The integration domain is (—7v/2, +00) x (0,1) = Qs U (4ig Where:

Qier = (—m/2,0) x (0,1) and Qg = (0, +00) x (0,1).
The boundary conditions are Dirichlet on (0, 00) x {0} U (—7v/2, 00) x {1} and Neumann on
(—7v/2,0) x {0}.
6.1. Quasimodes. The aim of this subsection is to prove the following proposition:

Proposition 6.1. For any n > 1, there exists a sequence (v, ,,) such that, for all Ny € N and
J €N, there exists hg > 0 and C > 0 such that for h € (0, hy):

J
(6:4) dist (S (Lau()). D2 35,0?) < CRUIB =1, N,

=0

Moreover, we have: Yo, = £, Y10 = 0 and 7o, = (47v/2) 723 2a(n).
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6.1.1. Preliminaries.

e Ansatz, boundary and transmission conditions. In order to construct quasimodes for Lg,;(h)
of the form (v, ¥, ), we use the coordinates (u, t) on the left and (u, 7) on the right and look

for quasimodes @Eh(u, t,7) = ¥n(x,y). Such quasimodes will have the form on the left:

(6.5) ier(u, £) ~ Y W (Wieg i (W™, b) + Breg i (h 1, 1))
7j=>0
and on the right:
(6.6) Vig(, 7) ~ > BP0 (W, )
>0

associated with quasi-eigenvalues:
Vi ~ Z y;hi73,
Jj=0

We will denote s = h~?/3u and o = h~'u. Since 1/}, has no jump across the line z = 0, we
find that ¢ and 9yig should satisfy two transmission conditions on the line u = 0:

t 19)
f(0,1) = Ui (0,t) and (0, — —=0; ) Yier(0, 1) = | Oy — —= ] e (0, 1),
0. = eg0.) and (0= =0 ) vus(0.0) = (0= ) vl
forall t € (0,1). For the Ansitze (6.5)-(6.6) these conditions write for all j > 0
(6.7) Wi ;(0,1) + Pier (0, 1) = Prig (0, 1)

126 to,

6.8) 0, ®ues(0,1) + OWier+ 1(0,8) — —2 By 5(0, 1) — —2Wyeg 5 5(0, ¢
( ) If,y( ) lef,j 1( ) 7T\/§ lef,j— 3( ) 7T\/§ lef,j— 3( )
O
= 0,Dyie (0,1t —d, 0,t
g]( ) 7T\/§ g,j— 3( )

where we understand that the terms associated with a negative index are 0.

Notation 6.2. We still set s = h~2?/3u and ¢ = h~'u. Like in the case of the triangle Tri, the
operators L& and L2, cf. (6.1)-(6.3), written in variables (s, t) and (o, t) expand in powers
of h?/3 and h, respectively. Now we have three operator series:

o LE(h)(h*3s,t;h72130,,05) ~ 3.~ Lajh*/%. The operators are the same as for Tri,
but they are defined now on the half-strip Hlef := (—o0,0) x (0, 1).

o L& (h)(ho,t;h™10,,0;) ~ 3,5 N35'h? defined on Hlef.
o LE (h)(ho,7:h™10,,0,) ~ ijo./\fgr;ghj defined on Hrig := (0, 00) x (0, 1).

We agree to incorporate the boundary conditions on the horizontal sides of Hlef in the defini-
tion of the operators £, ./\fj'-ef, and _/\/J re.

e Neumann-Dirichlet 9,¥(s,0) = 0 and ¥(s,1) = 0 (s < 0) for £;,
e Neumann-Dirichlet 9,®(c,0) = 0 and ¥(0, 1) = 0 (0 < 0) for N},
e Pure Dirichlet (0,0) = 0 and ¥(0,1) =0 (0 > 0) for ./\frlg
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Note that
1 - 1
lef 2 2 g 2 2
(6.9) NO = -0 — 5.2 07 and ./\fog =—0, — 5.2 o:.

e Dirichlet-to-Neumann operators. Here we introduce the Dirichlet-to-Neumann operators
T"& and T'*f which we use to solve the problems in the variables (o,t). We denote by I the
interface {0} x (0, 1) between Hrig and Hlef.

