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Abstract. This paper deals with the asymptotics of the displacement of a thin
elastic 3D plate when it is submitted to various boundary conditions on its lateral
face: namely, hard and soft clamped conditions, and hard support. Of particular
interest is the influence of the edges of the plate where boundary conditions of
different types meet. Relying on general results of [11, 12] for the hard clamped
case, we see that the clamped plate (hard and soft) admit strong boundary layers,
in which are concentrated the edge layers, while the hard supported plate has no
edge layer and even no boundary layer at all in certain situations. We conclude
with hints about corner layers, in the case when the mean surface of the plate itself
is polygonal.

1 INTRODUCTION
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Figure 1. Thin Plate and Scaling

In the physical word, a plate is a three dimensional object characterized by its
plane mean surface ω and its thickness d , the latter being small with respect to
the other dimensions. We will denote by Ωε = ω × (−ε,+ε) such a plate.



1.a Models

Many physical quantities are modelized by boundary value problems in a plate:
let us mention the heat equilibrium, the vibration modes, the displacement field
when a traction or a body force is imposed... Here, we concentrate on the latter.
Other coupled quantities are the strain and the stress tensors. Let us denote by
uε the displacement field in the plate Ωε and eε

ij the corresponding strain tensor.
In the theory of linear elasticity corresponding to small displacements, eε

ij is given
by 1

2
(∂iuj + ∂jui) . The stress σε obeys Hooke’s law

Aeε = σε

where A is the rigidity matrix of the constitutive material of the elastic plate Ωε

(here we assume that the material is isotropic). The equations of equilibrium are

div σε = f ε,

where f ε are the body forces inside Ωε . The complementing boundary conditions
on the horizontal boundaries ω × {−+ ε} are supposed to be the zero traction.
On the lateral boundary Γε = ∂ω × (−ε,+ε) , we can distinguish 3 natural
components in the displacements or the tractions : normal, horizontal tangential,
vertical, and we obtain 8 “canonical” lateral boundary conditions, according to
how we choose to prescribe the displacement or the traction for each component.

All these equations result in a boundary value system in the 3D domain Ωε .
It has been known for a long time that it is possible to replace such a problem
by a 2D boundary value system in the mean surface ω . Let us quote the famous
Kirchhoff-Love model and the Reissner-Mindlin plate. These models were derived
by mechanical considerations. More recently, a larger class of 2D models, the
hierarchical models was introduced, based on variational considerations.

1.b Comparison

The comparison between 3D and 2D models was first performed by the con-
struction of infinite formal asymptotic expansions (i.e. without error estimates)
[14, 15, 16]. Next, rigorous error estimates between the 3D solution and the
Kirchhoff-Love solution u0

KL were proved in [5, 13, 4]: here u0
KL appears as the

limit of the 3D solution as ε→ 0 . Indeed u0
KL is the first term of an asymptotic

development with respect to ε of uε . Further terms were exhibited in [20], and
the whole asymptotic expansion was constructed in [11, 12] for the hard clamped
condition (which we refer to as the number one ©1 ).

The main feature of these asymptotic expansions (both formal and rigorous) is
the presence of two sorts of contributions. In order to explain this important fact,
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let us introduce coordinates in the plate: x∗ = (x1, x2) in ω and z ∈ (−ε, ε) .
The scaled vertical variable is x3 = z/ε . We also need local coordinates near the
lateral boundary Γε (or equivalently near the boundary ∂ω of ω ): r the distance
to ∂ω and s the arc length around ∂ω . The first sort of contribution consists
of displacements of the form εk uk(x∗, x3) (outer expansion) and the second sort
consists of boundary layer terms of the form εkwk( r

ε
, s, x3) (inner expansion). The

reason for the presence of a boundary layer is the following: the 3D model is a “sin-
gular perturbation problem” as the thickness parameter ε tends to 0 , therefore
a standard power series in ε is unable to describe correctly displacements, strains
and stresses. Among works exhibiting boundary layers in neighboring situations,
let us cite [21], [1], [24, 23].

1.c Boundary and edge layers

The first boundary layer term w1 plays a particular role: it is responsible for
the main part of the difference between the 3D solution uε and the 2D solution
u0

KL , and this error depends on the norm in which it is evaluated. Moreover, we
proved in [11, 12] for the clamped plate that the expected non-smoothness of the
displacements (due to the presence of the edges of the plate) is concentrated in the
boundary layer terms, as edge layers. Thus the precise description of w1 with its
singularities allows to prove estimates in various norms and to be sure that they
are sharp.

Just like in [1] where an asymptotics for the Reissner-Mindlin plate was con-
structed and in [3] where error bounds between the 3D solution and u0

KL was
investigated in the case of different lateral boundary conditions, we can suspect a
strong influence of the nature of these lateral boundary conditions on the asymp-
totical behavior of uε . In this paper we present 3 out of the 8 cases: we recall
our results concerning the hard clamped plate ©1 , then describe the soft clamped
plate ©2 , and the hard simply supported plate ©3 . The whole results will be
proved in [9], where the 8 conditions are systematically investigated, including
the delicate case of the free plate. We choose these 3 cases as samples: they are
representative of different phenomena and are the least difficult to describe.

