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Abstract

As a model for elliptic boundary value problems, we consider the

Dirichlet problem for an elliptic operator. Solutions have singular ex-

pansions near the conical points of the domain. We give formulas for

the coefficients in these expansions.

1. INTRODUCTION

We consider bounded n-dimensional domains with conical points, as Kon-
drat’ev in [4]. For simplicity, we suppose that there is only one conical point
and that it is located in 0. We denote Ω our domain and we assume that its
boundary is C∞ outside 0 and that it coincides with a cone Γ in a neighbor-
hood of 0. We denote x the cartesian coordinates in IRn and (r, θ) the spherical
coordinates. The spherical section of Γ is denoted G :

Γ ∩ Sn−1 = G.

We are interested in the Dirichlet boundary value problem for an elliptic op-
erator P (x; Dx) of order 2m. We assume that the coefficients of this operator
are C∞(Ω \ 0). We have to sharpen this assumption. We will consider three
cases (C1), (C2) and (C3), each of them being more general than the previous
one :

• (C1) : P is homogeneous with constant coefficients ; then, there exists
an operator L with C∞(G) coefficients such that

P (Dx) = r−2m L(θ; r∂r, ∂θ).



• (C2) : P has C∞(Ω) coefficients ; then, if L denotes the principal part
of P (0; Dx), then L satisfies the assumption of (C1) and the difference :

R(x; Dx) ≡ P (x; Dx) − L(Dx)

is a remainder.

• (C3) : there exists an operator L with C∞(G) coefficients such that the
difference :

R(x; Dx) ≡ P (x; Dx) − r−2m L(θ; r∂r, ∂θ)

is a remainder in a sense we are going to explain.

The Coulomb operator −∆ + 1
r

satisfies the assumptions of (C3). To explain
what we mean by remainder, we need some weighted Sobolev spaces.

As usual,
o

Hm(Ω) denotes the closure of D(Ω) in Hm(Ω) and H−m(Ω) is its
dual space. For any positive integer k and any real β, Hk

β(Ω) is defined as :

Hk
β(Ω) = {u ∈ D′(Ω) | rβ−k+|α|Dα

xu ∈ L2(Ω) ∀α, |α| ≤ k}.

We also define Hs
β(Ω) for any positive real s in a natural way – cf for instance

the appendix A in [1] –, and for any negative s by duality.

For any s > 0 and any β, the operators P and L in case (C2), and r−2m L
in cases (C1) and (C3) are continuous :

Hs+m
β (Ω) → Hs−m

β (Ω).

Moreover, in case (C2), the remainder R is continuous :

Hs+m
β (Ω) → Hs−m

β−1 (Ω).

Now, the assumption in the case (C3) is that there exists δ ∈]0, 1] such that
for any s ≥ 0 and β the remainder R is continuous :

Hs+m
β (Ω) → Hs−m

β−δ (Ω). (1.1)

If aα denote the coefficients of R :

R(x; Dx) =
∑

|α|≤2m

aα Dα
x ,

the assumption (1.1) holds if :

∀γ ∈ INn, Dγ
xaα is a O(r|α|−2m+δ−|γ|).
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With the above assumptions, we are interested in the structure of any solution
u of the following Dirichlet problem :

u ∈
o

Hm(Ω), Pu ∈ Hs−m
β (Ω), with s > 0 and s − β > 0. (1.2)

Since s > 0 and s − β > 0, Hs−m
β (Ω) is (compactly) embedded in H−m(Ω).

So Pu has in a sense more regularity than u. Of course, it is possible to
consider more general situations than (1.2) i.e. to assume that u belongs to
some weighted space. The solution of this problem would be essentially the
same as (1.2). We chose (1.2), because it is the natural framework when P is
strongly elliptic.

The assumptions of case (C2) are these of Kondrat’ev in [4]. We also took
these assumptions in our earlier works [2] and [3]. The assumptions of case
(C3) were introduced by Maz’ja and Plamenevskǐı in [7]. Kondrat’ev proved
the existence of an expansion of the solutions of (1.2) in the form of a sum
∑

i ci Si where the Si only depend on Ω and P and the ci are some coefficients.
Maz’ja and Plamenevskǐı in [6] and in [7] gave formulas for these coefficients ;
we also studied these coefficients in [2] and [3] in a different framework. What
we give here extends in a certain sense [7] and [2].

To end this section, let us state a Fredholm theorem. Such a result is related
to asymptotics of solutions : a solution of (1.2) can be split into a singular
part (asymptotics) and a regular part (remainder) when the assumptions of
the following theorem hold.

