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Abstract

We study the eigenpairs of the Dirichlet Laplacian for plane waveguides with corners.
We prove that in presence of a non-trivial corner there exist eigenvalues under the essential
spectrum. Moreover we provide accurate asymptotics for eigenpairs associated with the
lowest eigenvalues in the small angle limit. For this, we also investigate the eigenpairs
of a one-dimensional toy model related to Born-Oppenheimer approximation, and of the
Dirichlet Laplacian on triangles with sharp angles.

Keywords: Discrete spectrum, Semi-classical limit, Born-Oppenheimer approximation, Quasi-
mode, Agmon estimates.

1 Introduction and main results

1.1 Motivations

This is a well-known fact, from the papers [10, 7, 8], that curvature makes discrete spectrum
to appear in waveguides. Moreover the analysis of this spectrum can be accurately performed
in the thin tube limit (in dimension 2 and 3, see [10, Section 5]). In fact, this asymptotical
regime corresponds to a semiclassical limit so that the standard techniques of [16] could have
been used to investigate that problem.

Curvature inducing discrete spectrum, this is then a natural question to ask what happens in
dimension 2 when there is corner (infinite curvature): do discrete spectrum always exist? This
question is investigated with the L-shape waveguide in [11] where the existence of discrete
spectrum is proved. For an arbitrary angle, this existence is proved in [3] and an asymptotic
study of the ground energy is done when ¢ goes to 7 (where ¢ is the semi-opening of the
waveguide). This problem is also analyzed (through experiments and numerical simulations)
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in [6] in which this two-dimensional model is derived from the three-dimensional Maxwell
equations. Another question which arises is the estimation of the lowest eigenvalues in the
regime 0 — 0 .

For the case in dimension 3, we can cite the paper [12] which deals with the Dirichlet
Laplacian in a conical layer. In this case, there is an infinite number of eigenvalues below the
essential spectrum. The other initial motivation for the present investigation is our previous
work [4] in which we study the Neumann realization on R? = {(s,t) € R* : ¢t > 0} of the
Schrédinger operator —9% — 97 + (¢ cos § — s sin §)? in the regime 6 — 0 (see also [18, 17]). It
turns out that the lowest eigenfunctions of this operator are concentrated near the cancellation
line of the potential as it is confirmed by numerical experiments which also enlighten the link
between a confining electric potential and a strip with Dirichlet boundary conditions.

It will appear in the analysis of plane waveguides with corners (also called ’broken strips”),
that we shall precisely study the Dirichlet problem on a triangle with a small angle. This
subject is already dealt with in [13, Theorem 1] where three term asymptotics is proved for
the two lowest eigenvalues by using the asymptotics of zeros of Bessel functions. Finally, we
can mention the papers [14, 15] whose results provide the two terms asymptotics for the thin
rhombi and also [5] which deals with a regular case (thin ellipse for instance).

Note sur I’état d’avancement de nos travaux Le document présent rassemble tout ce que
nous avons démontré. Nous allons considérer la question de la fintude du nombre de valeurs
propres (qui est évidente numériquement) et voir si nous pouvons le prouver. Ensuite nous fer-
ons un plan de répartition entre 1’article mathématique et 1’article des proceedings du congres
SMAL

Notation We denote by o.(A) the essential spectrum of a self-adjoint operator A, and by
odis(A) its discrete spectrum. The L? norm will always be denoted by || - || without mention of
the integration domain.

1.2 Definition of the operator and spectral questions

Let us denote by (1, z) the Cartesian coordinates of the plane and A = 97 + 03 the Laplace
operator. We investigate the spectrum of the Dirichlet Laplacian —Ag;’ on the “waveguide”

Qp = {(l’l,l’g) € R%: zytanf < |1y < (:El + Sl%) tan@},

where 0 € (0, g) In particular, the width of 2y is 7. We will also need to introduce the
triangular end of this waveguide:

Trig = {(xl,xQ) ER_XR:zytanf < |zo] < (xl + L) tan@}
sin 6
and the corresponding Dirichlet Laplacian denoted by —A-'?i{e.
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Proposition 1.1 For any 0 € (0, §) the essential spectrum of —Ag\" coincides with [1,+00).

Figure 1: The waveguide 2 and the half-guide Q for 6 = Z.
Proof: By Persson’s theorem (see [19]), we obtain that the infimum of aess(—ABi;) is 1.

The construction of appropriate Weyl sequences yields that any value A € [1, 0c0) belongs to
Tess(—AQY). O

Reduction to the half-guide It will be convenient to use ;) defined by, see Fig. 1:

QF = {(xl,xg) ERXRy:zytanl < 29 < (ml + ,W0> tan@}.
sin

We define the Dirichlet part of the boundary by 6D;rQ; = Opi 2 N 69;. Let us introduce
— AP as the Laplacian with mixed Dirichlet-Neumann conditions on € with domain:
0

Dom(AS'\;';f) ={ve H'(Q)): Aype L),
Y =0 on Ip; and 0rY) =0 on x5 =0}.

Then Uess(—Ag}X) coincides with aess(—ABL’). Concerning the discrete spectrum we have:
Proposition 1.2 For any 6 € (0, %), 04is(—Aq)) coincides with o4is(—ANY).
0

Proof: The proof relies on the invariance of —Agi}r by the symmetry x5 — —x,.

(i) If (A, uy) is an eigenpair of —Ag“ﬁ, the even extension of u, to €y defines an eigenfunction
6

of —AgY associated with the same eigenvalue \. Therefore ogis(—ANY) C aais(—Ag)).
6

(ii) Conversely, let (A, u,) be an eigenpair of —Ag" with A < 1. Splitting the odd part u3*

even

and the even part u$’*" of u, with respect to x5, we obtain:

Dir_ odd __ odd Dir_  even __ even



Let us check that u‘idd = 0. If it is not the case, this would mean that \ is an eigenvalue
for the Dirichlet Laplacian on the half-waveguide whose spectrum begins at 1. Thus, we

have necessarily: u$% = 0 and u$*®" (which satisfies the Neumann condition on z = 0 by
symmetry) is an eigenfunction of —A'g\)’"f associated with \. U

0

Rescaling of the half-guide In order to analyze the asymptotics § — 0, it will be useful
to rescale the integration domain and transfer the dependence on € into the coefficients of the
operator. For this reason, let us perform the following linear change of coordinates:

z = 21V/2sinb, Yy = 22V/2 cos b,

which maps € onto Q::/ , Which will serve as reference domain. That is why we set for
simplicity

and 8Di,Q = GDi,Sﬁ

w/4°

Neumann Neumann

Figure 2: The half-guide Q2 for 6 = % and the reference domain ).
Then, — A is unitarily equivalent to the operator defined on 7 by:
0 4

Deui(0) := —25sin?0 9> — 2 cos*d 85,

with Neumann condition on y = 0 and Dirichlet everywhere else on the boundary of 2. We
let h = tan @ ; after a division by 2 cos? 6, we get the new operator:

Lcui(h) = —h?0? — 85,
with domain:
Dom(Lgu(h)) = {v € H'(Q) : Leui(h)y € L*(Q),
¢ =0 on Jpi and 9yy =0 on y =0}.

As a preliminary investigation, we are to going to study Lt;(h) which denotes the same op-
erator —h*02 — 92 with Dirichlet conditions on the triangular end Tri of the model waveguide
Q7r/4

Tri:{(x,y)eRQ:—7T\/§<x<0and|y|<x+7rx/§}.
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1.3 Born-Oppenheimer approximation and models

In the analysis of L1,i(h) and Lgi(h), we will see that its so-called Born-Oppenheimer ap-
proximation will play an important role:

Heo.cui(h) = —h*0 + V (1), (1.1)
where
W—Z when z € (—7v/2,0)
V(z) = Az +17T\/§)2 ’
3 when x > 0

This effective potential V' is obtained by replacing —85 by its lowest eigenvalue on each slice
at fixed . When h goes to zero, the behavior of the ground eigenpairs of Hgo cui(h) is driven
by the structure of the potential near its minimum, attained at z = 0: In a neighborhood of
x = 0, V can be approximated by its tangents, which provides the approximate potential Vp,
defined by

1 1
- — r whenzx € —7r\/§, 0
B 8 Amy/2 ( )
Vapp(x) = 1
3 when x > 0

After the change of variables » = \/2z/(37) and the change of parameter x = 4h/(37v/3),
we find the correspondence

3 1
— B?02 + Vapp(2) ~ gHtoy(/i) [2;0.] + 5 (1.2)

where the toy model operator H.oy (x)[2; 0;] is defined as:

—z when z <0,

1  whenz > 0. (1.3)

Huoyli) = —202 + W(2) with W(z) = {

This toy model invites us to recall the properties of the Airy operator.