But what kind of influence can we expect? On what quantities? Mainly on
the terms of order one in the asymptotics w1 and u1

KL . We will see that u1
KL

is closely linked to w1 . Thus we expect a visible interaction between the nature
of lateral boundary conditions and the boundary layer terms. We are going to
describe them, and to exhibit their singular part along the edges of the plate,
which concentrate the whole singular behavior of the displacements. Of course, if
the mean surface is not smooth but polygonal, the structures have a further level
of complexity. We will briefly mention this aspect of things.
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1.d Overview of the results

We describe our results in the scaled plate Ω = ω × (−1, 1) for the scaled dis-
placement field u(ε) = (uε

1, u
ε
2, ε u

ε
3) . It can be interesting to distinguish between

two regions in the plate: the middle part M and the boundary layer part N
neighboring the lateral boundary Γ = ∂ω × (−1, 1) . These are arbitrarily chosen
with the help of a parameter r0 small enough so that in the region N defined by
{x ∈ Ω, dist(x,Γ) < r0} , the triple (r, s, x3) is a smooth system of coordinates.
Then M is defined as Ω \N . In M we have the asymptotics

u(ε) = u0
KL + εu1

KL + ε2
(
u2

KL + v2
)

+ h.o.t.

with uk
KL Kirchhoff-Love displacements and the estimates in any norm

‖u(ε) − u0
KL‖ = O(ε) and ‖u(ε) − (u0

KL + εu1
KL)‖ = O(ε2).

This holds for any of the three cases ©1 , ©2 of ©3 , but also for the other ones.
The term u1

KL is a long range manifestation of the boundary layers (see the
relations below in section 4).

In N , the results have a clearer structure if we consider the field u in the
local system of coordinates: un = u ·n , where n is the inward unit normal along
Γ , and us the in-plane tangential component of u . Then, in the three cases ©1 ,
©2 of ©3 , we have

un(ε) = u0
KL,n + ε

(
u1

KL,n + w1
t (

r
ε
, s, x3)

)
+ ε2

(
u2

KL,n + v2
n + w2

t (
r
ε
, s, x3)

)
+ h.o.t.

us(ε) = u0
KL,s + ε u1

KL,s + ε2
(
u2

KL,s + v2
s + w2

s(
r
ε
, s, x3)

)
+ h.o.t.

u3(ε) = u0
KL,3 + ε u1

KL,3 + ε2
(
u2

KL,3 + v2
3 + w2

3(
r
ε
, s, x3)

)
+ h.o.t.

In the clamped plate (hard and soft), the leading part of the boundary layer,
w1

t (
r
ε
, s, x3) is present and not regular (not in H2 ) in a generic way, in contrast

with the hard simply supported plate where w1
t is regular, and even absent in any

point where the curvature of ∂ω is zero.

For the free plate, the situation would be converse: w1
t = 0 and the leading

part of the boundary layer would be w1
s(

r
ε
, s, x3) . But it is more difficult to explain

the construction of asymptotics in this case1.

1The above asymptotics for clamped and free plate are being verified numerically with the

help of the code STRESSCHECK. Work in progress with Z. Yosibash.
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2 EQUATIONS OF THE DISPLACEMENT

To simplify, we limit ourselves to the case when the rigidity matrix A = (Aijkl) is
that of an isotropic material, with Lamé coefficients λ and µ , namely:

Aijkl = λ δij δkl + µ (δik δjl + δil δjk).

Then, uε solves a boundary value problem whose variational formulation involves
a space V (Ωε) of admissible displacements vε that undergoes the stable bound-
ary conditions associated to each boundary condition ©i . Then, the variational
problem reads: Find

uε ∈ V (Ωε) such that ∀vε ∈ V (Ωε),

∫

Ωε

Ae(uε) : e(vε) =

∫

Ωε

f ε · vε, (2.1)

where e is the strain tensor and f ε represents volume forces.

Let us fix the following notations: for a point in Ωε , x∗ = (x1, x2) are its
horizontal coordinates, living in ω , and z is its vertical coordinate in (−ε,+ε) .
Similarly, v∗ denotes the two horizontal components (v1, v2) of a field v .

We assume that all forces f ε are derived from the same smooth “vertical
profile” f ∈ C ∞(Ω̄)3 :

f ε
∗ (x∗, z) = f∗(x∗,

z

ε
), f ε

3 (x∗, z) = ε f3(x∗,
z

ε
). (2.2)

This means that, on the fixed reference configuration Ω := ω×(−1,+1) satisfying

xε := (x∗, z) ∈ Ωε ⇐⇒ x = (x∗, x3) := (x∗,
z

ε
) ∈ Ω, (2.3)

the volume forces have the form (f1, f2, εf3) .

