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ABSTRACT

Concerning thin structures such as plates and shells, te ofl reducing the equations of elasticity to two-
dimensional models defined on the mid-surface seems relesaoh a reduction was first performed thanks to
kinematical hypotheses about the transformation of nofimes to the mid-surface. As nowadays, the asymptotic
expansion of the displacement solution of the three-dimeas linear model is fully known at least for plates
and clamped elliptic shells, we start from a description lefse expansions in order to introduce the two-
dimensional models known as hierarchical models: Theseta@xtend the classical models, and pre-suppose the
displacement to be polynomial in the thickness variabbngverse to the mid-surface. Because of the singularly
perturbed character of the elasticity problem as the tlisgrapproaches zero, boundary- or internal layers may
appear in the displacements and stresses, and so may nainieclding effects. The use of hierarchical models,
discretized by higher degree polynomiajsversion of finite elements) may help to overcome these sever
difficulties.
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1. INTRODUCTION

1.1. Structures

Plates and shells are characterizedipyheir mid-surfaces, (ii) their thicknessi. The plate or shell
character is thadl is “small” compared with the dimensions 6f In this respect, we qualify such
structures ashin domainsIn the case of platesy is a domain of the plane, whereas in the case of
shells,S is a surface embedded in the three-dimensional space. @esqulates are shells with zero
curvature. Nevertheless, considering plates as a paticlass of shells in not so obvious: They always
have been treated separately, for the reason that platsisrgrier. We think, and hopefully demonstrate
in this chapter, that eventually considering plates adsbbeds some light in the shell theory.

Other classes of thin domains do exist, such as rods, wherditmensions are small compared with
the third one. We will not address them and quote for examplealkbv, 1999; Irago and Viafio, 1999.
Real engineering structures are often union (or junctidp)ates, rods, shells, etc... see Ciarlet (1988,
1997) and also Kozloet al., 1999; Agratov and Nazarov, 2000. We restrict our analysantisolated
plate or shell. We assume moreover that the mid-surfatesmooth, orientable, and has a smooth
boundarydS. The shell character includes the fact that the principatatures have the same order
of magnitude as the dimensions$f See Anicic and Léger, 1999 for a situation where a regidh wi
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2 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

strong curvature (liké /d) is considered. The opposite situation is when the cureatbave the order
of d: We are then in presence of shallow shells according to timeinelogy of Ciarlet and Paumier,
1986.

1.2. Domains and coordinates

In connection with our references, it is easier for us to @®rel as thehalf-thicknes®f the structure.
We denote our plate or shell I§y. We keep the reference to the half-thickness in the notaoause
we are going to perform assymptotic analysi®r which we embed our structure in a whole family of
structuregQ°)., where the parametertends ta0.

We denote the Cartesian coordinate®dfby x = (1, z2, 23), a tangential system of coordinates
onS by x+ = (Xq)a=1,2, @ NOrmal coordinate t8 by x3, with the convention that the mid-surface is
parametrized by the equati@n = 0. In the case of platex,, ) are Cartesian coordinateslit and the
domainQ¢ has the tensor product form

Q=S x (—d,d).

In the case of shells+ = (x4 )a=1,2 denotes a local coordinate system$rdepending on the choice
of a local chart in an atlas, ang is the coordinate along a smooth unit normal fielih S in R3. Such
anormal coordinate systeifi (x-,x3) yields a smooth diffeomorphism betwe@f andS x (—d, d).
Thelateral boundanyi of Q% is characterized by € 95 andxs € (—d, d) in coordinategx-, x3).

1.3. Displacement, strain, stress and elastic energy

The displacement of the structure (deformation from thesstfree configuration) is denoted by
its Cartesian coordinates ly+, us, u3), and its surface and transverse partsuby= (u,) andus
respectively. The transverse pajgtis always an intrinsic function and the surface partdefines a
two-dimensional 1-form field of, depending ors. The components,, ) of u+ depend on the choice
of the local coordinate systery-.

We choose to work in the framework sfmall deformatior®). Thus we use the strain ten§br
e = (e;5) given in Cartesian coordinates by

) =5 (5 52)

Unless stated otherwise, we assume the simplest possibéibe for the material of our structure,
that is anisotropic material Thus, the elasticity tensot = (A“7*!) takes the form

with A and . the Lamé constants of the material afid the Kronecker symbol. We use Einstein’s
summation convention, and sum over double indices if thgeapas subscripts and superscfipts
e.g.0” e;; = X7 ,_,0" e;;. The constitutive equation is given by Hooke's law= Ae(u) linking the

L Also calledS-coordinate system.

2 See Ciarlet (1997, 2000) for more general non-linear maglglsthe von Karman model.
3 Linearized from the Green-St Venant strain tensor.

4 Which is nothing but the contraction of tensors.
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ASYMPTOTIC MODELS FOR PLATES AND SHELLS 3

stress tensay to the strain tensog(u). Thus

o = e + e + es3) + 2ues, i=1,2,3

y o (1)
o =2pe;; for i #j.
The elastic bilinear form on a domaihis given by
a(u, ) = / o) : e(u) dz = / o () ey (') da, @)
Q Q

and theelastic energyof a displacement is 3a(u, u). The strain energy nomof u is denoted by
lull ;) @nd defined a&> _,; Ty lesi ()2 da) /2.

1.4. Families of problems

We will address two types of problems on our thin dom@ih (i) Find the displacement solution

to the equilibrium equatiodiv o (u) = f for a given loadf, (ii) Find the (smallest) vibration eigen-
modes(A, u) of the structure. For simplicity of exposition, we assumeéneral that the structure
is clamped® along its lateral boundar? and will comment on other choices for lateral boundary
conditions. On the remaining part of the boundaff \ I'? (“top” and “bottom”) traction free condition

is assumed.

In order to investigate the influence of the thickness on thetions and the discretization methods,
we consider our (fixed physical) problemf as part of a whole family of problems, depending on
one parameter € (0, £o], the thickness. The definition 6 is obvious® by the formulae given in
§1.2. For problenti), we choose the same right hand sfder all values ofz, which precisely means
that we fix a smooth fielfl on Q0 and takef® := f|q- for eache.

Both problemg(i) and (ii) can be set in variational form (principle of virtual work)uOthree-
dimensional variational space is the subspE¢@°) of the Sobolev spacH ! (2¢)? characterized by
the clamping condition|r- = 0, and the bilinear form (2) onQ2 = Q¢, denoted by:*. The variational
formulations are:

Find u¢ € V(Q¢) suchthat (v, u’)= [ f.u' de, W' €V(Q°), (3)
Qe

for the problem with external load, and

Find u® € V(Q°) ,u® #0, and A° € R such that

a®(u®,u’) = AE/ u®-u' de, W' eV (QF), 4)
for the eigen-mode problem. In engineering practice onentsrésted in the natural frequencies,
w® = /A<, Of course, when considering our struct@® we are eventually only interesteddn= d.
Taking the whole familye € (0,¢0] into account allows the investigation of the dependency wit
respect to the small parametgin order to know if valid simplified models are available dmmv they
can be discretized by finite elements.

5 This condition is also called “condition of place”.
6 In fact, if the curvatures af are “small’, we may decide th&¢ fits better in a family of shallow shells, s§4.4 later.
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1.5. Computational obstacles

Our aim is to study the possible discretizations for a rédi@nd efficient computation of the solutions
u? of problem (3) or (4) in our thin structur@¢. An option could be to consider? as a three-
dimensional body and use 3D finite elements. In the standerslon of finite elementshfversion)
individual elements should not be stretched or distortdd¢ckvimplies that all dimensions should be
bounded byi. Even so, several layers of elements through the thicknegsb® necessary. Moreover
thea priori error estimates may suffer from the behavior of the Korn iradity(”) on Q.

An ideal alternative would simply be to get rid of the thickeevariable and compute the solution of
an “equivalent” problem on the mid-surfaSeThis is the aim of thehell theory Many investigations
were undertaken around 1960-70, and the main achieveméstilis the Koiter model, which is a
multi-degree3 x 3 elliptic system onS of half-orders(1,1,2) with a singular dependence ih
But, as written in Koiter and Simmonds, 1973hell theory attempts the impossible: to provide
a two-dimensional representation of an intrinsically terdimensional phenomenonNevertheless,
obtaining converging error estimates between the 3D swluti and areconstructed 3D displacement
Uz? from thedeformation patterrz? solution of the Koiter model seems possible.

However, due to its 4-th order part, the Koiter model canretliscretized by standa@’ finite
elements. The Naghdi model, involving five unknowns $nseems more suitable. Yet endless
difficulties arise in the form of various locking effects,alto the singularly perturbed character of
the problem.

With the twofold aim of improving the precision of the modalsd their approximability by finite
elements, the idea of hierarchical models becomes natRa@lghly, it consists of an Ansatz of
polynomial behavior in the thickness variable, with boundsthe degrees of the three components
of the 3D displacement. The introduction of such models inati@nal form is due to Vogelius and
Babuska, 1981a and Szab6 and Sahrmann, 1988. Earliemtegs in that direction can be found in
Vekua (1955, 1965). The hierarchy (increasing the trarsgvéegrees) of models obtained in that way
can be discretized by theversion of finite elements.

1.6. Plan of the chapter

In order to assess the validity of hierarchical models, wieagimpare them to asymptotic expansions
of solutionsu® when they are available: These expansions exhibit two @etllifferent scales and
boundary layer regions, which can or cannot be properlyriest by hierarchical models.

We first address plates, because much more is known for gleesfor general shells. 1§2 we
describe the two-scale expansion of the solutions of (3)(dhdrhis expansion contair{§ aregular
part each term of which is polynomial in the thickness variakje(ii) a part mainly supported in a
boundary layearound the lateral boundaly. In §3, we introduce the hierarchical models as Galerkin
projections on semi-discrete subspabé$Q°) of V' (2°) defined by assuming a polynomial behavior
of degreeq = (g1, g2, ¢3) in x3. The model of degref, 1, 0) is the Reissner-Mindlin model and needs
the introduction of aeduced energyThe (1, 1,2) model is the lowest degree model to use the same
elastic energy (2) as the 3D model.

We address shells g4 (asymptotic expansions and limiting models) &bdhierarchical models).
After a short introduction of the metric and curvature tessm the mid-surface, we first describe the

7 The factor appearing in the Korn inequality behaves #iké' for plates and partially clamped shells see Ciagledl.,, 1996;
Dauge and Faou, 2004
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ASYMPTOTIC MODELS FOR PLATES AND SHELLS 5

three-scale expansion of the solutions of (3) on clampegitiellshells: Two of these scales can be
captured by hierarchical models. We then present and cotnoneihe famous classification of shells
as flexural or membrane. We also mention two distinct notafrghallow shells. We emphasize the
universal role played by the Koiter model for the structi2fe independently of any embedding @f

in a family (Q°)..

The last section is devoted to the discretization of the 3Bbj@ms and their 2D hierarchical
projections, byp-version finite elements. The 3D thin elements (one layerl@hents through the
thickness) constitute a bridge between 3D and 2D disctaiiza We address the issue of locking
effects (shear and membrane locking) and the issue of d¢agtboundary layer terms. Increasing
the degree of approximation polynomials and using anisotropic meskes way towards solving
these problems. We end this chapter by presenting a seregef-frequency computations on a few
different families of shells and draw some “practical” clusions.

2. MULTI-SCALE EXPANSIONS FOR PLATES

The question of an asymptotic expansion for solutiaf®f problems (3) or (4) posed in a family
of plates is difficult: One may think it is natural to expaad either in polynomial functions in the
thickness variables, or in an asymptotic series in powers with regular coefficients* defined on
the stretched plate = S x (—1, 1). Infact, for the class of loads considered here or for thereignode
problem, both those Ansatze are relevant, but they arelenalprovide a correct description of the
behavior ofuc in the vicinity of the lateral boundary®, where there is a boundary lay&rof width

~ e.And, worse, in the absence of knowledge of the boundary lageavior, the determination of the
termsv” is impossible (except for°).

The investigation of asymptotics as— 0 was first performed by the construction of infinfegmal
expansionssee Friedrichs and Dressler, 1961; Gol'denveizer, 1962g&y and Wan, 1984. The
principle of multi-scale asymptotic expansion is appliedhin domains in Maz'yeaet al, 1991. A
two-term asymptotics is exhibited in Nazarov and Zorin, 4.98he whole asymptotic expansion is
constructed in Dauge and Gruais (1996, 1998) and Datigk 1999/00.

The multi-scale expansions which we propose differ fronmttaéching method in II'in, 1992 where
the solutions of singularly perturbed problems are fullgatéed in rapid variables inside the boundary
layer and slow variables outside the layer, both expandieirg) “matched” in an intermediate region.
Our approach is closer to that of Vishik and Lyusternik, 1868 Oleiniket al., 1992.

2.1. Coordinates and symmetries

The mid-surfaces is a smooth domain of the plaidé ~ R? and fore € (0,&9) Q° = S x (—¢,¢)
is the generic member of the family of plates. The plates yamensetric with respect to the plarié.
Since they are assumed to be made of an isotropic matergdi|gons (3) or (4) commute with the
symmetryS : u — (ur(-, —x3), —us(-, —x3)). The eigenspaces @ are membraneandbending

8 Except in the particular situation of a rectangular midkste with symmetry lateral boundary conditions (hard sergulpport
or sliding edge), see Paumier, 1990.
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6 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

displacement$®), cf Friedrichs and Dressler, 1961:

u  membraneiff ur(xr+,+x3) = ur(x+,—x3) and ug(x+,+x3) = —usg(x+, —x3)
u bendingiff ur(x+,+x3) = —ur(x+,—x3) and uz(x+,+x3) = uz(X+, —x3).

(®)

Any general displacementis the sumu,, + u, of a membrane and a bending pétt.

< oopoooe-

Figure 1. Cartesian and local coordinates on the mid-serfac

In addition to the coordinates: in S, letr be the distance t6.S in II ands an arclength function
on 9S. In this way(r,s) defines a smooth coordinate system in a mid-plane tubulghherhoody
of 0S. Let x = x(r) be a smooth cut-off function with support i, equal tol in a smaller such
neighborhood. It is used to substantiate boundary layergethe two following stretched (or rapid)
variables appear in our expansions:

X3 = % and R= E.
3 3

The stretched thickness variabig belongs to(—1, 1) and is present in all parts of our asymptotics,
whereas the presenceRfcharacterizes boundary layer terms.