On the right, and with Notation 6.2, we consider the problem:

- 1
( e §) P =0 in Hrig and @,,(0,t) = G(t)

where G € Héf([ ). Since the first eigenvalue of the transverse part of N — £ is positive,
this problem has a unique exponentially decreasing solution ®,,. Its exterior normal derivative
—0,®yig on the line I is well defined in H~1/2(I). We define:

TrigG == anq)rig - _80(I)rig'
We have: .
(T™G, G) = Quig(Prig) > CHGH?{W(I)'
00

On the left, we consider the problem:

1
< oo — g)@ef =0 in Hlef and ®.(0,¢t) = G(¢)

where G € Héf([).

For all G € HS({Z(I ) such that I1oGG = 0 (where I, is defined in (5.15)), this problem has a
unique exponentially decreasing solution ®.¢. Its exterior normal derivative 0, @ on the line
I is well defined in H~'/2(I). We define:

TG = 0, Prer = 0y Pies.
We have:
(TG, G) = Qies(Die) > 0.
Proposition 6.3. The operator T"& + T'11; is coercive on H&éz(f) with I1; = 1d — Iy. In
particular, it is invertible from H&éz(f) onto H=Y/2(I).
This proposition allows to prove the following lemma which is in the same spirit as Lemma

5.2, but now for transmission problems on Hlef U Hrig (we recall that co(t) = cos(5t)):

Lemma 6.4. Let Fief = Fif(0,t) and Fig = Fiig(o,7) be real functions defined on Hlef

and Hrig, respectively, with exponential decay with respect to o. Let G° € H0162(I ) and
H € H7Y2(I) be data on the interface I = OHlef N OHrig. Then there exists a unique

coefficient ( € R and a unique trace G € H, é({ 2([ ) such that the transmission problem
(NI\ = 1) Bres = Fier in Hlef, Pier(0, 1) = G(t) + G(t) + Ceolt),
(NG — 1)@y = Fyyg in Hrig, D, (0,1) = G(1),
OpPier(0,1) — 05 Prig(0,8) = H(t) on I,
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admits a (unique) solution (Pief, Prig) with exponential decay.

Proof. Let (D), (o) be the solution provided by Lemma 5.2 for the data F' = Fis and G = 0.

Let <I>?ig be the unique exponentially decreasing solution of the problem
ri 1 . .
(Nog — §><I>9ig = Fyg in Hrig, ®).(0,¢) =0.
Let H" be the jump 9,P%, (0, 1) —0, P (0, ). If we define the new unknowns @/, = &y, — 7,
and O\, = ®js — D)., the problem we want to solve becomes
1 .
(A= S) e =0 in Hief,  ®(0,1) = G(H) + (¢ = G)eold).
ri 1 . .
('/VE] ®— §>®}Ig =0 in Hr|g7 (I):ig(ou t) = G(t)v
0y ®1g(0,1) — 0,P1¢(0, 1) = H(t) — H(t) on 1.

Using Proposition 6.3 we can set G = (T"8+T"'I1,) =1 ( H — H,), which ensures the solvability
of the above problem. 0

6.1.2. Construction of quasimodes.

e Terms of order h°. Let us write the “interior” equations:

lef, : LoVier0 = Yo Vlef,0
lef,, N Dies o = Y0Pier 0
rlg . N(;ng)rig,(] - ’YO(I)ri&(] .

The boundary conditions are:
Wier,0(0, 1) + Pier,0(0,1) = Prig0(0, 1),
OrPief,0(0,1) = 0y Prig.0(0, 7).
We get:
Y =75, Viro = go(s)co(t).
We now apply Lemma 6.4 with Fi = 0, Fiig = 0, Gy = 0, H = 0 to get
G=0 and (=0.