The Airy function Let us recall the basic properties of the Airy operator, i.e. the Dirichlet
realization on L?(R_) of —9? —z. This is standard that this (positive) operator has compact re-
solvent. Thus, its spectrum can be described as an increasing sequence of eigenvalues tending
to +o0o. Let us use the traditional notation Ai for the Airy function. We recall that it satisfies:

—Ai" + zAi = 0.

All along this paper, we will use A the reverse Airy function, i.e. A(x) = Ai(—z). We recall
that A does not vanish on R_, is exponentially decreasing when x — —oo and that its zeros
(which are simple) form an increasing sequence of positive numbers tending to +o0.
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Notation 1.3 The n-th zero of A will be denoted by za(n).

If (X, ¢)) is an eigenpair of the Airy operator, we have —y — z1)\ = A, hence the equation
—f — (x 4+ Ay = 0. We deduce that there exists a number c¢(\) so that:

Uy(x) = c(N)A(x + ).

With those remarks, we can see that the spectrum of the Airy operator is {za(n),n > 1} and
these eigenvalues are simple.

Finally, let us introduce the Dirichlet realization on L?((—m+/2,0)) of:

7T2

Heoti(h) = —h*0? + ——————. 1.4

Bo.Tri () PEp—y (1.4)

This operator is the Born-Oppenheimer approximation of the operator L1,;(h) on the triangle
Tri and will be the first order approximation of Hgo cui(h) defined in (1.1).

1.4 Main results on eigenvalues

We can now state the main results of this paper. The first one proves that there is always
discrete spectrum in a waveguide with corner:

Proposition 1.4 For 6 € (0, %), —Agi; has at least one eigenvalue below 1.

This result is already known (see [3]) but we will provide another proof related to a more
general argument developed in [10, 7, 8] for waveguides with curvature. Moreover, the discrete
spectrum is increasing with respect to :

Proposition 1.5 The eigenvalues of —ABL’ are continuous increasing functions of 0.

The lowest eigenvalues of the toy model admit analytic expansions with respect to '/ (when
k is small enough):

Theorem 1.6 For all Ny € N, there exists kg > 0 such that, for k € (0, kg), there exists at
least N, eigenvalues of Hyoy (k) below 1. Denoting by Aoy (k) these eigenvalues, we have the
converging expansions for 1 < n < Ny and k small enough:

“+oo
Moy (k) = &%/ Z aj k3 with first coefficient o, = 2a(n).
=0

The corresponding eigenvectors have expansions in powers of h'/3 with the scales z / h*/® when
z < 0and z/h when z > 0, see (3.6).



The lowest eigenvalues of the triangle admit expansions at any order' in powers of h?/3:
Theorem 1.7 The eigenvalues of L+,i(h), denoted by i ,(h), admit the expansions:

Arin(h) e Zﬁj,nhj/:)’ with Bon = <, b1, =0, and Ba, = (47T\/§)72/32A(n)7

1
Jj=0 8

the terms of odd rank being zero for j < 8. The corresponding eigenvectors have expansions
in powers of h'/® with both scales x/h*/* and x / h.

In terms of the physical domain Triy, we deduce immediately from the previous theorem that
the eigenvalues of —A-'?riire, denoted by pi1i . (0), admit the expansions:

) . 1 _
() hZoZ 207 with B, = " AR, =0, and B3, = 2(47V2) 3z5(n),
720

with the same properties as above. Performing the scaling:
T1 =2cosfsinfr; Iy = 2cosbsinb x,,

we get an isosceles triangle with angle a = 26 and side ¢ = 27 denoted by p<- (). With this
scaling, the eigenvalues satisfy the relation:

/‘LTri,n(9> = (Sin Oé>2/‘L:|:iri,n(O'/)7

so that we find back the result of [13, Theorem 1] and notice that the odd term after O(a?/3)
in the asymptotics of ji- () is not zero.

Remark 1.8 As it will be seen in the proof, the existence of a non-zero coefficient [, at the
order 9 reduces to the evaluation of an integral, see (5.6). The numerical value of this integral
for a few lowest values of n will be investigated in a further work.

Finally, the lowest eigenvalues of the waveguide admit expansions in powers of h'/?:

Theorem 1.9 For all Ny, there exists ho > 0, such that for h € (0, ho) the Ny first eigenvalues
of Lcui(h) exist. These eigenvalues, denoted by Agyi . (h), admit the expansions:

Tn = 07 and Y2 = (47]-\/5)72/32"/-\(70

, 1
. ~ E - pi/3 i S
)\Gm,n(h) b0 = Vj,nh] with Yo,n = 87

and the term of order h is not zero. The corresponding eigenvectors have expansions in powers
of h'/3 with the scale x/h when x > 0, and both scales x/h*?® and x/h when x < 0, see (6.6).

! By the notation \(h) i > >0 Cj h?J we mean that for any positive integer J we have the estimate

IA(R) = Yg< <y €h7| < Cp kD) for h small enough.
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We get the obvious corollary concerning the eigenvalues in the waveguide §2:

Corollary 1.10 For all Ny, there exists 0y > 0, such that for 6 € (0, 0y) the Ny first eigenval-
ues of —ABZ exist. These eigenvalues, denoted by (i, (), admit the expansions:

: 1
PGuin () ~ Zvﬁﬂ”s with v& ==, A2 =0, and 5, = 2(47v2)"2325(n)
h—0 4 ’ ' 4 ’ ’
Jj=0
and the term of order 0 is not zero. The corresponding eigenvectors have expansions in powers
of 0'/3 with terms independent of 0, and with terms at the scale x1h'/® when z1 < 0.

1.5 Organization of the paper

In Section 2, we prove the existence of discrete spectrum for waveguides with corners and its
monotonicity with respect to the opening 6. In Section 3 we investigate the toy model H;o, (%)
through a construction of quasimodes and an ODE analysis. In Section 4 we study Hgo ()
thanks to the construction of quasimodes and Agmon estimates in order to analyze the Dirichlet
problem on a triangle with small angle. In Section 5 we apply the results of Section 4 through
a projection method reducing the analysis to dimension 1. Finally, in Section 6, we perform
again a construction of quasimodes for the waveguide and introduce in particular Dirichlet-
to-Neumann operators to solve a transmission problem ; we conclude by comparing with the
triangle case.

2 Elementary properties of the spectrum

In this section, we prove Propositions 1.4 and 1.5. For that purpose, we will work with another

representation of —AMX.
2

2.1 Preliminary

More precisely, let us define:

ﬁj = {(ml,xg) € (—m%,—i—oo) X (0,7) 1 xg < zytanfif z; € (—ta%,O)}.

Figure 3: The reference half-guide Q= (NZ;’/ 4



Let us denote 8Dir§9+ the part of the boundary carrying the Dirichlet condition, i.e. : x5 = 0
and on o = 7 if 1 > 0. We put the Neumann condition everywhere else. This operator is
unitarily equivalent to —Ag'\;'éi‘. Let us now perform the change of variable:

r=uxtanf, y = x,,

so that the new integration domain is Q= ﬁ;r/ , and is independent of 6. The operator —A

becomes : B
L(0) = —tan®0 97 — 92,

with Dirichlet boundary condition on 8Dir§~2 and Neumann condition on 9 \ 8Dir§~2. The form
domain Dom(()y) associated with £(6) is independent of 6:

Dom(Qy) = {¥ € HY(Q): ¥ =0 on JpiQ}.

The function # — tan?# being increasing and continuous, the min-max principle (see [20,
Chapter XIII]) implies that the Rayleigh quotients of £(6) are increasing and continuous func-
tions of ¢, which proves Proposition 1.5. Let us prove that eigenvalues exist.

2.2 Existence of discrete spectrum

In this subsection, we prove Proposition 1.4 using an idea of [8, p. 104-105]. Let us introduce
the following quadratic form, defined for ¢» € Dom(Qy) by:

() = Qo) — [0 = [ (w010, +10,01) dody — [ 0P dedy
Q )
To prove our statement, this is enough to construct a function ¢» € Dom(Qj) such that:

g0 () < 0.

In order to do that, we first consider the Weyl sequence defined as follows. Let y be a smooth
cutoff function equal to 1 for z < 0 and 0 for x > 1. We let, forn € N\ {0}:

Xn(T) = X (%) and U, (,y) = Xn(z)siny.