+1

Figure 2. Thin plate and stretched plate.

2.2. Problem with external load

The solutions of the family of problems (3) have a two-scalgnaptotic expansion in regular terms
vF and boundary layer termg®, which we state as a theorezhDaugeet al, 1999/00; Dauge and

9 Also called stretching and flexural displacements.
10 According to formula@im = £ (u + Gu) andus = 3 (u — Su). They are also denoted f andu’’ in the literature.
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Schwab, 2002. Note that in contrast with the most part oféhieferences, we work here wittatural
displacement§.e. unscaled), which is more realistic from the mechdrdoa computational point of
view, and allows an easier comparison with shells.

Theorem 2.1. [Dauge et al., 1999/00] For the solutions of probl€B), ¢ € (0, ¢, there exist regular
termsv® = v¥(x+,X3), k > —2, and boundary layer termae* = w”*(R,s,X3), k > 0, such that

u e A2 e OO ) et (v wh) L (6)
in the sense of asymptotic expansions: The following estteold

K
o = D7 O xwh) | g, < O (B2 K =0,1,..,
k=-—2

where we have set 2 = w—! = 0 and the constant'x (f) is independent of € (0, €o).

2.2.1. Kirchhoff displacements and their deformationgats. The first terms in the expansion of
are Kirchhoff displacements, i.e. displacements of thenf@with the surface gradieN+ = (9, 92))

(X+,%3) — V(XT,X3) = (CT(XT) — X3VT§3(XT),§3(XT)). (7

Here¢+ = ({,) is a surface displacement aggis a function onS. We call the three-component field
¢ := (¢+, ¢3) thedeformation pattermf the KL displacemeni. Note that

v bendingiff { = (0,{3) and v membrane iff{ = ({+,0).

In expansion (6) the first terms are Kirchhoff displacemeifitse next regular termsg” are also
generated by deformation pattegfsvia higher degree formulae than in (7). We successivelyrissc
thev”, the¢* and, finally, the boundary layer termé .

2.2.2. The four first regular terms.For the regular termg*, £ = —2, —1,0, 1, there exist bending
deformation patterné=2 = (0,¢; %), ¢~ = (0,¢; 1), and full deformation pattern®’, ¢! such that
v?= (07 C§2)

vl = (=XsVG 2 G
V0= (¢Y - XsV-G Tl @) + (0, PE(X3)A+G?)
vi= (¢ = X3V, &) + (PE(X3)V—+A+( 2, Pa(Xs)dived + P2(Xs)A+¢ ).

(8)

In the above formulagy+ = (91, 0-) is the surface gradient ofi, A+~ = 97 + 93 is the surface
Laplacian andliv ¢~ is the surface divergence (idiv {+ = 01(1 + 02(2). The functionsP! and P4
are polynomials of degreg whose coefficients depend on the Lamé constants accaaling

A A 1
PL(X3) = — X P2(X3) = — (X2 - =
m( 3) A+2/14 35 b( 3) 2A+4/14( 3 3)7 (9)
1
P3(X3) = ——— 4p) X3 — (11N + 12p) X3).
P (%) = gz (A + 40X — (11A+120) Xs)

Note that the first blocks ify_,~ _, e*v* yield Kirchhoff displacements, whereas the second blocks
have zero mean values through the thickness for #ach S.
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2.2.3. All regular terms with the help of formal seriesNe see from (8) that the formulae describing
the successive* arepartly self-similarand, also, that eaalf is enriched by a new term. That is why
the whole regular term seri€s, *v* can be efficiently described with the help of theemal series
product

A formal series is an infinite sequen@€, a', ..., a",...) of coefficients, which can be denoted in
a symbolic way byife] = 3, ., e*a*, and the producte]b[e] of the two formal series[e] andb|e]
is the formal series[e] with coefficientsc? = Y, -, a*b*~*. In other words

H 3 : 4 kpl—k
The eqcle] = ale]ble] is equivalent to the series of eqc” = Zogkge a®btr, VL.

With this formalism we have the following identityhich extends formula@):
v[e] = V[e[¢[e] + Q[e]f[e]. (10)
(i) ¢[e] is the formal series of Kirchhoff deformation pattedny, .. , ek ¢k starting withk = —2.
(i) V[e] has operator valued coefficient§, k > 0, acting fromC*(5)? into C>(Q)?:
V¢ = (¢, Gs)
V¢ = (—X3V+Gs, PL(X3)divey)
VZ( = (Pa(X3)Vr divér, B(Xs)Ar(y),

(11)
V¢ = (PP (X3) V- Al div e, PP (X3)ALG),
VAT = (B (X3)Vr AL (s, PET(Xs) AL div Cr),
with Pbé andP?! polynomials of degreé (the first ones are given in (9)).
(iii) f[e] is the Taylor series df around the surface; = 0:
XE OFf
o kgk ; k 37
fle] = Zkzo et with £ (xr,Xs) = ok X3:0(XT)' (12)

(iv) Q[¢] has operator valued coefficier@® acting fromC>(Q)? into itself. It start§'") atk = 2:
— knk
Qfe] = Zme Q" (13)

EachQ” is made of compositions of partial derivatives in the swefaariablesx with integral
operators in the scaled transverse variable. Each of thésim@ particular way betweesemi-
polynomial space&?(2), ¢ > 0, in the scaled domaift: We define for any integer, ¢ > 0

EY(Q) = {ve™(Q)°, 32" € C(5)%, v(xr,Xs) = > X&z"(x+)}. (14)

n=0

Note that by (12)f* belongs toE* ().

11 We can see now that the four first equations given by equali®y frev—2 = VO¢—2 v—1 = VvO¢—1 4 vi¢—2
VO = VOO it L v2e—2 1 = vO¢l 1 viel 4 v2¢—1 4 v3¢—2 which gives back (8).
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Besides, for any: > 2, Q" acts fromE?(2) into E9t#(Q). The first term of the serieQ[e]f[¢] is
Q°f" and we have: ,
1-3%3
—f5(xr) ).
o1z B ))

As a consequence of formula (10), combined with the streatfieach term, we find

Q2% (x+, X3) = (0

Lemma 2.2. [Dauge and Schwab, 2002] With the definitigh4) for the semi-polynomial space
E4(Q), for anyk > —2 the regular termv* belongs toE*+2(Q).

2.2.4. Deformation patterns.From formula (8) extended by (10) we obtain explicit expi@ss
for the regular parts” provided we know the deformation patter¢¥s. The latter solves boundary
value problems on the mid-surfae Our multi-scale expansion approach gives back the wediskm
equations of plates (the Kirchhoff-Love model and the pktness model) completed by a whole series
of boundary value problems.

(i) The first bending generatgg 2 solves the Kirchhoff-Love model
LG (xv) =f(x7), xr €8 with %6 =0, 9n(3°|,=0 (15)
whereL, is the fourth-order operator

CAp At p

1
Ly = — =
b 3 A+2u

AT = S(A+2u) AT (16)

andn the unitinterior normal todS. Here is the “averaged” Lamé constant

= A?gu . (17)
(ii) The second bending generad;g;)jr1 is the solution of a similar problem
LoG3'(x+) =0, xr €5 with (5,5 =0, i '] =S ,uAG (18)
wherec*;’# is a positive constant depending on the Lamé coefficients.
(iiiy The membrane pa¢? of the third deformation pattern solves the plane stresseod
L€l (xr) =f1(x<), xr €85 and  (Ylos =0 (19)

whereL,, is the second-ordeér x 2 system

<C1) L A+ 21)011 + (1022 (A + p)or2 (Cl) . (20)

G2 (N + )2 w11 + (A 4 21)02 | \C2

(iv) Here, again, the whole series of equations over the serigsfofmation patterny, ., ¢*¢* can

be written in a global way using the formal series productedsiced equations on the mid-surface
Lg]¢[e] = R[e]f[e] in S with die]¢[e] =0 on 9S. (22)

HereL[e] = L® + £2L% + L% + ..., with

_(Lm 0\ (¢r _(Lay 0 (¢
(7 )E) v (F @) e
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whereL? ¢+ has the form:V+ A+ div . The series of operatoRjc] starts att = 0 and acts from
C>(Q2)3 into C*>°(S)3. Its first coefficient is the mean-value operator

1
f — Rf  with Rof(xT):% / f(x1, X3) dXs. (23)
—1

Finally, the coefficients of the operator seris] are trace operators acting gnThe first terms are

CT -n —CT7M div CT ° °
do= [T we=| || o de=| 5 | @
0 0 On(3 —C)\ ” A+(s

wherec , is the constant in (18): , is another positive constant amdndicates the presence of
higher order operators afx-.

Note that the first three equations in (20§¢ 2 = 0, L°¢~! = 0, L°¢% + L%¢ 2 = R°f° on S and
d¢2=0,d%¢ 1 +d'¢ =0, d°C0+d1C +d*¢"2 = 00nds, give back (15), (18) and (19)
together with the fact that 2 = ¢! = 0.

+1

a8 -1 ST

Figure 3. Boundary layer coordinatesdis’ x ¥ .

2.2.5. Boundary layer terms.The termsw” have a quite different structure. Their natural variables
are (R,s, X3), see§2.1, and they are easier to describe in boundary fitted coamgetw,, ws, ws)
corresponding to the local coordinatéss, x3). The first boundary layer termw® is a bending
displacement in the sense of (5) and has a tensor product flefmoundary fitted components it reads

w)=0 and (w),w3)(R,s,Xs) = p(s)W/(R,Xs) with ©=Ar(?]

andw is a two componengxponentially decreasing profiten the semi-strigt, := {(R,X3),R >
0, |X3| < 1}: There existg) > 0 such that

le"™® WO (R,X3)| isboundedas R — cc.

The least upper bound of suehis the smallest exponenj, arising from the Papkovich-Fadle
eigenfunctions, see Gregory and Wan, 1984. Both componémt§ are non-zero.

The next boundary layer termag’ are combinations of products of (smooth) trace®6rby profiles
w "% in (R, X3). These profiles have singularities at the corriérs=1) of ¥, according to the general
theory of Kondrat'ev, 1967. Thus, in contrast with the “riglitermsv® which are smooth up to the
boundary ofQ2, the termaw* do have singular parts along the edgesx {1} of the plate. Finally,
the edge singularities of the solutiafi of problem (3) are related with the boundary layer terms only
see Dauge and Gruais, 1998 for further detalils.
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ASYMPTOTIC MODELS FOR PLATES AND SHELLS 11

2.3. Properties of the displacement expansion outsidedhedary layer

Let S’ be a subset of such that the distance betwe@8’ anddS is positive. As a consequence of
expansion (6) there holds
K
us(x) = Y fvF(xr,X3) + OE"T)  uniformlyfor x € § x (—¢,¢).
k=-—2

Coming back to physical variablés, x3 ), the expansion termé& being polynomials of degrde+ 2
in X3 (Lemma 2.2), we find that

= > PV (xr,x3) + O(XT!)  uniformlyfor x €S x (—e,¢)
k=-2

with fieldsv”"" being polynomials irx3 of degreeK” — k. That means that the expansion (6) can also
be seen as Baylor expansiomat the mid-surface, provided we are at a fixed positive digtdrom the
lateral boundary.

Let us write the first terms in the expansions of the bendinbraembrane parts; andug, of u®:

R _ _ _ Ax3 _ A _
u, =¢ 2( _X3VTC3 27 C3 ? 2\ +34MAT<3 2) - (07 mATCg, 2)
_ _ _ Ax3
+e 1(_X3VT<317 §31 2/\+4 A~y ) ... (25)

From this formula we can deduce the following asymptoticgltie strain and stress components
eap(ug) = —6_2X38a5 (§§2 + EC;;l) + O(e)

PGP ) + O) (26)

o (u5) = O(e)

Sinces~2x3 = O(e7 1), we see thatzs = O(¢~1). Thuse?? is two orders of magnitude less tha,
which means @lane stress limitTo compute the shear strain (or stress) we use one furttmeiiniethe
asymptotics ofig and obtain that it is one order of magnitude less than

633(Ub) 9

R 22 +2u, _ _
cas(up) = 5 o (753 — 1)0aA+ (32 + O(e). (27)
Computations for the membrane paﬁ; are simpler and yield similar results
(C‘ra )\+ leC‘r) +€(CT? )\+2 div CT)
1
cap(um) = 5(0 G5+ 9pCa) + (3a<5 +95¢,) + O(e?) (28)
ess(up,) = div (€% +e¢3) + O(e?),

A+ 2u
ando33(ug,) = O(e2), eas(u,) = O(e).

In (26)-(28) theO () andO(<?) are uniform on any regioﬁ/ x (—e,€) where the boundary layer
terms have no influence. We postpone global energy estirttatke next section.
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12 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

2.4. Eigen-mode problem

For eache > 0 the spectrum of problem (4) is discrete and positive. Agtj = 1,2,... be the
increasing sequence of eigenvalues. In Ciarlet and Kesa@&1 it is proved tha&”A; converges to
the j-th eigenvalueAE_b of the Dirichlet problem for the Kirchhoff operatdr,, cf (16). In Nazarov
and Zorin, 1989; Nazarov, 1991 a two-term asymptotics istanted for the*QAj. Nazarov (2000b)
proves thats*2A5 AKL| is bounded by ad®(+/¢) for a much more general material matrix

In Daugeet al.,, 1999, fuII asymptotic expansions for eigenvalues andreigetors are proved: For
eachj there exist

e bending generatorg ?, ¢; ', ... where(; ? is an eigenvector of,, associated with £,
e real numbers\; ;, Af ;, ...
e eigenvectorsy assomated withh5 for anye € (0, o)

so that for anyi > 0
AS =2AKS + AL+ .+ R + O(eR )

up; = e (VG A G H e (oa VG LG o+ KV w) + 0
where the terms* andw* are generated by thg, k > 0 in a similar way as ir§2.2, andO(eX+1) is
uniform overQe.