We deduce: Qg = 0, Prigo = 0 and, since { = —go(0), go(0) = 0. At this step, we do not
have determined g yet.

| =

e Terms of order h'/®. The interior equations read:

lef, : LoWier1 = Y0Vier,1 + 71 Vier,0
lef,, : (;efq)lef,l = Y0 Pier,1 + V1 Plef 0
rg : Ng8®rig1 = 70Prig1 + 71 Prig.0-

Using Lemma 5.3, the first equation implies:
71=0, Wera(s,t) = gi(s)co(?).
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The boundary conditions are:
91(0)co(t) + Pier,1(0, ) = Pyig1(0, 1),
95(0)co(t) 4+ 0r Pier,1(0, 1) = 05 Pyig,1 (0, 1).

The system becomes:

1
|f02 < IEF__>(I)e :07
€ 0 3 lef,1
- 1
rg : (/\/Or'g - §><I>r;g,1 = 0.

We apply Lemma 6.4 with Fiee = 0, Fyig = 0, Gy = 0, H = —g(0)co(2) to get:
G = —go(0)(T"& + T"T1,) ~*ep.
Since G = Pz 1 and ( = —g1(0), this determines Pief 1, Pyig 1 and g1 (0).

e Terms of order h*/3. The interior equations write:

lef, : LoVt + LoWier 2 = Z VW ief
I+k=2
lef,, : N(;Efq)lefﬂ = Z %(I)|ef,k
I+k=2
e rig 1
ng : -/\/0 (I)rig,2 = g(brig,%

with
, 1
LoWer 0 = —gg (s)co(t) + ——=sg0(5)07 (o).

734/2
Lemma 5.3 and then Lemma 5.4 imply:
1
47T\/§=5’90 = 7290-

Thus, 7, is one of the eigenvalues of the Airy operator and g, an associated eigenfunction. In
particular, this determines the unknown functions of the previous steps. We are led to take:

Uiera(s, t) = \Ilim + go(s)co(t), with \Iféﬂz =0

(6.10) — g5 -

and to the system:

lef,, - Qﬁd—é)®¢2:0
rg : (/\/Orig — %)(I)rigz = 0.

Using Lemma 6.4, we find
G = —g}(0)(T"& + T I1,) " 'cq.

This determines @iz 2, Pief 2 and g2(0). The function g; is still unknown at this step.
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e Further terms. Let us assume that we can write Wier , = \Iféka + gr(s)co(t) for 0 < k <
j and that (gi)o<k<j—2 and (Wig ,)o<k<; are determined. Let us also assume that g;_,(0),
(Ve)o<k<j> (Prigk)o<k<j—1> (Pref k)o<k<;j—1 are already known. Finally, we assume that g;(0),
D j, Prig,; are known once g;_ is determined and that all the functions have an exponential
decay.

Let us collect the terms of order U *1)/3, The interior equations write:

J+1 J+1
lef, : E LiVief jr1-k = E Vi Wief j4+1—k
k=0 k=0
j+1 J+1
. lef _
lef, E N Dief j1—k = § Vi Pref j+1-k
k=0 k=0
J+1 J+1
P rig _
rig : g NEDyig i1 = E YePrig,j+1-k;
k=0 k=0

We examine the first equation and notice that £, = 0 and 7; = 0 so that ¥ ; does not appear.
We can write this equation in the form:

1
<£0 — §> \I]Ief,j—i-l = —,Cg\lﬁef,j_l - 72\IIIef,j—1 - 7j+1\11|ef70
Jj+1 J

- E ﬁk‘I’|ef,j+1—k— E %‘*I’|ef,j+1—k-
k=4 k=3

We apply Lemma 5.3 and we obtain an equation in the form:

1
g}’_l - msgj—1 —Y29j-1 = [ + Vj+190,

where f and g;_,(0) are known. Then, Lemma 5.4 applies and provides a unique value of ;.
such that g;_; has an exponential decay. From the recursion assumption, we deduce that ¢;(0),
Dier j» Prig,; are now determined. Lemma 5.3 uniquely determines Wig ., such that:

Wief j+1 = \IIIJe_ng'-{-l + gj+1(s)co(t)-

We can now write the system in the form:

1
lef,, : (/\/'(;ef — §>®|ef,j+1 = Fief
. 1
rig ( 0 — g)q)rig,j—l—l = Fig,

where Fief, Frig have an exponential decay. The transmission conditions are, cf. (6.7)—(6.8):
Dief j+1(0,1) = Prig j11(0,1) — Wier j11(0, 1)
= (I)rig,j+1(07 t) - ‘I’éf,jﬂ(oa t) - gj+1(0)00(t)

and

05 Pt +1(0,1) — 0o Prig j11(0, 1) = H(t) = —g;(0)co(t) + H(t),
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where H is known. We can apply Lemma 6.4 which determines ®yig j1 1, Pier j4+1 (With an
exponential decay) and g;.(0) once g, is known.

e Quasimodes. The previous construction leads to introduce:

J+2
Z <\If|ef7j<%,t> + ¢|ef7j (%, t)) hj/g when u S 0
(6.11a) R CTIR E ye

Z‘brig,j(h >h]/3‘|‘uX”g(h>RJh() when u >0,
=0

where the correction term

(6.11b) Ryp(7) = 0.Wies s 12(0, 7)h773
J12 J42

_Z ( 0, (wlefj (0,7) + Pier; (0, 7 )) hﬂ/3+z 5 Dig (0, 7) WI/®

is added to make @Dh satisfy the transmission condition (6.8). Here we have used a smooth
cutoff function x" being 1 near 0. By construction, 1/)}[;]] defined by the identity

(6.11c) Wy y) = X () & ()
belongs to the domain of Lg,(h). Using the exponential decays, for all J € N we get the
existence of hy > 0, C'(J, hg) > 0 such that for h € (0, ho):

(et 32t < e

6.2. Agmon estimates and consequences. In this last subsection, we prove Theorem 2.6. For
that purpose, we first state Agmon estimates to show that the first eigenfunctions are essentially
living in the triangle Tri so that we can compare the problem in the whole guide with the
triangle (see also Section 4.4 where this idea was explained in the one-dimensional setting).

Proposition 6.5. Let (X, 1)) be an eigenpair of Lci(h) such that |\ — L| < Ch*/3. There exist
a >0, hg > 0and C > 0 such that for all h € (0, hy), we have:

/ 6ah*1x<|w|2 + |hax¢|2> dzdy < C1||77b||2
x>0

Proof. The proof is left to the reader, the main ingredients being the IMS formula and the fact
that Hpo cui is a lower bound of Lg,i(h) in the sense of quadratic forms (see the analysis of
Propositions 4.3 and 4.4). See also [ 14, Proposition 6.1] for a more direct method. U

e Proof of Theorem 2.6. Let Q/JZ be an eigenfunction associated with Ag,i,(h) and assume
that the ¢2 are orthogonal in LZ(Q), and thus for the bilinear form Bg,; j, associated with the
operator Lg;i(h).

We choose ¢ € (0, %) and introduce a smooth cutoff y"at the scale h'!~¢ for positive =

X"(z) = x(zh=™") with x=1ifz<i x=0ifz>1
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and we consider the functions x"¢)"". We denote:

€, (h) = span(x"¥T, ..., X ¥R, )-
We have:
Qauin(¥n) = Aeuign ()| 071
and deduce by the Agmon estimates of Proposition 6.5:
Qauin(X"U5) = (Neuin(h) + O(h%)) X"y 1.
In the same way, we get the ”almost”-orthogonality, for n £ m:
Beuin(X" Uy, X 40) = O(h™).
We deduce, for all v € &y, (h):
Qeuin(v) < (Aguing () + O(R™)) [|v]f>.

We can extend the elements of &y, (h) by zero so that Qi n(v) = Qmi_, (v) for v € €y, (h)
where Tri_, is the triangle with vertices (—7v/2,0), (h!75,0) and (h'~%,h1=¢ + 7/2). A
dilation reduces us to:

hi=e\ 202 92
1 —h*0: — 03
(1) o

on the triangle Tri. The lowest eigenvalues of this new operator admits the lower bounds
é + 2a(n)h?® — Ch'~* ; in particular, we deduce:

AGuing (h) > % + ZA(No)h2/3 — Ch'~e.