Estimate of ¢4(1),) Using the support of x,,, we find that gy(¢,,) is equal to

0 T+T oo,
/ / (cos?y — sin? y) dydx + / / (tan®0(x),)? sin® y + X2 (cos® y — sin®y)) dyd.
= Jo o Jo

Then, elementary computations provide:

T 0 T+
/ (cos’y —sin®y)dy =0 and / / (cos®y — sin?y) dydz = 0.
0 —m JO0
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Moreover, we have:

oo T 1 2
/ / tan? 0(x’,)? sin® y dydr < (/ |X'(u)|2du) T tan 6.
o Jo 0 2n
! tan? 0
< (u)2du ) = : 2.1
< ([ wepad) 75 @

Perturbation of ¢),, We introduce a smooth cutoff function 7 of x supported in (—,0). We
consider a function f of y € [0, 7] to be determined later and satisfying f(0) = 0. We define
o(z,y) = n(x)f(y). For e > 0 to be chosen small enough, we introduce:

¢n,8(x7y) = @/Jn(ff»y) + 5@5(1’,?,/)

Hence:

We have:
Qo (ne) = qo(Vn) + 2ebg(Vn, @) + £2qo(9),

where by is the bilinear form associated to gy. Let us compute by(1),,, ¢). We can write, thanks
to support considerations:

bo (¢, ) /_W/ ) (cosyf'(y) — sinyf(y) dydx—/_ﬂ/ ) (cosyf(y)) dydz.

Using f(0) = 0, this leads to:

b, 0) = [ nfe) costa + ) (o + ) do

—T

We choose f(y) = n(y — ) cos(y — ) and we find:

bo(Vn, @) = —/_ n*(x) cos*(z) dov = —T' < 0.

™

This implies, using (2.1):

1 2
() < ( / |x’(U)|2dU> Tl pelpe
0

where D = gy(¢) is a constant. There exists € > 0 such that:

—Te+ De? < —ge.

The angle 6 being fixed, we can take /N large enough so that
)2 7 tan? 6 F
du < —

r
q@(wN,s) S _Zg < 07

which ends the proof of Proposition 1.4.

from which we deduce:
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3 A toy model

This subsection is devoted to the proof of Theorem 1.6. This proof is divided into two steps.
First, we construct quasimodes and quasi-eigenvalues for Ht,, (%) and second, we show that
the lowest quasi-eigenvalues are the approximations of the lowest eigenvalues of Hqoy (%) of
the same rank.

3.1 Construction of quasimodes
This subsection aims at proving the following proposition:

Proposition 3.1 For all Ny € N*, there exists kg > 0 and C' > 0 such that for k € (0, ko):
dist (ad;S(HtOy(m), ff2/3zA(n)) <Ck, m=1,---Np. (3.1)

Proof: The basic tool for the proof is the construction of quasimodes and the application of
the spectral theorem. Convenient quasimodes are given by power series in /3 of profiles at

the scales
2/3 1

s=k “°z when 2<0 and o=k "z when z > 0.

More precisely we look for quasi-eigenfunctions 1, in the form:

o Wieri(s) K3 when z <0
@Z}K(Z) - Z]ZO ]( ) | (32)
> im0 Prigi(0) k73 when z >0,
and quasi-eigenvalues in the form:
Qe ~ K23 Zaﬂ#ﬁ as k — 0. (3.3)
Jj=0
The continuity conditions at z = 0 provide the formal identities:
{ D50 Yier,;(0) K773 = > 50 Prig,i (0) w773 (3.4)
K23 ijo 05 Wier,;(0) AN Z]’zo 05 Prig,;(0) "ﬁj/3>
and the formal eigen-equation is
— 12P(2) + W (2)e(2) = aue(2) 2 €R. (3.5)

Determination of oy Collecting the terms in £2/% in (3.5) and using (3.2)-(3.4) we obtain:

{ _(P:r/igp(o-) + ®rig70(0-) — O f0r g > O, and (D:'ig,0<0) = 0’

—\I’féﬂo(s) — S\IJ|ef70(S) = Oé[)\I]|ef70(S) for s < 0, and \Ij|ef7()(0) = (I)rig,()(()).

We deduce first that @,z = 0 and thus V) (0) = 0. This implies that ay is a zero of the
reverse Airy function A. At this stage we can choose a positive integer n, take oy = za(n) and
Vet o as the corresponding normalized eigenfunction gy,).
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Determination of o; Collecting the terms in «, we get the equations:

{ — Pl + Prig1 =0 foro >0, and @y, ,(0) = Wi, ,(0),
- fe/af,l -

rig,1
SWief1 — Wier1 = 1 Wiero for s <0, and Wi 1(0) = Prig 1(0).
We find first:
Drig1(0) = = Wi o (0)e .

Moreover we obtain the existence of a number a; and of an exponentially decreasing Wief
solution of the second equation with the help of the following lemma:

Lemma 3.2 Let n > 1. We denote by g,y an eigenvector of the operator —0? — s associated

with the eigenvalue zp(n) and normalized in L*(R_). Let f = f(s) be a real function with an

exponential decay and let c € R. Then there exists a unique o € R such that the problem:
(=02 —s—za(n)) g = f + agm) in R, with g(0) =c,

has a solution with an exponential decay. There holds

a=chy® = [ F5) g0 (s)ds.

Further terms A similar procedure can be reproduced at each step, providing the construc-
tion of @, ;, then or; and Vs ;, for any j > 2.

Expressions for quasimodes Relying on the previous iterative constructions we can set for
all integer J > 0

J+2 >
(_Z ) /3
> Vs (s ) when 2 < 0
P(z) = {958 (3-6)
Z Dig (i) K13+ Wiet 112(0) K3z X(E> when z >0,
K ’ K
§=0

where x is a smooth cutoff function equal to 1 near 0. By construction, w,[;]} and its first
derivative are continuous in z = 0. Moreover 1/1,&” is exponentially decreasing as z — +00.
Therefore it belongs to the domain of Hqoy (). With this remark and taking the error introduced
by x into account, we get for all ko > 0:

J+2

H (Htoy(“) — k2% (za(n) + Zaj/f‘]/?’))w,[ﬂu < C(J,n, ko) KB Yk < k.

j=1

Hence
H (Heoy (k) — /i2/3,zA(n)) wnH < C(n,ko) K, YK < kKo,

and the spectral theorem applies. In particular, for x small enough, the discrete spectrum of
Hioy (k) is not empty since Tess(Hroy (1)) = [1, +00). O
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3.2 Expansion of the lowest eigenvalues

We now want to refine Proposition 3.1 by proving that the A,y (k) are power series with
respect to x'/% and whose coefficients are given by (3.3). We begin to prove the following
proposition:

Proposition 3.3 For all Ny € N*, there exists kg > 0 and C > 0 such that for k € (0, kg):

oy () — £22a(n)| < Cr, n=1,---N,. (3.7)

Proof: Let Ny € N*. We have proved in particular that, for all k € (0, kg), the Ny first
eigenvalues A, ,(#) (denoted by A, for shortness) exist and that they satisfy:

An| < C(No) &3, ke (0,k), n=1---N,. (3.8)

Let us denote by 1, an eigenfunction associated with \,, so that (¢, ¥,,) = 0 if n # m. For
z < 0 we have:

— k2! — 2 = M.
Thus, there exists ¢, (k) # 0 such that, for z < 0:
Un(2) = cn(R)A(K™32 + 57230,).
On the other side we obtain the existence of d,,(x) # 0 such that, for z > 0:
Un(2) = d(R)e "V
The transmission conditions at z = 0 imply:
cn(R)A(K3N,) = dn(K),  cn(k)RYPA (K723N,) = —dp (k)1 — A,

This implies:

/3

A(™PN,) = — e
(K72 A0) T

AN (5723N,). (3.9)

We infer:
IA(k™23\,)| < C(Ny) kY2,

Since x~2/3),, is bounded, see (3.8), and the zeros of the Airy function being isolated and
simple, we deduce that for all n € {1,--- , Ny}, there exists p = p(n, <) such that:

2N\, — 2a(p)| < C(No)K'2.

