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Abstract. This paper is the second in a series of two in which we care about the asymptotics
of the three-dimensional displacement field in thin elastic plates as the thickness tends to zero.
In Part I we have investigated four types of lateral boundary conditions when the transverse
component is clamped. In this Part II we study four other types of lateral conditions when
the transverse component is free. We prove that the displacement admits an infinite expansion
which can be cut off at any order with optimal error estimates. We describe the first terms in
this expansion, namely the first two Kirchhoff-Love displacements and the first boundary layer
term. In contrast with the first four lateral conditions, the second Kirchhoff-Love displacement
is purely bending and the first boundary layer term is also of bending type and has only one
non-zero component (the in-plane tangential).

INTRODUCTION

The problem of thin elastic plate bending in linearized elastostatics has been ad-
dressed for more than 150 years (the first correct model was presented in a paper by
Kirchhoff [12] published in 1850). But, due to the singular perturbation nature of
the problem as the thickness 2ε of the plate tends to zero, a rigorous mathematical
analysis is not straightforward.

In the case of a plate which is hard clamped along its lateral side, the situation is
now well-known. Starting with Friedrichs & Dressler [9] and Gol’denveizer
[10] the construction of infinite formal asymptotic expansions was performed in order
to describe the 3D solution and its behavior as the parameter ε approaches zero. But,
in order to justify such asymptotic expansions, rigorous error estimates between the
3D solution and at least its limit had to be found. This was achieved by Shoikhet
[23] and Ciarlet and Destuynder [4, 8, 2]. Further terms in the asymptotic
expansion were exhibited by Nazarov & Zorin [17] for special loadings, and the
whole asymptotic expansion was constructed by Dauge & Gruais [5, 6].

In this series of two papers, we investigate the influence of the lateral boundary
conditions on the different terms of the asymptotics (which prove to have the same
global structure in each case, with outer and inner expansion parts). We have chosen
to study eight ‘canonical’ sorts of lateral boundary conditions obtained by prescribing



in the three natural directions (normal, in-plane tangential, transverse) either the
displacement or the traction. The splitting into two parts is related to the choice
made for the transverse component: in each of the cases investigated in Part I, the
transverse component of the displacement is supposed to be zero on the lateral side,
and in Part II, it is the transverse component of the traction which is zero.

Of importance are the first boundary layer terms in each situation, since they bring
the quantitative limitation of accuracy of bi-dimensional models. In the clamped and
simple support cases investigated in Part I, we found a strong main boundary layer
term with generically non-zero membrane and bending parts, whereas in the four
cases of Part II, we find a first boundary layer term which has the bending type and
only the in-plane tangential component non-zero. Moreover, the sub-principal term
in the outer part of the expansion is a Kirchhoff-Love displacement as usual, but with
zero membrane part. This means in particular that if the right hand side has the
membrane type, then the solution of the 3D Lamé equations converges to the usual
limit Kirchhoff-Love displacement with improved accuracy (see section 9).

This paper contains eight sections, organized as follows: in section 1 we introduce
the problems on the thin plates, the eight sorts of lateral boundary conditions, and
the scaled form of the problems; after that we present an outline of our results.
In section 2 we recall some results from Part I, containing the algorithm of the
construction rules for the outer and inner parts of the mixed Ansatz. In section 3 the
conditions on the data ensuring the existence of exponentially decreasing solutions to
the boundary layer problems are given. Sections 4 to 7 are devoted to each of the four
remaining types of lateral boundary conditions : frictional I, sliding edge, frictional
II and free plates. In section 8, we prove error estimates between the 3D solution
and any truncated series from the infinite asymptotic expansion, and we analyze the
regularity of the different terms in the asymptotics: whereas the outer expansion
terms are smooth if the data are so, the profiles have singularities along the edges
of the plate. We conclude this series of two papers in section 9 by considerations
about relative errors between the 3D solution and a limit 2D solution, which has to
be carefully chosen according to what we wish to approximate (the displacement in
H1 norm, or the strain in L2 norm).

1 LATERAL BOUNDARY CONDITIONS

We consider a family of thin elastic plates Ωε given by

Ωε = ω × (−ε,+ε) with ω ⊂ R
2 a regular domain and ε > 0

in the framework of three-dimensional linearized elastostatics. Our aim is to study
the behavior of the displacement field uε in this family of plates Ωε as the thickness
parameter ε tends to zero. As in Part I we will restrict ourselves to the consideration
of plates which are constituted of a homogeneous, isotropic material with Lamé con-
stants λ and µ . We assume that the boundary conditions on the upper and lower
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faces Γε
−

+ := ω × {−ε,+ε} are of traction type. On the lateral side

Γε
0 := ∂ω × (−ε,+ε),

we consider (in this paper and its part I) the 8 ‘canonical’ choices of boundary
conditions which will be denoted by ©i where i = 1, · · · , 8 .

1.1 The primitive problem

As it is common, let u = (u1, u2, u3) be the displacement field, and let e(u) denote
the associated linearized strain tensor eij(u) = 1

2
(∂iuj+∂jui) . Then the stress tensor

σ(u) is given by Hooke’s law
σ(u) = Ae(u),

where the rigidity matrix A = (Aijkl) is that of a homogeneous, isotropic material.
The inward traction field at a point on the boundary is denoted by T = (T1, T2, T3) ,
defined as σ(u)n with n the unit interior normal to the boundary. To u we
associate its normal component un := u · n = u1n1 + u2n2 on Γε

0 , its horizontal
tangential component us := u1n2 − u2n1 and the vertical component u3 , and the
same holds for T . To each boundary condition ©i corresponds two complementary
sets of indices A©i and B©i , the reunion of which is {n, s, 3} , where A©i corresponds
to the Dirichlet conditions of ©i ( ∀a ∈ A©i , ua = 0 ) and B©i to the Neumann
conditions ( ∀b ∈ B©i , Tb = 0 ). Here is the table of the eight lateral boundary
conditions (in boldface, those we treat in this second part).

©i Type Dirichlet Neumann A©i B©i

©1 hard clamped u = 0, {n, s, 3}

©2 soft clamped un, u3 = 0, Ts = 0 {n, 3} {s}

©3 hard simply supported us, u3 = 0, Tn = 0 {s, 3} {n}

©4 soft simply supported u3 = 0, Tn, Ts = 0 {3} {n, s}

©5 frictional I un, us = 0, T3 = 0 {n, s} {3}

©6 sliding edge un = 0, Ts, T3 = 0 {n} {s, 3}

©7 frictional II us = 0, Tn, T3 = 0 {s} {n, 3}

©8 free T = 0 {n, s, 3}

Table 1. Lateral boundary conditions.

To each boundary condition ©i is associated the space of displacements V©i (Ω
ε)

V©i (Ωε) = {v ∈ H1(Ωε)3 | va = 0 on Γε
0 ∀a ∈ A©i }
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and the space R©i of the rigid motions satisfying the Dirichlet conditions of V©i .
Then, the variational formulation of the problem consists in finding




uε ∈ V©i (Ωε)

∀v ∈ V©i (Ω
ε),

∫

Ωε

Ae(uε) : e(v) =

∫

Ωε

f ε · v +

∫

Γε

+

gε,+ · v −

∫

Γε

−

gε,− · v,

(1.1)
where f ε represents the volume force and gε,

−

+ the prescribed horizontal tractions.
If the right hand side satisfies the compatibility condition

∀v ∈ R©i (Ω
ε),

∫

Ωε

f ε · v +

∫

Γε

+

gε,+ · v −

∫

Γε

−

gε,− · v = 0, (1.2)

then there exists a unique solution to (1.1) satisfying

∀v ∈ R©i (Ω
ε),

∫

Ωε

uε · v = 0. (1.3)

The equations inside Ωε are given by

(λ+ µ) ∂i divuε + µ∆uε
i = −f ε

i , i = 1, 2, 3. (1.4)

Denoting by the Greek indices α, β, γ the values in {1, 2} corresponding to the
in-plane variables, we can write the boundary conditions on the horizontal sides Γε

−

+

as

2µ eα3(u
ε) = gε,

−

+

α , α = 1, 2, and 2µ ∂3u
ε
3 + λ divuε = g

ε,
−

+

3 . (1.5)

The boundary conditions on the lateral side Γε
0 can be written as

uε
a = 0, ∀a ∈ A©i and T ε

b = 0, ∀b ∈ B©i , (1.6)

where the normal, tangential horizontal and (tangential) vertical components of the
traction T ε on Γε

0 can be given with the help of the local coordinates n, s by

T ε
n = λ divuε +2µ ∂nu

ε
n, T ε

s = µ(∂su
ε
n +∂nu

ε
s + 2

R
uε

s), T ε
3 = µ(∂nu

ε
3 +∂3u

ε
n), (1.7)

where 1
R

= κ is the curvature of ∂ω . The local coordinates (see Part I, §1.2) are
used in a tubular neighborhood of the lateral boundary Γε

0 , in particular for the
derivation of the boundary layer terms.

1.2 The scaling

To study the behavior of the unknown uε as ε tends to zero, it is convenient to get
rid of the small parameter ε in the domain Ωε by means of a dilatation along the
vertical axis ( x3 = ε−1 x̃3 ). This leads to a fixed reference configuration Ω :

x̃ = (x̃1, x̃2, x̃3) ∈ Ωε 7→ x = (x1, x2, x3) ∈ Ω, where Ω = ω × (−1,+1). (1.8)
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Then, the new unknown displacement is a vector field denoted by u(ε) which we
define for the sake of homogeneity by:

uα(ε)(x) = uε
α(x̃), α = 1, 2, u3(ε)(x) = ε uε

3(x̃). (1.9)

We may assume without theoretical restriction that the asymptotic expansion of the
unknown displacement will begin with a zero-th order term in ε : so the following
additional assumption on the right hand side is necessary

f ε
α(x̃) = fα(x), α = 1, 2, ε−1f ε

3 (x̃) = f3(x), (1.10a)

ε−1gε,
−

+

α (x̃) = g−

+

α(x∗), α = 1, 2, ε−2g
ε,

−

+

3 (x̃) = g−

+

3 (x∗). (1.10b)

This scalings or similar ones are standard, see e.g. Ciarlet [2] or Miara [13]. For
simplification, we assume that the data f and g−

+
are regular up to the boundary,

i.e. f ∈ C ∞(Ω)3 and g−

+ ∈ C ∞(ω)3 . After the scaling (1.9), (1.10), problem (1.1)
is transformed into a new boundary value problem on Ω , where now the operators
depend on the small parameter ε : The variational formulation of the problem for
the scaled displacement u(ε) consists in finding






u(ε) ∈ V©i (Ω)

∀v ∈ V©i (Ω),

∫

Ω

Aθ(ε)(u(ε)) : θ(ε)(v) =

∫

Ω

f · v +

∫

Γ+

g+ · v −

∫

Γ
−

g− · v,

(1.11)
where

V©i (Ω) := {v ∈ H1(Ω)3 | va = 0 on Γ0 ∀a ∈ A©i } (1.12)

is the space of geometrically admissible displacements associated to the problem with
lateral boundary conditions ©i and θ(ε)(v) denotes the scaled linearized strain
tensor defined by

θαβ(ε)(v) := eαβ(v) , θα3(ε)(v) := ε−1 eα3(v) , θ33(ε)(v) := ε−2 e33(v) , (1.13)

for α, β = 1, 2 and it holds
θ(ε)(u(ε)) = e(uε).

Denoting by R©i (Ω) the space of rigid motions satisfying the Dirichlet conditions of
V©i (Ω) , the compatibility condition (1.2) becomes

∀v ∈ R©i (Ω),

∫

Ω

f · v +

∫

Γ+

g+ · v −

∫

Γ
−

g− · v = 0, (1.14)

and u(ε) satisfies the orthogonality condition

∀v ∈ R©i (Ω),

∫

Ω

u(ε) · v = 0 . (1.15)

5



1.3 Outline of results

The displacement uε on the thin plate Ωε can be expanded in the following way in
the sense of asymptotic expansions∗ (see Theorems 4.2, 5.1, 6.1, 7.1)

uε ≃
1

ε
u0

KL,b + u0
KL,m + u1

KL,b + ε(u1
KL,m + u2

KL,b + ṽ1 +ϕ1) + . . .

. . .+ εk(uk
KL,m + uk+1

KL,b + ṽk +ϕk) + · · ·
(1.16)

where

• for k ≥ 0 , uk
KL,b and uk

KL,m are the bending and membrane parts of a
Kirchhoff-Love displacement (see Part I, Definition 1.1):

uk
KL,b = (−x̃3∂1ζ

k
3 ,−x̃3∂2ζ

k
3 , ζ

k
3 ) and uk

KL,m = (ζk
1 , ζ

k
2 , 0), (1.17)

where ζk
1 , ζk

2 and ζk
3 are functions of the in-plane variables x∗ ;

• for k ≥ 1 , ṽk = ṽk(x∗,
x̃3

ε
) , i.e. does not depend on ε in the scaled domain

and has a mean value zero on each fiber x∗ × (−ε, ε) ;

• for k ≥ 1 , ϕk = ϕk( r
ε
, s, x̃3

ε
) is a boundary layer profile.

The generators (ζk
1 , ζ

k
2 ) = ζk

∗ and ζk
3 of the above Kirchhoff displacements are

solutions of membrane and bending equations respectively, with boundary conditions
on ∂ω involving, in each of the four investigated cases:

Membrane part Bending part

©5 ζn ζs ζ3 ∂nζ3

©6 ζn Tm
s (ζ∗) ∂nζ3 Nn(ζ3)

©7 Tm
n (ζ∗) ζs ζ3 Mn(ζ3)

©8 Tm
n (ζ∗) Tm

s (ζ∗) Mn(ζ3) Nn(ζ3)

Table 2. Boundary conditions for the Kirchhoff-Love displacements.