The bending and membrane displacements are the eigersvefttire symmetry operatda®, see
(5). SinceS commutes with the elasticity operator, both have a jointspen, which means that there
exists a basis of common eigenvectors. In other words, dasticity eigenvalue can be identified as a
bending or a membrane eigenvalue. The expansion (29) ixgansion obendingeigen-pairs.

The expansion of membrane eigen pairs can be done in asimgija Let us denote by, ; thej-th
membrane eigenvalue ¢ and byA . the j-th eigenvalue of the plane stress opereﬂgr cf (20)
with Dirichlet boundary conditions. Then we have a simil&@tement as above, with the distinctive
feature that the membrane eigenvalues tend to those ofdhe ptress model:

Ay =AMy +etAn 4o+ ML+ O, (30)

This fact, compared with (29), explains why the smallesepiglues are bending. Note that the
eigenvalue formal serie§|s] satisfy reduced equationge]¢[e] = Ale]¢[¢] like (21) with the same
L% L' = 0andL? asin (22). In particular, equations
¢r
31
2 ($) (1)

(7 ) (§)-

give back the “limiting” eigenvalue&y- ande* A" Our last remark is that the second terijs; and
A}n,j are positive, see Dauge and Yosibash, 2002 for a discusktbatdact.

(29)

2.5. Extensions.

2.5.1. Traction on the free parts of the boundarynstead of a volume load or in addition to it,
tractionsg™ can be imposed on the facés< {+¢} of the plate. Let us assume thgit is independent
of e. Then the displacement has a similar expansion as in (6), with the following modiiicas:

e If the bending part og™ is non-zero, then the regular part starts wittfv—2 and the boundary
layer part withe = yw~1;
e If the membrane part g§* is non-zero, the membrane regular part starts withv 1.

Encyclopedia of Computational Mechani&dited by Erwin Stein, René de Borst and Thomas J.R. Hughes
(© 2004 John Wiley & Sons, Ltd.



ASYMPTOTIC MODELS FOR PLATES AND SHELLS 13

2.5.2. Lateral boundary conditions.A similar analysis holds for each of the seven remainingsyfe
“canonical” boundary conditions: soft clamping, hard sienpupport, soft simple support, two types
of friction, sliding edge, and free boundary. See Daagel., 1999/00 for details. It would also be
possible to extend such an analysis to more intimately maceshdary conditions where only moments
through the thickness along the lateral boundary are impfsadisplacement or traction components,
see Schwab, 1996.

If, instead of volume load or tractionsg®, we setf = 0, g* = 0, and impose non-zero lateral
boundary conditionsy® will have a similar expansion as in (6) with the remarkabktdiee that the
degree of the regular part in the thickness variablg i8, see Dauge and Schwab, 2002, Rem.5.4.
Moreover, in the clamped situation, the expansion staris @{1).

2.5.3. Laminated compositeslf the material of the plate is homogeneous, but not isotrapi will

still have a similar expansion, see Dauge and Gruais, 1986¢gB and Yosibash, 2002 for orthotropic
plates. If the plate is laminated, i.e. formed by the uniosesferal plies made of differenthomogeneous
materials, them® still expands in regular part¢ and boundary layer parig”®, but thev® are no more
polynomials in the thickness variable, opliecewise polynomidh each ply, and continuous, see Actis
etal, 1999. Nazarov (2000a, 2000b) addresses more generalahktes where the matrid depends
on the variableg+ andX; = x3/e.

3. HIERARCHICAL MODELS FOR PLATES

3.1. The concepts of hierarchical models

The idea of hierarchical models is a natural and efficienémsibn to that of limiting models and
dimension reduction. In the finite element framework it hagrmfirstly formulated in Szab6 and
Sahrmann, 1988 for isotropic domains, mathematicallystigated in BabuSka and Li, 1991, 1992a,
1992h, and generalized to laminated composites in Baletsda 1992; Actiset al., 1999. A hierarchy
of models consists of

e a sequence of subspadé$(Q®) of V(Q2°) with theordersq = (¢1, g2, ¢3) forming a sequence
of integer triples, satisfying

VIQ) cVI(QS) if q=q. (32)
e a sequence of related Hooke laews= Aqe, corresponding to a sequence of elastic bilinear
formsa®9(u,u’) = [,. Aqe(u) : e(u’).
Let u®9 be the solution of the problem
Find u®9 € V9(Q¢) suchthat a=%(u®9,u’) = f©ou dz, WU e VI(QF). (33)
e
Note that problem (33) is a Galerkin projection of problemi{3:*9 = a°.

Any model which belongs to the hierarchical family has tas$athree requirements, see Szabo6 and
Babuska, 1991, Chap. 14.5:

(a) Approximability.At any fixed thickness > 0:

lim |juf — u®9)| = 0. (34)

q—o00 E(QF)
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14 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

(b) Asymptotic consistenclyor any fixed degree:

Ju® — s
lim
e—0

B _ . (35)

.

(c) Optimality of the convergence raf€here exists a sequence of positive exponefg with the
growth propertyy(q) < v(q’) if q < ¢/, such that “in the absence of boundary layers and edge
singularities™

Ju® — |

) < Ce"Vuf| (36)

B(Qs B(Q)

The substantiation of hierarchical models for plates inegalrequires the choice of three sequences
of finite-dimensional nesteaﬂrectorspacesllg? C \Iljv C...C HY(-1,1)forj = 1,2,3 and the
definition of the spac®9(Q°) for q = (q1, ¢2, ¢3) as

Va(QF) = {u €V (), ((x-.—,Xg,) " uj(xT,gxg)) € Hi(S)@wh, j= 1,2,3}. (37)

We can reformulate (37) with the help director functionsWith d; (V) being the dimension onV
let®? = @7(X3),0 < n < d;(NV), be hierarchic bases (the director functions}[@f. There holds

d;(g5)

VI(QF) = {u €V(), 32} € HY(S), 0 <n < di(g)), ujlxroxs) = 3 2 (x+) @;L(X_?’)}.

9
(38)
The choice of théestdirector functions is addressed in Vogelius and Babus8814 in the case of
second order scalar problems with general coefficient$u@lirng possible stratifications). For smooth
coefficients, the spack coincides with the spad®y of polynomial with degree< N. The director
functions can be chosen as the Legendre polynomig{Xs) or, simply, the monomialX% (and then
x% can be used equivalently inste@d /=)™ in (38)).
We describe in the sequel in more details the convenieraittkies for plates and discuss the three
qualities (34)-(36), see Babu3ka and Li (1991, 1992a) aatsliBkeet al., 1992 for early references.

n=0

3.2. The limit model (Kirchhoff-Love)

In view of expansion (6), we observe that if the transversemanent; of the load is non zero on the
mid-surfacey® is unbounded as — 0. If we multiply by =2 we have a convergence (0, (3‘2), which

is not kinematically relevant. At that level, a correct ootof limit uses scalings of coordinates: If we
define the scaled displaceméiitby its components on the stretched plate- S x (—1,1) by

Ul =eudl and G5 = eu§ (39)
then u® converges to(—X3V-(; 2, ¢32) in HY(Q)? ase — 0. This result, together with the
mathematical derivation of the resultant equation (15)is tb Ciarlet and Destuynder, 1979.

The corresponding subspacdof()®) is that of bending Kirchhoff displacements or, more gengral
of Kirchhoff displacements:

VEH Q) ={u e V(Q°), 3¢ € Hy x Hj x H3(S), u=(¢r —x3V+(s, G3)}.  (40)

It follows from (40) thate;3 = es3 = 0 for which the physical interpretation is that “normals to
S prior to deformation remain straight lines and normalsratieformation”. Hooke’s law has to be
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modified with the help of what we call “the plane stress tridk’is based on the assumption that the
component3? of the stress is negligibl&?). From standard Hooke’s law (1), we extract the relation
33 = Meq1 + e22) + (A + 2u)ess, then set3? to zero, which yields

= _ 299 ). 41

€33 Nton (e11 + e22) (41)

Then, we modify Hooke’s law (1) by substitutimgs by its expression (41) inr'! ando??, to obtain
ii 2

=5 2pei, 1=1,2
/\—|—2,LL(611 + e22) + 2ue ) (42)

o = 2ue;; for i # g
Thuso® = Aer1 + e22) + 2ueqs, With X given by (17). Taking into account thags = 0 for the
elements ol XL (Q2¢), we obtain a new Hooke’s law given by the same formulae as iEyweplacing
the Lamé coefficienk by . This corresponds to a modified material matfiX
AWK = X5 M 4 pu(57% 59+ 5% 59%) (43)
and a reduced elastic ener@fu, u) = [,. 0¥/ (u)e;;(u). Note that foru = ({+ — x3V+ (3, (3)

~ 3 ~
a(u,u) = 2 /S AP0 5(Cr )eqs () dxr + 2% ) A*P700,5((3)006((3) dxr,  (44)

exhibiting amembrane parin O(e) and abending partin O(e?). There holds as a consequence of
Theorem 2.1

Theorem 3.1. Letu®X! be the solution of problerf83) with V9 = VK- anda? = @. Then
(i) In generalu®Kt = e=2( —x3V+ (52, (5%) + O(1) with 5 ? the solution of(15);
(ii) If fis membraney=K = (¢9,0) + O(e?) with ¢ the solution of(19).

Can we deduce the asymptotic consistency for that model TNoiputing the lower order terms in
the expression (35) we find with the help of (25) thaflitz 0:

0 ey > Oe™72) and flu® =] > llesa (0] o) > O 2).

E(Q°
Another source of difficulty is that, eventually, relatiofl] is not satisfiecoy usKL. If £ = 0 and
2 = 0, we have exactly the same difficulties with the membrane part

A way to overcome these difficulties is to consider a completng operatorC defined on the
elements of/KL by

A s
Cu= u—+ (0,—m/0 leUT(',y) dy) (45)
Then (41) is now satisfied b§u for anyu € VKL, Moreover (still assuming; # 0) one can show
Hus - CUEIVKLHE(Qs) < C\/EHUEHE(QE) . (46)

The error factor,/z is due to the first boundary layer term”’. The presence o#’ is a direct
consequence of the fact th@ti=-¥- does not satisfy the lateral boundary conditions.

Although the Kirchhoff-Love model is not a member of the hiehical family, it is the limit of all
models forz — 0.

12 Note that the asymptotics (6) of the three-dimensionaltamiwyields thato33 = O(e), wherease,, e33 = O(e~1)
outside the boundary layesf (26), which justifies the plane stress assumption.
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16 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

3.3. The Reissner-Mindlin model

This model is obtained by enriching the space of kinemdsicdmissible displacements, allowing
normals toS to rotate after deformation. Instead of (40), we set

VRM(QF) = {u e V(Q°), 3z € HL(S)?, 30+ € HL(S)?, u= (z+ —x30+, z3)}.

With the elasticity tensoA corresponding to 3D elasticity, the displacements andnsemaergy limit
of the RM model agl — 0 would not coincide with the 3D limit (or the Kirchhoff-Lovénit).

We have again to use instead the reduced elastic bilinearddo restore the convergence to the
correct limit, by virtue of the same plane stress trick. Toer@sponding elasticity tensor i (43).
A further correction can be introduced in the shear comptneihA to better represent the fully 3D
shear stresses® ando?? (and also the strain energy) for small yet non-zero thickaeEhe material
matrix entriesA 313, 42323 gre changed by introducing the so-caldtbar correction factor:

121'1313 _ KA1313 121'2323 _ /QA2323

By properly chosemr, either the energy of the RM solution, or the deflectigrtan be optimized with
respect to the fully 3-D plate. The smallest thehe smallest the influence efon the results. For the
isotropic case two possiblgs are (see details in Babuskaal,, 1991):
5 20 A
nerey = —————  OF eflection = =—————, With = ———— (Poissonratio).

MEnerey = g1 1) FiDeflection = 5030 b Tremn i )
Avalue ofk = 5/6 is frequently used in engineering practice, but for modalgsis, no optimal value
of x is available.

Note that, by integrating equations of (33) through the khéss, we find that problem (33) is
equivalent to a variational problem ferand@ only. For the elastic energy we have

a(u,u) = 25/ Zaﬁgéeaﬂ(zT)€gé(zT) dx+ (membrane energy)
s
+ 5/ K(Oazs — 04)(0azs — 04) dx+ (shear energy) (47)
s
2¢° AaBos P
+ 5 / A eap(0+)ess(0+) dx+ (bending energy)
s

Let u*RM be the solution of problem (33) withi9 = VRM anda9 = @. The singular perturbation
character appears clearly. In contrast with the Kirchhaffe model, the solution admits a boundary
layer part. Arnold and Falk (1990, 1996) have describedwedcale asymptotics afc:RM. Despite
the presence of boundary layer terms, the question of krgpifviaf-RM is closer tau® thanu® X" has no
clear answer to our knowledge. A careful investigation effirst eigenvalueas, A5 " andA$ M of
these three models in the case of lateral Dirichlet conalitghows the following behavior fersmall
enoughgf Dauge and Yosibash, 2002:

e,RM e,KL
AT <ATTT < AS,

which tends to prove that RM model is not generically betteant KL for (very) thin plates.
Nevertheless an estimate by the same asymptotic bound 48)iis (valid foru®> — Cu®-RM,
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3.4. Higher order models

The RM model is a (1,1,0) model with reduced elastic energyaifyq = (¢+, ¢+, g3) we define the
spacel/ 9 by (compare with (38) for monomial director functions)

VQF) = {u cV(QF), 3z e Hy(S)? 0<n<gqy, 325 € Hy(S), 0 <n < g3

qT q3 (48)
ur =3 X 22(xs) and uy =Y x4 zg(xT)}.
n=0 n=0
The subspacel andV,2 of bending and membrane displacement®fhcan also be used, according
to the nature of the data. The standard 3D elastic energy (@gid with/9 andV;! foranyq = (1,1,2)
and withV, 2 for anyq > (0,0, 1).