It is then natural to try to compare the displacements uε with each other on
the scaled configuration Ω . The new unknown is the scaled displacement u(ε)
whose components are defined for purpose of homogeneity by:

u∗(ε)(x) = uε
∗(x

ε), u3(ε)(x) = ε uε
3(x

ε).

Inserting this change of functions into the primitive boundary value problem (2.1)
set on Ωε , we arrive at a new scaled boundary value problem set on Ω that reads:
Find

u(ε) ∈ V (Ω) such that ∀v ∈ V (Ω),

∫

Ω

Aκ(ε)u(ε) : κ(ε)v =

∫

Ω

f · v (2.4)
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where we have introduced the scaled strain tensor denoted by κ(ε)(v) for any
function v ∈ H1(Ω)3 and defined componentwise by (with α , β ∈ {1, 2} ):

καβ(ε)(v) = eαβ(v), κα3(ε)(v) = ε−1 eα3(v), κ33(ε)(v) = ε−2 e33(v).

The variational space V (Ω) is made of functions v ∈ H1(Ω)3 with stable bound-
ary conditions ©1 , ©2 or ©3 on Γ = ∂ω × (−1,+1) , namely:

©1 v = 0

©2 v ·n = 0 and v3 = 0

©3 v × n = 0 and v3 = 0





with n the inner unit normal to Γ .

3 INNER – OUTER EXPANSION ANSATZ

Following [11] (cf also [10] for a short account) where this is done in case ©1 , we
make a proposition of asymptotics for the scaled displacement u(ε) in the form
a power series — the outer Ansatz:

u(ε)(x) ≃ u0(x) + εu1(x) + ε2 u2(x) + · · · + εk uk(x) + · · · (3.1)

where the uk are independent of ε , corrected by a boundary layer expansion
— the inner Ansatz. These inner and outer expansions are familiar notions in
the theory of matching asymptotics [17], where the idea is somewhat different: it
consists of trying to describe the asymptotics either in primitive variables, or in
boundary layer variables in different zones and to match both in an intermediate
zone. Here we search for a combined expansion which is valid everywhere. More
precisely, we find that the ingredients of a correct Ansatz are the following.

• Kirchhoff-Love displacements uk
KL with “generating function” ζk = (ζk

∗ , ζ
k
3 ) ,

namely:
uk

KL,∗ = ζk
∗ (x∗) − x3 ∇∗ζ

k
3 (x∗), uk

KL,3 = ζk
3 (x∗).

It is well known that the limit of u(ε) is a Kirchhoff-Love displacement.
Indeed we find that such a displacement appears at each level of the asymp-
totics, so that the sum (3.4) below solves the whole problem (2.4).

• Displacements with mean values zero in each vertical fiber

∫ +1

−1

vk(x∗, x3) dx3 = 0, ∀x∗ ∈ ω. (3.2)

Added to the previous Kirchhoff-Love displacements they constitute the
outer expansion part of the Ansatz (3.1). They actually solve a Neumann
problem on the interval (−1,+1) very similar to the Neumann problem for
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the operator ∂2
3 in the x3 vertical variable. Therefore, their existence clas-

sically results from a compatibility condition obtained after an integration
on (−1,+1) which yields in particular the membrane and bending equations
(4.2) and (4.3) below, whereas (3.2) insures uniqueness by fixing a remaining
constant.

• Boundary layer terms

wk = wk(ε−1 r, s, x3) with

{
r the distance to ∂ω,

s the arc length in ∂ω.
(3.3)

They compensate for discrepancies in imposed lateral boundary conditions
©1 , ©2 and ©3 respectively: indeed, as the scaled lateral boundary Γ
is characteristic for the problem solved by each uk — in similarity to the
operator ∂2

3 , the power series (3.1) is only able to solve the interior (volume)
equations inside Ω and the horizontal boundary conditions, but not the
lateral boundary conditions in general. The boundary layer terms describe
phenomena “rapidly” varying and decreasing near Γ , and their introduction
allows for a complete resolution. They constitute the inner expansion part
of the Ansatz. For every k , wk(t, s, x3) is exponentially decreasing as t →
+∞ . With χ denoting a cut-off function equal to 1 in a neighborhood of
∂ω , we consider the localized function χ(r)wk(ε−1 r, s, x3) .

Collecting all these features, we get the following expansion

u(ε) ≃ u0
KL + εu1

KL + ε χ(r) (w1
∗(
r

ε
, s, x3), 0)

+
∑

k≥2

εk
(
uk

KL + vk + χ(r)wk(
r

ε
, s, x3)

)
.

(3.4)

Notice that the leading boundary layer term has a zero vertical component.