Here ζn and ζs are the normal and tangential components of ζ∗ , Tm
n and

Tm
s are the normal and tangential components of the traction associated with the

membrane operator. Mn is the second order boundary operator and Nn the third
order boundary operator associated with the bending operator. The mechanical
interpretation of this boundary operators is that Mn corresponds to the ‘Kirchhoff
bending moment’ and Nn corresponds to the ‘Kirchhoff shear force’ on the lateral
side of the plate (up to constants only depending on λ and µ ).

Unlike the case of the four other lateral boundary conditions, the boundary data
for ζ0 are not all zero.

∗This means that if a norm is fixed — for example the H1 or the L2 norm of the displacements
or the energy — then there exists a shift d such that for any k the norm of the difference between
uε and the truncated series of (1.16) at the order k is estimated by ckεk−d , see §8 for more details.
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In the cases ©5 and ©7 , we assume for simplicity that ω is simply connected.
Then the trace of ζ0

3 on ∂ω is a prescribed constant (so that ζ0
3 has a zero mean

value in accordance with the orthogonality condition (1.15)) which can be obtained
as the scalar product of the right hand side of the first bending limit problem versus
the solution of typical problems for the bending operator, see (2.7).

In the cases ©6 and ©8 the boundary condition involving Nn is given by

Nn(ζ0
3 ) =

3

2

( ∫ 1

−1

x3 fn dx3 + g+
n + g−n

) ∣∣∣∣∣
∂ω

.

The mechanical interpretation of the right hand side in this relation reads that this
expression has the dimension of a moment and can be understood as a prescribed
moment on the lateral side of the plate, generated by fn , g+

n and g−n . Obviously,

this right hand side is zero, if the supports of the data fn and g−

+

n avoid Γ0 and
∂ω , respectively. The remaining boundary data for ζ0 are all zero.

In contrast to the four ‘clamped’ lateral conditions, the boundary conditions re-
lating to the membrane part ζ1

∗ are all zero, which combined with the fact that the
interior right hand side is zero yields that ζ1

∗ is itself zero in each of these four ‘free’
lateral conditions ©5 – ©8 .

The traces of ζ1
3 are generically not zero: in cases ©5 and ©7 (and if ω is simply

connected) all traces can be expressed with the help of the function

L(s) =

[
−

2

3
(λ̃+ 2µ)∂n∆∗ ζ

0
3 +

∫ +1

−1

x3 fn dx3 + g+
n + g−n

] ∣∣∣∣∣
∂ω

.

In cases ©6 and ©8 the prescribed values of the traces involve more complicated
operators. We write the boundary data for ζ1

3 in a condensed form in the next table
(we recall that κ is the curvature of ∂ω ).

©5 Λ©5 0

©6 0 P©6 (ζ0
3) + κK©6 (fn, g

−

+

n)

©7 Λ©7 L

©8 ∂s(∂n + κ)∂sζ
0
3 P©8 (ζ0

3) + κK©8 (fn, g
−

+

n)

Table 3. Boundary data for ζ1
3 .

Here Λ©5 and Λ©7 are special double primitives of L on ∂ω . P©6 is a linear
combination of ∂sκ

2∂s , (κ∂s)
2 and κ∂n∆∗ , and P©8 of κ∂n∆∗ , ∂s(κ(∂n+κ)∂s and

κ∂s(∂n + κ)∂s . Finally, K©6 and K©8 are operators preserving the support with
respect to the in-plane variables.

The first non-Kirchhoff displacement ṽ1 is completely determined by ζ0 , but in
a way which does not depend on the lateral boundary conditions:

ṽ1(x∗, x3) =
λ

6(λ+ 2µ)

(
0, 0, −6x3 div∗ ζ

0
∗ + (3x2

3 − 1) ∆∗ζ
0
3

)
. (1.18)
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Again in contrast to the four ‘clamped’ lateral conditions, the normal and trans-
verse components of the first boundary layer profile ϕ1 are always zero in the cases
©5 – ©8 . Only the in-plane tangential component ϕ1

s is generically non-zero, and
it is odd with respect to x3 . This means that ϕ1 is a bending displacement.

The component ϕ1
s can be written in tensor product form ℓs(s) ϕ̄s(t, x3) according

to the following table

Case ℓs ϕ̄s

©5 ∂sζ
0
3 ϕ̄s

Dir

©6 κ∂sζ
0
3 ϕ̄s

Neu

©7 ∂sζ
0
3 ϕ̄s

Dir

©8 (∂n + κ)∂sζ
0
3 ϕ̄s

Neu

Table 4. The first boundary layer profile.

Here ϕ̄s
Dir and ϕ̄s

Neu are solutions on R
+ × (−1, 1) of a Dirichlet-Neumann and

a Neumann problem respectively with x3 as boundary condition on t = 0 , see
Lemmas 3.6 and 3.7.

Note the presence of κ in front of the traces for the sliding edge case ©6 : the
existence of boundary layer terms is linked to non-zero curvature.

2 INNER – OUTER EXPANSION ANSATZ

Here we recall some general principles and basic formulas from Part I, §2, 3.

2.1 The Ansatz

With r being the distance to ∂ω , s an arc-length coordinate in ∂ω and t denoting
r ε−1 , the scaled form of the expansion (1.16) can be written as:

u(ε)(x) ≃ u0
KL + εu1(x,

r

ε
) + · · · + εkuk(x,

r

ε
) + · · · (2.1)

where
u1(x, t) = u1

KL + χ(r)w1(t, s, x3) with w1
3 = 0,

uk(x, t) = uk
KL + vk + χ(r)wk(t, s, x3) for k ≥ 2.

(2.2)

The links with expansion (1.16) are simply provided by the following relations

uk
KL = uk

b + uk
m, vk = (ṽk

∗ , ṽ
k−1
3 ), wk = (ϕk

∗, ϕ
k−1
3 ). (2.3)

Thus, with the splitting of coordinates, components and gradients in plane and
vertical variables x = (x∗, x3) , ζ = (ζ∗, ζ3) and ∇ = (∇∗, ∂3)

⊤ , the three types of
terms in (2.1) are
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• uk
KL : Kirchhoff-Love displacements with ‘generating functions’ ζk = (ζk

∗ , ζ
k
3 ) ,

i.e. uk
KL(x) =

(
ζk
∗ (x∗) − x3∇∗ζ

k
3 (x∗), ζ

k
3 (x∗)

)
,

• vk : displacements with zero mean value: ∀x∗ ∈ ω,
∫ +1

−1
vk(x∗, x3) dx3 = 0 ,

• wk : exponentially decreasing profiles as t→ +∞ and χ is a cut-off function
equal to 1 in a neighborhood of ∂ω ,

The determination of the asymptotics (2.1) is split into two steps. The first one
consists in finding all suitable power series

u(ε)(x) ≃ u0(x) + εu1(x) + · · ·+ εkuk(x) + · · · (2.4)

which solve in the sense of asymptotic expansions the interior equations in Ω and
conditions of traction on the horizontal sides Γ

−

+ , see §2.2. The second step consists
in finding the profiles wk so that

∑
k ε

kwk(rε−1, s, x3) solves the inner equations
in Ω with zero volume force, zero tractions on Γ

−

+ and compensate for the residual
produced by the outer expansion series (2.4) in the lateral boundary conditions, see
§2.3 to 2.5.

We emphasize that the Ansatz presented in (2.1) and (2.2) is unique in the follow-
ing sense: If we take an Ansatz combining inner and outer expansion series, where
the boundary layer series starts with smaller powers of ε in comparison with the
power series as in (2.1), we will obtain the same result, i.e. the same series as in (2.1).
Thus, the Ansatz described above is in this sense optimal.

2.2 The algorithms of the outer expansion part

The generator ζ0 of the zero-th order term u0 solves an uncoupled membrane-
bending equation. Recall that ∆∗ denotes the horizontal Laplacian ∂11 + ∂22 and
let ∆∗ denote the diagonal horizontal Laplacian. With the help of the ‘homogenized’
Lamé coefficient

λ̃ = 2λµ(λ+ 2µ)−1 , (2.5)

let us introduce the membrane operator Lm (plane stress model) by

Lmζ∗ = µ∆∗ζ∗ + (λ̃+ µ)∇∗ div∗ ζ∗ (2.6)

and the bending operator Lb (Kirchhoff model) by

Lbζ3 = (λ̃+ 2µ)∆2
∗ζ3 . (2.7)

The horizontal generator ζ0
∗ = (ζ0

1 , ζ
0
2) solves the membrane equation Lmζ0

∗ = R0
m ,

with the right hand side R0
m defined as

R0
m(x∗) = −

1

2

[∫ +1

−1

f∗(x∗, x3) dx3 + g+
∗ (x∗) − g

−
∗ (x∗)

]
, (2.8)
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and the vertical generator ζ0
3 solves the bending equation Lbζ0

3 = R0
b , with the right

hand side R0
b defined as

R0
b(x∗) =

3

2

[∫ +1

−1

f3 dx3 + g+
3 − g−3 + div∗

(∫ +1

−1

x3 f∗ dx3 + g+
∗ + g−∗

)]
. (2.9)

The introduction of the following linear operators allows a description of the outer
expansion algorithm, namely

• G : (f , g−

+
) 7→ G(f , g−

+
) and H : (f , g−

+
) 7→ H(f , g−

+
)

continuous from C ∞(Ω)3 × C ∞(ω)6 into C ∞(Ω)3 ,

• V : ζ 7→ V ζ continuous from C ∞(ω)3 into C ∞(Ω)3 ,

• W : v 7→Wv continuous from C ∞(Ω)3 into itself,

• X : ζ∗ 7→ Xζ∗ continuous from C ∞(ω)2 into C ∞(Ω)3 ,

• F : v 7→ Fv = (F∗v, F3v) continuous from C
∞(Ω)3 into C

∞(ω)3 ,

so that every expansion (2.4) formally solves the inner equations in Ω and the con-
ditions of traction on the horizontal sides Γ

−

+ if and only if,

k uk vk xk−2 Rk
m Rk

b

0 u0
KL — — R0

m R0
b

2 u2
KL + v2 V ζ0 + x0 G R2

m 3F3(Wv
2 + H)

4 u4
KL + v4 V ζ2 + x2 Wv2 + H F∗v

4 3F3(Wv
4 + Xζ4

∗ )

2ℓ+2 u2ℓ+2
KL + v2ℓ+2 V ζ2ℓ + x2ℓ Wv2ℓ + Xζ2ℓ

∗ F∗v
2ℓ+2 3F3(Wv

2ℓ+2+Xζ2ℓ+2
∗ )

1 u1
KL — — 0 0

2ℓ+1 u2ℓ+1
KL + v2ℓ+1 V ζ2ℓ−1 — 0 0

Table 5. Algorithm formulas.

The most important and most characteristic of these operators is V which is
defined for ζ ∈ C ∞(ω)3 as

(V ζ)α = p̄2 ∂α div∗ ζ∗ + p̄3 ∂α∆∗ζ3

(V ζ)3 = p̄1 div∗ ζ∗ + p̄2 ∆∗ζ3
(2.10)

with p̄j for j = 1, 2, 3 the polynomials in the variable x3 of degrees j defined as

p̄1(x3) = −
λ̃

2µ
x3, p̄2(x3) =

λ̃

4µ

(
x2

3 −
1

3

)
,

p̄3(x3) =
1

12µ

(
(λ̃+ 4µ) x3

3 − (5λ̃+ 12µ) x3

)
.

(2.11)
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Indeed this operator V is present in each term uk and it generates the kernel K of
the elasticity operator on the infinite plate R

2 × (−1, 1) with prescribed horizontal
tractions by

u ∈ K ⇐⇒ ∃ζ with Lmζ∗ = 0 , Lbζ3 = 0 , such that u = uKL + V ζ , (2.12)

where uKL is the Kirchhoff-Love displacement generated by ζ , compare also [14].

Since we will have to use G explicitly, we give its formula here: for (f , g−

+) ∈
C ∞(Ω)3 × C ∞(ω)6 , (G(f , g−

+
))3 is zero and for α = 1, 2

(G(f , g−

+

))α =
1

2µ

∮ x3
[(
−2

∫ y3

− fα

)
+ (g+

α − g−α +

∫ +1

−1

fα) y3 + g+
α + g−α

]
dy3 (2.13)

with
∮

the primitive with zero mean value and
∫ y3− the primitive which shifts the

parities.

The formulas for the other solution operators W , X , H and F can be found in
§2.2 of Part I. All of these operators have a property of preserving the support with
respect to the in-plane variables: we say that they are ‘in-plane local’ according to
the following definition.

Definition 2.1 An operator A acting from a space E of functions defined on Ω
into a space of functions defined on (i) Ω , or (ii) ω , is said to be ‘in-plane local’ if
for all e ∈ E and x∗ ∈ ω there holds

∀x3 ∈ (−1, 1), (x∗, x3) 6∈ supp(e) =⇒





(i) ∀x3 ∈ (−1, 1), (x∗, x3) 6∈ supp(Ae),

(ii) x∗ 6∈ supp(Ae).

The recursive formulas for the vk are also given in Part I, §2.3.

2.3 The interior and horizontal equations of the inner expansion part

Assuming that
∑

k ε
kuk already fulfills the relations in Table 5, we determine now

the equations satisfied by the profiles ϕk so that

∑

k ≥ 0

εkuk +
∑

k≥ 1

εk(ϕk
∗, εϕ

k
3) (2.14)

satisfies the inner equations in Ω and the horizontal traction conditions of problem
(1.11). Thus

∑
k≥ 1 ε

k(ϕk
∗, εϕ

k
3) has to satisfy the inner equations with zero volume

force in Ω , and zero tractions on Γ−

+ .