Theorem 3.2. (i) If f satisfies(s
forall e € (0,&9)

| # 0, foranyq = (1,1,2) there exist€’q = Cq(f) > 0 such that

Juf = ey < CaVE I g, - (49)
(i) If f is membrane anﬂT|S # 0, for anyq > (0,0, 1) there exist€’q = Cq(f) > 0 such that for all
e € (0,g0) (49)holds.

PROOEF Since the energy is not altered by the modél} is a Galerkin projection o on V9(Q¢).
Since the strain energy is uniformly equivalent to the @ashergy on any)°, we have by Céa’s
lemma that there exists > 0

[u® —u™A]

sy < ClUE =Vl ) W9 € V@),

(i) We choose, compare with (25),

vi = &‘_2( —x3V+C 2, G2+ i A C_Q) - e ©(s) (0 f(R))
BYTS 058 T oN g TS 2\ + 4y ’
with ¢ = AT§§2|BS and¢ a smooth cut-off function equal tbin a neighborhood oR = 0 and0 for

R > 1. Thenv? satisfies the lateral boundary conditions and we can ché&gkofdcombining Theorem
2.1 with the use of Céa’s lemma.

(i) We choose, instead:

AX
a_ (#0 _ 3
v (C‘rﬂ )\ + 2‘u

)\Xg
A+ 2u

div¢?) + ©(s) (0,£(R)) with o =div¢?],..

It is worthwhile to mention that for thél, 1, 2) model the shear correction factby

12 —2v 2002
“arn = (T ey )

can be used for optimal results in respect with the error iergyy norm and deflection for finite
thickness plates, see Babu3khal, 1991. For higher plate models, no shear correction fagtor i
furthermore needed.

13 Wheny — 0, K(1,1,2) tends to%, just like for the two shear correction factors of the RM mlode
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The result in Schwab and Wright, 1995 regarding the appraRility of the boundary layers
by elements ofi’9, yields that the constar@, in (49) should rapidly decrease whenincreases.
Nevertheless the factaye is still present, for any, because of the presence of the boundary layer
terms. The numerical experiments in Dauge and YosibasH) @8thonstrate that the higher the degree
of the hierarchical model, the better the boundary layensesre approximated.

If one wants to have an approximation at a higher orderane should

either consider a problem without boundary layer, as maetioin requirement (c) (36), i.e. a
rectangular plate with symmetry boundary conditions: lis tase, the convergence raté)
in ¢ is at leastnin; ¢; — 1,

or combine a hierarchy of models with a three-dimensioretdréitization of the boundary layer, see
Stein and Ohnimus, 1997; Dauge and Schwab, 2002.

The(1,1,2) is the lowest order model which is asymptotically consistenbending. See Paumier

and Raoult, 1997; Rosskd al,, 1999. It is the first model in the bending model hierarchy
(1,1,2), (3,3,2), (3,3,4),... (2n—1,2n—1,2n), (2n+1,2n+1,2n),...

The exponenty(q) in (36) can be proved to ben — 1 if q = (2n — 1,2n — 1,2n) and 2n if
q = (2n + 1,2n + 1,2n), thanks to the structure of the operator seNds| and Q[¢] in (11). If
the loadf is constant over the whole plate, then the model of de@ie®: 4) captures thevholeregular
part of u®, Dauge and Schwab, 2002, Rem.8.3, and if, moreéver 0 (in this case only a lateral
boundary condition is imposed), the deg(8e3, 2) is sufficient.

3.5. Laminated plates

If the plate is laminated, the material matuk = A° has a sandwich structure, depending on the
thickness variables: We assume thatl®(x;) = A(X3), where the coefficients ok are piecewise
constant. In Nazarov, 2000a the asymptotic analysis isestaincluding such a situation. We may
presume that a full asymptotic expansion like (6) with a Eninternal structure, is still valid.

In the homogeneous case, the director functions in (38) iarply the monomials of increasing
degrees, see (48). In the laminated case, the first diraatotibns are still andxs:

P =) =Dy =1; P} =Py =x3.

In the homogeneous case, we héje= x; and®? = x3, j = 1,2, 3. In Actis et al, 1999 three more
piecewise linear director functions and three piecewissdaatic director functions are exhibited for
the laminated case.

How many independent director functions are necessarctease the convergence raig) (36)?
In other words, what is the dimension of the spa@és cf (37)? In our formalism, see (10)-(11), this
question is equivalent to knowing the structure of the ojesA/’. Comparing with Nazarov, 2000a,
we can expect that

V¢ = ( —X3V+(3, Pyt (X3)01¢1 + P32 (X3)(81Ga + 92G1) + P3173(X3)52C2)

(50)
(Z PPMY(Xg) 07 ¢k + P2 "2 (X3) 072k + P2 " 3(X3)32€k) im12s
As soon as the above functloﬁ’$ areindependenthey should be presentin the bases of the director
spacel'’}. The dimensions of the spaces generated bﬂhé have upper bounds depending only on
n. But the|r actual dimensions depend on the number of plidgfaeir nature.
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4. MULTI-SCALE EXPANSIONS AND LIMITING MODELS FOR SHELLS

Up to now, the only available results concerning multi-eatpansions for “true” shells concern the
case of clamped elliptic shells investigated in Faou (202@8@1b, 2003). For (physical) shallow shells,
which are closer to plates than shells, multi-scale exjpaisstan also be proved, see Nazarov, 2000a;
Andreoiu and Faou, 2001.

In this section, we describe the results for clamped edliptiells, then present the main features of
the classification of shells as flexural and membrane. As gemat fact, multi-scale expansions are
known for the most extreme representatives of the two tyfdeplates for flexural shellgji) clamped
elliptic shells for membrane shells. Nevertheless, nadtte expansions in the general case seem out
of reach (or, in certain cases, even irrelevant).

4.1. Curvature of a mid-surface and other important tensors

We introduce minimal geometric tools, namely thetricandcurvature tensorsf the mid-surfaces,
thechange of metric tensoy, 3 and thechange of curvature tenseg, 3. We also address the essential
notions ofelliptic, hyperbolicor parabolic point in a surface. We make these notions more explicit
for axisymmetric surface# general introduction to differential geometry on sugacan be found in
Stoker, 1969.

Let us denote by X, Y)gs the standard scalar product of two vectarandY in R?. Using the fact
that the mid-surfacé is embedded ifk?, we naturally define thmetric tensofa,s) as the projection
on S of the standard scalar productlR?: Let p_- be a point ofS and X, Y two tangent vectors to
S in p_. In a coordinate system; = (x,) on S, the components aX andY are(X“) and(Y %),
respectively. Then the matrbaaﬂ(xT)) is the only positive definite symmetrcx 2 matrix such that
for all such vectorsy andY

(XY )ps = Gap(x)XYP = (X,Y).

The inverse ot is writtena®® and thus satisfies*’as, = 62 wheres? is the Kronecker symbol
and where we used the repeated indices convention for theaction of tensors.

Thecovariant derivativeD is associated with the metric, s as follows: It is the unique differential
operator such thab(X,Y)s = (DX,Y)s + (X,DY)s for all vector fieldsX andY. In a local
coordinate system, we have

D, = 0, + terms of order 0

whered, is the derivative with respect to the coordinate The terms of orded do depend on the
choice of the coordinate system and on the type of the tereddrdin whichD is applied. They involve
the Christoffel symbolsf S in the coordinate systeiix,,).

Theprincipal curvaturesat a given poinp_- € S can be seen as follows: We consider the farfily
of planesP containingp, and orthogonal to the tangent planeStatp--. For P € P, P N S defines
a curve inP and we denote by its signed curvature. The sign ofx is determined by the orientation
of S. The principal curvaturess; andks are the minimum and maximum afwhenP € P. The
principal radii of curvatureare R; := |x;| . TheGaussian curvaturef S in p_. is K(p;) = k1ka.

A point p is saidelliptic if K(p;) > 0, hyperbolicif K(p,) < 0, parabolicif K(p,) = 0 but
K1 OF Ko IS NON zero, anglanarif k1 = k2 = 0. An elliptic shellis a shell whose mid-surface is
everywhere elliptic up to the boundary (similar definitidvadd for hyperbolic and parabolic shells...
and planar shells which are plates).
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The curvature tensor is defined as follows: et x+ — ¥(x-) be a parametrization of in a
neighborhood of a given poipt, € S andn(¥(x~)) be the normal t&5 in ¥(x+ ). The formula

bap = <n(‘I’(XT)) , %(XT»R?’

defines, in the coordinate system = (x,, ), the components of a covariant tensor field%mwhich is
called thecurvature tensar

The metric tensor yields diffeomorphisms between tensacep of different types (covariant and
contravariant): We have for examplé = a“?b, 5. With these notations, we can show that in any
coordinate system, the eigenvalue$pfat a pointp.. are the principal curvatures pi..

In the special case whefgis an axisymmetric surface parametrized by

U (x1,X2) — (X1 cOSXa,X7 sinxe, f(x1)) € R3, (51)

wherex; > 0 is the distance to the axis of symmetxy, € [0, 2x[ is the angle around the axis, and
f : R — R asmooth function, we compute directly that

1 f”(Xl) O
(pp——
1+f/(xl)2 0 f)E>1<1)

A deformation patterrs a three-component fielfl = ({,, (s) where(, is a surface displacement
on S and(s a function onS. The change of metric tensoy,z(¢) associated with the deformation
pattern¢ has the following expression:

fea) ")

) 5 Whence K = W

1
7a5(6) = 5(DaCs + Dpla) — bapCs. (52)
Thechange of curvature tensasssociated witlg writes
Pap (C) =DaDgCs — bgbdﬁgii +bg, Dl + DabgCU' (53)

4.2. Clamped elliptic shells
The generic membée® of our family of shells is defined as

S x (—£,6) 2 (py,x3) — P+ +x3n(p;) € Q° C R, (54)

wheren(p-.) is the normal toS atp-.. Now three stretched variables are requirefd.1 for plates):

X3

r r
X3 = R=- and T=—
3 E’ c \/gv

where(r, s) is a system of normal and tangential coordinate3$adn S.
4.2.1. Three-dimensional expansiornlhe solutions of the family of problems (3) have a threeescal

asymptotic expansion in powers of/ 2, with regular terms*/2, boundary layer terma*/2 of scale
¢ like for plates, and new boundary layer tergf&'2 of scales'/2.

Theorem 4.1. [Faou, 2003] For the solutions of probleng3), there exist regular terme*/?(x, X3),
k > 0, boundary layer termg*/2(T,s, X3), k > 0 andw*/2(R, s, X3), k > 2, such that

u€ (V04 x@?) + 22 4 xp /) +e(vE + xp! +xw!) + L (55)
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in the sense of asymptotic expansions: There holds thenfiokpestimates

2K
Jue = D72 x|
k=0

E(Qe) < CK(f) €K+1/27 K= 0,1,...,

where we have sei® = w'/? = 0 and the constanf'x (f) is independent of € (0, o).

Like for plates, the terms of the expansion are linked witbheather, and are generated by a series
of deformation patterng®/? = ¢*/2(x+) of the mid-surfaceS. They solve a recursive system of
equations which can be written in a condensed form as an iggbatween formal series, like for
plates. The distinction from plates is that, now, half-ggepowers ot are involved and we write e.g.
¢[£1/?] for the formal serie$", ¥/2¢k/2.

4.2.2. Regular terms. The regular terms serigge!/2] = 3°, £¥/2v*/2 is determined by an equation
similar to (10):

VY] = VG + QLR .
(i) The formal series of deformation patteis'/?] starts withk: = 0 (instead of degree 2 for plates).
(i) The first terms of the seridg[¢] are

V¢ =¢, V2=0, V¢ = (=X3(Dals +262¢5), PE(X3)72(C)), (56)

where P} is the polynomial defined in (9), and the tens@rgcovariant derivative) (curvature)
and~ (change of metric) are introduced §4.1: Even if the displacemeM'¢ is given through its
components in a local coordinate system, it indeed definegti@nsic displacemensinceD,,, b3 and
~4 are well defined independently of the choice of a local pataradion of the surface. Note that
~72(¢) in (56) degenerates ttiv ¢+ in the case of plates whebgs = 0. More generally, for all integer

k > 0, all “odd” termsV**1/2 are zero and, i6 = 0, all even term&/* degenerate to the operators in
(12). In particular, their degrees are the same as in (11).

(i) The formal seriefQ[¢'/?] appears as a generalization of (13) dfid/?] is the formal Taylor
expansion of around the mid-surfacg, = 0, which means that for all integér> 0, f**1/2 = 0 and
f* is given by (12).

4.2.3. Membrane deformation patternsThe first term¢® solves the membrane equation
¢’ e Hy x Hy x L*(S), V(¢ € Hy x Hy x L*(S), asm(¢®,¢) = 2/S¢' £, (57)
wheref’ = f|s andag, m is themembrane form
sm(€. ) =2 [ AP0 €€ a8, (58)

with the reduced energy material tensor on the mid-surfaith @ still given by (17)):
Avaﬁoﬁ _ Xaaﬁaots + M(aaoaﬁts + aat;aﬁa)'

Problem (57) can be equivalently formulated4g§° = f° with Dirichlet boundary conditiong? = 0
on dS and is corresponding to the membrane equations on plateypp@re with (19) and (22)). The
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operatorL’ is called membrane operatoand, thus, the change of metrig,g(¢) with respect to
the deformation patterd appears to coincide with themembrane strain tensqsee Naghdi, 1963;
Koiter, 1970a). Ifv = 0 the third component df’¢ vanishes while the surface part degenerates to the
membrane operator (20). In the general case, the propeftiésdepends on the geometry §f L’ is
elliptic™ in x if and only if S is elliptic in x, see Ciarlet, 2000; Genevey, 1996; Sanchez-Hubert and
Sanchez-Palencia, 1997.

As in (21), the formal serieg[s'/?] solves a reduced equation on the mid-surface with formaser
L[e/?], R['/?], f['/?] andd[¢'/?], degenerating to the formal series (21) in the case of plates

4.2.4. Boundary layer terms.Problem (57) cannot solve for the boundary conditidfiss =
OnlS)as = 0 (see the first terms in (24)). The two-dimensional boundaygi termsp*/2 compensate
these non-zero traces: We have fo 0.