4 FIRST TERMS IN THE ASYMPTOTICS

4.a Terms of order zero

We proceed to a description of the leading terms of the Ansatz (3.4). As already
mentioned, the leading term is the Kirchhoff-Love displacement of order zero:

u0
KL = (ζ0

∗ − x3 ∇∗ζ
0
3 , ζ

0
3 ). (4.1)

In (4.1), the two-dimensional generator ζ0 = (ζ0
∗ , ζ

0
3) is defined on the mean sur-

face ω of the plates Ωε . The in-plane generator ζ0
∗ solves a membrane equation

in ω :
µ∆∗ζ∗ + (λ̃+ µ)∇∗ div∗ ζ∗ = R0

m, (4.2)
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with the “homogenized” Lamé coefficient λ̃ = 2λµ(λ + 2µ)−1 and with the right
hand side R0

m defined as

R0
m(x∗) = −

1

2

∫ +1

−1

f∗(x) dx3.

Its vertical generator ζ0
3 solves the bending equation

(λ̃+ 2µ)∆2
∗ζ3 = R0

b, (4.3)

with the right hand side R0
b defined as

R0
b(x∗) =

3

2

∫ +1

−1

(f3 + x3 div∗ f∗) dx3.

Here ∆∗ is the in-plane Laplacian ∂11 +∂22 and ∆∗ is the bloc diagonal in-plane
Laplacian ∆∗I2 . For smooth f , the associated right hand sides are smooth as
they actually depend on mean values of f . Both membrane and bending problems
are completed with the following zero boundary conditions on ∂ω

©1 ζ0
n = 0, ζ0

s = 0, ζ0
3 = 0, ∂nζ

0
3 = 0,

©2 ζ0
n = 0, Ts(ζ

0
∗) = 0, ζ0

3 = 0, ∂nζ
0
3 = 0,

©3 Tn(ζ0
∗) = 0, ζ0

s = 0, ζ0
3 = 0, Mn(ζ0

3 ) = 0,

(4.4)

with ζn and ζs the normal and tangential components of ζ∗ , Tn and Ts the
normal and tangential tractions associated to the membrane equation on ω and
Mn the natural operator of order 2 associated to the bending equation. Since the
boundary of ω is assumed to be smooth, as a consequence of classical results of
elliptic regularity u0

KL is C ∞(ω) .

Whereas all the previous results concerning u0
KL are rather classical and can

be obtained by different strategies (not only our construction of asymptotics, but
also by a suitable choice of test functions in equation (2.4)), the situation of the
further terms in the asymptotics is, to our knowledge, less well known.

Anyway, concerning the estimates of the error u(ε)−u0
KL , we can prove that

it behaves like O(ε1/2) in the H1(Ω) norm and like O(ε) in the L2(Ω) norm.

4.b Traces of the power series Ansatz

As was indicated in the previous section, the part vk satisfying (3.2) of the dis-
placements uk are determined by the solution of a (generalized) Neumann prob-
lem. We obtain that v0 , v1 = 0 and the following formulas for v2

v2
α = p̄2 ∂α div∗ ζ

0
∗ + p̄3 ∂α∆∗ζ

0
3 − 1

µ

∮ x3

(∫ y3− fα

)
dy3

v2
3 = p̄1 div∗ ζ

0
∗ + p̄2 ∆∗ζ

0
3

(4.5)
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where
∮ x3 denotes the primitive with zero mean value on (−1,+1) and

∫ y3

− · dz3 :=
1

2

(∫ y3

−1

· dz3 −

∫ +1

y3

· dz3

)
,

whereas p̄j for j = 1, 2, 3 are the following polynomials of degree j :

p̄1(x3) = −
λ̃

2µ
x3, p̄2(x3) =

λ̃

4µ

(
x2

3 −
1

3

)
,

p̄3(x3) =
1

12µ

(
(λ̃+ 4µ) x3

3 − (5λ̃+ 12µ) x3

)
.

(4.6)

The absence or presence of a first boundary layer term w1 depends only
on whether or not v2

3 satisfies the lateral boundary conditions. For reasons of
homogeneity, the in-plane components of v2 only influence higher order terms.

In all three situations ©1 , ©2 and ©3 the vertical component of the displace-
ment u(ε) vanishes on Γ . Thus, we have to check whether v2

3 = 0 on Γ , i.e.
whether

div∗ ζ
0
∗ = 0 on ∂ω and ∆∗ζ

0
3 = 0 on ∂ω. (4.7)

We can see that for the clamped plates ©1 and ©2 , the boundary conditions
satisfied by u0

KL do not imply (4.7) in general, in contrast to the case of the hard
simply supported plates ©3 for which interesting relations hold

Tn(ζ0
∗) = (λ̃+ 2µ) div∗ ζ

0
∗ +

2µ

R
ζ0
n (4.8)

Mn(ζ0
3) = (λ̃+ 2µ)∆∗ζ

0
3 +

2µ

R
∂nζ

0
3 (4.9)

with R = R(s) the curvature radius of ∂ω at s . This means that the boundary
conditions of v2

3 are a mere consequence of those of u0
KL in any flat part of the

boundary.