(i) Interior equations. In variables (t, s, x3) , and unknown ϕ ∼
∑

k ε
kϕk the

interior equations become

B(ε ; t, s ; ∂t, ∂s, ∂3)ϕ = 0.
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The expressions for the three components (Bϕ)t , (Bϕ)s and (Bϕ)3 of Bϕ can
be found in Part I, formula (3.7), where we introduced the notation

ρ = R(s) − r = R(s) − εt

representing the curvature radius in s of the curve {x∗ ∈ ω, dist(x∗, ∂ω) = r} .

A Taylor expansion in t = 0 of ρ−1 = (R− εt)−1 yields an asymptotic expansion
of B in a power series of ε :

B ∼ B
(0) + εB(1) + · · ·+ εk

B
(k) + · · ·

where the B(k)(t, s ; ∂t, ∂s, ∂3) are partial differential systems of order 2 with poly-
nomial coefficients in t independent from ε . The first terms B(0) and B(1) are
given by the expressions:

(B(0)ϕ)t = µ
(
∂ttϕt + ∂33ϕt

)
+ (λ+ µ) ∂t

(
∂tϕt + ∂3ϕ3

)

(B(0)ϕ)s = µ
(
∂ttϕs + ∂33ϕs

)

(B(0)ϕ)3 = µ
(
∂ttϕ3 + ∂33ϕ3

)
+ (λ+ µ) ∂3

(
∂tϕt + ∂3ϕ3

)
(2.15)

and, with the curvature κ = 1
R

:

(B(1)ϕ)t = −µ κ ∂tϕt + (λ+ µ) ∂t

(
−κϕt + ∂sϕs

)

(B(1)ϕ)s = µ κ
(
∂tt(tϕs) + ∂33(tϕs)

)
− µ κ ∂tϕs + (λ+ µ) ∂s

(
∂tϕt + ∂3ϕ3

)

(B(1)ϕ)3 = −µ κ ∂tϕ3 + (λ+ µ) ∂3

(
−κϕt + ∂sϕs

)
.

(2.16)

Thus, the interior equation B(ε)ϕ = 0 can be written as

B
(0)ϕ+ εB(1)ϕ+ · · · εk

B
(k)ϕ+ · · · ∼ 0,

which, going back to the terms of the series ϕ ∼
∑

k ε
kϕk , yields

∀k ≥ 0,
k∑

ℓ=0

B
(ℓ)ϕk−ℓ = 0. (2.17)

(ii) Horizontal boundary conditions. The boundary conditions on the hori-
zontal sides x3 = −+1 are

µ(∂3ϕt + ∂tϕ3) = 0,

µ∂3ϕs + ε µ ∂sϕ3 = 0,

(λ+ 2µ)∂3ϕ3 + λ ∂tϕt + ε λ
(
−1

ρ
ϕt + R

ρ
∂s(

R
ρ
ϕs)

)
= 0.

Similarly to the interior equations, we can develop these horizontal boundary condi-
tions G in powers of ε :

G ∼ G
(0) + εG (1) + · · · εk

G
(k) + · · · (2.18)

12



where the G (k)(t, s ; ∂t, ∂s, ∂3) are partial differential systems of order 1 with poly-
nomial coefficients in t . The expressions for G (0) and G (1) are:

(G (0)ϕ)t = µ(∂3ϕt + ∂tϕ3), (G (1)ϕ)t = 0,

(G (0)ϕ)s = µ∂3ϕs, (G (1)ϕ)s = µ∂sϕ3,

(G (0)ϕ)3 = (λ+ 2µ)∂3ϕ3 + λ ∂tϕt, (G (1)ϕ)3 = λ(−κϕt + ∂sϕs).

(2.19)

Thus, the horizontal boundary conditions G (ε)ϕ = 0 can be written as

G
(0)ϕ+ εG (1)ϕ+ · · · εk

G
(k)ϕ+ · · · ∼ 0,

which, going back to the terms of the series ϕ ∼
∑

k ε
kϕk , yields

∀k ≥ 0,
k∑

ℓ=0

G
(ℓ)ϕk−ℓ = 0. (2.20)

2.4 The matching of lateral boundary conditions

It remains to formulate the equations that have to hold in order that the series (2.14)
satisfies the lateral boundary conditions of problem (1.11).

(i) Lateral Dirichlet boundary conditions. Let
∑

k ε
kDk

n ,
∑

k ε
kDk

s and∑
k ε

kDk
3 be the normal, tangential and vertical components of the lateral Dirichlet

traces of the series (2.14). The lateral Dirichlet boundary conditions then read

∀k ≥ 0, Dk
n = 0 if n ∈ A, Dk

s = 0 if s ∈ A, Dk
3 = 0 if 3 ∈ A, (2.21)

which immediately yields the Dirichlet conditions for the whole expansion (2.14).

For the terms Dk , we have

D0
n = u0

n, D0
s = u0

s, D0
3 = u0

3, D1
3 = u1

3, (2.22)

and for k ≥ 1
Dk

n = ϕk
t + uk

n,
Dk

s = ϕk
s + uk

s ,
Dk+1

3 = ϕk
3 + uk+1

3 .
(2.23)

(ii) Lateral Neumann boundary conditions. Let
∑

k ε
kT k

n ,
∑

k ε
kT k

s and∑
k ε

kT k
3 be the normal, tangential and vertical components of the lateral Neumann

traces of the series (2.14). The lateral Neumann boundary conditions then read

∀k ≥ 0, T k
n = 0 if n ∈ B, T k

s = 0 if s ∈ B, T k
3 = 0 if 3 ∈ B, (2.24)

which immediately yields the Neumann conditions for the whole expansion (2.14).

The evaluation of the terms T k involves the traction T (ϕ) = (Tn, Ts, T3)ϕ as-
sociated to the interior operator B , the traction Tm

∗ = (Tm
n , T

m
s ) associated to the

membrane operator Lm (2.6) and the natural boundary conditions Mn and Nn

associated to the bending operator Lb (2.7).

13



• Setting

T
(0)
t (ϕ) = λ ∂3ϕ3 + (λ+ 2µ)∂tϕt, T

(1)
t (ϕ) = λ(∂sϕs −

1
R
ϕt),

T (0)
s (ϕ) = µ ∂tϕs, T (1)

s (ϕ) = µ(∂sϕt + 2
R
ϕs),

T
(0)
3 (ϕ) = µ(∂tϕ3 + ∂3ϕt),

(2.25)

we have (ε−1Tn, ε
−1Ts, T3) = (T

(0)
t , T (0)

s , T
(0)
3 ) + ε(T

(1)
t , T (1)

s , T
(1)
3 ) .

• The bilinear form associated with the membrane operator Lm reads:

a(ζ∗,η∗) =

∫

ω

λ̃ eαα(ζ∗) eββ(η∗) + 2µ eαβ(ζ∗) eαβ(η∗)

and the associated tractions are

Tm
n (ζ∗) = λ̃ div∗ ζ∗ + 2µ ∂nζn, (2.26a)

Tm
s (ζ∗) = µ(∂sζn + ∂nζs + 2

R
ζs). (2.26b)

• The bilinear form associated with the bending operator Lb is:

b(ζ3, η3) =

∫

ω

λ̃ ∂ααζ3 ∂ββη3 + 2µ ∂αβζ3 ∂αβη3 (2.27)

and its natural traces are

Mn(ζ3) = λ̃∆∗ζ3 + 2µ ∂nnζ3, (2.28a)

Nn(ζ3) = (λ̃+ 2µ)∂n∆∗ζ3 + 2µ ∂s(∂n + 1
R
)∂sζ3. (2.28b)

Then, for the normal, tangential and vertical components of the lateral Neumann
traces of the series (2.14) the following formulas are valid:

T 0
n = 0, T 1

n = 0, T 0
s = 0, T 1

s = 0, T 0
3 = 0, (2.29)

and for k ≥ 1 :

T k+1
n = T

(0)
t (ϕk) + T

(1)
t (ϕk−1) + Tm

n (ζk−1
∗ ) − x3Mn(ζk−1

3 )

+ λ ∂3 x
k−1
3 + λ div∗ v

k−1
∗ + 2µ ∂nv

k−1
n

(2.30a)

T k+1
s = T (0)

s (ϕk) + T (1)
s (ϕk−1) + Tm

s (ζk−1
∗ ) − 2µx3 (∂n + 1

R
)∂sζ

k−1
3

+ µ
(
∂sv

k−1
n + ∂nv

k−1
s + 2

R
vk−1

s

) (2.30b)

T k
3 = T

(0)
3 (ϕk) + µ(p̄2 + p̄ ′

3) ∂n∆∗ζ
k−2
3

+ µ(∂nx
k−2
3 + ∂3x

k−2
n ),

(2.30c)

where p̄1 , p̄2 , p̄3 are introduced in (2.11) and the formulas for xk can be found in
Table 5.
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2.5 Solving the inner expansion

According to the statements of the previous subsection it remains to find a sequence
of profiles (ϕk)

k
and a sequence of Kirchhoff-Love generators (ζk)

k
such that (2.17),

(2.20), (2.21) and (2.24) hold. Let us consider now the profiles ϕk for k ≥ 1 as main
unknowns. In view of (2.17), (2.20) and (2.23) and (2.30), we see that the sequence
of problems satisfied by the ϕk can be written in a recursive way: for each k ≥ 1
the profile ϕk has to solve the equation

B©i (ϕ
k) = (fk; gk; hk), (2.31)

where

• B©i is the operator B(0) inside the domain, the traction operator G (0) on
the horizontal sides, the Dirichlet traces on the lateral side for a ∈ A©i and
the Neumann traces on the lateral side for b ∈ B©i ,

• fk and gk are the following functions of the previous profiles

fk = −
k∑

ℓ=1

B
(ℓ)ϕk−ℓ and gk = −

k∑

ℓ=1

G
(ℓ)ϕk−ℓ, (2.32)

so that (2.17)-(2.20) is solved, and hk involves previous profiles as well and
certain traces of the Kirchhoff-Love generators ζℓ according to (2.21)-(2.30).

The operators of B©i contain no derivative with respect to the tangential variable
s , thus the role of s is reduced to that of a parameter and the equations (2.31) can
be solved in the variables t ∈ R

+ and x3 ∈ (−1, 1) . So we introduce the half-strip
Σ+ = R

+ × (−1, 1) . Its boundary has two horizontal parts γ
−

+ = R
+ × {x3 = −+1}

and a lateral part γ0 = {0} × (−1, 1) . Thus, we have

B©i (ϕ) = (f; g; h) ⇐⇒






B(0)(ϕ) = f, in Σ+,
G (0)(ϕ) = g, on γ

−

+,
ϕa = ha, on γ0, ∀a ∈ A©i ,

T
(0)
b (ϕ) = hb, on γ0, ∀b ∈ B©i .

(2.33)

Essential is the possibility of finding exponentially decreasing solutions when f and
g have the same property. This question will be investigated in the next section.

3 EXPONENTIALLY DECAYING PROFILES IN A HALF-STRIP

3.1 General principles

The properties of the operators B©i are closely linked to those of the corresponding
operator B on the full strip Σ := R × (−1, 1) , defined as B(ϕ) = (f; g) with
f = B(0)(ϕ) in Σ and g = G (0)(ϕ) on R × {x3 = −+1} , see also [16, Ch.5] and
[14]. Let P be the space of polynomial displacements Z satisfying B(Z) = 0 .
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Then P has eight dimensions and a basis of P is given by the following polynomial
displacements Z [1], · · · ,Z [8]

Z [1] =




1
0
0


 Z [2] =




0
1
0


 Z [3] =




0
0
1


 Z [4] =



−x3

0
t




Z [5] =



t
0
p̄1


 Z [6] =




0
t
0


 Z [7] =




−2tx3

0
t2 + 2p̄2




Z [8] =



−3t2x3 + 6p̄3

0
t3 + 6tp̄2




where p̄1(x3) , p̄2(x3) , p̄3(x3) are the polynomials previously introduced in (2.11).
Let us note that these generators can be obtained from (2.12) by dimension restric-
tion.

Let us introduce exponential weighted spaces Hm
η on the half-strip Σ+ :

Definition 3.1 Let η ∈ R . For m ≥ 0 let Hm
η (Σ+) be the space of functions v

such that eηtv belongs to Hm(Σ+) . We also denote H0
η (Σ+) by L2

η(Σ
+) . Similar

definitions hold for R
+ .

We have, with η0 the smallest exponent arising from the Papkovich-Fadle eigen-
functions, cf [19], [11], [6]:

Lemma 3.2 Let η , 0 < η < η0 . Let f belong to L2
η(Σ

+)3 and g belong to

L2
η(R

+)6 , let ha belong to H1/2(γ0) for each a ∈ A©i and hb belong to H−1/2(γ0)
for each b ∈ B©i . Then there exist ϕ ∈ H1

η (Σ+)3 and Z ∈ P so that

B©i (ϕ+Z) = (f; g; h).

But the solution given by Lemma 3.2 is not unique. Let T©i denote the space
of the polynomial displacements Z such that there exists ϕ = ϕ(Z) ∈ H1

η (Σ+)3

satisfying B©i (Z + ϕ(Z)) = 0 . Like in [6, Proposition 4.12], we can prove that
dim T©i = 4 . Thus P can be split in the direct sum of two four-dimensional spaces
Z©i and T©i , and we have as corollary:

Lemma 3.3 Let f , g and h be as in Lemma 3.2. Then there exist ϕ unique in
H1

η (Σ+)3 and Z unique in the four-dimensional space Z©i so that

B©i (ϕ+Z) = (f; g; h).