@’ =(0,09(T,s)) with ¢3(0,s) = —CJss and Gn3(0,s) = 0.
Fork = 1, the traceé)(?|ss is compensated §/2: The scale!/? arises from these surface boundary
layer terms. More generally, the terpé/? are polynomials of degreé /2] in X3 and satisfy

le"Tp(T,s,X3)| boundedas T — oo

forall n < (3 + 1) Y4(X + 21) ~1/2b4(0,'5)1/2 wherebs (0, s) > 0 is the tangential component of
the curvature tensor alorits.

The three-dimensional boundary layer temrf¥? have a structure similar to the case of plates. The
first non-zero term isv'.

4.2.5. The Koiter model. Koiter, 1960 proposed the solutiaf of following surface problem

Find z° € Vk(S) suchthat cagsm(z®,2') + elasp(z°,2') = 25/ Z -0 vz e W(S) (59)
s

to be a good candidate for approximating the three-dimeasidisplacement by a two-dimensional
one. Here the variational space is

Vk(S) := H} x H} x H3(S) (60)

and the bilinear formag , is thebending form
2 ~
ass(2.2) = > / A8 (2)pos(2) dS. (61)
S

Note that the operator underlying problem (59) has the fisi) = cL° + B where the membrane
operatorL’ is the same as in (57) and thendingoperatorB is associated withs p. Thus the change
of curvature tensop,s appears to be identified with tHeending strain tensorNote thatK(e) is
associated with the two-dimensional energy, compare Wi (

~ 23 ~
% /S AP (2)70s(2) AS + % /S AP0 5(2)pos(2) S. (62)

14 Of multi-degree(2, 2, 0) in the sense of Agmoet al., 1964.
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For e small enough, the operatét(c) is elliptic of multi-degreg2, 2,4) and is associated with the
Dirichlet conditionsz = 0 andd,z3 = 0 on d.S. The solutionz® of the Koiter model for the clamped
case solves equivalently the equations

(L 4+ e2B)z°(x+) = f'(x+) on S and z%|ps = 0, Gnz5las = 0. (63)
This solution has also a multi-scale expansion given byaHevfing theorem.

Theorem 4.2. [Faou, 2003] For the solutions of problei®3), ¢ € (0, ], there exist regular terms
z"/2(x+) and boundary layer termg"*/2(T,s), k > 0, such that

2° ~ 2% + oy + 51/2(21/2 + xl[il/z) +el (@ +xph) + ... (64)

in the sense of asymptotic expansions: The following estteold

2K
lz2 =Y 2@ x| < Cr(F)eRHY K =01,
k=0

where|\z||§ =@ +&2||p(z) andCk (f) is independent of € (0, ¢¢].

2 2
HLz(S) ||L2(S)

The precise comparison between the terms in the expan&ihaiid (64) shows thap) ¢0 = 20,
CV2 = 721/2 0 = 0 Y/ = Y2 while ¢! andz!, pi/? and«ys/? are generically different,
respectively. This allows to obtain optimal estimates irias norms: Considering the scaled domain
Q~ S x(-1,1), we have

Ju — 27| < v + 1z <V (65)

0 0
H'x H'x L2(Q) < ||H1><H1><L2(Q) < HH1><H1><L2(Q

This estimate implies the convergence result of Ciarletlaods, 1996a and improves the estimate in
Mardare, 1998. To obtain an estimate in the energy norm, \ed teereconstruct a 3D displacement
from z¢ : First, the Kirchhoff-liké'®) displacement associated with writes, cf (56)

Ui %2 = (25, — x3(Daz + 26725), 25) (66)

and next, according to Koiter, 1970a, we define the recoastdquadratic displaceméht :

2
1,1,2_¢ 1,1,0_¢ af e X3 ae
U2 = U (0 + ). (67)
Then there holds (compare with (46) for plates):
5 1,1,2_¢ £
HU - UK z ||E‘(QE) < C\/E”U ||E‘(QE) ) (68)

and similar to plates, the error factgfz is optimal and is due to the first boundary layer tewh
Moreover expansion (64) allows to prove that the classical@ls discussed in Budiansky and Sanders,
1967; Naghdi, 1963; Novozhilov, 1959; Koiter, 1970a havehed same convergence rate (68).

15 We have a similar situation with plates, where the solutiff" of the Kirchhoff-Love model gives back the first generating
terms on the asymptotics af , cf Theorem 3.1.
16 The actual Kirchhoff-Love displacement (satisfyiag = 0) is slightly different, containing an extra quadratic sue term.

17 . . . e 1,1,0 _ 4,1,1,2
The complementing operat@ defined in (45) for plates satisfi€U ;" = U/,
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4.3. Convergence results for general shells

We still embed2? in the family (54) withS the mid-surface of2?. The fact that all the classical models
are equivalent for clamped elliptic shells may not be trumare general cases, when the shell becomes
sensitive (e.g. for a partially clamped elliptic shell witliree portion in its lateral surface) or produces
bending effects (case of parabolic or hyperbolic shellbadequate lateral boundary conditions).

4.3.1. Surface membrane and bending energyevertheless the Koiter model seems to keep good
approximation properties with respect to the 3D model. Térgational spacé&y of the Koiter model
is, in the totally clamped caS€) given by the spac#i(S) (60). As already mentioned (62), the
Koiter model is associated with the bilinear foems o, +c2as , With as m andas , the membrane and
bending forms defined far, 2’ € Vk(9) by (58) and (61) respectively.

From the historical point of view, such a decomposition imtmembrane (or stretching) energy and
a bending energy on the mid-surface was first derived by Lt®4 inprincipal curvature coordinate
systemsi.e. for which the curvature tens¢bj) is diagonalized. The expression of the membrane
energy proposed by Love is the same as (61), in contrast dthénding part for which the discussion
was very controversial: See Budiansky and Sanders, 19672%dov, 1959; Koiter, 1960; Naghdi,
1963 and the reference therein. Koiter, 1960 gave the mastalaxpression, using intrinsic tensor
representations: The Koiter bending energy only dependf®mchange of curvature tensegg, in
accordance with Bonnet theorem characterizing a surfades loyetric and curvature tensogss and
bag, see e.g. Stoker, 1969.

For any geometry of the mid-surfack the Koiter model in its variational form (59) has a unique
solution, see Bernadou and Ciarlet, 1976.

4.3.2. Classification of shells.According to that principle each shell, in the zero thiclnémit,
concentrates its energy either in the bending surface gngrg (flexuralshells) or in the membrane
surface energys m (membranehells).

The behavior of the shell depends on theextensional displacement” space

Ve(S) == {¢ € Vk(5) | 7ap(¢) = 0}. (69)
The key role played by this space is illustrated by the follmpfundamental result:

Theorem 4.3. (i) (Sanchez-Hubert and Sanchez-Palencia, 1997; Ciarlet.etlb6). Letu® be the
solution of problem(3). In the scaled domaif? ~ S x (—1,1), the displacement?u®(x, X3)
converges i *(2)? ase — 0. Its limit is given by the solutiog—2 € V¢(S) of the bending problem

V¢ e VE(S) asp(C2 () = Z/SC’-fO. (70)

(ii) (Ciarlet and Lods, 1996b) Let* be the solution of problerf59). Thens2z° converges ta~2 in
Vk(S) ase — 0.

A shell is saidflexural(or non-inhibited whenVg(S) is not reduced td0}. Examples are provided
by cylindrical shells (or portions of cones) clamped alohgitt generatrices and free elsewhere. Of

18 If the shell2¢ is clamped only on the pasiy x (—¢, ¢) of its boundary (withyo C 95), the Dirichlet boundary conditions
in the spacéd/c have to be imposed only op.
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course, plates are flexural shells according to the aboweitilefi since in that cas®:(.5) is given by
{¢ =(0,¢3)| ¢z € HZ(S)} and the bending operator (70) coincides with the opera®): (1
In the case of clamped elliptic shells, we ha¥€.S) = {0}. For these shella® andz® converge
in H' x H' x L? to the solution¢® of the membrane equation (57), see Ciarlet and Lods, 1996a
and (65): Such shells are callesembrane shellsThe other shells for whiclvg(.S) reduces to{0}
are calledgeneralized membrane she(lsr inhibited shell} and for these also, a delicate functional
analysis provides convergence results to a membrane@ointspaces with special norms depending
on the geometry of the mid-surface (see Ciarlet and Lods642®d Ciarlet, 2000, Ch.5). It is also
proved that the Koiter model converges in the same sense tathe limits, see Ciarlet, 2000, Ch.7.
Thus plates and elliptic shells represent extreme sitnatiBlates are a pure bending structures with
an inextensional displacement space as large as possiliecdmped elliptic shells represent a pure
membrane situation whefg (S) reduces td 0} and where the membrane operator is elliptic.

4.4. Shallow shells

We make a distinction between “physical” shallow shelldi@a $ense of Ciarlet and Paumier, 1986 and
“mathematical” shallow shells in the sense of Pitkaragital, 2001. The former involves shells with
a curvature tensor of the same order as the thickness, whtredatter addresses a boundary value
problem obtained by freezing coefficients of the Koiter peatat one point of a standard shell.

4.4.1. Physical shallow shells.Let R denote the smallest principal radius of curvature of the-mid
surfaceS and letD denote the diameter ¢f. As proved in Andreoiu and Faou, 2001 if there holds

R > 2D, (71)

then there exists a poipt, € S, such that the orthogonal projection 8fon its tangent plan ip--
allows the representation 6fas aCc> graph inR>:

w S (21,32) = (21,22,0(z1,22)) :=x1 € S CR?, (72)

wherew is an immersed®) domain of the tangent plane ., and where® is a function on this
surface. Moreover, we have

0| <CR™' and ||VO| < CR™!, (73)

with constants” depending only omD.
We say thaf2? is ashallow shelif S satisfies a condition of the type

R < Cud, (74)

whereC' does not depend ah Thus, if S is a surface satisfying (74), farsufficiently smallS satisfies

(71) whence representation (72). Moreover (73) yields@hahdV e are< d. In these conditions, we
can choose to embe@! into another family of thin domains than (54): We et d—'© and define

for anye € (0, d] the surfaces® by its parametrizatiorgf (72)

w3 (r1,22) — (xl,xg,gﬁ(xl,xg)) =X+ € 5°.

19 |n particularw may have self-intersection.
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It is natural to consideR? as an element of the family® given as the image of the application
w X (—&,€) 3 (w1, 22,%3) — (21,22, 0(21,22)) + X3 n°(X1), (75)

wheren®(x ) denotes the unit normal vector to the mid-surf&€e\We are now in the framework of
Ciarlet and Paumier, 1986.

A multi-scale expansion for the solution of (3) is given indkaoiu and Faou, 2001. The expansion
is close to that of plates, except that the membrane and hgmgierators yielding the deformation
patterns are linked by lower order terms: The associatedbreeme and bending strain components
Yo @ndp, s are respectively given by

:Ya,ﬂ = %(8a2g + 8g2a) — E@aﬁa z3 and ﬁag = 8a523. (76)
It is worth noticing that the above strains are asymptotjgragimations of the Koiter membrane and

bending strains associated with the mid-surféice S¢. As a consequence, the Koiter model and the
three-dimensional equations converge to the same Kir¢tiloote limit.

4.4.2. Mathematical shallow shellsThese models consist in freezing coefficients of standaecd tw
dimensional models at a given popt € S in a principal curvature coordinate system. That procedure
yields, withb; := k;(p+):

Y11 = 0121 — bizg, o2 = Oazo — bozz, Y12 = 5(0120 + Doz1) (77)
for the membrane strain tensor, and
K11 = 0723 + b10121, koo = 0323 + badaza, K12 = 10223 + b1Dozy + b2012o (78)

as a simplified version of the bending strain tensor. Suchaliltation procedure is considered as valid
if the diameterD is small compared t®
R>D (79)

and for the case of cylindrical shells where the strains langady the form (77)-(78) in cylindrical
coordinates (see equation (80) below). In contrast withpiflewious one, this notion of shallowness
does not refer to the thickness. Hekds not small, butD is. Such objects are definitively shells and
are not plate-like.

These simplified models are valuable so to develop numeajmatoximation methods, Havu and
Pitkaranta (2002, 2003) and to find possible boundary leyeyth scales, Pitkaranghal., 2001: These
length scales (width of transition regions from the bougdato the interior) at a poinp- € 9S are
£'/2 in the non-degenerate casg,(p,) # 0), €*/3 for hyperbolic degeneratiop( hyperbolic and
bss(p,) = 0) ande!/4 for parabolic degeneratiop{ parabolic and.,(p-) = 0).

To compare with the standard shell equations, note thakircdise of an axisymmetric shell whose
mid-surface is represented by

U (x1,%x2) — (f(x1) cosxa, f(x1)sinxa,x1),

wherex; € R, x2 € [0, 27[ andf(x1) > 0 is a smooth function, we have

1i(z) = oz — 7fﬁ})f{xl()le) 71 + 7%;;7231)2 z3,

— fx) f (a) f(x1)
V22(2) = Ooza + FriGr 4 \/ﬁw z3, (80)
m2(2) = 5(0iz2 +oz1) - ff((xxf)) z3.

Hence the equation (77) is exact for the case of cylindricalls, wheref(x;) = R > 0, and we can
show that the same holds for (78).
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4.5. Versatility of Koiter model.

On any mid-surfacé the deformation patteref solution of the Koiter model (59) exists. In general,
the mean value of the displacemeritthrough the thickness converges to the same limi*aghen

e — 0in a weak sense depending on the type of the mid-surface anthdbindary conditions,
see Ciarlet, 2000. Nevertheless, actual convergencetsdsold in energy norm when considering
reconstructed displacement from the deformation pa#tern

4.5.1. Convergence of the Koiter reconstructed displacemeédn any mid-surfaces, the three-
dimensional Koiter reconstructed displacemefit*z° is well-defined by (66)-(67). Let us set

1,1,2
”u(s - UK ZE”E(QE)

e(S,g,z°,u%) = (81)

with ||z]| Be(5) the square root of the Koiter energy (62).