This fact is not so mysterious: in this hard simply supported plate, all the
tangential components of the displacement are set to 0 , whereas the normal com-
ponent of the traction is zero. Therefore, in the neighborhood V of any flat part
of the lateral boundary Γ , we can extend the displacement across Ω by reflec-
tion: the odd reflection of the tangential components and the even reflection of the
normal component extend u(ε) to a new displacement ũ(ε) associated to zero
horizontal boundary conditions and to extended volume forces f̃ , which are at
least in L2 . Thus the extended displacement satisfies estimates as if V is inside
the plate, i.e. far from the boundary layer.
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If the support of the volume forces avoids the lateral boundary Γ in the neigh-
borhood V , then there are no boundary layer terms at all in V : u(ε) can be
expanded in a power series inside V . The situation is exactly the same in the case
of the “sliding edge condition” where the normal component of the displacement
and the tangential components of the traction are prescribed to be 0 . The rela-
tion between this sliding edge condition on a rectangular plate and the periodic
conditions is emphasized in [22].

4.c Terms of order one

The trace of v2
3 being irrecoverable by a power series Ansatz (except in the par-

ticular case above), we introduce a first profile ϕ1 which will define the in-plane
components w1

1 and w1
2 , and the first non vanishing transverse component w2

3 in
accordance with the new scaling

(w1
1, w

1
2, w

2
3) =: ϕ1 ≡ (ϕ1

t , ϕ
1
s, ϕ

1
3) in cylindrical components. (4.10)

With r denoting the distance to ∂ω and s an arc-length coordinate in ∂ω , we
set t = r ε−1 . Then, the first profile ϕ1 satisfies

B(0)ϕ
1 = 0 (4.11)

where the left hand side B(0)(ϕt, ϕs, ϕ3) describes an uncoupled elasticity - Lapla-
cian system in the two variables t and x3 :

µ(∂tt + ∂33)
(
ϕt

ϕ3

)
+ (λ+ µ)

(
∂t

∂3

)
(∂tϕt + ∂3ϕ3) =: E(ϕ♯) (4.12)

µ(∂tt + ∂33)ϕs. (4.13)

Notice that operators (4.12) and (4.13) have no tangential derivative ∂s , so that
although ϕ1 a priori depends on all variables t, s, x3 , we may consider that s
is a mere parameter. Thus, (4.12) (resp. (4.13)) is the right hand side of a two-
dimensional elasticity problem (resp. Laplacian problem) solved by ϕ1

♯ := (ϕ1
t , ϕ

1
3)

(resp. ϕ1
s ) on the half-strip

Σ+ =
{
(t, x3) ∈ (0,+∞) × (−1,+1)

}
.

Interior equations (4.12)-(4.13) are completed with the zero Neumann condition
on the horizontal sides x3 = −+ 1 , and conditions ©i for the whole Ansatz on
t = 0 . Equations on the components ϕ♯ and ϕs are uncoupled. The boundary
condition that we want to compensate for is the only Dirichlet trace of v2

3 at this
stage. This involves ϕ1

♯ only and we can prove:

In cases ©1 , ©2 and ©3 , ϕ1
s = 0. (4.14)
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Concerning ϕ1
♯ , one should have ϕ1

3 + v2
3 = 0 on ∂ω . But the solution of (4.12)

with this Dirichlet condition (and the remaining zero condition ©i ) does not pro-
vide exponentially decreasing solutions. One needs a correction on the boundary
to compensate for the (polynomial) behavior as t→ +∞ of such solutions. This
generates the Kirchhoff-Love displacement u1

KL of order one, namely:

u1
KL = (ζ1

∗ − x3 ∇∗ζ
1
3 , ζ

1
3) (4.15)

where the generators ζ1
∗ and ζ1

3 solve membrane and bending equations respec-
tively cf (4.2), (4.3) with interior data 0 , and non-zero boundary conditions.

In case ©1 these boundary conditions read:

ζ1
n = c

©1
1 div∗ ζ

0
∗ , ζ1

s = 0, ζ1
3 = 0, ∂nζ

1
3 = c

©1
4 ∆∗ζ

0
3 . (4.16)

The condition ζ1
s = 0 in linked to the fact that ϕ1

s = 0 . The quantities c
©1
1 and

c
©1
4 are universal coefficients depending on the Lamé coefficients (λ, µ) , which

appear as coupling constants between the behaviors in t = 0 and t→ ∞ of certain
model profiles ψ♯,1 and ψ♯,2 generating the boundary layer terms: recalling that
v2
3 = p̄1 div∗ ζ

0
∗ + p̄2 ∆∗ζ

0
3 , these model profiles are given by





E(ψ♯,j) = 0 in Σ+

T (ψ♯,j) = 0 on x3 = −+1
ψt,j = 0 on t = 0
ψ3,j = −p̄j on t = 0,





j = 1, 2,

and the coupling constants are such that

ψ♯,1 = ϕ
©1
♯,1 + c

©1
1

(
1
0

)
, with ϕ

©1
♯,1 exp. decreasing as t→ ∞ ,

respectively

ψ♯,2 = ϕ
©1
♯,2 + c

©1
3

(
0
1

)
+ c

©1
4

(
−x3

t

)
, with ϕ

©1
♯,2 exp. decreasing as t→ ∞ .