Note that p is bounded too. In view of Proposition 3.1, it suffices now to prove than if x is
small enough and n # m (with n, m < Nj), the integers p(n, ) and p(m, k) are distinct. Let
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us prove this by contradiction. Since the considered sets of integers n, m and p are finite, the
negation of what we want to prove can be written as

dm,n,p e N, Vk; >0, Jx € (0,r) suchthat p(m,x)=p(n,k)=np.
The eigenfunctions can be taken in the form:

) A(k2B32z + k28)) when z <0
VYi(z) = . for j=m,n,
! A(k=23)\) e V™A when 2 >0,

and we have

(o, ) = / A(™32 + k72BN )A(R2P2 + k72BN,) dz + O(K°) = 0.
2<0

A rescaling leads to:

/ Az + K728X0) Az 4+ k723 N\,) dz| < C(Np)k.
2<0

By assumption, k%), = za(p) + O(k'/?) and k=2/3),,, = za(p) + O(x'/3). For j = n,m,

A being Lipschitz on (—oo, M| for all M, there exists D(Ny) > 0 such that for all z < 0:
A(z+ £7220) = A(z + 2a(p))| < D(No)&'?, for j =m,n,

so that:

S D(NO)K1/3.

[ AN = [ W) d:
2<0

z<0
We deduce:
Vi1 >0, 3k € (0,x;) such that / A2(z + za(p)) dz| < D(Ny)s'/?
z<0
which leads to a contradiction and ends the proof of Proposition 3.3. 0

Proof of Theorem 1.6 Let us observe that Proposition 3.3 permits to separate the /N, first
eigenvalues when x < k. Let us write § = x'/3. We let:

An(8) = 672 Aoy, (67,
so that A, (6) is uniformly bounded forn = 1,..., Ny and § < 5[1)/3.

We deduce from (3.9):

A(X(6)) = ————ao— A'(A,(4)). (3.10)
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Figure 4: The first two eigenvalues Aoy.; and Aoy 2 as functions of § = x1/3.

We know that A is analytic and, using again the simplicity of its zeros, we can apply the
analytic implicit function theorem near § = 0 and for all n € {1,--- , Ny}, which ends the
proof of Theorem 1.6.

From (3.10), we can deduce that the Xn(5 ) are solutions of the analytic equation:
(1—02NAN)2 = 82A (N2 =0 (3.11)

This equation provides an analytic extension of the functions ¢ — S\n(é), hence of Aoy =
52 ;\n(é ), in the sense of analytic curves. We represent in Figures 4 and 5 the first two eigenval-
ues and their analytic extensions. Taking the continuity and monotonicity of the eigenvalues
with respect to J into account, we can see that any branch which starts by § — A(J) =
52z + O(63) represents an eigenvalue while A\(9) is less that 1. Beyond 1, the Rayleigh quo-
tient stays = 1, but the curve A(J) has an analytic extension as a continuation of a branch of
roots of the equation (3.11).

4 Born-Oppenheimer approximation for the triangle
This section is devoted to the analysis of Hgo 1+i(h) defined in (1.4).

Proposition 4.1 The eigenvalues of Hgo 1vi(h), denoted by \go 1vi.n(h), admit the expansions:

s s a1 -
A60, i (1) h:O;ﬁj,nhQJ/g, with o, = and [ = (47V2)"* 2a(n).
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Figure 5: The eigenvalues Ay 1 and Ay 2 as functions of § = K1/3

the essential spectrum.

, zoom near the bottom of

4.1 Quasimodes
In this subsection, we construct quasimodes to prove the proposition:

Proposition 4.2 For all Ny € N*, there exists hy > 0 and C' > 0 such that for h € (0, hy):

1
dist <Udis(HBO,Tri(h)), S + h2/3(47r\/§)—2/32A(n)> <ChY3, n=1,---N,. (4.1)

Proof: The proper scale in « is h*/? as can be seen by approximating the potential in x = 0
by its tangent and recognizing the Airy operator. Thus, we will construct quasimodes vy, as
functions of s = h=2/3x: We look for quasi-eigenpairs (A, ;) in the form of series

Ay~ > Bp¥ and ay(x) ~ Y W(s)h

>0 >0

in order to solve Hgo 1i(h)Yn = Ant, in the sense of formal series. A Taylor expansion at
x = 0 of the potential V' yields:

A 1 1
Heomi(h) ~ —=h20? + Y Vizd, with Vy=- and 1} = ————,
BO,T( ) T jzz; i 0 8 1 47T\/§
which, in s variable, becomes
1 ) )
Heomi(h) ~ o +h**(= 05 + Vis) + > h¥PV;s!. (4.2)

3>2
The construction of the terms Bj and V; is similar (even simpler) than for Proposition 3.1.

16



e The expansion (4.2) yields that 3, = 1, and collecting the terms in 1?3 and we obtain:
S ~

471-\/5 \IJ()(S) = 51\1/0(8) Vs <0 and ‘1’0(0) =0. 4.3)

Thus for any chosen positive integer n we can take 3; = (4my/2) 2324 (n) together with
Wo(s) = A((47v/2)3s 4 za(n)).
e Collecting the terms in 2*/? we obtain

— Vg(s) —

— W (s) + VisWy(s) — 31U (s) = ByWg — Vas? Wy ¥s <0 and ¥(0) = 0.

The compatibility condition states that BQ<\IJO, Vo) = Va(s?Wy, Uy). This determines 35 and
implies the existence of a unique solution ¥; € L*(R_) such that (¥, ¥g) = 0.

e This procedure can be continued at any order and determines (Bj, W,) at each step.

e To conclude, we take a cutoff function y € C;°(R) equal to 1 near 0 and to 0 for || > g5 > 0
with g9 < /2. We choose n > 1, J > 0 and introduce:

J
e () = x(2) Y Wy (b2 h 3,
7=0

Using the exponential decay of x — \I/j(hfz/ 32) and the definition of ¥; and Bj, we get for
any ho > 0 the existence of C'(n, J, hy) > 0 such that:

| (Fso.ma(n) - iﬁﬁ”‘”’)%‘”” < Cn, J, ho) B2 i € (0, hy).
=0

This proves the existence of quasimodes at any order and ends the proof of Proposition 4.2. []

4.2 Agmon estimates and consequences

In this subsection, we prove Agmon estimates (see [1, 2]) for the eigenfunctions of Hgo 1i(h)
and deduce Proposition 4.1. There will be two kind of estimates: near + = —mv/2 and near
x = 0. In the analysis of the triangles (cf. Section 5), we will meet the same estimates. Let
us consider an eigenpair (), 1)) of Hgo 1i(h). The Agmon identity writes, for some Lipschitz
function ® to be determined:

0
/ B210, (P )2 + V() |e[2 — h2e®[2 — Al(e®)[ d = . (4.4)

—mV2

It is a consequence of Proposition 4.2 that the lowest N, eigenvalues \ of Hgo 7i(h) satisfy:
A — 3| < T2, (4.5)

for some positive constant ['y depending on Nj.

17



Agmon estimates near vt = 0 We use (4.4) and the convexity of V' to get the inequality:

0 1 x
2 EUAND i 12 2@/ P12 UV de < 0.
[ ool + (- s ) evol = et - N ()P ar <0

With (4.5), we deduce:

0 x
/ — lePp|? — 2@ e®|? — Ch*3|(e®) > da < 0.
1 47r\/§

This leads to the choice
O(x) =nh

for a number 7 > 0 to be chosen small enough. We get:
’ Ed 9 4
——-nlx —C’h2/3) eY|?dx < 0.
[ (G e e*u? de <

For 7 small enough, we obtain the existence of 77 > 0 such that:

0
/ (7| — Ch¥3) |e®y|* dx < 0.
—7V2

Splitting the integral into the parts —mv/2 < z < —Dh?*? (where ® is unbounded) and
—Dh?? < ¢ < 0 (where ® is bounded) with 7D — C' = d > 0, we find:

—_Dh2/3 —Dh2/3
/ dh¥3|e® > de < / (7]x] — Ch*?) |e*y|* dx
-2 -2

0

0
<[ Gl owr)eupar <ot [ e

_Dh2/3 —Dh2/3

We deduce the proposition:

Proposition 4.3 Let I'y > 0. There exist ho > 0, Cy > 0 and ng > 0 such that for h € (0, hg)
and all eigenpair (A, ) of Hgo 1i(h) satisfying |\ — §| < Toh?/?, we have:

0
/ ooh a2 (|¢y2 + |h2/36m¢\2) dz < Collv]*.
—m/2

Agmon estimates near r = —7v/2 We use again (4.4) and (4.5):

[ e+ (o - ) el = R Ol e <o
s Az +mv/2)2 8 =

We take:

®(r) = —ph~tIn (D’l(a: + W\/i)),

18



where we choose p € (0, §) so that there holds:

/ | ((% —p) @tV - é) ™[ — CH3| (™) de < 0,
,ﬂ-\/i

and D > 0 large enough so that
2

T _ 2>D2—1>0
<4 P g8~

Then we split the integral into the parts —7v/2 < 2 < —mv/2 + D (where ® is unbounded)
and —7v2 + D < x < 0 (where ® is bounded) and the same procedure as in the previous
paragraph leads to the proposition:

Proposition 4.4 Let 'y > 0 and py € (0,5). There exist hy > 0, Cy > 0 such that for any
h € (0, ho) and all eigenpair (X, V) of Heo,1i(h) satisfying |\ — | < Toh*/®, we have:

0
/ (z -+ 7V (0l + R O.P2) de < Collwl®.
-2

Proof of Proposition 4.1 Let us fix Ny and consider the N first eigenvalues of Hgo 1i(h)
denoted by A\, = A\goTrin(h). Foreach n € {1,--- Ny}, we choose a normalized v, in the
eigenspace of A, so that (1,,, ¥,,,) = 0 for n # m. Let us introduce the space:

Q:’No(h) = Span(¢l7 v 777Z)N0)'
We recall that, for h small enough, (4.5) holds. We can write:

HBO,Tri(h)q/Jn = )\nwn
so that (the 1), are orthogonal in L? and for the quadratic form), for all b € €y, (h):

QBo,Trin (V) < Ay, l[¥]1%.