In Koiter (1970a, 1970b), an estimate is give(s, , z°, u®)? would be bounded byR ! +2 L2,
with R the smallest principal radius of curvature$and L the smallest wavelength ef. It turns out
that in the case of plates, we halkle= O(1), R~ = 0 and, since (46) is optimal, the estimate fails.
In contrast, in the case of clamped elliptic shells, we have O(,/€), R~! = O(1) and the estimate
gives back (68).

Two years after the publications of Koiter (1970a, 1970byas already known that the above
estimate does not hold as — 0 for plates. We read in Koiter and Simmonds, 197e
somewhat depressing conclusion for most shell problemsinsjar to the earlier conclusions of
GoL’ DENWEIZER, that no better accuracy of the solutions can be expectetdharders L' +eR ™1,
even if the equations of first-approximation shell theorylgdgermit, in principle, an accuracy of
ordere?L=2 + eR™1”

The reason for this is also explained by John, 1971 in thesestéConcentrating on the interior
we sidestep all kinds of delicate questions, with an attahdain in certainty and generality. The
information about the interior behavior can be obtained muwore cheaply (in the mathematical
sense) than that required for the discussion of boundaryesgiroblems, which form a more
“transcendental” stage.

Koiter’s tentative estimate comes from formal computatiaiso investigated by John, 1971. The
analysis by operator formal series introduced in Faou, 2002 the same spirit: For any geometry
of the mid-surface, there exist formal serg|, R[¢], Q[¢] andL[¢] reducing the three-dimensional
formal series problem to a two-dimensional problem of thenf¢21) with L[] = L + £2L? + - --
whereL’ is the membrane operator associated with the form (58). €hdihg operatoB associated
with ag , can be compared to the operaldrappearing in the formal seri¢s]: We have

VE ¢ EVE(S) (LG, C) gy = (BGC) paggyar (82)

Using this formal series analysis, the first two authors acekimg on the derivation of a sharp
expression o&(S, ¢, z¢, u®) including boundary layers effects, and optimal in the cesglates and
clamped elliptic shells, see Dauge and Faou, 2004.
In this direction also, Lods and Mardare, 2002 prove theofwilhg estimate for totally clamped
shells
Ju = (U2 + w

1/41,,&
< e, (63)

#
[P o

with w! an explicit boundary corrector &f,;"*z°.
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4.5.2. Convergence of Koiter eigenvaluedhe operator ~'K(c) has a compact inverse, therefore its
spectrum is discrete with only an accumulation point-ab. We agree to call Koiter eigenvalues the
eigenvalues of the former operator, i.e. the solutiohsef

J2° € V() \ {0} such that agm(z°,2") + c2asp(z5,2) = 2@5/ z°-Z, vz € Vk(S). (84)
S
As already mentioned ir§2.4, cf (31), this spectrum provides the limiting behavior of three
dimensional eigenvalues for plates. Apparently venditsl known for general shells.
Concerning Koiter eigenvalues, interesting results aowiged by Sanchez-Hubert and Sanchez-

Palencia, 1997, Ch.X: The are attracted by the spectrum of the membrane opeggtvt) whereM
is the self-adjoint unbounded operator associated witkyhemetric bilinear fornas ,, defined on the
spaceH! x H!' x L?(S). There holds (we still assume thgitis smooth up to its boundary):

Theorem 4.4. The operatorM + p Id is elliptic of multi-degreq2, 2,0) for u > 0 large enough.
Moreover its essential spectru@is(M) satisfies:

(i) If S'is elliptic and clamped on its whole bounday,s(M) is a closed intervala, b], with a > 0,
(i) If S is elliptic and not clamped on its whole bounda®s (M) = {0} U [a, b] witha > 0,

(iii) For any other type of shell (i.e. there exists at least onafpehere the Gaussian curvaturegs0)
Ges(M) is a closed interval of the forr), b], with b > 0.

If the shell is of flexural type, the lowest eigenvalyestend to0 like O(<?), same as for plates, see
(29). If the shell is clamped elliptic, the. are bounded from below by a positive constant independent
of . In any other situation we expect that the lowesstill tends to0 ase — 0.

5. HIERARCHICAL MODELS FOR SHELLS

The idea of deriving hierarchical models for shells goeskbiacVekua (1955, 1965, 1985) and

corresponds to classical techniques in mechanics: Try tbdBymptotic expansions ix; by use

of Taylor expansion around the mid surfaSe An alternative approach consists in choosing the

coefficientsz} in (38) as moments through the thickness against LegendyaquoialsL,,(x3 /¢).
Vogelius and Babu3ka (1981a, 1981b, 1981c) laid the foumagof hierarchical models in view of

their applications to numerical analysis (for scalar peols).

5.1. Hierarchies of semi-discrete subspaces

The concepts mentioned in Section 3 can be adapted to theotatells. In contrast with plates
for which there exist convenie@artesiansystem of coordinates fitting with the tangential and normal
directions to the mid-surface, more non-equivalent opsteme left open for shells. They are for example

Thedirection of semi-discretizatio he intrinsic choice is of course the normal direction te thid-
surface (variables), nevertheless for shells represented by a single locat tkain (72), any
transverse direction could be chosen. In the sequel, weamnlgider semi-discretizations in the
normal direction.

The presence or absence of privileged components for tipdad&ment field in the Ansatz (38). If
one privileged component is chosen, it is of course the nbomaus and the two other ones
are(u,) = ur. Then the sequence of ordeyss of the formq = (¢, ¢+, ¢3), and the space
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V4(Q°) has the form (48). Note that this space is independent oftibiee of local coordinates
onS. If there is no privileged component has to be of the fornl, ¢, ¢) and the spac®?(Q2°)
can be written

VI(QF) = {u = (ur,uz,uz) € V(QF), 3z = (27,25, 20) € HY(S)?, 0<n < q,

a (85)
uj; = ng zi(x1), Jj= 1,2,3}.
n=0
Here, for ease of use we take Cartesian coordinates, bubthe aefinition is independent of
any choice of coordinates i C R3. In particular, it coincides with the space (48) far = g¢s.

Then the requirements of approximability (34), asymptatmsistency (35) and optimality of the
convergence rate (36) make sense.

5.2. Approximability

For any fixed thickness, the approximability issue is as in the case of plates. By<Ciemma, there
exists an adimensional constant> 0 depending only on the Poisson ratipsuch that

lu® = ™9 5 ey < Cllu” =1 Vi e V),

E(QF)
and the determination of approximability properties i=li@ the construction of a best approximation
of u® by functions inV9(Q°).

In Avalishvili and Gordeziani, 2003, approximability isqued using the density of the sequence
of spaces/9(Q¢) in H!(92¢)3. But the problem of finding a rate for the convergence in (33yore
difficult, since the solutioru® has singularities near the edges and, consequently, dadselomg
to H2(Q) in general. For scalar problems Vogelius and Babuska (@.98381b, 1981c) prove best
approximation results using weighted Sobolev ndffisUp to now, for elasticity systems there are
no such results taking the actual regularityéfinto account.

Itis worth noticing that, in order to obtain an equality oétform (36), we must use Korn inequality,
since most approximation results are based on Sobolev ndatsdue to blow up of the Korn
constan®!) whene — 0, it seems hard to obtain sharp estimates in the general case.

5.3. Asymptotic consistency

Like for plates, the presence of the non polynomial threeetisional boundary layevg® generically
produces a limitation in the convergence rate in (35). Avipresly mentioned, the only case where
a sharp estimate is available, is the case of clamped elbpiells. Using (68), we indeed obtain the
following result (compare with Theorem 3.2):

Theorem 5.1. If the mid-surfaces is elliptic, if the shell is clamped along its whole lateralundary,
and iff|s % 0, then for anyq > (1, 1,2) with definition(48), and for anyq = (2,2, 2) with (85),

20 These norms are those of the domains of the fractional potveas the Sturm-Liouville operatoh : ¢ — 9z ((1—22)0,¢)
on the interval(—1, 1). Such an approach is now a standard tool ingthersion analysis.
21 Let us recall that it behaves as ! in the case of partially clamped shells
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and with the use of the standard 3D elastic eng@jy there exist€’q = Cq(f) > 0 such that for all
e € (0,¢0)

||u‘S - us’q”E(Qs) < CYCI\/E HuEHE(QE) . (86)

Note that in this case, the two-dimensional boundary lagerpolynomial irxs, Therefore they can
be captured by the semi-discrete hierarchy of sp&tes

Using estimate (83) of Lods and Mardare, 2002, together thighfact that the corrector term’ is
polynomial inx3 of degre€(0, 0, 2) we obtain a proof for the asymptotic consistencyday (smooth)
clamped shelwithout assuming that the mid-surface is elliptic:

Theorem 5.2. If the shell is clamped along its whole lateral boundary, a'bfrfc]s # 0, then forq asin
Theorem 5.1 and the standard ene(@y, there exists”y = Cq(f) > 0 such that for alls € (0, <o)
Ju —u®|

< Gt/ e (87)

E(Q¢) E(Qe) "

5.4. Examples of hierarchical models

Various models of degre€l, 1,0), (1,1,2) and (2,2,2) are introduced and investigated in the
literature. Note that the modél, 1, 1) is strictly forbiddenfor shells, because it cannot be associated
with any correct energy, see Chapelle, Ferent and Bath&.200

5.4.1.(1,1,0) models. One of the counterparts of Reissner-Mindlin model for dasegiven by the
Naghdi model: see Naghdi (1963, 1972). The space of adrieégditplacements is

VNQ) = {u e V(QF), Tz € HI(S)?, 300 € HY(S)?, u= (2o —x3(00 +b°25), 23)}. (88)

As in (47) the energy splits into three parts (with the shearection factot):
a(u,u) = 28/ AP0y 5(2+)V0s(z+) dS (membrane energy)
s
+ sn/ 1a®° (Dazs + b2z5 — 0,)(Doz3 + b2z5 — 6,)dS  (shear energy) (89)
s
283 AaBod— — i
+ = A Pap(2,0)p,5(2,0)dS (bending energy)
s

where
Pup(z,0) = 3(Dabls + Dpbla) — capzs + 3b9Dpz0 + 365Dz,

Note that when the penalization term in the shear energy goesro, we get,, = D,z3 + blz3
and the displacement in (88) coincides with (66). In Lods and Mardare, 2002, aineste of the
error between the solution of the Naghdi model and the smiutif the 3D model is provided in a
sub-energetic norm.

A more recentl, 1,0) model (calledgeneral shell elemensee Chapelle and Bathe, 2000) consists
of the reduced energy projection on the spei¢e!:?) (Q¢). Indeed it does not coincide with the Naghdi
model but both models possess similar asymptotic propeatiel they are preferred to Koiter’s for
discretization.
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5.4.2. Quadratic kinematics.In accordance with Theorems 5.1 and 5.2, it is relevant tothse
standard 3D elastic energy (2) for such kinematics. Quednabddels based on th@, 1,2) model
are investigated in Bischoff and Ramm, 2000. The enrichroétiie general shell element by the
introduction of quadratic terms, — modgl, 2, 2), is thoroughly studied from both asymptotic and
numerical point views in Chapelle, Ferent and Le Tallec,2@hapelle, Ferent and Bathe, 2003.

6. FINITE ELEMENT METHODS IN THIN DOMAINS

We herein address some of the characteristics of finite elemethods (FEM), mainly thg-version of
the FEM, when applied to the primal weak formulations (3) é8) for the solution of plate and shell
models. We only address isotropic materials, although oatyais could be extended to laminated
composites.

As illustrative examples, we present the results of somepetations performed with the-version
FE computer program StressCheek.

6.1. FEM discretizations

Let us recall that, when conformal, the FEM is a Galerkin gctipn into finite dimensional subspaces
Vi of the variational space associated with the models undesideration. In the»-version of the
FEM, subspaces are basedane partitionof the domain into a finite number of subdomalikise 7
(the mesh in which the unknown displacement is discretized by mappelgnomial functions of
increasing degrege. The subdomain& are mapped from reference elemenfs)

6.1.1. Meshes. All finite element discretizations we consider here are 8ase a meshlg of the
mid-surfaceS: We mean that the 3D mesh Qf has in normal coordinat€g, x3) the tensor product
form®3) Tg ® 7. whereZ. represents a partition of the intenale, <) in layers, e.g. the two halves
(—¢,0) and(0, ), or — this case is important in the sequel —, the trivial partiby onlyone element
through the thicknessVe agree to call that latter meslhén element mesh R

The 3D elementdy are thus images by maps, from reference element& which are either
pentahedral (triangle interval) or hexahedral:

VY K =T x[0,1] 3 (21, 80,43) — x € K

with 7' the reference triangle or the reference square. For the D, REE denote byl the elements in
7Ts: They are the image &f by mapsy)r

Yr T 3 (31, 8) — x € T.

If Q. is a plate, the mid-surfacg is plane but its boundar§S is not straight. For some lateral
boundary conditions, e.g. the hard simple supported pllateapproximation oS by a polygonal
lines produces in generalrong results This effect is known as thBabuska paradoBabuska and

225tressCheck is a trade mark of Engineering Software Réseard Development, Inc., 10845 Olive Blvd., Suite 170, St.
Louis, MO 63141, USA

23 Of course, different mesh designs are possible on thin dwndi one wants to capture boundary layer terms with an
exponential rate of convergenceha refinement should be implemented near the edgé¥ pDauge and Schwab, 2002.
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Pitkaranta, 1990. If2. is a shell, the geometric approximation &fby “plane” elements is also an
issue: If the mappings are affine, the shell is approximagyedfaceted surface which has quite different
rigidity properties than the smooth surface, see Akian aamcBez-Palencia, 1992 and Chapelle and
Bathe, 2003§6.2.

As a conclusion good mappings have to be used for the desigmeoélementds (high degree
polynomials or other analytic functions).

6.1.2. Polynomial spaces for hierarchical model$:or hierarchical models (33), the discretization
is indeed two-dimensional: The degrgef the hierarchy being fixed, the unknowns of (33) are the
functionsz? defined onS and representing the displacement according to (38), winerelirector
functions®’ form adequate bases of polynomials in one variable, e.gemhexg polynomialg.., .