We need some notations. We denote P s
β the following operator :

P s
β :

o

Hm
β−s(Ω) ∩ Hs+m

β (Ω) → Hs−m
β (Ω)

u 7→ Pu

where
o

Hm
γ (Ω) is the closure of D(Ω) in Hm

γ (Ω). We will simply denote Pβ the
operator P 0

β .

P ∗
−β denotes the adjoint of Pβ. It acts

P ∗
−β :

o

Hm
−β(Ω) → H−m

−β (Ω).

For any λ ∈ C/ , L(λ) is the operator :

L(θ; λ, ∂θ) :
o

Hm(G) → H−m(G).

L(λ) is one to one except when λ belongs to a countable set in C/ , which can
be called the spectrum of L and is denoted by Sp(L).

Theorem 1.1 In the case (C3), we assume that s ≥ 0, β ∈ IR, s− β ≥ 0 and
that

∀λ such that Reλ = s + m − β −
n

2
, λ 6∈ Sp(L).

Then P s
β is a Fredholm operator.
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2. THE MODEL PROBLEM

In this section, we will only study the case (C1), when the operator is homo-
geneous with constant coefficients. We recall that P = L.

For each λ ∈ Sp(L), the following space :

Zλ := {u | u = rλ
∑

q

Logq r uq(θ), uq ∈
o

Hm(G), Lu = 0}

is not reduced to 0 : all function of the form rλu0 where u0 belongs to KerL(λ),
is an element of Zλ. Let σλ

ν , for ν = 1, . . . , Nλ denote a basis of this space.

Theorem 2.1 In the case (C1), we assume the same hypotheses about s and
β as in Theorem 1.1. Let η be a cut-off function which is equal to 1 in a
neighborhood of 0 and has its support in another neighborhood of 0 where Ω
coincides with the cone Γ. We assume that u ∈

o

Hm(Ω) is such that Pu ∈
Hs−m

β (Ω). Then there exist coefficients cλ
ν such that

u −
∑

λ∈Sp(L)

m−
n
2

<Re λ<s−β+m−
n
2

Nλ
∑

ν=1

cλ
ν η σλ

ν ∈ Hs+m
β (Ω) .

If Ker P0 is contained in Hs+m
β (Ω), then the coefficients cλ

ν only depend on
Pu. This is the reason for the introduction of the following assumption.

If u ∈
o

Hm(Ω) is such that Pu = 0 then u ∈ Hm
β−s(Ω). (2.1)

If (2.1) holds, as a consequence of a well-known regularity result for corner
problems, such an element of the kernel belongs to any space Hm+t

β−s+t(Ω) for
any t ≥ 0 (see Theorem 2.9 of [2] for instance).

Now, we are going to construct dual singular functions. We start with a
result from [6].

Lemma 2.2 For all λ ∈ Sp(L), there exists a basis τλ
ν , for ν = 1, . . . , Nλ of

the space

Z̃λ := {u | u = r−λ+2m−n
∑

q

Logq r vq(θ), vq ∈
o

Hm(G), L∗u = 0}

such that ∀µ, µ′ ∈ Sp(L), ∀ν, ν ′

∫

Ω
L(η σµ

ν ) τµ′

ν′ = δµµ′δνν′ .
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See [6] and [2] for more details.

We set T λ
ν = ητλ

ν . We have

∀λ, m −
n

2
< Re λ < s − β + m −

n

2
, T λ

ν 6∈ Hm
0 (Ω) and T λ

ν ∈
o

Hm
s−β(Ω).

Due to assumption 2.1, there exists Y λ
ν ∈

o

Hm(Ω) such that P ∗Y λ
ν = P ∗T λ

ν .
We set

Kλ
ν = T λ

ν − Y λ
ν .

Theorem 2.3 In the case (C1) and with the hypothesis (2.1), we assume the
same hypotheses about s and β as in Theorem 1.1 and Theorem 2.1. Then

cλ
ν =

∫

Ω
Pu Kλ

ν dx .

When P = ∆ and when Γ is a plane sector with opening ω, the σλ
ν are the

functions r
kπ
ω sin kπθ

ω
for k ∈ IN∗ and the τλ

ν are the functions − 1
kπ

r−
kπ
ω sin kπθ

ω
.

3. THE GENERAL PROBLEM

Now, we will work in the framework of the general case (C3). All the above
results can be extended in a certain sense to the case (C3). We are going to
introduce auxiliary functions. In the case (C2), the structure of these functions
is more precisely known.