For ¢, small enough we introduce a smooth cutoff function y being 0 for |z + mv/2| < g, and
1 for |z + ™2 | > 2&¢. Proposition 4.4 implies that:

Qso,in(X¥) < (Any + O(h)) x|

Then, Proposition 4.3 provides:

<(—h28§ - %) w,w> < O, + O(E)) [l

where we have used the convexity. The dimension of x& y, (h) is Ny so that, with the properties
of the Airy operator and the mini-max principle, we get:

é + (4mv/2) 2P 2a(No) < Ang + O(R).

This is true for all fixed Ny and provides the separation of the lowest eigenvalues of Hgo 11i(h).
Combined with Proposition 4.2, we obtain Proposition 4.1.
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S Triangle with Dirichlet boundary condition

The aim of this section is to prove Theorem 1.7. As usual, the proof will be divided into two
main steps: a construction of quasimodes and the use of the true eigenfunctions of L+,(h) as
quasimodes for the Born-Oppenheimer approximation in order to obtain a lower bound for the
true eigenvalues.

We first perform a change of variables to transform the triangle into a rectangle:

Y
x—|—7T\/§

so that Tri is transformed into Rec = (—7+/2,0) x (—1, 1). The operator L1.(h) becomes:

u=1x € (-mV2,0), t= e (—1,1). (5.1)

t 2 1
Lrec(h)(u,t;0y,,0,) = —h* (au — m 3t> - m 07,

with Dirichlet boundary conditions on JRec.

5.1 Quasimodes
This subsection is devoted to the proof of the following proposition.

Proposition 5.1 There are sequences (3;,,) ;>0 for any integer n > 1 so that there holds:
Forall Ny € Rand J € N, there exists hy > 0 and C' > 0 such that for h € (0, hy)

J
dist (ad;s (Lri(h)), Zﬁj,nhj/3> <CpYtYB -y =1,... N, (5.2)

=0
Moreover, we have: 3y, = %, b1, = 0, and (s, = (47/2) 723 za(n).

Proof: We want to construct quasi-eigenpairs (3, 15, for the operator L1i(h)(0s, 9,). It will
be more convenient to work on the rectangle Rec with the operator Lrec(h)(u,t; 0y, 0;). We

introduce the new scales s = h~2/3y and o = h~'u and we look quasi-eigenpairs ([, ¢ in
the form of series

B~ > Bk and - dy(u,t) ~ > (T(s,t) + (o, t)) W/ (5.3)

J=0 J=0

in order to solve L‘Rec<h)1;h = ﬂhz/}h in the sense of formal series. As will be seen hereafter, an
Ansatz containing the scale h~=%/3u alone (like for the Born-Oppenheimer operator Hgo (%))
is not sufficient to construct quasi-modes for Lgec(h). Expanding the operator in powers of
h2/3_ we obtain the formal series:

o _ 1
Lrec(R) (B35, 230, 0,) ~ ZLthQJ/?’ with leading term Ly = —2—7T20t2

320
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and in powers of h:

. 1
Lrec(h)(ho,t; h710,,0;) ~ ZNgth with leading term ANy = —92 — ﬁﬁf

J=0

In what follows, in order to finally ensure the Dirichlet conditions on the triangle Tri, we will
require for our Ansatz the boundary conditions, for any j € N:

U;(0,t) + ®;(0,¢) =0, —-1<t<1 (5.4)

U,(s,£1) =0, s<0 and &,(0,£1)=0, o <0. (5.5)

More specifically, we are interested in the ground energy \ = % of the Dirichlet problem
for Ly on the interval (—1,1). Thus we have to solve Dirichlet problems for the operators
No — % and Ly — £ on the half-strip Hst = R_ X (—1,1), and look for exponentially de-
creasing solutions. The situation is similar to that encountered in thin structure asymptotics

with Neumann boundary conditions. The following lemma shares common features with the
Saint-Venant principle, see for example [9, §2].

Lemma 5.2 We denote the first normalized eigenvector of Lo on H} ((—1,1)) by co:
co(t) = cos (gt) :
Let F = F(o,t) be a function in L*(Hst) with exponential decay with respect to o and let

G € H%?((—1,1)) be a function of t with G(£1) = 0. Then there exists a unique v € R such
that the problem

1
(./\/0 — §> & =F in Hst, ®(o,£1)=0, ®(0,t) =G(t)+ ycolt),
admits a (unique) solution in H?(Hst) with exponential decay. There holds

S /_ (; /_ 11 F(o,t) ocolt) dodt — /_ 11 G(t) co(t) dt.

The following two lemmas are consequences of the Fredholm alternative.

Lemma 5.3 Let F = F(s,t) be a function in L?(Hst) with exponential decay with respect to
s. Then, there exist solution(s) V such that:

1
(Eo - g) U=Fin HSt, \D(S, :I:l) =0

if and only if (F(s,-),co), = 0 for all s < 0. In this case, W(s,t) = U(s,t) + g(s)co(t)
where U satisfies <\I/(3, ), co> . = 0and has also an exponential decay.
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Then, we will also need a rescaled version of Lemma 3.2.

Lemma 5.4 Let n > 1. We recall that zp(n) is the n-th zero of the reverse Airy function, and
we denote by g,y a normalized eigenvector of the operator —0% — (47T\/§)*13 with Dirichlet
condition on R_ associated with the eigenvalue (47v/2)~%/32a(n). Let f = f(s) be a function
in L?(R_) with exponential decay and let ¢ € R. Then there exists a unique 3 € R such that
the problem:

(—852 — FS\/E — (4W\/§)_2/32A(n)> g=f+Bgw in R_, with g(0) =c,

has a solution in H*(R_) with exponential decay.

Now we can start the construction of the terms of our Ansatz (5.3).

Terms in 2° The equations provided by the constant terms are:
LoV = GoWo(s,t), NoPo = BoPo(s; 1)

with boundary conditions (5.4)-(5.5) for j = 0, so that we choose (35 = % and Uy(s,t) =
go(s)co(t). The boundary condition (5.4) provides: ®y(0,¢) = —go(0)co(t) so that, with
Lemma 5.2, we get go(0) = 0 and ®; = 0. The function gy(s) will be determined later.

Terms in 7'/ Collecting the terms of order h'/3, we are led to:
(Lo — Bo)Vy = 1Po — L1V = 51 Vg, (Ny — Bo)P1 = 51Dy — NP1 =0

with boundary conditions (5.4)-(5.5) for j = 1. Using Lemma 5.3, we find 3; = 0, ¥y (s,t) =
g1(s)co(t), g1(0) = 0 and &, = 0.

Terms in h?/>  We get:

(Lo — Po)Wy = FoVg — LTy,  (Ny — o) P2 =0,

where £y = —0° + = 0? and with boundary conditions (5.4)-(5.5) for j = 2. Lemma 5.3
provides the equation in s variable

<(ﬁ2‘110 — LoVg(s, ')),Co>t =0, s<0.

Taking the formula Wy = go(s)co(¢) into account this becomes

anls) = (-8 = = ) )

This equation leads to take (3, = (4m/2)~%/32a(n) and for g, the corresponding eigenfunction
9(n)- We deduce (Lo — By) Wy = 0, then get Wy (s,t) = ga(s)co(t) with go(0) = 0 and P, = 0.
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Terms in 7%/ We get:
(Lo — Bo)Vs = B3V + B0y — LWy,  (Ny — Go)Ps =0,

with boundary conditions (5.4)-(5.5) for j = 3. The scalar product with ¢, (Lemma 5.3)
and then the scalar product with gy (Lemma 5.4) provide §3 = 0 and g; = 0. We deduce:
\113(S7t) = 93(8)00@), and 93(0) = 0, q)g =0.