Since it can be proved [9] that

∀λ, µ > 0 c
©1
4 (λ, µ) 6= 0,

the term u1
KL is present in general. Finally the first profile in the boundary layer

terms is ϕ1 = (ϕ1
t , ϕ

1
t , ϕ

1
3) with ϕ1

s = 0 and ϕ1
t , ϕ1

3 defined as

(
ϕ1

t

ϕ1
3

)
= div∗ ζ

0
∗(s) ϕ

©1
♯,1(t, x3) + ∆∗ζ

0
3(s) ϕ

©1
♯,2(t, x3). (4.17)
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Similar boundary conditions on ∂ω hold for the generator ζ1 of u1
KL in case

©2 , with one difference concentrating on the tangential condition, namely:

ζ1
n = c

©2
1 div∗ ζ

0
∗ , Ts(ζ

1
∗) = c

©2
2 ∂s div∗ ζ

0
∗ , ζ1

3 = 0, ∂nζ
1
3 = c

©2
4 ∆∗ζ

0
3 (4.18)

where c
©2
1 and c

©2
4 are the same coefficients as in case ©1 and c

©2
2 is another

universal coefficient. The formula giving ϕ1 is similar to (4.17).

As already mentioned, the situation of the hard simple support ©3 is different:
owing to relations (4.8)-(4.9) we obtain as boundary conditions on ∂ω for the
generator ζ1 of u1

KL :

Tn(ζ1) = c
©3
1

ζ0
n

R2
, ζ1

s = 0, ζ1
3 = 0, Mn(ζ1

3 ) = c
©3
4

∂nζ
0
3

R2
, (4.19)

and concerning the first boundary layer term: ϕ1 = (ϕ1
t , 0, ϕ

1
3) with ϕ1

s = 0 and
ϕ1

t , ϕ1
3 defined as

(
ϕ1

t

ϕ1
3

)
=

ζ0
n(s)

R(s)
ϕ
©3
♯,1(t, x3) +

∂nζ
0
3 (s)

R(s)
ϕ
©3
♯,2(t, x3). (4.20)

So, we see that the first boundary layer term is absent at any point of the lateral
boundary with zero curvature.

Estimates concerning the terms of order one can be written as

‖u(ε) − u0
KL − εu1

KL‖L2(Ω)
= O(ε3/2)

and
‖u(ε) − u0

KL − εu1
KL − ε

(
ϕ1

t (
r

ε
, s, x3), 0, 0

)
‖

H1(Ω)
= O(ε3/2).

4.d Terms of order two

We conclude this section by a few words about terms of order 2 . Besides the part
of v2

∗ which depends on f , see (4.5), we see that the polynomial part of order two
has the degrees (3, 3, 2) . Thus these degrees are minimal ones for a hierarchical
model if we want to reach the order 2 .

On the other hand, in any of the three cases ©1 , ©2 and ©3 , the only con-
tribution to the part of order one in the boundary layers is the normal component
w1

t = ϕ1
t . Both other ones begin at the order two: w1

3 = 0 for reasons of homo-
geneity and w1

s = 0 because of (4.14). We already gave formulas for w2
3 = ϕ1

3 .
Concerning w2

s = ϕ2
s , we can check that in the clamped cases, it has the form

ϕ2
s = ∂s div∗ ζ

0
∗(s)ϕ

©i
5,s + ∂s∆∗ζ

0
3 (s)ϕ

©i
6,s, i = 1, 2,

where the ϕ
©i
j,s are model profiles for the Laplacian, just like the ϕ

©i
j,♯ in (4.17)

and (4.20) are model profiles for the elasticity E .
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5 SINGULARITIES ALONG THE EDGES OF THE PLATE

The plates Ωε have two edges γε
−

+ defined as the intersection between the lateral
face Γε and the horizontal faces of the plate. They are transformed through the
scaling (2.3) into the edges γ

−

+ = ∂ω× (−1,+1) of the scaled plate Ω where both
lateral and horizontal boundary conditions meet: due to this change in type of
boundary condition (in each of the cases ©1 , ©2 and ©3 ), the scaled displacement
u(ε) undergoes a change that alters the regularity, even if the right hand side f
is smooth up to the boundary.

Notice that edges correspond to the corners (0, −+ 1) of the half-strip Σ+ as
well, so that they alter the regularity of the profiles too. Finally, the regularity
and the asymptotics of u(ε) in the neighborhood of the edges are governed by
the singular exponents of the “reduced-normal problems” (4.12)-(4.13) on the half-
strip Σ+ . It is worth noticing for the subsequent analysis that the opening angle
of the domain Ω (resp. Σ+ ) all along the edges is constant and equal to π/2 .
We illustrate all these features with cases ©1 , ©2 and ©3 .