Thus, we have a defect number equal to four for the solution of the sequence of
the above equations (2.31) by exponentially decreasing displacements ϕk , for each
s ∈ ∂ω . But four traces on ∂ω are still available, allowing to modify hk . We prove
in the following sections that for each ©i , these traces can be matched with the
conditions ensuring exponential decay.
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3.2 The operators acting on profiles

The operators B©i decouple into operators acting separately on the pair of compo-
nents (ϕt, ϕ3) that we denote ϕ♮ , and on ϕs ; on ϕ♮ acts an elasticity operator
with the Lamé constants λ and µ , and on ϕs a Laplace operator.

The interior elasticity operator in Σ+ is

ϕ♮ 7−→ f♮ = µ(∂tt + ∂33)
(
ϕt

ϕ3

)
+ (λ+ µ)

(
∂t

∂3

)
(∂tϕt + ∂3ϕ3) , (3.1)

its horizontal boundary conditions G (0) (2.19) on γ
−

+ are

ϕ♮ 7−→ g♮ =
(

µ(∂3ϕt + ∂tϕ3)
(λ+ 2µ)∂3ϕ3 + λ ∂tϕt

)
(3.2)

and the lateral boundary conditions are either Dirichlet’s or Neumann’s acting on
the traction T

(0)
♮ = (T

(0)
t , T

(0)
3 ) , cf (2.25).

Similar to Part I, §4.2, let us introduce now the elasticity operators:

• EMix2 : ϕ♮ 7→ (f♮; g♮; h♮) with f♮ defined in (3.1), g♮ defined in (3.2) and h♮

the trace on γ0

h♮ =
(
ϕt, T

(0)
3 (ϕ♮)

)∣∣∣
γ0

,

• EFree : ϕ♮ 7→ (f♮; g♮; h♮) with f♮ defined in (3.1), g♮ defined in (3.2) and h♮

the trace of T
(0)
♮ (ϕ♮) on γ0 ,

whereas the Laplace operators are defined as:

• LDir : ϕs 7→ (fs; gs; hs) with fs = µ∆ϕs , gs = µ∂3ϕs and hs = ϕs on γ0 ,

• LNeu : ϕs 7→ (fs; gs; hs) with fs = µ∆ϕs , gs = µ∂3ϕs and hs = µ∂tϕs on γ0.

Then we have the splittings:

B©5 = EMix2 ⊕ LDir, B©6 = EMix2 ⊕ LNeu,

B©7 = EFree ⊕ LDir, B©8 = EFree ⊕ LNeu.
(3.3)

3.3 The Laplacian on the half-strip

First we quote two Propositions from Part I, §4.3, where we investigated the solv-
ability of problems for the operators LDir and LNeu .

Proposition 3.4 For η > 0 , let f ∈ L2
η(Σ

+) , g−

+ ∈ L2
η(R

+)2 and h ∈ H1/2(γ0) . If
moreover η < π/2 , then the problem

LDir(ψ) = (f ; g−

+

; h)

has a unique solution ψ = ϕ+ δ in H1
η (Σ+) ⊕ span{1} with ϕ ∈ H1

η (Σ+) and

δ =
1

2µ

(
−

∫

Σ+

t f(t, x3) dt dx3 +

∫

R+

t
(
g+(t) − g−(t)

)
dt+ µ

∫ +1

−1

h(x3) dx3

)
. (3.4)
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Proposition 3.5 For η > 0 , let f ∈ L2
η(Σ

+) , g−

+
∈ L2

η(R
+)2 and h ∈ H−1/2(γ0) .

If moreover η < π/2 , then the problem

LNeu(ψ) = (f ; g−

+

; h)

has a unique solution ψ = ϕ+ δ t in H1
η (Σ+) ⊕ span{t} with ϕ ∈ H1

η (Σ+) and

δ =
1

2µ

(∫

Σ+

f(t, x3) dt dx3 −

∫

R+

(
g+(t) − g−(t)

)
dt+

∫ +1

−1

h(x3) dx3

)
. (3.5)

Later on we will need properties of exponentially decaying solutions of special
problems involving LDir and LNeu : these solutions appear as model profiles in the
boundary layer terms of the expansion of u(ε) . This is the topic of the following
two lemmas.

Lemma 3.6 Let ϕ̄s
Dir ∈ H1

η (Σ+) be the uniquely determined exponentially decaying
solution of the problem

LDir(ϕ̄
s
Dir) = (0; 0; x3) ,

then it holds ∫ ∞

0

ϕ̄s
Dir(t, 1) dt > 0.

Proof.
ϕ̄s

Dir is an odd function with respect to x3 , i.e.

∀t ∈ R
+ ∀x3 ∈ (−1, 1) ϕ̄s

Dir(t, x3) = −ϕ̄s
Dir(t,−x3) .

Hence ϕ̄s
Dir(t, 0) = 0 for t ∈ R

+ . Moreover, ϕ̄s
Dir is a harmonic function in Σ+ and

thus ϕ̄s
Dir can be reflected by parity at the line x3 = 1 according to the reflection

principle of Schwarz for harmonic functions. Thus, we obtain a function ϕ̃ , which
is still harmonic, but now in Σ̃+ = R

+ × (0, 2) , with ϕ̃(t, 1 + x3) = ϕ̃(t, 1 − x3) =
ϕ̄s

Dir(t, 1 − x3) for all t ∈ R
+ and x3 ∈ (0, 1) . Hence ϕ̃ satisfies the following

problem
∆ ϕ̃ = 0 in Σ̃+

ϕ̃(t, 0) = ϕ̃(t, 2) = 0 for t ∈ R
+

ϕ̃(0, x3) = x3 for 0 < x3 < 1
ϕ̃(0, x3) = 2 − x3 for 1 < x3 < 2 .

This is a Dirichlet problem for Laplace equation. From the maximum principle for
harmonic functions it follows ϕ̃ > 0 in Σ̃+ , hence the assertion.

Lemma 3.7 Let ϕ̄s
Neu ∈ H1

η (Σ+) be the uniquely determined exponentially decaying
solution of the problem

LNeu(ϕ̄
s
Neu) = (0; 0; 2µx3) ,

then it holds ∫ ∞

0

ϕ̄s
Neu(t, 1) dt = −

2

3
.
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Proof.
Twice integrating by parts of x3 ∆ϕ̄s

Neu(t, x3) on rectangles ΣL = (0, L) × (−1, 1)
with L→ ∞ (second Green’s formula for Laplace) leads to the formula

0 = −

∫ +1

−1

x3 ∂tϕ̄
s
Neu(0, x3) dx3 −

∫ ∞

0

ϕ̄s
Neu(t, 1) dt+

∫ ∞

0

ϕ̄s
Neu(t,−1) dt .

Inserting the boundary condition ∂tϕ̄
s
Neu(0, x3) = 2x3 and having in mind that ϕ̄s

Neu

is odd with respect to x3 yields
∫ +1

−1

2x2
3 dx3 = −2

∫ ∞

0

ϕ̄s
Neu(t, 1) dt ,

hence by evaluating the integral on the left hand side the assertion.

3.4 Elasticity on the half-strip

As we have seen in Part I, §4.4, the displacements Z [i] i = 1, . . . , 8 , generating the
polynomial kernel of the operator B , satisfy the following duality relations.

Lemma 3.8 Let T (0) denote the lateral inward traction operator (T
(0)
t , T (0)

s , T
(0)
3 ) ,

see (2.4). With σ the permutation

σ(1) = 5, σ(2) = 6, σ(3) = 8, σ(4) = 7,

σ(5) = 1, σ(6) = 2, σ(7) = 4, σ(8) = 3,

the anti-symmetrized flux, which can be defined for any L ∈ R by

Φ(Z [i],Z [j]) :=

∫ +1

−1

(
T (0)(Z [i]) ·Z [j] − T (0)(Z [j]) ·Z [i]

)
(L, x3) dx3 (3.6)

is independent of L , see [6, Lemma 3.1], and satisfies, for i, j ∈ {1, · · · , 8}

Φ(Z [i],Z [j]) = γ̄i δjσ(i) (3.7)

with γ̄i a non-zero real number.

For i = 2, 6 we find again the simple relations on which Propositions 3.4 and 3.5
are based. For the remaining values of i , the relations (3.7) apply to the bi-

dimensional displacements Z
[i]
♮ . Relying on the duality relations (3.7) and integration

by parts, we are able to present formulas for the coefficients in the asymptotics at
infinity of the solutions to the problems concerning the operators EMix2 and EFree .
Let us start with the proposition for EMix2 .

Proposition 3.9 For η > 0 , let f♮ ∈ L2
η(Σ

+)2 , g−

+

♮ ∈ L2
η(R

+)4 , ht ∈ H1/2(γ0) and

h3 ∈ H−1/2(γ0) . If moreover η < η0 , then the problem

EMix2(ψ) = (f♮; g
−

+

♮ ; h♮)
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has a unique solution in H1
η (Σ+)2 ⊕ span{Z

[1]
♮ ,Z

[4]
♮ ,Z

[8]
♮ } . Moreover

ψ = ϕ+ δ1Z
[1]
♮ + δ4Z

[4]
♮ + δ8Z

[8]
♮ with ϕ ∈ H1

η (Σ+)2

and for j = 3, 5, 7

δσ(j) =
1

γ̄σ(j)

(∫

Σ+

f♮ ·Z
[j]
♮ dt dx3 −

∫

R+

(
g+ ·Z

[j]
♮

∣∣∣
γ+

− g− ·Z
[j]
♮

∣∣∣
γ−

)
dt

+

∫ +1

−1

h3Z
[j]
3 − ht T

(0)
t (Z

[j]
♮ ) dx3

)
,

namely

γ̄8δ8 =

∫

Σ+

f3 −

∫

R+

(g+
3 − g−3 ) +

∫ +1

−1

h3 , (3.8a)

γ̄1δ1 =

∫

Σ+

tft−

∫

R+

t(g+
t −g−t )−

∫ +1

−1

(λ̃+2µ)ht−
λ̃

2µ

(∫

Σ+

x3f3−

∫

R+

(g+
3 +g−3 )+

∫ +1

−1

x3h3

)
,

(3.8b)

γ̄4δ4 =

∫

Σ+

f♮ ·Z
[7]
♮ −

∫

R+

(
g+ ·Z

[7]
♮ −g− ·Z

[7]
♮

)
+2

∫ +1

−1

(
p̄2h3 +(λ̃+2µ)x3ht

)
. (3.8c)

The analogous proposition for EFree reads:

Proposition 3.10 For η > 0 , let f♮ ∈ L2
η(Σ

+)2 , g−

+

♮ ∈ L2
η(R

+)4 and h♮ ∈ H−1/2(γ0)
2 .

If moreover η < η0 , then the problem

EFree(ψ) = (f♮; g
−

+

♮ ; h♮)

has a unique solution in H1
η (Σ+)2 ⊕ span{Z

[5]
♮ ,Z

[7]
♮ ,Z

[8]
♮ } . Moreover

ψ = ϕ+ δ5Z
[5]
♮ + δ7Z

[7]
♮ + δ8Z

[8]
♮ with ϕ ∈ H1

η (Σ+)2

and for j = 1, 3, 4

δσ(j) =
1

γ̄σ(j)

(∫

Σ+

f♮ ·Z
[j]
♮ dt dx3−

∫

R+

(
g+ ·Z

[j]
♮

∣∣∣
γ+

−g− ·Z
[j]
♮

∣∣∣
γ−

)
dt+

∫ +1

−1

h♮ ·Z
[j]
♮ dx3

)
,

namely

γ̄5δ5 =

∫

Σ+

ft −

∫

R+

(g+
t − g−t ) +

∫ +1

−1

ht , (3.9a)

γ̄8δ8 =

∫

Σ+

f3 −

∫

R+

(g+
3 − g−3 ) +

∫ +1

−1

h3 , (3.9b)

γ̄7δ7 =

∫

Σ+

(−x3ft + tf3) +

∫

R+

(
g+

t + g−t − t(g+
3 − g−3 )

)
−

∫ +1

−1

x3ht . (3.9c)
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4 FRICTION I

The space of rigid motions R©5 is one-dimensional and spanned by the vertical
translation (0, 0, 1) . Whence we have one compatibility condition (1.2), compensated
by one orthogonality condition (1.3). In particular, the first terms ζ0

3 and ζ1
3 in the

expansion of u3(ε) have to satisfy the zero mean value condition on ω . As can
be seen in the next theorem, they are solutions of Dirichlet problems with data such
that they satisfy this zero mean value condition. In order to formulate these Dirichlet
conditions, we need the introduction of an auxiliary function: the solution ηω of the
problem 




(λ̃+ 2µ)∆2
∗ ηω =

1

mes(ω)
in ω

ηω = 0 , ∂nηω = 0 on ∂ω.

(4.1)

Integrations by parts yield immediately that if ζ is the solution of





(λ̃+ 2µ)∆2
∗ ζ = f in ω

ζ = g , ∂nζ = 0 on ∂ω,
(4.2)

then there holds

1

mes(ω)

∫

ω

ζ dx∗ =

∫

ω

f ηω dx∗ +

∫

∂ω

g Nn(ηω) ds. (4.3)

Obviously, ζ = 1 is the unique solution of problem (4.2) with f = 0 and g = 1 .
Thus, in this case we obtain from (4.3) the relation

∫

∂ω

Nn(ηω) ds = 1 . (4.4)

We also need the following notation:

Notation 4.1 If L is an integrable function on ∂ω such that
∫

∂ω
L = 0 , then we

denote by
∮

∂ω
L the unique primitive of L along ∂ω with zero mean value on ∂ω

(i.e.
∫

∂ω

∮
Lds = 0 ). The second primitive

∮
∂ω

∮
∂ω
L then makes sense.