Terms in A*/?  We get:
(Lo — Po)Wy = Lu¥o + [oWs — L4V — LoWs,  (No— [Fy)Ps =0,

where
V2

_ 3 292
Ly =210, — 50,

and with boundary conditions (5.4)-(5.5) for j = 4. The scalar product with ¢, provides
an equation for g, and the scalar product with gy determines 3;. By Lemma 5.3 this step
determines W, = Ui + ¢y(t)g4(s) with a non-zero W3 and g4(0) = 0. Since by construction
(95(0,-), co), = 0, Lemma 5.2 yields a solution ®, with exponential decay. Note that it also
satisfies (®4(0,-), ¢o), = 0 forall o < 0.

Terms in %/  We get:
(Lo — B0)¥s = B5Wo + (23 — LoVs, (N — (o)P5 = 0,
and with boundary conditions (5.4)-(5.5) for j = 5. We find 35 = 0, g3 = 0, U5 = g5(s)co(t),
g5(0) = 0, b5 = 0.
Terms in K53  We get:
(Lo — fo)Ws = BsWo + B4Vy + FoWy — Loy — LyTy,  (No — (o) Ps = 2Dy,

and with boundary conditions (5.4)-(5.5) for j = 6. This determines (g, g4, Vg = \116l +
co(t)gs(s), g6(0) = 0, and P with exponential decay due to the orthogonality of ®, to .
Terms in h7/3  We get:

(Lo — Bo)¥7 = (7 Vo + 525 — LoV5, (N — By)P7 = — N30y,
where

2

™2

g

N, ~7

10,0, + a2,
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and with boundary conditions (5.4)-(5.5) for j = 7. We take 57 = 0, g5 = 0, U7 = g7(s)co(t).
Then, Lemma 5.2 induces a value for the trace g;(0) so that there exists ®, with an exponential
decay. Note that if there holds:

/ (N3®y)(0,t) ocy(t) dodt # 0, (5.6)
Hst

we would deduce by Lemma 5.2 that g7(0) # 0.

Terms in 7%/°  We get:

(Lo — Bo)Vs = PBsVo + BsWa + BaVy + (oW — LsWo — LeWo — Ly Wy — LoV,
(No — Bo)Ps = 4Py + B2Ps.

This determines g, g¢ and Ug = \118l + cogs, the trace gs(0) and the exponentially decreasing
solution ®g.

Terms in 1%/  We get:
(Lo — Bo)Vg = BoWo + V7 — L3V7,  (Ny — Fo)Pg = BaPr — N3Ds.

We find 3y, g7 and then Uy = g + cogg and go(0), ®g. Note that if g;(0) # 0, i.e. if (5.6)
holds, we would deduce that 3y # 0.

Continuation. The construction of the further terms goes on along the same lines. 0

5.2 Agmon estimates

On our way to prove Theorem 1.7, we now state Agmon estimates like for Hgo 1i(h). Let us
first notice that, due to Proposition 5.1, the lowest eigenvalues of L+,(h) still satisfy an esti-
mate like (4.5). It turns out that we have the following lower bound, for all ¢ € Dom(Qi4):

7T2

. 2 2 2
QTrl,h(d}) Z /rrih |aml/}| + —4<gj—|—7r 2)2|1/J| dl’dy

Thus, the analysis giving Propositions 4.3 and 4.4 applies exactly in the same way and we
obtain:

Proposition 5.5 Let I’y > 0. There exist hy > 0, Cy > 0 and ng > 0 such that for h € (0, ho)
and all eigenpair (A, ) of L1i(h) satisfying |\ — | < Toh*?, we have:

/ e ([ 4+ 12 0,07) dady < Collw.
Tri
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Proposition 5.6 Let 'y > 0. There exist hy > 0, Cy > 0 and py > 0 such that for h € (0, ho)
and all eigenpair (A, V) of L1a(h) satisfying |\ — L| < Toh*/3, we have:

[ vyt (ol + o) dady < ol
Tri

5.3 Approximation of the first eigenfunctions

In this subsection, we will work with the operator Lgre(h) rather than L1,;(h). Let us consider
the first Ny eigenvalues of Lrec(h) (shortly denoted by \,). In each corresponding eigenspace,
we choose a normalized eigenfunction ﬂn so that @n, ¢m> = 0if n # m. As in Section 4.2,
we introduce:

~

eN()(h) = Span(@zla s awNo)'

Let us define Q%.. the following quadratic form:

et = [

Rec

1 A 1 -
(55210108 = g0 ) (et 7v2) duc,
s 8

associated with the operator £, = Id, ® (—5507 — 1) on L*(Rec, (u 4+ mv/2)dudt). We

consider the projection on the eigenspace associated with the eigenvalue 0 of —#8? — %:

HO& - <¢7 CO>t C()(t),

where we recall that ¢q(t) = cos (gt) We can now state a first approximation result:

Proposition 5.7 There exist hy > 0 and C' > 0 such that for h € (0, ho) and all 1) € €y, (h):
0 < Qrecl®) < CH ||

and R R R
1(Id — To) || + (|8, (Id — o) || < CRY?|[ ]|,

Moreover, 11y : €n,(h) — o(En,(h)) is an isomorphism.

Proof: If ) = 1), we have: R .
QRec,h(¢n> - AnHwnHQ

From this we infer:

Oncalin) < (5 + 007 ) 1P

The orthogonality of the @Zn (in L? and for the quadratic form) allows to extend this inequality
to ) € En,(h):

Qneeald) < (§+ 007 ) 1P
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This clearly implies: . R
Rec (V) < CR3 )%,

ot being in the kernel of £}, we have:

~

%ec(/&) = %ec((ld - Ho)w>

If we denote by pu- the second eigenvalue of the 1D operator —#83 — %, we get by the
min-max principle: A R
Q%ec((ld - HO)w) > :uQH(Id - H0)¢||2

Now the conclusions are standard. ]

5.4 Reduction to the Born-Oppenheimer approximation

In this section, we prove Theorem 1.7 by using the projections of the true eigenfunctions
(IIpe),,) as test functions for the Born-Oppenheimer approximation. Let us consider an eigen-

pair (A, ¢) of L1(h) such that (4.5) holds. We let ¢)(u, t) = ¢ (x,y). Then, (A, 1) satisfies:

2t0,,0 2t0 207 . 1 . .
R [ S Lt L ) — =0} = M.
( Yout V2 (u+TV2)?2 (it Ty/2)2 v (u + m/2)2 =

The main idea is to determine the (differential) equation satisfied by Hozﬁ. In other words we
shall compute and control the commutator between the operator and the projection IIy. For
that purpose, a few lemmas will be necessary. The first one is an estimate established in the
original coordinates (x, y) in the triangle Tri:

Lemma 5.8 Forall k € N, there exist hg > 0 and C > 0 such that we have, for h € (0, hy):

/ (2 + 7v/2) 10,0 dedy < Cllo|1%
Tri

Proof: The equation satisfied by 1) is:
292 2
(=h*0; — 0,)¢ = M.

Multiplying by (4 7+/2)~*, taking the scalar product with 1/ and integrating by parts we find:

/ (z +7V2)7*|0,0* dedy < C/
Tri

Tri

(z -+ 7V2) ([0 + B2 (o + 7v/2) 10, ) dady.

Using the Agmon estimates of Proposition 5.6 with py/h > k + 1 we deduce the lemma. [J

We can now prove:
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Lemma 5.9 There exist hy > 0 and C' > 0 such that we have, for h € (0, hy):

[{u+mva) 0,00, o)) | < cn g
t1L2(du)
Proof: Integrating by parts in ¢ for any fixed u € (—mv/2,0), we find:
1
[t V) 10,005, o)) | < c/ (u -+ 7v3) |0 dt
-1

1 1/2
<C (/ (u+ m/i)?]auz/?\?dt) .
-1

To have the lemma, it remains to prove that

/ (u + 7v/2) 72|00 |? dudt < Ch2/ |b|? dudt.
Rec Rec

yay
(&E N x +7r\/§> v

and we apply Lemma 5.8 to control the term in d,,. We end the proof using the Agmon esti-
mates of Proposition 5.6. O

We have:

/ (u 4+ 7V2) 2|0 |? dudt = / (x + 1v/2)"3
Rec Tri

2

dxdy

The same kind of computations yields:
Lemma 5.10 There exist hy > 0 and C > 0 such that we have, for h € (0, hy):

[{w+mvay 2o, w®) ||, <clill

L2(du)

Finally, we have:
Lemma 5.11 There exist hy > 0 and C' > 0 such that we have, for h € (0, hg):

|{(wsmva) 202, %HLQ(du)SCW“'

From Lemmas 5.9, 5.10 and 5.11, and from Proposition 5.7, we infer:

Proposition 5.12 Let 'y > 0. There exist hy > 0 and C' > 0 such that for h € (0, hy) and all
eigenpair (A, ¥) of Ltu(h) satisfying |\ — 1| < Toh?3, we have:

wee— T\ )y :
|(<0t+ s =) o < crml
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Proof of Theorem 1.7 We deduce, from Proposition 5.12, forall n € {1,--- , No}:

H( WO+ u—l—jr\/_)) Toy

From this inequality, we infer, for all i) € &y, (h):

T
H( ha“+4(u+7rx/§)2) Moy

Qgo.1rin(Ioth) < (Mring (B) + Ch) [Tt .