We have already mentioned§b that the onlyntrinsic option for the choice of componentsis taking

j = (a, 3), which results into the Ansatz (written here with Legendsg/pomials)

qT q3
X X
ur = nzozi(xT)Ln(f) and us = nzozg(xT)Ln(f).
Now the discretization consists in requiring tha{r o ¢r, o = 1, 2, andz}} |7 o ¢ belong to the space
Pp(f) for somep whereJP’p(f) is the space of polynomials in two variables
e of degree< p if Tis the reference triangle,
o of partial degree< p if T is the reference squaje, 1] x [0, 1].

It makes sense to fix different degreesin relation withj = «,3 and we sep = (p1,p2,p3).
When plugged back into formula (38), this discretizatiothefz}, j = «, 3, yields a finite dimensional
subspacd/,'(Q2°) of V9(Q¢). As already mentioned for the transverse degrges (48) and§s, we
have to assume for coherence that= p, for shells. In the situation of plates,if is affinely mapped
from the reference square, th’]élT are simply given by

20 (x+) = 2t heo 2T Pilx1) Pi(z2)  25(x+) = 205—0 25 Pi(21) Pr(22),
25 (xv) = 21 heo 25 i Pi(@1) Pe(22)

where the:7';, are real coefficients anB; denotes a polynomial of degréavhich is obtained from
Legendre polynomials (see e.g. Szab6 and Babuska, 1991).

The discretization of hierarchical models (33) can also tweedthrough thé-version or theh-p
versions of FEM.

6.1.3. Polynomial spaces for 3D discretization. Case of thiements. In 3D, on the reference
elementk = T x [0, 1] we can consider any of the polynomial spaBgs (K) = P,(T) @ P4([0, 1]),
p,q € N, For the discretization of (3), each Cartesian compongnf the displacement is sought for
in the space of functions € H'(Q¢) such that for anyk” in the meshy| x o 1k belongs td?, ,(K).
We denote by, ,(£2¢) the corresponding space of admissible displacementStiver

In the situation where we have only one layer of elements fein the thickness (thin element
mesh) with &p, ¢) discretization, let us sef = (g, ¢, ¢) andp = (p,p,p). Then it is easy to see that,
in the framework of semi-discrete spa¢8S), we have the equality between discrete spaces:

V. (€27) = V5I(€X). (90)
In other words, thin elements are equivalent to the distagtin of underlying hierarchical models. Let
us insist on the following fact: For a true shell the correxgence between the Cartesian components

Encyclopedia of Computational Mechani&dited by Erwin Stein, René de Borst and Thomas J.R. Hughes
(© 2004 John Wiley & Sons, Ltd.



ASYMPTOTIC MODELS FOR PLATES AND SHELLS 33

u; and the tangential and transverse compon@ntsus ) is non-affine. As a consequence, equality (90)
holds only if the spac&,'(Q°) corresponds to the discretization of a hierarchical mau€lartesian
coordinates

Conversely, hierarchical models of the type= (q,q,q) with the “Cartesian” unknowns},
n=0,...,q,j7 = 1,2,3 can be discretized directly o%\ or inherit a 3D discretization, see Chapelle,
Ferent and Bathe, 2003. Numerical evidence thapthersion with anisotropic Ansatz spaces allows

the analysis of three dimensional shells with high accuveay firstly presented in Duistet al,, 2001.

6.1.4. FEM variational formulations. Let us fix the transverse degrq®f the hierarchical model. Its
solutionu®9 solves problem (33). For eael> 0 and each polynomial degree(33) is discretized by
its finite dimensional subspadé!(Q2°). Letup™® be the solution of

Find uy® € V5'(Q°) suchthat o®%(uy9,u’) = / fe-u'dx, Y e VJ(Q7). (91)
We can say that (91) is a sort of 3D discretization of (33)., Buteed, the actual unknowns of (91) are
thez;,n =0,...,¢r andz§,n =0,...,qs3, orthez} forn =0,...,qgandj = 1,2, 3. Thus, (91) can
be alternatively formulated as a 2D problem involving spac®(S) independent of, and a coercive
bilinear forma? (¢) polynomial ine. Examples are provided by the Reissner-Mindlin mode{47),
the Koiter model (84), and the Naghdi modsi,(89). The variational formulation now takes the form

Find Z =: (z")o<n<q € Z(S) suchthat al(e)(Z,Z') = F(e)(f,Z'), VZ' e Z3(S), (92)

whereF(¢)(f, Z') is the suitable bilinear form coupling loadings and testfions. Let us denote by
Z_9 the solution of (92).

6.2. Locking issues

In the framework of the family of discretizations considiedove, thdockingeffect is said to appear
when adeteriorationin the resulting approximation af*9 by ug?, p — oo tends tooo, occurs as
¢ — 0. Of course, a similar effect is reported in theversion of FEM: The deterioration of the
approximation also occurs when the thicknesgpproaches zero.

Precise definition of locking may be found in BabuSka andi,SL892: It involves the locking
parameter (the thicknessn the case of plates), the sequence of finite element spétesat comprise
the extension procedure (theversion in our case, buitandh-p versions can also be considered), and
the norm in which error is to be measured. Of course, in difieerror measures different locking
phenomena are expected.

6.2.1. Introduction to membrane lockingA locking-free approximation scheme is said torbbust
For a bilinear formus () of the formag + £2a; like Koiter's, a necessary condition for the robustness
of the approximation is that the intersections of the digcspaces with the kernel of are a sequence
of dense subspaces for the whole kernelugf see Sanchez-Hubert and Sanchez-Palencia, 1997,
Ch.XI. In the case of the Koiter model, this means that the levfrmextensional spac®:(.S) (69)
can be approximated by the subspaces of the inextensiograkals belonging to FE spaces. For
hyperbolic shells the only inextensional elements belogtp FE spaces are zero, see Sanchez-Hubert
and Sanchez-Palencia, 1997 and Chapelle and Bathe, g0@3 which prevents all approximation
property of Ve (S) if it is not reduced to{0}.

This fact is an extreme and general manifestation oftkenbrane lockingf shells, also addressed
in Pitkaranta, 1992; Gerdes al., 1998 for cylindrical shells, which are a prototype of skélaving a
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non-zero inextensional space. Plates do not present mamlweking since all elements= (0, z3)

are inextensional, thus can be approximated easily by ffiiment sub-spaces. Nevertheless, as soon
as the RM model is used, as can be seen from the structure eftrgy (47), a shear locking may
appear.

6.2.2. Shear locking of the RM and hierarchical plate modeBhear locking occurs because the FE
approximation using’® polynomials for the RM family of plates at the limit when— 0 has to
converge to the KL model in energy norm Suri, 2001, requidgcontinuity. Let us consider the
three-field RM model on the subspace16fM(Q¢), cf §3.3, of displacements with bending parity:
{ue V(Q¢), u=(—x30+, z3)}. According to Suret al,, 1995 we have the following:

Theorem 6.1. Thep-version of the FEM for the RM plate model without boundagels, on a mesh
of triangles and parallelograms, with polynomial degreég-p > 1 for rotations@-+ andps; > p- for
z3 is free of locking in the energy norm.

For theh-version over a uniform mesh consisting either of trianglesectangles, to avoid locking
the tangential degreg+ has to be taken equal tb or larger, with the transverse degreg being
chosen equal tp + 1. A similar phenomenon was earlier found in connection wRisson Ratio”
locking for the equations of elasticity. (i.e. conformirgments of degree four or higher encounter no
locking), see Scott and Vogelius, 1985. In Setral., 1995 it is proven that locking effects (and results)
for the (1,1, 2) plate model are similar to the RM model because no additiooastraints arise as
the thickness — 0. Furthermore, it is stated that locking effects carry oeealt hierarchical plate
models.

Here we have discussed locking in energy norm. However,daslstresses are of interest, then
locking is significantly worse because these involve aregpewers 1.

For illustration purposes considerciampedplate with ellipsoidal mid-surface of radii0 and5,
Young modulu§&? E = 1 and Poisson ratio = 0.3, see Figure 4. The plate is loaded by a constant
pressure of valué2e)?.

(@) (b) (©

Figure 4.p-FE mesh foRe = 1, 0.1 for RM model and2e = 1 for 3D model.

The discretization is done over a d2lement mesh (see Figure 4 (a) and (b)Feor= 1 and0.1)
using two layers, each of dimensierin the vicinity of the boundary. The FE space is defined with

3A+2 . . A
RBA+21) and the Poisson ratio by =

24 We recall that the Young modulus is given By= .
g oven By= = N+ ) 200+ 1)
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ps = p+ ranging froml to 8. We show in Figure 5 the locking effects for the RM model with,crgy .

1.E+00 #=—— ST <

R

lle]l 1.E-02 1

——thickness=1
-=-thickness=0.1

- thickness=0.01 N .
1.E-03 thickness=0.001 | N
- thickness=0.0001 ™

—e— thickness=0.00001

1.E-04 T T T T T
1 2 3 4 5 6 7 8
polynomial order

Figure 5. Discretization error vis polynomial degretor RM plates of various thicknesses

The error plotted in ordinates is the estimated reladigeretization errorin energy norm between
the numerical and exact solution of the RM plate model fohdaed thickness (it is not the error
between the RM numerical solution and the exact 3D plate thodlsimilar behavior can be observed
with the modely = (1, 1, 2).

To illustrate both the locking effects for the hierarchitahily of plates and the modeling errors
between the plate models and their 3D counterpart, we havgeted for two thicknesses of plates
(2 = 1 or 2 = 0.01), the solution for the first four plate models, see Tabi&'| and for the fully 3D
plate with the degrees, = p3 = 1, 2.., 8 with the model represented in Figure 4 (c) far= 1.

Model # 1RM) | 2 3 4

Degreesy = (1, ¢2,43) (1,1,0) | 1.1,2)| 33,2)| (3,34)
# independent fieldd = (d1,d»2,ds3) || (1,1,1) | (1,1,2)| (2,2,2) | (2,2,3)

Table I. Hierarchical plate-model definitions for bendiygnenetry

The relative errors between energy norms of the hierarthiodels and the 3D plate model versus
the polynomial degreg is shown in Figure 6. As predicted, increasing the order efgtate model

25 Here, for ease of presentation, we use the numbering systepiate models displayed in Table |, where we also provide
the numberd; of fields in each direction fobending modelsi.e. for which the surface components are odd and the normal
component even iRrs.
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does not improve the locking ratio, and as the hierarchicalehnumber is increased the relative error
decreases. We note that whn= 1 the relative error of the four models converges to the madeli
error, which is still quite big since is not small, whereas whelx = 0.01 the error stays larger that
15% for all models whep < 4, and starts converging far> 5.

B0 ool
LE0L {7 > N

1E02 4 g\ oo

RM, thick=1
Model 2, thick=1
Model 3, thick=1 \
1.E-04 + Model 4, thick=2 | N\ Y
—+RM, thick=0.01

-=-Model 2, thick=0.01
1.E-05 + | -+ Model 3, thick=0.01} - N\ —
- Model 4, thick=0.01

llell 1.E-03 1

1.E-06 T T T T T T 1
1 2 3 4 5 6 7 8
polynomial order

Figure 6. Relative error vis polynomial degree far= 1 and0.01 for the first 4 hierarchical models

6.3. Optimal mesh layout for hierarchical models with boaydayers

All hierarchical plate models (besides KL model) exhibiubdary layers. These are rapidly varying
components which decay exponentially with respect to tretcdted distancB = r/e from the edge,
so that at a distanc@(2¢) these are negligible. Finite element solutions should be &bcapture
these rapid changes. Using theversion of the finite element method, one may realize exptiae
convergence rates if a proper design of meshes and seledtmolynomial degrees is applied in the
presence of boundary layers.

In a 1D problem with boundary layers, it has been proven im&thand Suri, 1996 that the
version over a refined mesh can achieve exponential conveeder the boundary layers, uniformly in
. The mesh has to be designed so to consist ofd@€2¢)) boundary-layer element at each boundary
point. More precisely, the optimal size of the elementjig2<), where,0 < o < 4/e.

This result carries over to the heat transfer problem on 2Daios as shown in Schwatb al,, 1998,
and to the RM plate model, as demonstrated by numerical eleatifypical boundary layer meshes
are shown in Figure 4 fd2e = 1 and0.1: In practice, for ease of computations, two elements in the
boundary layer zone are being used, each having the size inatmal direction o, independent
of the polynomial degree used. This, although not optintdll ceptures well the rapid changes in the
boundary layer.

In order to realize the influence of the mesh design over th&uca of boundary layer effects, we
have again solved numerically the RM plate model for a thésdgoRe = 0.01 (andxpegection @S Shear
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Figure 7. A typical design of the mesh near the boundary fepttersion of the FEM.

correction factor). Three different mesh layouts have lesrsidered, with two layers of elements in
the vicinity of the edge of dimensian5, 0.05 and0.005 (the first two ones are represented in Figure
4). For comparison purposes we have computed the 3D soliema domain having two layers in the
thickness direction and two elements in the boundary layee of dimensiof.005. We have extracted
the vertical displacement and the shear strainps along the line starting dtc;, x2) = (9.95,0) and
ending at the boundarfz,, z2) = (10,0), i.e. in the boundary layer region. Computations use the
degree®-+ = p3 = 8. It turns out that the vertical displacementis rather insensitive to the mesh,
whereas the shear straips is inadequately computed if the mesh is not properly desigiWéth the
mesh containing fine layers of thicknés805, the average relative error is 10%, but this error reaches
100% with mesh layer thickne$05 and 400% for the mesh layer thicknéss.

Concerningshellswe have seen i§4.2 that the Koiter model for clamped elliptic shells admits
boundary layers of length scalgz, and in§4.4 that other length scales may appear for different
geometriesq!/3 ands!/*). Moreover, for Naghdi model, the short length scals also present, see
Pitkaranteet al., 2001. Nevertheless, the “long” length scaé&’ ands'/* appear to be less frequent.
We may expect a similar situation for other hierarchical gledAs a conclusion the mesh design for
shell of small thicknesses should (at least) take into agcbath length scales and /. Another
phenomenon should also be considered: Hyperbolic and plicahells submitted to a concentrated
load or a singular data are expected to propagate singesaaiong their zero curvature lines, with the
scale widthe'/?, see Pitkarantat al., 2001.