This provides the separation of the eigenvalues and, joint with Proposition 6.1, this implies
Theorem 2.6.
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6.3. Conclusion.

6.3.1. Eigenfunction asymptotics. With Theorem 2.6, we deduce that the lowest eigenvalues
of Lgyi(h) are simple as soon as h is small enough. Then, through the spectral theorem, we
infer that the quasimodes constructed in (6.11) are approximations of the true eigenfunctions
(see for instance [24]). As a consequence, with the coordinates u,t, 7 defined in (5.1) and
(6.2), the n-th normalized eigenfunction admits the following expansion:

5 sn0 (Wnser (7:1) + Brers (£,6) ) /2 when u <0
G120 D)~ S, (2) when u > 0.

=0

where the functions W, jef j, @ jef,j, Pn rig,; Were constructed in Section 6.1.2 (the subscript
n emphasizes the dependence on the rank of the zero of the Airy function determined when
solving Equation (6.10)).

6.3.2. Remark on the Born-Oppenheimer approximation. At the very beginning of this paper
we have introduced the operator Hgo cui(h) (see (2.8)) and we have somehow suggested that
it is an approximation of Lgy(h) in the limit A — 0. It turns out that we have not used
Hpo,cui(h) to investigate the spectrum of the waveguide. In fact, our analysis proves that
the two term asymptotic expansion of the eigenvalues of Hgo 1vi(h), Heo,cui(h), L1i(h) and
Lcui(h) are the same so that we can a posteriori say that Hgo cui(h) approximates Lei(h).

6.3.3. Back to the physical coordinates. The two-term asymptotics
W (5, ) oz + 1 (O (0,) Loz + @1(0, 7))

provides us with the leading behavior of the eigenvectors in the scaled half-guide (2. It is
interesting to come back to the physical domain and to interpret this two-term asymptotics
in the original variables (1, x2). We have to chain formulas (2.2) giving (z,y), (5.1) giving
(u,t), (6.2) giving (u, 7), and (5.5) giving s and 0. We have also to take the relation 2 = tan
into account.

Returning to section 6.1.2 and more particularly to (6.10) — and Lemma 5.4, we find that

U (s5,1) = A<(47T\/§)_1/3s + zA(n)> cos <%t)

Coming back to physical variables (x1, x5) we find that

Ut (s,1) = A((%)l/gm + zA(n)> cos <% — %) +0O(0*) as 60— 0.

As for the term ®; := @', + ®'81,-,, we find that there exists a profile ®; independent
of 8 such that

D1 (0,tLyeo + Thysg) = Oy (1, 32) + O(0?) as 6 — 0.
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Here #; = x; and

T cos O )
_— if 21 <0,
Gy =4 T+ T sin 6
Tocosl — xysind if z; > 0.

This profile ®; is exponentially decreasing as Z; — =oo. It is solution of a transmission
problem with smooth data for the Laplace operator on the infinite strip R x (0, 7r) with mixed
Neumann-Dirichlet conditions on the bottom side %, = 0, and Dirichlet on &, = 7. Hence, it

is piecewise H? modulo the addition of a multiple of the singular function ¢gng, cf. (1.2).
0

The consequence of this is that the coefficient of the singularity ¢/g,

vector of AQ" behaves as O(6'/?) as § — 0.

for a normalized eigen-

6.3.4. X-shaped waveguides. Our results provide without any difficulty the structure of the
eigenpairs of lowest energy in the small angle limit when the domain is formed by the union
of two infinite strips of same width 7 crossing with an angle 26 (this model appears in the
physical literature, see [8]). The two non-convex corners of this structure are at the dis-
tance 5 = O(0~'). This X-structure can be viewed as a double symmetric V-structure
and the eigenmodes can be constructed from the V-structure eigenmodes since they interact
very weakly (their lower scale is §'/%). Nevertheless they do interact by an exponentially small

tunnelling effect which would be interesting to investigate.

o Acknowledgments. The authors would like to thank Francis Nier for giving them the impulse
to write this paper. They are also grateful to the referee whose comments have improved the
presentation of the strategy and of the spirit developed throughout this paper.