< (Ao (h) + Ch) [ ot .

' Ovrne () + OB T

and thus:

It remains to apply the min-max principle to the Ny dimensional space I1o& v, (k) (see Proposi-
tion 5.7) and Proposition 4.1 to get the separation of eigenvalues. Then, the conclusion follows

from Proposition 5.1.

6 Application to the waveguide

In this section, we prove Theorem 1.9. Firstly, we construct quasimodes and secondly we use
Agmon estimates reduce to the triangle case. On the left, Lg,(h) writes, in the coordinates

(u,t) defined in (5.1):

t 2 1
L (1) = Lrec(h) = —h? <8u——8) -
Gw() R() u—i—7r\/§t (u+7r\/§)2t
and on the right, we let:
U=z T_y_x
) 71_\/5

and the operator writes:

. 1 S|
LE (h) = —h* (au — maT) — ﬁaf.

The integration domain is (—7v/2, +00) x (0, 1) = Qer U Qi Where:

Qier = (—7V/2,0) x (0,1) and Qi = (0, +00) x (0,1).

The boundary conditions are Dirichlet on (0, c0) x {0} U (—7/2, 00) x {1} and Neumann on

(—7v/2,0) x {0}.
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6.1 Quasimodes
The aim of this subsection is to prove the following proposition:

Proposition 6.1 For any n > 1, there exists a sequence (v, ,,) such that, for all Ny € N and
J €N, there exists hg > 0 and C' > 0 such that for h € (0, ho):

J
dist (06 (Leu(h), D 3inh?/*) < CHUFDE =1, Ny, 6.1)
=0

Moreover, we have: g, = %, Yn = 0and s, = (47/2) 723 2a(n).

6.1.1 Preliminaries

Ansatz, boundary and transmission conditions In order to construct quasi-eigenpairs for
Lcui(h) of the form (7, %y,), we use the coordinates (u,t) on the left and (u, ) on the right
and look for quasimodes v, (u,t,7) = ¥y (x,y). Such quasimodes will have the form on the
left:

1/J|ef u, t Zh]/g \If| f.j U t) + q)|ef](h u, t)) (62)
3>0
and on the right:
wrlg u 7- Zh 3(I)r|g]<h [ T) (6.3)
7>0

associated with quasi-eigenvalues:
Voo~ .
Jj=0

We will denote s = h~2/3u and 0 = h~'u. Since 1, has no jump across the line x = 0, we
find that ves and iz should satisfy two transmission conditions on the line u = 0:

Uier(0,8) = Gg(0,1) and (au - Wiﬂa) ier(0,1) = (au - f—ﬁ> g 0,),

forall t € (0,1). For the Ansitze (6.2)-(6.3) these conditions write for all j > 0

‘If|ef’j(0, t) —|— (I)|ef7j (0, t) — (I)rig,j<07 t) (64)
and
to, tO,
05 Pier ;(0,1) + OsWier,j—1(0, 1) — W\;—q)lefj 3(0,t) — ﬂ_\/t—qjlefj 3(0,1)
0
= 9, ®;(0,1) — T Bg i 5(0,1), (6.5)

™2

where we understand that the terms associated with a negative index are 0.
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Notation 6.2 Like in the case of the triangle Tri, the operators written in variables (s, ¢) and
(0,t) expand in powers of h?/® and h, respectively. Now we have three operator series:

o Lrec(R)(h?/3s,t;h=2/30,,0,) ~ > 50 L;h%/3. The operators are the same as for Tri,
but they are defined now on the half-strip Hlef = (—o0,0) x (0, 1).

o Lrec(h)(ho,t;h™'0y,0;) ~ 37,2 N5Th/ also defined on Hlef.
o Lcui(h)(ho,t;h™10,,0;) ~ ijo./\/g;ghj defined on Hrig = (0, 00) x (0, 1).

We agree to incorporate the boundary conditions on the horizontal sides of Hlef in the defini-
tion of the operators £;, N}, and NJ®:

e 0,V (s,0) =0and ¥(s,1) =0 (s < 0) for L;,
e 0,®(0,0) =0and U(0,1) =0 (o < 0) for N},

o ©(0,0) =0and ¥(s,1) = 0 (o > 0) for NJ&.

Dirichlet-to-Neumann operators Here we introduce the Dirichlet-to-Neumann operators
T and T'* which we use to solve the problems in the variables (o, t). We denote by I the
interface {0} x (0, 1) between Hrig and Hlef.

On the right, and with Notation 6.2, we consider the problem:

: 1
(/\/’O”g - g) e =0 in Hrig and @,,(0,t) = G(1)

where G € Hy/*(I). Since the first eigenvalue of the transverse part of N6 — £ is positive,
this problem has a unique exponentially decreasing solution ®,,. Its exterior normal derivative
—0,®yig on the line I is well defined in H~'/2(I). We define:

TEG = 0,Prig = — 0y Pyig.
We have:
(TG, G) = Qug(®sg) = CIIG%5
On the left, we consider the problem:

1
(_/\/(;Ef - §>c1>|ef =0 in Hlef and ®.(0,t) = G(¢)

where G € HéO/Q(I).

For all G € H&é 2(I ) such that IT,G' = 0, this problem has a unique exponentially decreas-
ing solution ®.¢. Its exterior normal derivative 0, ®Ps on the line [ is well defined in H —1/2 (I).
We define:

TG = 0,Pres = 0y Pes.
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We have:
(TG, G) = Qier(Prer) > 0.

Proposition 6.3 The operator T + T 11, is coercive on Hy)>(I) with I, = Id — Ily. In
particular, it is invertible from Hy>(I) onto H-'/2(I).

This proposition allows to prove the following lemma which is in the same spirit as Lemma
5.2, but now for transmission problems on Hlef U Hrig:

Lemma 6.4 Let Fis = Fief(0,t) and Fyig = Fig(0,t) be real functions defined on Hlef and

Hrig, respectively, with exponential decay with respect to o. Let G° € HéO/Q(I )and H €

H~'2(I) be data on the interface I = OHlef N OHrig. Then there exists a unique { € R and a

unique trace G € H&O/Q(I ) such that the transmission problem

(-/V’(I)ef N é) Do = Fier in Hlef,  Pir(0,) = G(t) + G°(t) + Ceo(t),

1
( (;Ig - g)q)rig = Frig in Hrig7 (Drig(oat) = G(t)a
aaq)lef(oa t) - 8U(I>rig(07 t) = H(t) on [>

admits a (unique) solution (Pief, Prig) with exponential decay.

Proof: Let (D), (o) be the solution provided by Lemma 5.2 for the data F' = Fies and G = 0.

Let (I>9ig be the unique exponentially decreasing solution of the problem
NE - Da0 =Ry in Mg, 90,(0.0) =0
0o g rig — Lrig 10 rg, rig( ) ) - Y
Let H° be the jump 9,P%, (0, 1) -0, P (0, ). If we define the new unknowns &, = &g — Y,
and Ol = P — P, the problem we want to solve becomes
1 .
<N(I)ef - g)q)llef =0 in Hlef, Pi¢(0,1) = G(t) + (¢ — Co)eo(t),
1
('Af(;lg - g) q):ig =0 in Hriga (I):ig(oa t) = G(t)a
O @} (0,1) — 0,010, 8) = H(t) — H°(t) on 1.