5.a Clamped plates

Notice that the elasticity problem in both cases ©1 and ©2 is actually the same.

In the graph besides we plot

• On the lower curve: The first singular
exponent (vertical axis) of the elasticity
operator (4.12) with Neumann conditions
on x3 = −+ 1 and Dirichlet conditions on
t = 0 versus the quantity log10(µ/λ) (hor-
izontal axis)

• On the upper curve: The (real part) of the
2d exponent of the same problem,

• The right line at 1 corresponds to the (first)
singular exponent of the mixed Dirichlet-
Neumann problem for the Laplace operator
(4.13).

First exponent

Second exponent

Laplace

20- 2- 4 4
0

1

2

Figure 2. Singular exponents at the edges of the plate

We recall (see [18] for the general theory) that the singular exponents are
the real (or complex) numbers ν such that the homogeneous problems (4.12)
and (4.13) with the boundary conditions quoted above, have solutions of the

13



form ρν
−

+φ(θ
−

+ ) on the quarter plane, with (ρ
−

+ , θ
−

+) polar coordinates centered in

(0, −+ 1) .

Note that the first exponent is less than 1 , thus the displacements u(ε) have
H1 but not H2 regularity. The second exponent being > 1 , we only have to
subtract the first singular function in the expansion to attain H2 regularity: in
local coordinates (r, s, x3) mentioned above

u(ε) = ureg(ε) +
∑

+,−

c −

+

(ε)(s)χ −

+

(
r

ε
, x3)S −

+

(
r

ε
, x3) (5.1)

where ureg(ε) belongs to H2(Ω) , where χ −

+ (t, x3) denotes a cut-off function
equal to 1 in a neighborhood of ∂ω×{−+ 1} and where the coefficients c −

+
(ε)(s)

have the regularity of C ∞(∂ω) . The functions S −

+ are singular solutions of the
reduced-normal problems (4.12)-(4.13). This way (5.1) of writing the splitting of
u(ε) is stable with respect to ε .

In the expansion (3.4) of u(ε) , the non-regular terms concentrate on the
boundary layer expansion

∑
k≥1 ε

k χ(r)wk( r
ε
, s, x3) as soon as the right hand side

is regular up to the boundary. Indeed, the regularity result for u0
KL and u1

KL

above mentioned in relation to the smoothness of the boundary ∂ω generalizes
to Kirchhoff-Love displacements uk

KL which are generated by solutions of elliptic
boundary value problems of membrane and bending types on ω . Moreover, recall
that the functions vk solve one-dimensional Neumann problems on the interval
(−1,+1) . Besides, the boundary layer term wk inherits the singular behavior of
the profiles ϕk such that

(wk
1 ,w

k
2 ,w

k+1
3 ) =: ϕk ≡ (ϕk

t , ϕ
k
s , ϕ

k
3) in cylindrical components.

In general,

wk(t, s, x3) = wk
reg(t, s, x3) +

∑

+,−

c −

+ , k(s)χ −

+

(t, x3)S −

+

(t, x3) (5.2)

with wk
reg ∈ H2(Ω) .

Results of [11, 12] apply to the regular part of u(ε) in the splitting (5.1),
yielding the following asymptotics:

‖ureg(ε) − u
0
KL − ε χw1

reg(
r

ε
, s, x3)‖H2(Ω)

≤ C ε1/2. (5.3)

Note that the H2 norm of ureg(ε) − u
0
KL does not tend to 0 with ε in general:

taking account of the regular part of the first profile is necessary to obtain an
estimate.
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Asymptotics of the coefficients arising in (5.1) are linked to the coefficients
appearing in (5.2):

c −

+

(ε) =
∑

1≤ k≤N

εk c −

+ , k + O(εN+1).

Remark 5.1 For (monoclinic) anisotropic materials, we may rely on [6] and con-
struct special linear combinations of the singularities S −

+
so that Stable Singular

Functions are available.

5.b Hard simple support

The first singular exponent at the edges is 1 . But since the boundary conditions
are homogeneous, the reflection principle allows for proving that the coefficient of
this singularity is zero. Thus the displacements u(ε) belong to H2(Ω) , and the
profiles wk too.

But as already said, we do not have any convergent estimate for u(ε) − u0
KL

in H2(Ω) norm, but similarly to (5.3)

‖u(ε) − u0
KL − ε χw1(

r

ε
, s, x3)‖H2(Ω)

≤ C ε1/2. (5.4)

6 AND IF THE MEAN SURFACE HAS CORNERS...

We present now some facts when the mean surface ω is no longer smooth but
polygonal. Then the plates Ωε are polyhedral and the displacements admit com-
bined edges and corner singularities [8].