Theorem 4.2 Let us assume that the boundary of ω is connected. The expansion
(2.1)-(2.2) holds for the solution u(ε) of problem (1.11) with lateral condition ©5 ,
compatibility condition (1.14) and orthogonality condition (1.15). The Kirchhoff-Love
generators ζk

∗ and ζk
3 are solutions of membrane and bending problems with interior

data Rm(ζk
∗ ) and Rb(ζ

k
3 ) described in §2.2, and Dirichlet boundary conditions. More

precisely, ζ0 and ζ1 satisfy the following boundary conditions on ∂ω

ζ0
n = 0, ζ0

s = 0, ∂nζ
0
3 = 0, ζ0

3 = −
∫
ω
R0

b ηω,

ζ1
n = 0, ζ1

s = 0, ∂nζ
1
3 = 0, ζ1

3 = c
©5
4

( ∮
∂ω

∮
∂ω

L−
∫
∂ω

( ∮
∂ω

∮
∂ω

L
)
Nn(ηω)

)
,

(4.5)
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where L is the function

L(s) =

[
−

2

3
(λ̃+ 2µ)∂n∆∗ ζ

0
3 +

∫ +1

−1

x3 fn dx3 + g+
n + g−n

] ∣∣∣∣∣
∂ω

(4.6)

and c
©5
4 is a coefficient only depending on λ and µ . The first boundary layer

profile fulfills ϕ1
♮ = 0 and ϕ1

s = ∂sζ
0
3 (s) ϕ̄s

Dir , where ϕ̄s
Dir(t, x3) satisfies LDir(ϕ̄

s
Dir) =

(0; 0; x3) .

4.1 The traces of u0
KL

According to (2.21) the Dirichlet traces D0
n and D0

s are zero, i.e. u0
KL,n and u0

KL,s

are zero on Γ0 , whence ζ0
n − x3∂nζ

0
3 = 0 and ζ0

s − x3∂sζ
0
3 = 0 on ∂ω . T 0

3 is always
zero. The expressions in (4.5) concerning the boundary conditions for ζ0

n , ζ0
s and

∂nζ
0
3 are then obtained immediately.

We have moreover that ∂sζ
0
3 = 0 , whence ζ0

3 = c with c a constant on ∂ω
(here of course, we use the assumption that ∂ω is connected). Hence ζ0

3 solves
problem (4.2) with f = R0

b and g = c . According to the orthogonality condition∫
Ω
u3(ε) dx = 0 , ζ0

3 has a zero mean value on ω , which allows for the determination
of the constant c with the help of formulas (4.3) and (4.4).

4.2 The traces of u1
KL

By considering D1
n , D1

s and T 1
3 , it follows firstly that ϕ1

♮ has to satisfy the problem

EMix2(ϕ
1
♮ ) = (0; 0;−ζ1

n + x3∂nζ
1
3 , 0) . (4.7)

From the cancellation of the constants δ1 , δ4 , δ8 in Proposition 3.9, ensuring the ex-
istence of an exponentially decaying profile, the conditions ζ1

n(s) = 0 and ∂nζ
1
3 (s) = 0

on ∂ω are deduced. Of course, the constant δ8 vanishes without any additional con-
dition. The only exponentially decreasing solution is given by ϕ1

♮ = 0 .

Secondly, the problem for ϕ1
s reads

LDir(ϕ
1
s) = (0; 0;−ζ1

s + x3∂sζ
1
3 ) .

Proposition 3.4 yields that the existence of a unique exponentially decaying solution is
guaranteed if and only if ζ1

s (s) = 0 on ∂ω is valid. This solution is ϕ1
s = ∂sζ

1
3 (s) ϕ̄s

Dir ,
where ϕ̄s

Dir satisfies LDir(ϕ̄
s
Dir) = (0; 0; x3) and hence is odd with respect to x3 .

The next relations are deduced from D2
n = 0 and T 2

3 = 0 which leads to the
following problem for ϕ2

♮

EMix2(ϕ
2
♮ ) =

(
− (B(1)ϕ1)

♮
; − (G (1)ϕ1)

♮
; ht , h3

)
, (4.8)

where the terms in the right hand side of (4.8) are given by

(B(1)ϕ1)t = (λ+ µ) ∂t∂sϕ
1
s , (G (1)ϕ1)t = 0,

ht = −
(
ζ2
n − x3∂nζ

2
3 + p̄2 ∂n div∗ ζ

0
∗ + p̄3 ∂n∆∗ζ

0
3 + (G(f , g−

+
))n

)
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and
(B(1)ϕ1)

3
= (λ+ µ) ∂3∂sϕ

1
s, (G (1)ϕ1)

3
= λ ∂sϕ

1
s,

h3 = −µ
(
(p̄2 + p̄′3) ∂n∆∗ζ

0
3 + ∂3(G(f , g−

+
))n

)
.

From Proposition 3.9 we have δ8 = 0 as a necessary condition for the existence of
an exponentially decaying profile. This condition yields

2µ ∂ssζ
1
3

∫

R+

ϕ̄s
Dir(t, 1) dt =

∫ +1

−1

h3 dx3 . (4.9)

But we obtain immediately from (2.13) after once integrating by parts that

µ
(
G(f , g−

+

)
)

n

∣∣∣∣
+1

−1
=

∫ +1

−1

x3 fn dx3 + g+
n + g−n (4.10)

is valid. Then we deduce that −
∫ +1

−1
h3 dx3 coincide with the function L in (4.6).

With Lemma 3.6, we have

c
©5
4 := −

(
2µ

∫

R+

ϕ̄s
Dir(t, 1) dt

)−1

< 0 .

Hence condition (4.9) reads

∂ssζ
1
3 (s) = c

©5
4 L(s) on ∂ω .

Assuming for the moment that there holds
∫

∂ω

L(s) ds = 0 , (4.11)

we can choose the primitive of L with mean value zero to obtain the expression for
∂sζ

1
3 (s) on ∂ω . Then, with the help of formulas (4.3) and (4.4), we choose the unique

primitive g of
∮
L such that the solution ζ1

3 of problem (4.2) with f = R1
b = 0

and g has a mean value zero on ω . It remains to prove (4.11).

Relation (4.11) is indeed a simple consequence of the identity

3

2

∫

∂ω

{∫ +1

−1

x3fn dx3 + g+
n + g−n

}
ds = (λ̃+ 2µ)

∫

∂ω

∂n∆∗ζ
0
3 (s) ds , (4.12)

which follows from ∫

ω

R0
b dx∗ = (λ̃+ 2µ)

∫

ω

∆2
∗ζ

0
3 dx∗

by applying second Green’s formula for Laplace to the functions (λ̃ + 2µ)∆∗ζ
0
3 and

1 , the divergence theorem to
∫ +1

−1
x3f∗ dx3 + g+

∗ + g−∗ as well as from the assumed
compatibility condition for the three-dimensional problem

∫

ω

{∫ +1

−1

f3 dx3 + g+
3 − g−3

}
dx∗ = 0 .
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The cancellation of the constants δ1 and δ4 (3.8) results in conditions for ζ2
n and

∂nζ
2
3 , respectively. The existence of a uniquely determined exponentially decaying

profile ϕ2
♮ is thus guaranteed. At the end, we just want to emphasize that the problem

for ζ1
∗ is a completely homogeneous one, thus ζ1

∗ ≡ 0 holds. The recursivity of the
algorithm can be proved analogously to Part I, §6.3.

Remark 4.3 The assumption that ∂ω is connected allows for simplifications but
is not necessary to obtain an expansion (2.1)-(2.2). If ∂ω has N ≥ 2 connected
components ∂νω , ν = 1, . . . , N , the trace of ζ0

3 has a constant value γν on each
∂νω and it is still possible to choose (uniquely) these values so that ζ0

3 has a mean
value zero in ω and such that the function L (4.6) has a mean value zero on each
∂νω . This is a consequence of

Lemma 4.4 Let S be the application from R
N to R

N defined as S (γ1, . . . , γN) =
(β1, . . . , βN) with βν =

∫
∂νω

∂n∆∗ζ where ζ is the solution of problem (4.2) with
f = 0 and g = γν on ∂νω . Then the kernel of S is formed by constants (γ, . . . , γ) .

The proof of this lemma relies on the Green formula
∫

ω

∆2
∗ζ · ζ =

∫

∂ω

(∆∗ζ · ∂nζ − ∂n∆∗ζ · ζ) +

∫

ω

∆∗ζ · ∆∗ζ .

Indeed, if (γ1, . . . , γN) belongs to the kernel of S , the associated ζ is such that∫
∂ω
∂n∆∗ζ · ζ is zero and the above equality yields that ∆∗ζ is zero on ω . As ∂nζ

is zero, then ζ is a constant γ .

5 SLIDING EDGE

We first have to study the space of rigid motions R©6 . If the mid-plane of the plate
ω is not a disk or an annulus, then this space is one-dimensional and spanned by the
vertical translation (0, 0, 1) . But if ω is a disk or an annulus, that we may suppose
centered in 0 , then R©6 is two-dimensional generated by the vertical translation
(0, 0, 1) and the in-plane rotation (x2,−x1, 0) . This can be seen, combining the
compatibility conditions of the cases soft clamped ©2 in Part I, §6 and frictional I
©5 .

Theorem 5.1 The expansion (2.1)-(2.2) holds for the solution u(ε) of problem
(1.11), with lateral condition ©6 , compatibility condition (1.14) and orthogonality
condition (1.15). The Kirchhoff-Love generators ζk

∗ and ζk
3 are solutions of mem-

brane and bending problems with interior data Rm(ζk
∗ ) and Rb(ζ

k
3 ) , and boundary

conditions prescribing ζk
n , Tm

s (ζk
∗ ) , and ∂nζ

k
3 , Nn(ζk

3 ) respectively. Moreover the
mean value of ζk

3 on ω is prescribed. More precisely, ζ0 and ζ1 satisfy the following
boundary conditions on ∂ω

ζ0
n = 0, Tm

s (ζ0
∗) = 0, ∂nζ

0
3 = 0, Nn(ζ0

3) = 3
2

(∫ +1

−1
x3 fn dx3 + g+

n + g−n
)∣∣∣

∂ω
,

ζ1
n = 0, Tm

s (ζ1
∗) = 0, ∂nζ

1
3 = 0, Nn(ζ1

3) = c
©6
1 O + c

©6
2 P + c

©6
3 Q+ κK©6 (fn, g

−

+

n),

(5.1)
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where O , P and Q are the traces on ∂ω of different operators acting on ζ0
3 ac-

cording to O = ∂s(κ
2∂sζ

0
3) , P = (κ∂s)

2ζ0
3 and Q = κ∂n∆∗ζ

0
3 . The three constants

c
©6
i , i = 1, 2, 3 , depend only on λ and µ . The operator K©6 depends only on

the Lamé coefficients as well and is in-plane local, cf Def. 2.1. The mean values
of ζ0

3 and ζ1
3 on ω are zero. The first boundary layer profile fulfills ϕ1

♮ = 0 and
ϕ1

s = κ∂sζ
0
3(s) ϕ̄

s
Neu , cf Lemma 3.7.

We immediately see that the curvature κ can be factorized in the expression of
Nn(ζ1

3) , just as it is in the first boundary layer term ϕ1 . This is similar to the hard
simple support situation, for converse symmetry reasons: in any flat part V of the
boundary, the normal and tangential part of the displacement can be extended by
odd and even reflections respectively. If moreover the support of the data avoids V ,
there are no boundary layer terms and u(ε) can be expanded in a power series in
V .

In the special case when ω is a rectangle (in principle forbidden here!) and if the
support of the data avoids the lateral boundary, the solution can be extended outside
Ω in both in-plane directions into a periodic solution in R

2×I : this link is indicated
by Paumier in [20] where the periodic boundary conditions are addressed.

5.1 The traces of u0
KL

The Dirichlet trace D0
n is zero according to (2.21), i.e. ζ0

n − x3∂nζ
0
3 = 0 . Hence we

have ζ0
n = 0 and ∂nζ

0
3 = 0 on ∂ω . T 0

s , T 0
3 and T 1

s are always zero.

We deduce the problem for ϕ1
♮ from D1

n = 0 and T 1
3 = 0 . Of course it is the

same problem as in §4.2 given by (4.7). Thus, we obtain the conditions ζ1
n(s) = 0

and ∂nζ
1
3(s) = 0 on ∂ω and ϕ1

♮ = 0 .