First, we construct elements of the kernel of P ∗ in the same way by subtract-
ing a corrective function Y λ

ν from T λ
ν . The difference lies in the construction

of Y λ
ν . They cannot be found in

o

Hm(Ω) in general but in a larger space.

Proposition 3.1 In the case (C3) and with the hypothesis (2.1), let λ ∈ Sp(L)
such that m − n

2
< Re λ. We set

γ(λ) := Re λ − m +
n

2
.

Then ∀ε > 0, we have

T λ
ν ∈ Hm

γ(λ)+ε(Ω) and T λ
ν 6∈ Hm

γ(λ)(Ω) . (3.1)

Let δ′ = min{δ, γ(λ)}, where δ was introduced in (1.1). Then there exists Y λ
ν

which satisfies the homogeneous Dirichlet conditions and such that

P ∗T λ
ν = P ∗Y λ

ν and ∀ε > 0, Y λ
ν ∈ Hm

γ(λ)−δ′+ε(Ω) .

We introduce :
Kλ

ν = T λ
ν − Y λ

ν .
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The Kλ
ν for λ ∈ Sp(L), m− n

2
< Re λ < s− β + m− n

2
and for ν = 1, . . . , Nλ

form a basis of
Ker P ∗

s−β/ KerP ∗
0 .

Remark 3.2 In the case (C2), the Y λ
ν can be constructed as a sum of terms

T λ
ν,j = η r−λ+2m−n+j

∑

Logq r vλ
ν,j,q(θ)

with 1 ≤ j ≤ Reλ − m + n
2

and of an element Xλ
ν ∈

o

Hm(Ω).
In the case (C1), the functions T λ

ν,j are equal to zero and Y λ
ν = Xλ

ν (see §4 of
[2]).

Proof. First step. Let us prove the existence of Y λ
ν . By construction,

L∗T λ
ν = 0 in a neighborhood of 0 ; as a consequence of the assumption (1.1),

P ∗T λ
ν ∈ H−m

γ(λ)+ε−δ′(Ω). We want to prove that

P ∗T λ
ν ∈ Rg P ∗

γ(λ)+ε−δ′ . (3.2)

But, the regularity of T λ
ν yields P ∗T λ

ν ∈ Rg P ∗
γ(λ)+ε. We chose ε small enough

such that the ranges of P ∗
γ(λ)+ε and of P ∗

γ(λ)+ε−δ′ are closed. We have

Rg P ∗
γ(λ)+ε = (KerP−γ(λ)−ε)

⊥ and Rg P ∗
γ(λ)+ε−δ′ = (Ker P−γ(λ)−ε+δ′)

⊥

The hypothesis (2.1) yields that

Ker P−γ(λ)−ε = Ker P−γ(λ)−ε+δ′ .

So, we have obtained (3.2).

Second step. Let us prove that the Kλ
ν are independent from each other modulo

o

Hm(Ω). Let us suppose that they are not independent and that there exist non

zero coefficients cλ
ν such that

∑

cλ
ν Kλ

ν ∈
o

Hm(Ω). Let ξ be the largest real part
of the λ which are associated with a non zero coefficient. Since the whole sum
belongs to

o

Hm(Ω), we deduce by construction of the Kλ
ν that

∃ρ > 0,
∑

Re λ=ξ

cλ
ν T λ

ν ∈ Hm
ξ−m+ n

2
−ρ(Ω) .

The form of the T λ
ν (cf (3.1)) allows to show that the coefficients in the above

sum are all zero. We have obtained a contradiction.

Third step. Let γ be s − β and let nγ be the cardinal of the set

{Kλ
ν | m −

n

2
< Re λ < s − β + m −

n

2
and ν = 1, . . . , Nλ} .

We have to show that the dimension of Ker P ∗
γ is equal to the dimension of

Ker P ∗
0 plus nγ . We rely on an index calculus. Let us choose γ0, . . . , γJ such
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that


















0 ≤ γ0 ≤ . . . ≤ γJ = γ
∀j = 1, . . . , J : γj − γj−1 ≤ δ

Sp(L) ∩ {λ ∈ C/ | m − n
2

< Re λ < m − n
2

+ γ0} = ∅
∀j = 1, . . . , J : Sp(L) ∩ {λ ∈ C/ | Reλ = m − n

2
+ γj} = ∅.