Using Proposition 6.3 we can set G = (T"&+T"I1,)~!( H — H,), which ensures the solvability
of the above problem. 0
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6.1.2 Construction of quasimodes

Terms of order 1° Let us write the “interior” equations:

lef : LoVier o = YoVier,0
lef,, : @it 0 = Y0Pier 0
rg : NyE®rig0 = Y0 Prig,o -

The boundary conditions are:
Wier,0(0, 1) + Pier,0(0, 1) = Prig0(0, 1),
05 Pief 0(0,1) = 0y Prig0(0, 1).
We get:
Y =2, Yiero = go(s)co(t).
We now apply Lemma 6.4 with Fis = 0, Fiig = 0, Gp = 0, H = 0 to get
G=0 and (=0.

We deduce: Pirg = 0, Pyigo = 0 and, since { = —go(0), go(0) = 0. At this step, we do not
have determined g, yet.

0| —

Terms of order 1'/? The interior equations read:

lef, : LoWier,1 = Y0 Vier,1 + 71 Vier,0
lef,, : Néefq%ef,l = Y0 Pier1 + V1 Plef 0
I’Ig : -/\[(;ng)rig,l = VO(I)rig,l + rchI)rig,O-

Using Lemma 5.3, the first equation implies:
11 =0, Wir1(s,1) = gi(s)co(t).
The boundary conditions are:
91(0)co(t) + Pier,1(0,1) = Prig1(0, 1),
95(0)co(t) + 0 Pief,1 (0, 1) = Oy Pyig,1 (0, 2).

The system becomes:

1
lef,, : (N(l)ef — §> Pier,1 = 0,
. rig 1
rig : ( 0> — §><I>rig71 =0.

We apply Lemma 6.4 with Fies = 0, Flig = 0, Go = 0, H = —g((0)co(?) to get:
G = —go(0) (T8 + T T1,) ey
Since G = Pyig 1 and ( = —g1(0), this determines Pief 1, Pyig1 and g1 (0).
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Terms of order 1>/> The interior equations write:

lef, : LoVieso + LoVier 2 = Z YW ief
I+k=2
lef, : -/\/aEf(I)IefQ = Z V1 Pief i
I+k=2
. rig 1
rg : N() (I)rig,2 = g(brig,%
with
1

LoWiero = —go (s)co(t) + 590(5)0; (co).

3y/2
Lemma 5.3 and then Lemma 5.4 imply:
" 1
—90 — msgo = 7Y290-

Thus, 7 is one of the eigenvalues of the Airy operator and g, an associated eigenfunction. In
particular, this determines the unknown functions of the previous steps. We are led to take:
\If|ef72(8, t) = \Ifﬁéfg + gg(S)Cg(t), with \IJIJQF,Q =0

and to the system:

1
Iefg : (N(I)ef - g) (I)Ief,2 =0
i 1
I’Ig . (./\/(;Ig - g) <I>rig,2 = 0.
Using Lemma 6.4, we find

G = —g}(0)(T"& + T"1I,) " co.

This determines @iz 2, Pief 2 and g2(0). The function g; is still unknown at this step.

Further terms Let us assume that we can write s, = Wéf7k+gk(s)co(t) for0 < k < jand
that (gx)o<k<;j—2 and (Wig , Jo<k<; are determined. Let us also assume that g;_1(0), (&)o<k<;»
(Prig. i )o<k<j—1- (Pief,kJo<k<j—1 are already known. Finally, we assume that g;(0), Pief ;, Prig
are known once g;_; is determined and that all the functions have an exponential decay.

Let us collect the terms of order hU+1)/3 The interior equations write:

j+1 J+l
lef, : g ﬁk\I’Ief,jJrlfk = E ’Yk\I’Ief,jH*k
J+1 J+1
. lef _
lef, : E N Qiet jr1-k = E Ve Pref j+1-k
k=0 k=0
j+1 J+1
P rig _
rig : g N EPyig jy1-k = E Vi Prig,j+1-k;
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We examine the first equation and notice that £; = 0 and 7; = 0 so that ¥ ; does not appear.
We can write this equation in the form:

1
(£0 —_ g) \Illef,j-i—l = —ﬁz\lﬁef,j—l - ’72\Dlef,j—1 - ’Yj‘f‘l\:[jlefo
J+1

- Z LyVief jri1—k — Z Vi Wief j+1—k-

We apply Lemma 5.3 and we obtain an equation in the form:

1
g}’,l - msgjfl = "29j-1 = [ + Vj+190,

where f and g;_1(0) are known. Then, Lemma 5.4 applies and provides a unique value of ;4
such that g;_; has an exponential decay. From the recursion assumption, we deduce that g;(0),
Dt j, Prig,; are now determined. Lemma 5.3 uniquely determines \I/éﬂ i1 such that:

L
Wief j+1 = ‘I’|ef,j+1 + 9j+1(5)00(t)-
We can now write the system in the form:

1
lef,, : (/\/'ef — §> Do j11 = Fler

r|g . (Nng > rig,j+1 — Friga

where Fief, Fyig have an exponential decay. The transmission conditions are, cf. (6.4)—(6.5):
Prer j1+1(0,1) = Prig j11(0,1) — Wier j11(0, 1)
= Orig j41(0, 1) — Wige ;1 (0,) — gj41(0)co(t)

and
3a@|ef,j+1(0, t) — aaq)rig,j+1(0a t)=H(t) = _9;(0)00(’5) + H(t),

where H is known. We can apply Lemma 6.4 which determines ®yig j 11, Pier j1 (With an
exponential decay) and ¢;;1(0) once g; is known.

Quasimodes The previous construction leads to introduce:

J+2
2 () () s
Dty =4 979 6.6)

Zq)”gj( >hj/3+ux<h>RJh( ) when u >0,
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where the correction term

Ryn(7) = 0sWiet,142(0, 7)1/
J+2 e

—Z( 0, (q;,ef] (0,7) + Prer,; (0, 7 )) h7/‘+z7r\/_ rig; (0, 7)R7/?

is added to make ;E,[f] satisfy the transmission condition (6.5). Here we have used a smooth
cutoff function ¥ = x(u) supported in (—¢, g9) with ¢, € (0, 7/2). By construction, zp,[;”
defined by the identity

U, y) = (i) (u,t)
belongs to the domain of L, (h). Using the exponential decays, for all J € N we get the
existence of hy > 0, C'(J, hg) > 0 such that for h € (0, ho):

J+2
‘ (ceumh) - thﬂ?’) o)
j=0

6.2 Agmon estimates and consequences

< C(J, ho) W73,

In this last subsection, we prove Theorem 1.9. For that purpose, we state Agmon estimates
(the proof of which being a consequence of that Hgo i is @ lower bound of Lg,i(h) in the
sense of quadratic forms) Completement obscur :-( to show that the first eigenfunctions are
essentially living in the triangle Tri so that we can compare the problem in the whole guide
with the triangle.

Proposition 6.5 Let (X, ) be an eigenpair of Layi(h) such that |\ — £| < Ch*/3. There exist
a >0, hg > 0and C > 0 such that for all h € (0, hy), we have:

/ eah*w(w\? + |haxw|2) drdy < Cly[*.
u>0

Proof of Theorem 1.9 Let 1" be an eigenfunction associated with Ag,; () and assume that
the w,’f are orthogonal in L?(Gui), and thus for the bilinear form Bgui,n associated with the
operator Lg,i(h). We introduce a smooth cutoff \" in x at the scale h'~¢:

X'(@) = x(zh*™") with xy=1if 2| <3, x=0if [z[>1
and we consider the functions x"¢)"". We denote:
€, (h) = span(xX"¥1, ..., X" ¥R, )-

We have:
QGui,h(wZ) = )‘Gui,n(h)HwZHQ
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and deduce by the Agmon estimates of Proposition 6.5:
Qauin (X" Y!) = (Acuin(h) + O(h™)) [|x"¥P|%.
In the same way, we get the “almost”-orthogonality, for n # m:
BGui,h(Xh Z;XhiﬂﬁL) = O(h™).
We deduce, for all v € &y, (h):
Qcuin (V) < (Aguino (h) + O(h™)) ||v])?.

We can extend the elements of &y, (h) by zero so that Qguin(v) = Qi_, (v) for v € €, (h)
where Tri., is the triangle with vertices (—m+/2,0), (h'7,0) and (R'~%,h'~¢ + 7v/2). A
dilation reduces us to:

hte\ 202 42
1+ —h*0z — 03
( 7?\/5) (=702 = 65)

on the triangle Tri. The lowest eigenvalues of this new operator admits the lower bounds
% + 2a(n)h?/® — Ch'~* ; in particular, we deduce:

1
AGuing (h) > 3 + ZA(No)h2/3 — Ch'=.

This provides the separation of the eigenvalues and, joint with Proposition 6.1, this implies
Theorem 1.9.
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