The condition T 2
s = 0 yields that ϕ1

s has to satisfy the following problem

LNeu(ϕ
1
s) = (0; 0;−Tm

s (ζ0
∗) + 2µx3(∂n + κ)∂sζ

0
3) . (5.2)

Proposition 3.5 yields that the existence of a unique exponentially decaying solution
is guaranteed if and only if Tm

s (ζ0
∗)(s) = 0 on ∂ω is valid. Taking into account the

already known condition ∂nζ
0
3 (s) = 0 on ∂ω , this solution is given by, cf Lemma 3.7

ϕ1
s = κ ∂sζ

0
3(s) ϕ̄

s
Neu(t, x3). (5.3)

Let us now consider the problem for ϕ2
s . With T 3

s = 0 we obtain that ϕ2
s has

to satisfy
LNeu(ϕ

2
s) =

(
− (B(1)ϕ1)s ; − (G (1)ϕ1)s ; hs

)
, (5.4)

where the terms in the right hand side of (5.4) are given by

(B(1)ϕ1)s = µκ
(
∂tt(t ϕ

1
s) + ∂33(t ϕ

1
s) − ∂tϕ

1
s

)
, (G (1)ϕ1)s = 0,

hs = −
(
2µκϕ1

s + Tm
s (ζ1

∗) − 2µx3(∂n + κ)∂sζ
1
3

)
,
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since ϕ1
♮ = 0 . With the help of Proposition 3.5 and the fact that ϕ1

s is odd with re-
spect to x3 we deduce that there exists a uniquely determined exponentially decaying
solution of problem (5.4) if and only if Tm

s (ζ1
∗)(s) = 0 on ∂ω . Taking into account

relation (5.3) and the already known condition ∂nζ
1
3 = 0 on ∂ω , this solution is

given by
ϕ2

s = −κ2∂sζ
0
3 ψ̄

s
Neu + κ ∂sζ

1
3 ϕ̄

s
Neu , (5.5)

where ψ̄s
Neu is the exponentially decreasing solution of

LNeu(ψ̄
s
Neu) = µ(∆(t ϕ̄s

Neu) − ∂tϕ̄
s
Neu ; 0 ; 2ϕ̄s

Neu), (5.6)

so it is odd with respect to x3 .

The conditions D2
n = 0 and T 2

3 = 0 lead to a problem of the form (4.8) with
the same expressions for (B(1)ϕ1)t , (B(1)ϕ1)

3
, (G (1)ϕ1)t , (G (1)ϕ1)

3
, ht and h3 .

The only difference now is that we have to take into account ϕ1
s = κ∂sζ

0
3 (s) ϕ̄s

Neu

instead of ϕ1
s = ∂sζ

0
3 (s) ϕ̄s

Dir as we had in (4.8). From Proposition 3.9 we have as a
necessary condition for the existence of an exponentially decaying profile δ8 = 0 :

2µ∂s(∂n + κ)∂sζ
0
3

∫

R+

ϕ̄s
Neu(t, 1) dt =

∫ +1

−1

h3 dx3 .

As already obtained in §4.2, the expression of the right hand side holds
∫ +1

−1

h3 dx3 = −

[
−

2

3
(λ̃+ 2µ)∂n∆∗ ζ

0
3 +

∫ +1

−1

x3 fn dx3 + g+
n + g−n

] ∣∣∣∣∣
∂ω

.

Then Lemma 3.7 yields

2

3

(
(λ̃+ 2µ)∂n∆∗ ζ

0
3 + 2µ∂s(∂n + κ)∂sζ

0
3

)

︸ ︷︷ ︸
= Nn(ζ0

3 )

=

(∫ +1

−1

x3 fn dx3 + g+
n + g−n

) ∣∣∣∣∣
∂ω

,

hence the condition Nn(ζ0
3)(s) = 3

2

∫ +1

−1
x3 fn dx3 + g+

n + g−n on ∂ω .

The cancellation of the constants δ1 and δ4 (3.8b)-(3.8c) results in conditions
for ζ2

n and ∂nζ
2
3 , respectively. If we split the operator G(f , g−

+) = Gb(f , g−

+) +
Gm(f , g−

+
) into bending and membrane part with parities (odd/even) and (even/odd),

respectively, these conditions take the form

∂nζ
2
3 = c

©6
4 ∂s(κ∂s)ζ

0
3 + c

©6
5 ∂n∆∗ζ

0
3 +Kb(fn, g−

+

n) and ζ2
n = Km(fn, g−

+

n) on ∂ω ,

where Kb and Km are in-plane local operators. The existence of a uniquely de-
termined exponentially decaying profile ϕ2

♮ is thus guaranteed. It has the form

ϕ2
♮ = ϕ

2, b
♮ +ϕ2, m

♮ . Later, for the determination of the boundary conditions satisfied

by ζ1
3 , we will need information about its bending part ϕ2,b

♮ , which is solution of
the following problem in the half-strip:

EMix2(ϕ
2,b
♮ ) = ∂s(κ∂s)ζ

0
3

(
−(λ+ µ)∂tϕ̄

s
Neu , −(λ+ µ)∂3ϕ̄

s
Neu ; 0 , −λϕ̄s

Neu ; c
©6
4 x3 , 0

)

+ ∂n∆∗ζ
0
3

(
0 ; 0 ; c

©6
5 x3 − p̄3 , −µ(p̄2 + p̄′3)

)

+
(
0 ; 0 ; Kb(fn, g

−

+

n) x3 −Gb(f , g−

+
)n , −µ ∂3G

b(f , g−

+
)n

)
.

(5.7)
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Now let us check the compatibility conditions for the existence of the generator
ζ0 of u0

KL . Concerning ζ0
3 , we consider the following Green’s formula linked with

the bending operator

b(ζ3, η3) =

∫

ω

(λ̃+ 2µ)∆2
∗ζ3 η3 dx∗ −

∫

∂ω

Nn(ζ3) η3 ds+

∫

∂ω

Mn(ζ3) ∂nη3 ds , (5.8)

where b(ζ3, η3) is the bending bilinear form given in (2.27), Mn and Nn are the
bending Neumann operators given in (2.28). The kernel of the problem for ζ0

3 consists
of constant functions. Thus, by Fredholm’s alternative, this problem is solvable if
and only if the right hand side R0

b is such that the Green’s formula (5.8) is valid for
ζ3 = ζ0

3 and η3 = 1 , thus that the condition

∫

ω

R0
b(x∗) dx∗ −

∫

∂ω

3

2

(∫ +1

−1

x3 fn dx3 + g+
n + g−n

)
(0, s) ds = 0

is fulfilled. With the help of the divergence theorem we can rewrite the left hand side
as

3

2

∫

ω

{∫ +1

−1

f3 dx3 + g+
3 − g−3

}
dx∗ ,

which is nothing else than the assumed three-dimensional compatibility condition
(1.2), and thus zero. The additional compatibility condition in the case when ω is
a disk, is checked in exactly the same way as in the soft clamped situation ©2 , Part
I, §6.1.

5.2 The traces of u1
KL

The only remaining boundary condition is that for Nn(ζ1
3) . Therefore we only con-

sider the problem for ϕ3
♮ , which is deduced from D3

n = 0 and T 3
3 = 0 and reads

EMix2(ϕ
3
♮ ) =

(
− (B(1)ϕ2)

♮
− (B(2)ϕ1)

♮
; − (G (1)ϕ2)

♮
− (G (2)ϕ1)

♮
; ht , h3

)
. (5.9)

The boundary condition prescribing Nn(ζ1
3) is then found by the cancellation of the

coefficient δ8 (3.8a). To make this explicit, we use

(B(1)ϕ2)
3

= −µκ∂tϕ
2
3 + (λ+ µ) ∂3(−κϕ

2
t + ∂sϕ

2
s) ,

(B(2)ϕ1)
3

= (λ+ µ) ∂3(κt∂sϕ
1
s + ∂s(κtϕ

1
s)),

(G (1)ϕ2)
3

= λ(−κϕ2
t + ∂sϕ

2
s) , (G (2)ϕ1)

3
= λ(κt∂sϕ

1
s + ∂s(κtϕ

1
s)) ,

h3 = −µ(p̄2 + p̄′3) ∂n∆∗ζ
1
3 .

(5.10)

The boundary layer terms involved are ϕ1
s , ϕ2

s and ϕ
2,b
♮ . Inserting the expressions

(5.3), (5.5) and (5.7), this condition yields for Nn(ζ1
3) an expression of the form

c
©6
1 ∂s(κ

2∂sζ
0
3 ) + c

©6
2 (κ∂s)

2ζ0
3 + c

©6
3 κ∂n∆∗ζ

0
3 + κK©6 (fn, g

−

+

n) .
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The compatibility condition for ζ1
3 can be checked using the same kind of argu-

ment as for the recursivity of compatibility conditions in the soft simple support case
©4 , see Part I, §8.2. Setting ϕ = ϕ1 + εϕ2 , we have by construction

Nn(ζ0
3 + εζ1

3) =
3

2

(∫

Σ+

f3(ε) −

∫

R+

(
g+

3 (ε) − g−
3 (ε)

)
+

∫ +1

−1

h3(ε)

)

+ 2µ ∂s(∂n + κ)∂s(ζ
0
3 + εζ1

3),

(5.11)

where

f(ε) = Bϕ+ O(ε2), g(ε) = Gϕ+ O(ε2), h(ε) = Tϕ+ O(ε2).

With w(x̃) = χ(r)ϕ( r
ε
, s, x̃3

ε
) on Ωε and integrating (5.11) along ∂ω we obtain for

any rigid motion v = (0, 0, a) in R©6
∫

∂ω

Nn(ζ0
3 + εζ1

3) v3 = −
3

2

∫

Ωε

Ae(w) : e(v) + O(ε2) = O(ε2),

where we have used
∫

∂ω
∂s(∂n +κ)∂s(ζ

0
3 +εζ1

3) ds = 0 . The desired compatibility con-
dition then follows, and even the argument applies to the recursivity of compatibility
conditions.

In order that the orthogonality condition (1.15) holds, we choose ζ1
3 with zero

mean value. This also extends to any order k by recursivity: we remark that even
if it happens that a certain boundary layer ϕℓ does not satisfy the orthogonality
condition (1.15), we can choose the generator ζℓ+3 in such a way that (1.15) is
fulfilled. At the end the ζk are uniquely determined.

6 FRICTION II

Combining the compatibility conditions for the cases hard simple support ©3 , Part
I, §7 and frictional I ©5 , it is clear that the space of rigid motions R©7 is one-
dimensional and spanned by the vertical translation (0, 0, 1) . Whence we have one
compatibility condition (1.14), compensated by one orthogonality condition (1.15).
In particular, the first terms ζ0

3 and ζ1
3 in the expansion of u3(ε) have to satisfy the

zero mean value condition on ω . In the same spirit as in the case frictional I ©5 , in
order to formulate the boundary conditions for ζ0

3 and ζ0
3 , we need the introduction

of an auxiliary function: the solution ξω of the problem





(λ̃+ 2µ)∆2
∗ ξω =

1

mes(ω)
in ω

ξω = 0 , Mn(ξω) = 0 on ∂ω.

(6.1)

Integrations by parts yield immediately that if ζ is the solution of




(λ̃+ 2µ)∆2
∗ ζ = f in ω

ζ = g , Mn(ζ) = h on ∂ω,
(6.2)
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then there holds

1

mes(ω)

∫

ω

ζ dx∗ =

∫

ω

f ξω dx∗ +

∫

∂ω

g Nn(ξω) ds+

∫

∂ω

h ∂nξω ds. (6.3)

Obviously, ζ = 1 is the unique solution of problem (6.2) with f = 0 , g = 1 and
h = 0 . Thus, in this case we obtain from (6.3) the relation

∫

∂ω

Nn(ξω) ds = 1 . (6.4)

Theorem 6.1 Let us assume that the boundary of ω is connected. The expansion
(2.1)-(2.2) holds for the solution u(ε) of problem (1.11) with lateral condition ©7 ,
compatibility condition (1.14) and orthogonality condition (1.15). The Kirchhoff-Love
generators ζk

∗ and ζk
3 are solutions of membrane and bending problems with interior

data Rm(ζk
∗ ) and Rb(ζ

k
3 ) , and boundary conditions prescribing Tm

n (ζk
∗ ) , ζk

s , and
Mn(ζk

3 ) , ζk
3 respectively. More precisely, ζ0 and ζ1 satisfy the following boundary

conditions on ∂ω

Tm
n (ζ0

∗) = 0, ζ0
s = 0, Mn(ζ0

3) = 0, ζ0
3 = −

∫
ω
R0

b ξω ,

Tm
n (ζ1

∗) = 0, ζ1
s = 0, Mn(ζ1

3) = c
©7
3 L, ζ1

3 = c
©7
4 Λ .

(6.5)

Here L was already defined in (4.6) (case ©5 ) and

Λ(s) =

(∮

∂ω

∮

∂ω

L+ 2µ

∫

∂ω

L∂nξω −

∫

∂ω

(∮

∂ω

∮

∂ω

L
)
Nn(ξω)

)
,

where
∮
L is the primitive with zero mean value introduced in Notation 4.1. The

coefficients c
©7
4 = c

©5
4 and c

©7
3 = −2µc

©7
4 depend only on λ and µ . The first

boundary layer profile fulfills ϕ1
♮ = 0 and ϕ1

s = ∂sζ
0
3(s) ϕ̄

s
Dir , cf Lemma 3.6.

6.1 The traces of u0
KL

According to (2.21) the Dirichlet trace D0
s is zero, i.e. u0

KL,s is zero on Γ0 , whence
ζ0
s − x3∂sζ

0
3 = 0 on ∂ω . Thus, we have the conditions ζ0

s (s) = 0 and ∂sζ3(s) = 0
on ∂ω . T 0

n , T 0
3 and T 1

n are always zero.

From the conditions T 1
3 = 0 and T 2

n = 0 we deduce the problem for ϕ1
♮ . It reads

EFree(ϕ
1
♮ ) = (0; 0;−Tm

n (ζ0
∗) + x3Mn(ζ0

3), 0) . (6.6)

From the cancellation of the constants δ5 , δ7 , δ8 in Proposition 3.10, ensuring
the existence of an exponentially decaying profile, the conditions Tm

n (ζ0
∗)(s) = 0 and

Mn(ζ0
3 )(s) = 0 on ∂ω are obtained. Of course, the constant δ8 vanishes without any

additional condition. The only exponentially decreasing solution is given by ϕ1
♮ = 0 .