(3.3)

For each j = 1, . . . , J , the functions u ∈
o

Hm
−γj−1

(Ω) such that Lu ∈ H−m
−γj

(Ω)
can be written as a sum of a regular part in Hm

−γj
(Ω) and a singular part

which is a combination of the η σλ
ν with λ ∈ Sp(L) and m− n

2
+γj−1 < Re λ <

m − n
2

+ γj. Due to (1.1), the same holds for the operator P . Applying the
result of the appendix B of [1] for each pair (P−γj−1

, P−γj
) and summing over

j = 1, . . . , J , we get
Ind P−γ0 − Ind P−γ = nγ .

As a consequence of the assumption (2.1), Ker P−γ0 = Ker P−γ. Then

Codim Rg P−γ − Codim Rg P−γ0 = nγ .

So for the adjoints, we get

dim Ker P ∗
γ − dim KerP ∗

γ0
= nγ .

We end the proof by noting that the construction of γ0 infers Ker P ∗
γ0

= Ker P ∗
0 .

We are going to construct the singularities now, i.e. a basis of functions
belonging to

o

Hm(Ω), which are not in Hs+m
β (Ω) and such that Pu ∈ Hs−m

β (Ω).
In the case (C1), such a basis is formed by the η σλ

ν (cf Theorem 2.1). Such a
result extends to the case (C3) only if s−β ≤ δ. Let us state that with s = 0 :

Lemma 3.3 In the case (C3), let τ and τ ′ such that 0 < τ ′ − τ ≤ δ. We
assume that

Sp(L) ∩ {λ ∈ C/ | Re λ = m −
n

2
+ τ} = ∅.

and that u ∈
o

Hm
τ ′ (Ω) is such that Pu ∈ H−m

τ (Ω). Then there exist coefficients
cλ
ν such that

u −
∑

λ∈Sp(L)

m−
n
2 −τ ′<Re λ<m−

n
2 −τ

Nλ
∑

ν=1

cλ
ν η σλ

ν ∈ Hm
τ (Ω) .

As we already explained in the above proof, this is a simple consequence of the
assumptions of (1.1) and of the corresponding result for L which is known [4].

In the case (C2), when s − β > 1, P (η σλ
ν ) does not belong to Hs−m

β (Ω) in
general but there exist

σλ
ν,j = rλ+j

∑

Logq r uλ
ν,j,q(θ)
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where uλ
ν,j,q ∈

o

Hm(G) and such that

P [η (σλ
ν +

∑

1≤j≤s−β+m−n
2

σλ
ν,j)] ∈ Hs−m

β (Ω)

see §4.B of [2].

In the general case (C3), we have another construction, which is less explicit,
as in the previous proposition 3.1.

Proposition 3.4 In the case (C3) and with the hypothesis (2.1), let λ ∈ Sp(L)
such that m − n

2
< Reλ. With the notation of Proposition 3.1 for all ε > 0,

we have
η σλ

ν ∈ Hm
−γ(λ)+ε(Ω) and η σλ

ν 6∈ Hm
−γ(λ)(Ω) . (3.4)

Then there exists Zλ
ν which satisfies the homogeneous Dirichlet conditions and

such that

P (η σλ
ν − Zλ

ν ) ∈ C∞
0 (Ω \ 0) and ∀ε > 0, Zλ

ν ∈ Hm
−γ(λ)−δ+ε(Ω) .

We introduce :
Sλ

ν = η σλ
ν − Zλ

ν and F λ
ν := PSλ

ν .

The F λ
ν for λ, ν satisfying

λ ∈ Sp(L), m −
n

2
< Re λ < s − β + m −

n

2
and ν = 1, . . . , Nλ (3.5)

form a basis of
(Hs−m

β (Ω) ∩ Rg P0) / RgP s
β .

Proof. First step. As a consequence of Proposition 3.1, for any u ∈
o

Hm(Ω)
such that Pu ∈ H−m

β−s(Ω), the following equivalence holds

u ∈ Hm
β−s(Ω) ⇐⇒ ∀λ, ν as in (3.5) < Pu, Kλ

ν >= 0 .

Due to a classical regularity result for corner problems (see for instance the

statement given in [2] p.33), if u ∈
o

Hm
β−s(Ω) satisfies Pu ∈ Hs−m

β (Ω), then
u ∈ Hs+m

β (Ω). Thus we have only to consider the above equivalence.

Since the Kλ
ν are functions as well as all elements of the kernel of any operator

P ∗
τ , there exist F̃ λ

ν ∈ C∞
0 (Ω \ 0) ∩ Rg P0 such that

∀λ, ν and λ′, ν ′ as in (3.5) : < F̃ λ
ν , Kλ′

ν′ >= δλ,λ′ δν,ν′ .