REFERENCES

[1] S. AGMON. Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigen-
functions of N-body Schrodinger operators, volume 29 of Mathematical Notes. Princeton University Press,
Princeton, NJ 1982.

[2] S. AGMON. Bounds on exponential decay of eigenfunctions of Schrddinger operators. In Schrodinger op-
erators (Como, 1984), volume 1159 of Lecture Notes in Math., pages 1-38. Springer, Berlin 1985.

[3] Y. AvisHAL D. BEsSIS, B. G. GIRAUD, G. MANTICA. Quantum bound states in open geometries. Phys.
Rev. B 44(15) (Oct 1991) 8028-8034.

[4] V. BONNAILLIE, M. DAUGE, N. POPOFF, N. RAYMOND. Discrete spectrum of a model schrodinger oper-
ator on the half-plane with neumann conditions. 7o appear in ZAMP (2011).

[5S] D. Borisov, P. FREITAS. Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions of
the Laplacian on thin planar domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(2) (2009) 547-560.

[6] D. Borisov, P. FREITAS. Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on
thin domains in R? . J. Funct. Anal. 258 (2010) 893-912.

[7] M. BORN, R. OPPENHEIMER. Zur Quantentheorie der Molekeln. Ann. Phys. 84 (1927) 457-484.

[8] E. N. BULGAKOV, P. EXNER, K. N. PICHUGIN, A. F. SADREEV. Multiple bound states in scissor-shaped
waveguides. Phys. Rev. B 66 (Oct 2002) 155109.

[9] J. P. CARINI, J. T. LONDERGAN, K. MULLEN, D. P. MURDOCK. Multiple bound states in sharply bent
waveguides. Phys. Rev. B 48(7) (Aug 1993) 4503-4515.

[10] G. CARRON, P. EXNER, D. KREJCIRIK. Topologically nontrivial quantum layers. J. Math. Phys. 45(2)
(2004) 774-784.



hal-00663021, version 3 - 16 Oct 2012

38 MONIQUE DAUGE AND NICOLAS RAYMOND

[11] B. CHENAUD, P. DUCLOS, P. FREITAS, D. KREJCIRIK. Geometrically induced discrete spectrum in curved
tubes. Differential Geom. Appl. 23(2) (2005) 95-105.

[12] J.-M. CoMBES, P. DucLoS, R. SEILER. The Born-Oppenheimer approximation. Rigorous atomic and
molecular physics (eds G. Velo, A. Wightman). (1981) 185-212.

[13] M. DAUGE, I. GRUAIS. Asymptotics of arbitrary order for a thin elastic clamped plate. II. Analysis of the
boundary layer terms. Asymptot. Anal. 16(2) (1998) 99-124.

[14] M. DAUGE, Y. LAFRANCHE, N. RAYMOND. Quantum waveguides with corners. In Actes du Congres
SMAI 2011), ESAIM Proc. EDP Sciences, Les Ulis 2012.

[15] P. DucLos, P. EXNER. Curvature-induced bound states in quantum waveguides in two and three dimen-
sions. Rev. Math. Phys. 7(1) (1995) 73-102.

[16] A. ELBERT, A. LAFORGIA. Asymptotic expansion for zeros of Bessel functions and of their derivatives
for large order. Atti Sem. Mat. Fis. Univ. Modena 46(suppl.) (1998) 685—695. Dedicated to Prof. C. Vinti
(Italian) (Perugia, 1996).

[17] P. EXNER, P. SEBA. Bound states in curved quantum waveguides. J. Math. Phys. 30(11) (1989) 2574-2580.

[18] P. EXNER, P. SEBA, P. STOVICEK. On existence of a bound state in an L-shaped waveguide . Czech. J.
Phys. 39(11) (1989) 1181-1191.