The condition ∂sζ3(s) = 0 means ζ0
3 = c with c a constant on ∂ω . Hence ζ0

3

solves problem (6.2) with f = R0
b , g = c and h = 0 . According to the orthogonality

condition
∫
Ω
u3(ε) dx = 0 , ζ0

3 has a zero mean value on ω , which allows for the
determination of the constant c with the help of formulas (6.3) and (6.4).
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6.2 The traces of u1
KL

By considering D1
s = 0 , we obtain that ϕ1

s has to satisfy

LDir(ϕ
1
s) = (0; 0;−ζ1

s + x3∂sζ
1
3 ) .

In the same manner as in §4.1 we deduce the condition ζ1
s (s) = 0 on ∂ω and

ϕ1
s = ∂sζ

1
3(s) ϕ̄

s
Dir .

The next relations are deduced from T 2
3 = 0 and T 3

n = 0 which lead to the
following problem for ϕ2

♮

EFree(ϕ
2
♮ ) =

(
− (B(1)ϕ1)

♮
; − (G (1)ϕ1)

♮
; ht , h3

)
, (6.7)

where the terms in the right hand side of (6.7) are given by

(B(1)ϕ1)t = (λ+ µ) ∂t∂sϕ
1
s , (G (1)ϕ1)t = 0 , ht = −

(
λ∂sϕ

1
s + Tm

n (ζ1
∗) − x3Mn(ζ1

3 )
)

and
(B(1)ϕ1)

3
= (λ+ µ) ∂3∂sϕ

1
s , (G (1)ϕ1)

3
= λ ∂sϕ

1
s ,

h3 = −µ
(
(p̄2 + p̄′3) ∂n∆∗ζ

0
3 + ∂3(G(f , g−

+
))n

)
.

From Proposition 3.10 we know that for the existence of an exponentially decaying
profile, the cancellation of the constants δ5 , δ7 and δ8 is necessary and sufficient.
For the evaluation of the expressions in these conditions, we have to take into account
that ϕ̄s

Dir is odd with respect to the variable x3 . The cancellation of the constant
δ5 then leads to the boundary condition Tm

n (ζ1
∗)(s) = 0 on ∂ω .

The evaluation of the condition δ8 = 0 has been already done in §4.2, which

yields in exactly the same way ∂ssζ
1
3 (s) = c

©7
4 L(s) on ∂ω with

c
©7
4 = c

©5
4 = −

(
2µ

∫

R+

ϕ̄s
Dir(t, 1) dt

)−1

< 0

and

L(s) =

[
−

2

3
(λ̃+ 2µ)∂n∆∗ ζ

0
3 +

∫ +1

−1

x3 fn dx3 + g+
n + g−n

] ∣∣∣∣∣
∂ω

.

Inserting the expressions involved, the condition δ7 = 0 reads
[
(λ+ µ)

∫

Σ+

(x3 ∂tϕ̄
s
Dir − t ∂3ϕ̄

s
Dir) dt dx3 + λ

∫ ∞

0

t (ϕ̄s
Dir(1, t) − ϕ̄s

Dir(−1, t)) dt

+ λ

∫ +1

−1

x3 ϕ̄
s
Dir(0, x3) dx3

]
∂ssζ

1
3 −

∫ +1

−1

x2
3Mn(ζ1

3) dx3 = 0.

Taking into account the parity of the boundary layer term ϕ̄s
Dir and evaluation of

the integral
∫ +1

−1
x2

3 dx3 = 2
3
, the above condition becomes

2

3
Mn(ζ1

3 ) = ∂ssζ
1
3

[
−µ

∫ +1

−1

x3 ϕ̄
s
Dir(0, x3) dx3 − 2µ

∫ ∞

0

t ϕ̄s
Dir(1, t) dt

]
.
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Applying the second Green’s formula for Laplace on rectangles ΣL = (0, L)× (−1, 1)
to the functions ϕ̄s

Dir(t, x3) and w(t, x3) = t x3 and considering L → +∞ , the
relation

2

∫ ∞

0

t ϕ̄s
Dir(t, 1) dt =

∫ +1

−1

x3 ϕ̄
s
Dir(0, x3) dx3 =

∫ +1

−1

x2
3 dx3 =

2

3

is obtained, and thus we have Mn(ζ1
3 ) = −2µ∂ssζ

1
3 . Inserting the expression obtained

above for ∂ssζ
1
3 leads to the condition Mn(ζ1

3 )(s) = −2µc
©7
4 L(s) on ∂ω .

In the same manner as in the frictional I case ©5 , cf (4.12) there holds

∫

∂ω

L(s) ds = 0 . (6.8)

Thus, we can choose the primitive of L with mean value zero to obtain the expression
for ∂sζ

1
3 (s) on ∂ω . Then, with the help of formulas (6.3) and (6.4), we choose

the unique primitive g of
∮
L such that the solution ζ1

3 of problem (6.2) with

f = R1
b = 0 , h = −2µc

©7
4 L and g has a mean value zero on ω .

It remains to remark that the problem for ζ1
∗ is a completely homogeneous one,

thus ζ1
∗ ≡ 0 holds.

7 FREE

The space of rigid motions R©8 is six-dimensional and spanned by all rigid mo-
tions, the translations (1, 0, 0) , (0, 1, 0) , (0, 0, 1) and the rotations (x3, 0,−x1) ,
(x2,−x1, 0) , (0, x3,−x2) .

Theorem 7.1 The expansion (2.1)-(2.2) holds for the solution u(ε) of problem
(1.11) with lateral condition ©8 , compatibility condition (1.14) and orthogonality
condition (1.15). The Kirchhoff-Love generators ζk

∗ and ζk
3 are solutions of mem-

brane and bending problems with interior data Rm(ζk
∗ ) and Rb(ζ

k
3 ) , and boundary

conditions prescribing Tn(ζk
∗ ) , Ts(ζ

k
∗ ) , and Mn(ζk

3 ) , Nn(ζk
3 ) respectively. Moreover

ζk
∗ and ζk

3 satisfy orthogonality conditions accordingly with (1.15). More precisely,
ζ0 and ζ1 satisfy the following boundary conditions on ∂ω

Tm
n (ζ0

∗) = 0, Tm
s (ζ0

∗) = 0, Mn(ζ0
3 ) = 0,

Nn(ζ0
3) = 3

2

(∫ +1

−1
x3 fn dx3 + g+

n + g−n
) ∣∣∣

∂ω
,

Tm
n (ζ1

∗) = 0, Tm
s (ζ1

∗) = 0, Mn(ζ1
3 ) = c

©8
1 ∂s(∂n + κ)∂sζ

0
3 ,

Nn(ζ1
3) = c

©8
2 Q+ c

©8
3 S + c

©8
4 T + κK©8 (fn, g

−

+

n),

(7.1)

where Q , S and T are the traces on ∂ω of different operators acting on ζ0
3 ac-

cording to Q = κ∂n∆∗ζ
0
3 , S = ∂sκ(∂n + κ)∂sζ

0
3 and T = κ∂s(∂n + κ)∂sζ

0
3 . The

constant c
©8
1 coincides with the constant c

©4
5 intervening in the soft simple support
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case (Th. 8.1 of Part I) and the c
©8
j for j = 2, 3, 4 are constants only depending

on λ and µ . The operator K©8 depends only on the Lamé coefficients as well and
is in-plane local, cf Def. 2.1. The first boundary layer profile fulfills ϕ1

♮ = 0 and
ϕ1

s = (∂n + κ)∂sζ
0
3 (s) ϕ̄s

Neu , cf Lemma 3.7.

7.1 The traces of u0
KL

T 0
n , T 0

s , T 0
3 , T 1

n and T 1
s are always zero. From the conditions T 1

3 = 0 and T 2
n = 0

we obtain problem (6.6) for ϕ1
♮ . In exactly the same manner as in §6.1, we deduce

the conditions Tm
n (ζ0

∗)(s) = 0 and Mn(ζ0
3 )(s) = 0 on ∂ω as well as ϕ1

♮ = 0 .

The condition T 2
s = 0 yields, that ϕ1

s has to satisfy problem (5.2). As in §5.1,
we obtain that Tm

s (ζ0
∗)(s) = 0 on ∂ω holds. The exponentially decaying solution is

then given by (cf Lemma 3.7)

ϕ1
s = (∂n + κ)∂sζ

0
3(s) ϕ̄

s
Neu . (7.2)

Let us now consider the problem for ϕ2
s . With T 3

s = 0 we obtain that ϕ2
s has

to satisfy problem (5.4), hence the condition Tm
s (ζ1

∗)(s) = 0 on ∂ω ensures the
existence of an exponentially decaying profile. Taking into account the relation (7.2),
this solution is given by

ϕ2
s = −κ(∂n + κ)∂sζ

0
3 ψ̄

s
Neu + (∂n + κ)∂sζ

1
3 ϕ̄

s
Neu , (7.3)

where ψ̄s
Neu is the solution of problem (5.6).

The next relations are deduced from T 2
3 = 0 and T 3

n = 0 which lead to a prob-
lem of the form (6.7) for ϕ2

♮ with the same expressions for (B(1)ϕ1)t , (B(1)ϕ1)
3
,

(G (1)ϕ1)t , (G (1)ϕ1)
3
, ht and h3 . The only difference now is that we have to take

into account ϕ1
s = (∂n + κ)∂sζ

0
3(s) ϕ̄

s
Neu instead of ϕ1

s = ∂sζ
1
3 (s) ϕ̄s

Dir as we had in
(6.7). From Proposition 3.10 we know that for the existence of an exponentially
decaying profile, the cancellation of the constants δ5 , δ7 and δ8 is necessary and
sufficient. For the evaluation of the expressions in these conditions, we have to take
into account that ϕ̄s

Neu is odd with respect to the variable x3 . The cancellation of
the constant δ5 then leads to the boundary condition Tm

n (ζ1
∗)(s) = 0 on ∂ω .

Inserting the expressions involved, the condition δ7 = 0 reads

[
(λ+ µ)

∫

Σ+

(x3 ∂tϕ̄
s
Neu − t ∂3ϕ̄

s
Neu) dt dx3 + λ

∫ ∞

0

t (ϕ̄s
Neu(1, t) − ϕ̄s

Neu(1, t)) dt

+ λ

∫ +1

−1

x3 ϕ̄
s
Neu(0, x3) dx3

]
∂s(∂n + κ)∂sζ

0
3 −

∫ +1

−1

x2
3Mn(ζ1

3 ) dx3 = 0 .

As the boundary layer term ϕ̄s
Neu is odd, the above condition becomes

2

3
Mn(ζ1

3 ) = ∂s(∂n + κ)∂sζ
0
3

[
−µ

∫ +1

−1

x3 ϕ̄
s
Neu(0, x3) dx3 − 2µ

∫ ∞

0

t ϕ̄s
Neu(1, t) dt

]
.
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Applying the second Green’s formula for Laplace to the functions ϕ̄s
Neu(t, x3) and

w(t, x3) = t x3 , yields the relation

2

∫ ∞

0

t ϕ̄s
Neu(t, 1) dt =

∫ +1

−1

x3 ϕ̄
s
Neu(0, x3) dx3 .

Thus we have Mn(ζ1
3) = c

©8
1 ∂s(∂n + κ)∂sζ

0
3 on ∂ω with (compare Part I, §8.2)

c
©8
1 = c

©4
5 = −3µ

∫ +1

−1

x3 ϕ̄
s
Neu(0, x3) dx3 .

The evaluation of the condition δ8 = 0 has been already done in §5.1, which
yields in exactly the same way the condition

Nn(ζ0
3)(s) =

3

2

(∫ +1

−1

x3 fn dx3 + g+
n + g−n

)
(0, s) on ∂ω .

Thus, the existence of an exponentially decaying profile ϕ2
♮ is guaranteed. Anal-

ogously as in §5.1 we split the operator G(f , g−

+) = Gb(f , g−

+) + Gm(f , g−

+) into
bending and membrane part with parities (odd/even) and (even/odd), respectively.
The profile has then the form ϕ2

♮ = ϕ
2, b
♮ + ϕ

2, m
♮ . Later, for the determination of

the boundary conditions satisfied by ζ1
3 , we will need information about its bending

part ϕ2,b
♮ , which is solution of the following problem in the half-strip:

EFree(ϕ
2,b
♮ ) = ∂s(∂n + κ)∂sζ

0
3

(
−(λ + µ)∂tϕ̄

s
Neu , −(λ+ µ)∂3ϕ̄

s
Neu ;

0 , −λϕ̄s
Neu ; −λϕ̄s

Neu + c
©8
1 x3 , 0

)

+ ∂n∆∗ζ
0
3

(
0 ; 0 ; 0 , −µ(p̄2 + p̄′3)

)

+
(
0 ; 0 ; 0 , −µ ∂3G

b(f , g−

+)n

)
.

(7.4)

Now let us check the compatibility conditions ensuring the existence of the gener-
ator ζ0 of u0

KL . Concerning ζ0
∗ , we have to show that the membrane right hand side

R0
m of the limit problem is orthogonal to each of the two-dimensional rigid motions

(1, 0) , (0, 1) and (x2,−x1) , since we have homogeneous traction boundary condi-
tions in the problem for ζ0

∗ . These orthogonality condition is clearly a consequence
of the expression of the right hand side R0

m and of the compatibility conditions
(1.2) assumed for the data f and g−

+ of the three-dimensional problem, since the
two-dimensional rigid motions above do not depend on the vertical variable x3 .