Let S̃λ
ν ∈

o

Hm(Ω) be such that P S̃λ
ν = F̃ λ

ν . We have now to construct the Sλ
ν

satisfying the assertions of Proposition 3.4 as linear combinations of the S̃λ
ν .
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Second step. We use again the γj satisfying (3.3) we have introduced in the
previous proof. Applying Lemma 3.3 for τ = −γ1 and τ ′ = −γ0, we obtain
that the S̃λ

ν for m − n
2

+ γ0 < Re λ < m − n
2

+ γ1, generate

{η σλ
ν | m −

n

2
+ γ0 < Re λ < m −

n

2
+ γ1}

modulo
o

Hm
−γ1

(Ω). Thus, for any such λ, there exist Zλ
ν ∈

o

Hm
−γ1

(Ω) such that

η σλ
ν − Zλ

ν is a linear combination of the S̃λ′

ν′ . So, the functions Sλ
ν are con-

structed for m − n
2

+ γ0 < Re λ < m − n
2

+ γ1.

For the next step, corresponding to the wheights −γ1 and −γ2, we use the
same arguments where we replace the S̃λ

ν for m− n
2

+ γ1 < Reλ < m− n
2

+ γ2

by the functions
S̃λ

ν −
∑

m−n
2
+γ0<Re λ′<m−n

2
+γ1

dλ′

ν′ Sλ′

ν′

where, according to Lemma 3.3, the coefficients dλ′

ν′ are chosen such that all
the above functions belong to Hm

−γ1
(Ω).

Step by step, we reach γJ = γ and our Sλ
ν are independent and their number

is nγ , what we need.

Now it is not too difficult to deduce from the two previous propositions and
from the Green formula the three following statements.

With the functions Sλ
ν we have just constructed, we have the extension of

Theorem 2.1 to the case (C3).

Theorem 3.5 In the case (C3) and with the hypothesis (2.1), we assume the
same hypotheses about s and β as in Theorem 1.1 and Theorem 2.1. We assume
that u ∈

o

Hm(Ω) is such that Pu ∈ Hs−m
β (Ω). Then there exist coefficients cλ

ν

such that

u −
∑

λ∈Sp(L)

m−
n
2 <Re λ<s−β+m−

n
2

Nλ
∑

ν=1

cλ
ν Sλ

ν ∈ Hs+m
β (Ω) .

As a result of the previous constructions, we have some independent func-
tions S̃λ

ν such that
< PS̃λ

ν , Kλ′

ν′ >= δλ,λ′ δν,ν′ .

and the singularities Sλ
ν are a basis of the space generated by the S̃λ

ν . Thus,
we can show

Lemma 3.6 Under the assumptions of Theorem 3.5, there exists a basis K̃λ
ν

of the space generated by the Kλ
ν for m− n

2
< Re λ < s− β + m− n

2
, such that

< PSλ
ν , K̃λ′

ν′ >= δλ,λ′ δν,ν′ .
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The K̃λ
ν have the form

K̃λ
ν =

∑

Re λ′≥Re λ

dλ′

ν′ Kλ′

ν′ .

With these new elements of the kernel of P ∗ we have

Theorem 3.7 Under the assumptions of Theorem 3.5

cλ
ν =

∫

Ω
Pu K̃λ

ν dx .

The above results have to be compared with the following statements of [7]
: corollaries 3.1 and 3.2, theorems 3.3 and 3.4. Our hypothesis (2.1) is more
general than the hypothesis of [7], which in our framework would correspond
to

P is one to one :
o

Hm(Ω) → H−m(Ω) .

The paper [5] gives similar expressions for the coefficients of the singularities
in a different framework.

In the case (C2), under the following extra assumption
{

∀λ, λ′ ∈ Sp(L) such that Reλ, Re λ′ ∈]m − n
2
, s − β + m − n

2
[ :

λ − λ′ 6∈ IN \ 0
(3.6)

the K̃λ
ν and the Kλ

ν coincide with each other and the formula for the coefficients
is the same as in Theorem 2.3 :

cλ
ν =

∫

Ω
Pu Kλ

ν dx .

In the case (C2), it is natural to consider P as an operator acting between
ordinary Sobolev spaces :

P : Hs+m(Ω) ∩
o

Hm(Ω) → Hs−m(Ω) .

The above formulas have no longer any sense in general because Pu is not flat
enough. In [2], we have proved formulas for the coefficients, where we remove
from Pu some function whose Taylor expansion in 0 is the same as the Taylor
expansion of Pu in 0.
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des singularités pour des problèmes aux limites elliptiques sur un domaine
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