[19] P. EXNER, M. TATER. Spectrum of Dirichlet Laplacian in a conical layer. J. Phys. A43 (2010).

[20] P. FREITAS. Precise bounds and asymptotics for the first Dirichlet eigenvalue of triangles and thombi . J.
Funct. Anal. 251 (2007) 376-398.

[21] L. FRIEDLANDER, M. SOLOMYAK. On the spectrum of narrow periodic waveguides. Russ. J. Math. Phys.
15(2) (2008) 238-242.

[22] L. FRIEDLANDER, M. SOLOMYAK. On the spectrum of the Dirichlet Laplacian in a narrow strip. Israel J.
Math. 170 (2009) 337-354.

[23] P. GRISVARD. Boundary Value Problems in Non-Smooth Domains. Pitman, London 1985.

[24] B. HELFFER. Semi-classical analysis for the Schrodinger operator and applications, volume 1336 of Lec-
ture Notes in Mathematics. Springer-Verlag, Berlin 1988.

[25] B. HELFFER, A. MORAME. Magnetic bottles for the Neumann problem: the case of dimension 3. Proc.
Indian Acad. Sci. Math. Sci. 112(1) (2002) 71-84. Spectral and inverse spectral theory (Goa, 2000).

[26] M. KLEIN, A. MARTINEZ, R. SEILER, X. P. WANG. On the Born-Oppenheimer expansion for polyatomic
molecules. Comm. Math. Phys. 143(3) (1992) 607-639.

[27] V. A. KONDRAT EV. Boundary-value problems for elliptic equations in domains with conical or angular
points. Trans. Moscow Math. Soc. 16 (1967) 227-313.

[28] K. Lu, X.-B. PAN. Surface nucleation of superconductivity in 3-dimensions. J. Differential Equations
168(2) (2000) 386—-452. Special issue in celebration of Jack K. Hale’s 70th birthday, Part 2 (Atlanta,
GA/Lisbon, 1998).

[29] A. MARTINEZ. Développements asymptotiques et effet tunnel dans I’approximation de Born-Oppenheimer.
Ann. Inst. H. Poincaré Phys. Théor. 50(3) (1989) 239-257.

[30] A. MORAME, F. TRUC. Remarks on the spectrum of the Neumann problem with magnetic field in the
half-space. J. Math. Phys. 46(1) (2005) 012105, 13.

LABORATOIRE IRMAR, UMR 6625 DU CNRS, CAMPUS DE BEAULIEU 35042 RENNES CEDEX, FRANCE
E-mail address: monique.dauge@univ-rennesl.fr

URL: http://perso.univ-rennesl.fr/monique.dauge/

E-mail address: nicolas.raymond@univ-rennesl. fr

URL: http://perso.univ-rennesl.fr/nicolas.raymond/



	1. Introduction and main results
	1.1. Motivations
	1.2. The Dirichlet Laplacian on the broken guide
	1.3. Related questions
	1.4. Organization of the paper

	2. Reductions
	2.1. Half-guide and triangles
	2.2. Born-Oppenheimer approximation and models
	2.3. Asymptotic expansions of eigenvalues
	2.4. Notation and terminology

	3. Toy model in one dimension
	3.1. Construction of quasimodes
	3.2. Localization of the lowest eigenvalues
	3.3. Proof of Theorem 2.3

	4. Born-Oppenheimer approximation for the triangle
	4.1. Quasimodes
	4.2. Agmon estimates
	4.3. Proof of Theorem 4.1
	4.4. Born-Oppenheimer approximation for the waveguide

	5. Triangle with Dirichlet boundary condition
	5.1. Quasimodes
	5.2. Agmon estimates
	5.3. Approximation of the first eigenfunctions by tensor products
	5.4. Reduction to the Born-Oppenheimer approximation

	6. Eigenpair asymptotics for the waveguide
	6.1. Quasimodes
	6.2. Agmon estimates and consequences
	6.3. Conclusion

	References