The compatibility conditions for ζ0
3 remains to be checked. We have to show that

the Green’s formula (5.8) holds for ζ3 = ζ0
3 and separately for η3 = 1 , η3 = x1 and

η3 = x2 (kernel of the problem for ζ0
3 ). It has been already shown in §5.1 that the

condition
∫

ω

R0
b(x∗) dx∗ −

3

2

∫

∂ω

(∫ +1

−1

x3 fn dx3 + g+
n + g−n

)
(0, s) ds = 0
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is fulfilled. Now let us check the Green’s formula for η3 = x1 , namely the condition
∫

ω

x1 R
0
b(x∗) dx∗ −

3

2

∫

∂ω

x1

(∫ +1

−1

x3 fn dx3 + g+
n + g−n

)
(0, s) ds = 0 .

With the help of the divergence theorem we can rewrite the left hand side as

3

2

{ ∫

Ω

(x1 f3 − x3 f1) dx3 dx∗ +

∫

ω

{
x1 (g+

3 − g−3 ) − (g+
1 + g−1 )

}
dx∗

}
,

which is clearly zero, because it represents a compatibility condition for the three-
dimensional problem we assumed in (1.2). Of course, the condition for η3 = x2 can
be proved analogously.

7.2 The traces of u1
KL

The only remaining boundary condition is that for Nn(ζ1
3) . Therefore we only con-

sider the problem for ϕ3
♮ , which is deduced from T 3

3 = 0 and T 4
n = 0 and reads

EFree(ϕ
3
♮ ) =

(
− (B(1)ϕ2)

♮
− (B(2)ϕ1)

♮
; − (G (1)ϕ2)

♮
− (G (1)ϕ1)

♮
; ht , h3

)
. (7.5)

The boundary condition prescribing Nn(ζ1
3) is then found by the cancellation of the

coefficient δ8 (3.8a). We use again (5.10) and that the boundary layer terms involved
are ϕ1

s , ϕ2
s and ϕ

2,b
♮ . Inserting the expressions (7.2), (7.3) and (7.4), this condition

yields for Nn(ζ1
3 ) an expression of the form

c
©8
2 κ∂n∆∗ζ

0
3 + c

©8
3 ∂sκ(∂n + κ)∂sζ

0
3 (s) + c

©8
4 κ∂s(∂n + κ)∂sζ

0
3 (0, s) + κK©8 (fn, g−

+

n) .

The compatibility conditions for ζ1
3 can be checked similarly to the compatibility

condition in the sliding edge situation ©6 using exactly the same kind of argument
as there, compare also Part I, §8.2. And of course, the same remark applies we
made there concerning the conservation of the orthogonality condition (1.15) for the
successive terms in the expansion.

8 ERROR ESTIMATES

8.1 In H1 norm

In this section we extend the results obtained in [5, §5] for the hard clamped situation
to plates with one of the eight ‘canonical’ boundary conditions on the lateral side.
Since the way of proving the error estimates is strictly similar to what is presented
in [5, §5], here we only give a sketch of the proof including the main steps and
statements.

The justification of the formal asymptotic expansion (2.1), (2.2) which is valid up
to an arbitrarily high order N , yields an optimal estimation of the error between
the scaled displacement u(ε) and the Ansatz of order N . In the sequel, C always
denotes a constant independent of ε (not necessarily everywhere the same constant,
although the same letter is used).
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Theorem 8.1 Let u(ε) be the unique solution of problem (1.11) satisfying the mean
value conditions (1.15). Then there holds ∀N ≥ 0

‖u(ε)(x) − u0
KL(x) −

N∑

k=1

εkuk(x,
r

ε
)‖

H1(Ω)3
≤ C εN+1/2 (8.1)

with uk(x, r
ε
) given in (2.2).

First we will give a sketch of the proof of Theorem 8.1 and then some conclusions
from the estimate (8.1) will be drawn in section 9. The proof relies on energy estimates
and on a very simple argument consisting in pushing the development a few terms
further.

We define the space

V©i (Ω) :=

{
u ∈ V©i (Ω)

∣∣∣∣ ∀v ∈ R©i (Ω),

∫

Ω

u · v = 0

}
,

then u(ε) ∈ V©i (Ω) is obvious. Combining Korn’s inequality without boundary
conditions and the infinitesimal rigid displacement lemma we obtain a Korn inequality
with boundary conditions for arbitrary u ∈ V©i (Ω) , compare [18] and [3], which reads
in terms of the scaled linearized strain tensor θ(ε)

(∫

Ω

Aθ(ε)(u) : θ(ε)(u)

)1/2

≥ C∗‖θ(ε)(u)‖
L2(Ω)9

≥ C‖u‖
H1(Ω)

. (8.2)

Setting

U
N

(ε) := u(ε) − UN (ε) , (8.3)

where UN(ε) denotes the asymptotic expansion of order N , namely

UN (ε) =
N∑

k=0

εk uk

︸ ︷︷ ︸
=: V N (ε)

+ χ(r)
N∑

k=1

εkwk(
r

ε
, s, x3)

︸ ︷︷ ︸
=: WN(ε)

(8.4)

with uk := uk
KL + vk , compare §2.1 for notations, we realize that it is sufficient

to establish an a priori estimate for the remainder U
N

(ε) in the norm of the space
H1(Ω)3 . Therefore, we split UN(ε) into its two natural parts

UN (ε) = V N(ε) + χ(r)WN(ε) .

Considering carefully the construction algorithm, in particular the derivation of the
boundary layer terms, we observe

Lemma 8.2 For any N ∈ N , UN (ε) belongs to the space V©i (Ω) of geometrically
admissible displacements satisfying the mean value conditions (1.15).
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Thus, we have

∀N ∈ N , U
N

(ε) ∈ V©i (Ω)

and the variational form of the problem for U
N

(ε) can be written down, where we
split the deviation to the true solution into an error generated by V N(ε) and an

error coming from WN(ε) , compare [5, (5.8) – (5.11)]. For the choice v = U
N

(ε) of

the test function in the variational formulation of the problem for U
N

(ε) , we obtain
as one side of the resulting equation the energy associated to the remainder, namely

∫

Ω

Aθ(ε)(U
N

(ε)) : θ(ε)(U
N

(ε)) .

Korn’s inequality (8.2) and the coercivity of the operator of elasticity then provides
the following rough estimate

‖U
N

(ε)‖
H1(Ω)3

≤ CεN−3

exactly in the same manner as in the proof of Lemma 5.3 in [5]. This estimate reads

for U
N+4

(ε)

‖U
N+4

(ε)‖
H1(Ω)3

≤ CεN+1 ,

whence

‖u(ε)(x) − u0
KL(x) −

N∑

k=1

εkuk(x,
r

ε
)‖

H1(Ω)3

≤ C εN+1 +
N+4∑

k=N+1

εk
(
‖uk‖

H1(Ω)3
+ ‖χ(r)wk(

r

ε
, s, x3)‖H1(Ω)3

)
.

(8.5)

With the help of the following H1 -estimates of each term in the asymptotics

‖uk‖
H1(Ω)3

≤ C and ‖χ(r)wk(
r

ε
, s, x3)‖H1(Ω)3

≤ Cε−1/2 , (8.6)

the estimate (8.1) directly follows from (8.5).

8.2 In other norms

The L2 -estimates of each term corresponding to (8.6)

‖uk‖
L2(Ω)3

≤ C and ‖χ(r)wk(
r

ε
, s, x3)‖L2(Ω)3

≤ Cε1/2 (8.7)

lead in a straightforward way to the following estimates in L2 -norm

‖u(ε) −
N∑

k=0

εk uk − χ(r)
N∑

k=1

εkwk(
r

ε
, s, x3)‖L2(Ω)3

≤ C εN+1 . (8.8)

The question of estimates in higher norms, H2 for instance, is also considered
in [6] for the clamped case. Such estimates require a splitting of the solution and of
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terms in the asymptotics, since in general the H2 regularity is not attained. The
situation is similar for all lateral conditions. Let us just emphasize that all the terms
in the outer expansion are smooth, but also that the singularities along the edges
∂ω × {−+1} of the plate are concentrated in the inner expansion: the model profiles
are all non-smooth, with a regularity between H3/2 and H3 . For example ϕ̄s

Dir is
almost H2 and ϕ̄s

Neu is almost H3 whereas the profiles ϕ̄m
Dir,♮ and ϕ̄b

Dir,♮ occurring
in the clamped plates have less regularity, cf [7].

9 CONCLUSIONS

Coming back to the family of thin domains Ωε , we will briefly address the question
of the determination of a limit solution, and of the evaluation of the relative error
between this limit and the 3D solution. The correct answer depends on the norm in
which the error is evaluated and of the type of the loading.

9.1 H1 norm

We have first to evaluate the behavior of the H1(Ωε) norm denoted ‖ · ‖
H1

of each

of the four types of components of series (1.16), namely uk
KL,b , uk

KL,m , ṽk and ϕk .
We find:

‖uk
KL,b‖H1

= O(ε1/2), ‖uk
KL,m‖H1

= O(ε1/2), ‖ṽk‖
H1

= O(ε−1/2), ‖ϕk‖
H1

= O(1).

In the case of a bending load such that R0
b , cf (2.8), is non-zero, we have

‖uε − ε−1u0
KL,b‖H1

‖uε‖
H1

≤ C ε, (9.1)

and this estimate is sharp for any lateral boundary condition, since the main con-
tribution to the error comes from ṽ1 which is equal to (0, 0, p̄2(x3) ∆∗ζ

0
3 ) : indeed,

since we assumed that R0
b is non-zero, ∆2

∗ζ
0
3 is non-zero, and ṽ1 6≡ 0 .

In the case of a membrane load such that R0
m , cf (2.9), is non-zero, we have to

include ṽ1 in the limit solution to have a convergence: we set

ulim
m = u0

KL,m + εṽ1 = (ζ0
∗ , p̄1(x̃3) div∗ ζ

0
∗). (9.2)

Then
‖uε − ulim

m ‖
H1

‖uε‖
H1

≤ C ε1/2, in cases ©1 – ©4 , (9.3)

this estimate being generically optimal, in the sense that it is sharp when ϕ1 is
non-zero, i.e. when div∗ ζ

0
∗ is non-zero on ∂ω in cases ©1 , ©2 and ©4 , and when

κζ0
n is non-zero on ∂ω in cases ©3 . On the other hand

‖uε − ulim
m ‖

H1

‖uε‖
H1

≤ C ε, in cases ©5 – ©8 , (9.4)
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this estimate being generically optimal too, in the sense that it is sharp when ṽ2

is non-zero, i.e. when div∗ ζ
0
∗ 6≡ 0 , compare also with [15] for a special membrane

loading on a free plate.

9.2 Energy norm

We now set ‖u‖
E

=
(∫

Ωε
Ae(u) : e(u)

)1/2
. The energy of the four types of terms in

the series (1.16) has the same behavior as their H1 norm except the one concerning
uk

KL,b whose energy is one order smaller:

‖uk
KL,b‖E

= O(ε3/2).

We obtain exactly the same conclusions if we use this energy, or the L2 norm of
the strain tensor, or the complementary energy. We have to include the polynomial
terms up to the order 2 to obtain a convergence: we set ulim

m as above in (9.2) and
moreover

ulim
b = u0

KL,b + εṽ1 = (−εx3∇∗ζ
0
3 , ζ

0
3 + εp̄2(x3) ∆∗ζ

0
3 ), (9.5)

see also [21] and [22] in this context.

In the case of a bending load such that R0
b is non-zero, we have

‖uε − ulim
b ‖

E

‖uε‖
E

≤ C ε1/2, (9.6)

this estimate being generically optimal, in the sense that it is sharp when ϕ1 is
non-zero, i.e. when ℓb is non-zero on ∂ω in cases ©1 – ©4 , cf Table 5 in Part I
and when ℓs is non-zero on ∂ω in cases ©5 – ©8 , cf Table 4 in Part II.

In the case of a membrane load such that R0
b is non-zero, we have exactly the

same behavior as with the H1 norm, see (9.3) and (9.4). In particular, the condition
for the optimality of the estimates is visibly sharp, which brings a conclusion to the
work [1].

The observation of the first terms in the asymptotics also sheds light on the order
of magnitude of the answer of the plate under the loading. The maximal answer
rate (of order ε−2 ) is obtained with a bending load such that R0

b is non-zero and
corresponds to the flexural nature of plates. In contrast, the membrane (or stretching)
answer is of order 1 when R0

m is non-zero. Moreover, there are very many other
types of loading (bending or membrane) whose answer rate is much lower.
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[12] G. Kirchhoff. Über das Gleichgewicht und die Bewegung einer elastischen
Scheibe. Journ. Reine Angew. Math. 40 (1850) 51–58.

[13] B. Miara. Justification of the asymptotic analysis of elastic plate. I: The linear
case. Asymptotic Anal. 9 (1994) 47–60.

[14] A. Mielke. On the justification of plate theories in linear elasticity theory
using exponential decay estimates. Journal of Elasticity 38 (1995) 165–208.

[15] S. A. Nazarov. On the accuracy of asymptotic approximations for longitu-
dinal deformation of a thin plate. Math. Model. Numer. Anal. 30 (2) (1996)
185–213.

[16] S. A. Nazarov, B. A. Plamenevskii. Elliptic problems in domains with
piecewise smooth boundaries. De Gruyter Expositions in Mathematics. Walter
de Gruyter, Berlin, New-York 1994.

39



[17] S. A. Nazarov, I. S. Zorin. Edge effect in the bending of a thin three-
dimensional plate. Prikl. Matem. Mekhan. 53 (4) (1989) 642–650. English
translation J. Appl. Maths. Mechs. (1989) 500–507.
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