6.4. Eigen-frequency computations

Eigen-frequency computations are, in our opinion, a vergdgindicator of (i) the quality of
computations(ii) the nature of the shell (or plate) response. In particutar ottom of the spectrum
indicates the maximal possible stress-strain energy toxpeated under a load of given potential
energy. From Theorem 4.4, we may expect that, except in the afaclamped elliptic shells, the ratio
between the energy of the response and the energy of thaxeiwvill behave almost a8 (s 2).

6.4.1. Eigen-frequency of RM vis 3D for plateBigen-frequencies obtained by theversion finite
element method for clamped RM plates and their counterp@rteRen-frequencies have been
compared in Dauge and Yosibash, 2002, where rectangulasptd dimensiond x 2 x 2¢ have
been considered. For isotropic materials with Poissorficterit = 0.3, the relative error for the first
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three eigen-frequencies was found negligible (less thzf%) for thin plates with slender ratio of less
than1%, and still small (.2%) for moderately thick plates (slander ratio ab&t).

For some orthotropic materials, much larger relative erb@tween the RM eigen-frequencies and
their 3D counterparts have been observed even for rehatthih plates. In one of the orthotropic
rectangular plate examples in Dauge and Yosibash, 2002ylfiich the boundary layer effect on
the eigen-frequencies should be the most pronounced, alasyy relative error o25% has been
reported for the first eigen-frequency=at 0.1. This is a significant deviation whereas the RM model
underestimates the “true” 3D 2%, and is attributed to the boundary layer effect.

6.4.2. 3D eigen-frequency computations for sheNMge present computations on three families of
shells, see Figure 8: (a) clamped spherical shells, (b)tsenspherical shells, (c) flexural cylindrical
shells, all with material parameters= 0.3 andE = 1. These three families illustrate the three cases
(), (i) and(iii) in Theorem 4.4: The shells (a) are elliptic clamped on théiol boundary, (b) are
elliptic, but clamped only on a part of their boundaries at)dafe parabolicNote that Theorem 4.4
states results relating to Koiter eigenvalues and not fore3fnvalues. Nevertheless a similar behavior
can be expected for 3D eigenvalues.

Figure 8. Shell models (a), (b) and (c) foe= 0.04

Figure 9. Model (a). vertical components of eigen-modesdn®4 fore = 0.16
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Family (a). The mid-surfaces is the portion of the unit sphere described in spherical doates by
¢ € [0,2m) andd € (%, 5]. ThusS a spherical cap containing the north pole. The family of Isi{ed
has its upper and lower surfaces characterized by the saguéeaconditions, and the ragii=1 + ¢
andp = 1 — ¢, respectively. We clamf2® along its lateral bounday = 7.

0.4

0.35F 1

0.1r 7

0.05-

0 I I I I I I I
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Figure 10. Model (a). Eigen-frequencies versus

We have computed the first five eigen-frequencies of the 3Dabpe(4) by a FEp-discretization
based on two layers of elements in the transverse directidr8a< 5 elements in the mid-surface,
including one thin layer of elements in the boundary layaevertical (i.e. normal to the tangent plane
at the north pole, not transverse to the mid-surface!) caraptu; for three modes are represented in
Figure 9 for the (half)-thickness = 0.16. Mode 3 is rotated from mode 2, and mode 5 from mode
4 (double eigen-frequencies). The shapes of the eigen-srifodsmaller values of the thickness are
similar. Figure 10 provides the three first distinct eigeagtiencies as a function of the thickness in
natural scales. In accordance with Theorem().4he smallest eigen-frequencies all tend to the same
non-zero limit, which should be the (square root of the)dmotbf the membrane spectrum.

Family (b). The mid-surfaces is the portion of the unit sphere described in spherical doates by

¢ € [0,2m) andf € (3, 22]. The family of shells2° has its upper and lower surfaces characterized
by the same angular conditions, and the radit 1 + ¢ andp = 1 — ¢, respectively. We clamf®
along its lateral bounda®y= 5% and let it free along the other lateral boundéry Z. This shell is a
sensitive one in the sense of Pitkaranta and Sanchezdral@@97, which means that it is sensitive to
the thickness and answers differently according to theevafu.

We have computed the first five (or first ten) eigen-frequencfehe 3D operator (4) by a FE=
discretization similar to that of (a) (two layers in the tsaarse direction anfl x 4 elements in the
surface direction — for the “small” thickness, a globall§imed mesh ofl6 x 6 elements has been
used). In Figure 11 we plot the vertical components of modmsber 1, 3, 5, 7, 8 and 9 far= 0.08
and in Figure 12, modes number 1, 3, 54o£ 0.0025. In both cases, modes 2, 4 and 6 are similar to
modes 1, 3 and 5 respectively and associated with the samblé@®@igen-frequencies.
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Lissanin
[Tt
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Figure 11. Model

Figure 12. Model (b). Vertical components of modes 1, 3, &fer 0.0025

Fore = 0.08, we notice the axisymmetric mode at position 7 (it is at posid whens = 0.16, and
9 fore = 0.04). Mode 8 looks odd. Indeed it is very small (less tian*) for normalized eigenvectors
in O(1). This means that this mode is mainly supported in its tanglesimponents (we have checked
they have a reasonable size). Mode 8 is in fatbraion modewhich means a dominant stretching
effect, whereas the other ones have a more pronounced lgesttinacter.

Figure 13 provides the first distinct eigen-frequenciessifeed by the nature of the eigenvector
(namely the number of nodal regions ©f) as a function of the thickness in natural scales. The
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Figure 13. Model (b). Eigen-frequencies versus

organization of these eigen-frequencies along affine lawewerging to positive limits as — 0 is
remarkable. We may expect a convergence as 0 of the solutionu® of problem (3)provided the
loading has a finite number of angular frequenciegi(the displacement will converge to the highest
angular frequency of the load). Nevertheless, such a phenomis specific to the axisymmetric nature
of the shell (b) and could not be generalized to other s@estiells. Computations with a concentrated
load (which, of course, has an infinite number of angulanfesgies) display a clearly non-converging
behavior Chapelle and Bathe, 2093,5.3.

Family (c). The mid-surfaceS is a half-cylinder described in cylindrical coordinatesé,y) by

0 € (0,m),r = 1landy € (—1,1). The family of shellsQ° has its upper and lower surfaces
characterized by the same angular and axial condition, hadadiir = 1 + e andr = 1 — ¢,
respectively. We clamf)® along its lateral boundarigs= 0 andf = = and leave it free everywhere
else. This is a well known example of flexural shell, wheregpace of inextensional displacements
contains the spacef (80) (note that, belowg,. = z3)

Veo = {z = (2,20,2y); 2y =0, z, =2.(0), zg =24(0)
with 8929 =z, and Zpg = Z, = 8927, =0in 0= O,Tr}. (93)

Besides these patterns independent of the axial varigblthere is another subspadg ; of
inextensional displacements, whetgis independent op andz,., zy are linear iny:

Veii=1{z=(2:,20,2)); 2, =2,(0), 20 = —ydoz,(0), 2z = —yIjz,(6)
with z, =z9 =2z, =0z, =0 in 0= O,w}, (94)
andVre = Vi o @ VE 1. We agree to call “constant” the displacements associaiibdi, and “linear”
those associated with ;.

We have computed the first ten eigen-frequencies (4) by a-Biscretization based on two layers
of elements in the transverse direction and a mid-surfacghnoé8 x 6 curved quadrangles. For
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Figure 15. Model (c). Vertical components modes 3, 4 and ¢ fer0.0025

the half-thicknesg = 0.0025 we plot thevertical componentu, = u,sinf + ugcosf of the
eigenmodes: In Figure 14 the first six constant flexural eigenmodes arieiguire 15 the first three
linear flexural eigenmodes (their componeajsclearly display a non-zero constant behavio)n
The shapes of the eigen-modes for larger values of the thgskare similar. In Figure 16 we have
plotted in logarithmic scale these eigen-frequenciessifi@d according to the behavior of the flexural
eigenmodes (“constant” and “linear”). The black line hasdlguatiors — ¢/4: Thus we can see that
the slopes of the eigen-frequency lines are closg, t@s expected by the theory (at least for Koiter

Encyclopedia of Computational Mechani&dited by Erwin Stein, René de Borst and Thomas J.R. Hughes
© 2004 John Wiley & Sons, Ltd.



ASYMPTOTIC MODELS FOR PLATES AND SHELLS 43

G——=6  Constant flexural modes
K Linear flexural modes
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Figure 16. Model (c). Eigen-frequencies verstun log-log scale

Figure 17. Model (c). First non flexural modes foe= 0.01 ande = 0.04

model). In Figure 17 we represent the first non-flexural mddéth rank 10 fore = 0.01 and rank 8,
9 fore = 0.04).

6.4.3. Thin element eigen-frequency computatiove present in Tables II-IV the computation of the
first eigen-frequency of the shél in families (a), (b) and (c), respectively, for a moderaiekhess

(e = 0.04) and a small thicknesg (= 0.0025). The degreg is the degree in the transverse direction
(according t0§6.1.3 there isone layer of elementsWe notice that, for an accuracy 6f01% and

¢ = 0.04, the quadratic kinematics is not sufficient, whereas it isfe 0.0025. No locking is visible
there. In fact, the convergence of tiienodelsto their own limitsis more rapid foe = 0.04.
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=004 and ¢=2 =004 and ¢=3 €=0.0025 and ¢=2
p | DOF e-freq.| %err. | DOF e-freq.| %err. | DOF e-freq.| %err.
1| 297 0.2271659| 37.967| 396 | 0.2264908| 37.557| 297 | 0.2055351| 36.437
2| 729 0.1694894| 2.938| 828 | 0.1694269 2.900| 729| 0.1560694| 3.601
3| 1209 | 0.1652870| 0.386| 1308 | 0.1652544| 0.366| 1209 | 0.1537315| 2.049
4| 2145 0.1648290| 0.108| 2244 | 0.1648001| 0.090| 2145 0.1517604{ 0.741
53321 0.1646992| 0.029| 3636 | 0.1646693] 0.011| 3321 | 0.1508741| 0.152
6 | 4737 | 0.1646859| 0.021| 5268 | 0.1646555 0.002| 4737 | 0.1506988| 0.036
7| 6393 | 0.1646849| 0.020| 7140 | 0.1646544| 0.002| 6393 | 0.1506544| 0.007
8 | 8289 | 0.1646849| 0.020| 9252 | 0.1646543] 0.002| 8289 | 0.1506447| 0.000

Table II. Thin element computations for the first eigen-freacy of model (a).

€=0.04 and ¢g=2 e=0.04 and ¢=3 €=0.0025 and ¢=2
p | DOF e-freq.| % err.| DOF e-freq.| %err.| DOF e-freq. | % err.
1 864 | 0.0597700] 89.68| 1152| 0.0595287| 88.91 864 | 0.0462144| 932.2
2| 2016| 0.0326855| 3.73| 2304 | 0.0326036| 3.46| 2016 0.0129819| 189.9
3| 3168 0.0318094| 0.95| 3456| 0.0317325| 0.70| 3168 | 0.0064504| 44.06
4 | 5472 0.0316330 0.39| 5760| 0.0315684| 0.18| 5472| 0.0047030; 5.04
5| 8352 0.0316071] 0.30| 9216 0.0315319 0.06| 8352 | 0.0045085| 0.69
6 | 11808 | 0.0316011) 0.28| 13248| 0.0315223] 0.03 | 11808 | 0.0044800f 0.06
7 | 15840 0.0316000] 0.28| 17856 | 0.0315200, 0.03 | 15840| 0.0044780, 0.01
8 | 20448 0.0315998| 0.28 | 23040| 0.0315195] 0.03 | 20448 | 0.0044779 0.01

Table Ill. Thin element computations for the first eigengfrency of model (b).

€=0.04 and ¢g=2 e=0.04 and ¢=3 €=0.0025 and ¢=2
p | DOF e-freq.| % err.| DOF e-freq.| %err.| DOF e-freq. | % err.
1 567 | 0.0514951 210.2 756 | 0.0510683| 208.7 567 | 0.0397025| 3666.
2| 1311 0.0207290] 24.9| 1500| 0.0206911] 24.7| 1311 | 0.0079356| 653.1
3| 2055| 0.0167879 1.2| 2244| 0.0167596| 0.98| 2055| 0.0011505| 9.188
4 | 3531 0.0166354 0.2 | 3720| 0.0166091f 0.08| 3531 | 0.0010578| 0.395
5| 5367 0.0166293 0.2 | 5928| 0.0166011f 0.03| 5367 | 0.0010548| 0.108
6| 7563 0.0166289 0.2 | 8496 | 0.0166004| 0.02| 7563 | 0.0010541| 0.045
7| 10119| 0.0166288 0.2 | 11424 0.0166003| 0.02 | 10119| 0.0010538| 0.012
8| 13035 0.0166288 0.2 | 14712 0.0166002| 0.02 | 13035| 0.0010537| 0.002

Table IV. Thin element computations for the first eigen-freacy of model (c).
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6.5. Conclusion

It is worthwhile to point out that the most serious difficalliwe have encountered in computing all
these models occurred fer= 0.0025 and model (b) — the sensitive shell: Indeed, in that casenwhe
e — 0, the first eigen-mode is more and more oscillating, and tReulties of approximation are
those of a high-frequency analysis. It is also visible froabl€s Il and IV that the computational
effort is lower for the cylinder than for the sensitive shédk an even better quality of approximation.

It seems that, considering the high performance ofgiversion approximation in a smooth mid-
surface (for each fixed and fixed degreg we have an exponential convergencep)nthe locking
effects can be equilibrated by slightly increasing the degrase decreases.

Of course, there exist many strategies to overcome lockindifferent situations: Let us quote
here Bathe and Brezzi, 1985; Breatial,, 1989; Arnold and Brezzi, 1997 as “early references” on
mixed methods which result in a relaxation of the zero-memérenergy constraint. These methods
are addressed in other chapters of the Encyclopedia.
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