On the other hand, the limit Kirchhoff-Love displacement u0
KL has a singular

behavior near the corners of ω . More precisely, its regularity is limited by the
exponents of singularity of the membrane and bending operators with the bound-
ary conditions corresponding to situations ©i . These exponents at a vertex O of
ω are the complex numbers ν such that the completely homogeneous boundary
value problem under consideration admits solutions of the form ρνφ(θ) on the
sector tangent to ω at O , with (ρ, θ) a system of polar coordinates defined in a
neighborhood of the vertex.

Note that for an elastic material with Lamé constants λ̃ and µ , the singular
exponents depend only on the ratio µ/λ̃ . Figure 3 displays this dependence for
Dirichlet conditions (actually, log10(µ/λ̃) is represented in the horizontal axis)
when the opening of the angle is either π/2 or 3π/2 . Notice that since λ ,
µ > 0 , then µ

λ̃
> 1

2
is the only physically admissible case, that is why we refer to

the case µ

λ̃
= 1

2
as a “physical limit”.
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Figure 3. Dirichlet membrane and bending exponents

The regularity of ζ0
∗ is obtained by adding 1 to the value of the exponent.

We see that for a convex polygon with a right angle, the first singular exponent
is between 1 and 2 , so the solution for the membrane problem with Dirichlet
boundary conditions belongs to H2 but not to H3 , unlike the case of a non
convex polygon with right reentrant angle where the first singular exponent is less
than 1 and thus the solution does not have the H2 regularity.

The horizontal dotted lines represent the first exponent of the bending equation
(bilaplacian) with Dirichlet boundary conditions. The regularity of ζ0

3 is obtained
by adding 2 to the value of this exponent.

As a consequence, in the vicinity of a right angle u0
KL still has the H2(Ω)

regularity but not the H3(Ω) one. In the case of a reentrant angle, u0
KL does not

belong to H2(Ω) . Note that the transverse component is more regular.

Figure 4 displays the variation of the first singular exponents versus the open-
ing ϑ of the corner at the vertex O for the boundary value problems (4.4) of the
membrane equation, namely those encountered in cases ©1 , ©2 and ©3 .

For mixed problems ©2 and ©3 , the situation deteriorates as the opening
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In the graph besides we plot

• On the upper curve: For compar-
ison, we give the variation of π/ω
(Dirichlet or Neumann for ∆ ).

• On the middle curve: Singular ex-
ponents of the Dirichlet problem
for case ©1 at the “physical limit”
λ̃ = 2µ .

• On the lower curve: Singular ex-
ponents |1 − π/ω| of the mixed
Dirichlet-Neumann problems: ei-
ther the normal component of the
displacement and the tangential
component of the traction for ©2 ,
or the converse for ©3 .

2ππ00

1

2

3

4

5

6

Laplacian

Dirichlet problem for membrane

Mixed problems for membrane

Figure 4. Exponents of singularity of the membrane equation

tends to π : this fact can be compared with the “Babuška paradox” [2]. We see
that our construction algorithm of section 4 stops after the determination of u0

KL .
Indeed, if 2π/3 ≤ ϑ ≤ 2π the right hand side of boundary conditions (4.18) is
too singular to have a unique solution to the problem (due to the presence of a
non trivial kernel formed by dual singular functions). Concerning (4.16) on a plate
with reentrant corner, the algorithm would stop after the determination of u1

KL

for a similar reason.

Getting around this difficulty requires the introduction of a new type of layer
terms, namely corner layers, see [19], [7] and a modification of the boundary layer
terms in the neighborhood of the corners. But this is another story... Another
interesting relation is the problem of geometric singular perturbation in the hard
simple supported plate: if ω is a polygon, the curvature of its boundary is (almost)
everywhere zero, and according to (4.20) the boundary layer terms are absent. If
instead of true corners, the mean surface ω has rounded corners with radius δ ,
then we have a first boundary layer term w1 supported in the curved zone, with
a coefficient behaving like 1/δ . We can guess that in the limit δ → 0 , we find
again the corner layer terms.

17



REFERENCES

[1] D. N. Arnold, R. S. Falk. Asymptotic analysis of the boundary layer
for the Reissner-Mindlin plate model. SIAM J. Math. Anal. 27 (2) (1996)
486–514.
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[21] O. Ovaskainen, J. Pitkäranta. An energy method approach to the prob-
lem of elastic strip. Research Report A328, Helsinki University of Technology,
Institute of Mathematics 1994.

[22] J. C. Paumier. Existence and convergence of the expansion in the asymp-
totic theory of elastic thin plates. Math. Modelling Numer. Anal. 25 (3)
(1990) 371–391.

[23] C. Schwab. Boundary layer resolution in hierarchical models of laminated
composites. Math. Model. Numer. Anal. 28 (5) (1994) 517–537.

[24] C. Schwab, S. Wright. Boundary layer approximation in hierarchical
beam and plate models. Journal of Elasticity 38 (1995) 1–40.

19


