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Abstract. We prove a universal energy estimate between the solution of the three-
dimensional Lamé system on a thin clamped shell and a displacement reconstructed from
the solution of the classical Koiter model. The mid-surface S of the shell is an arbitrary
smooth manifold with boundary. The bound of our energy estimate only involves the thick-
ness parameter ε , constants attached to S , the loading, the two-dimensional energy of
the solution of the Koiter model and “wave-lengths” associated with this latter solution.
This result is in the same spirit as Koiter’s who gave a heuristic estimate in [21]. Taking
boundary layers into account, we obtain rigorous estimates, which prove to be sharp in
the cases of plates and elliptic shells.

1 INTRODUCTION

This paper deals with shell theory whose aim is the approximation of the three-
dimensional linear elastic shell problem by a two-dimensional problem posed on the mid-
surface. This is an old and difficult question. As written by KOITER & SIMMONDS in
1972 [23] “Shell theory attempts the impossible: to provide a two-dimensional represen-
tation of an intrinsically three-dimensional phenomenon.”

1.A FRAMEWORK

Let us recall that a shell is a three-dimensional object characterized by its mid-surface S
and its (half-)thickness ε . The mid-surface is a two-dimensional manifold embedded in
R3 . We assume that S if a C∞ smooth compact orientable manifold with boundary.
Let S 3 P 7→ n(P ) ∈ R3 be a continuous unit normal field on S . We denote the shell
by Ωε in order to remind the value ε of the thickness parameter which is small enough,
0 < ε ≤ ε0 , so that the representation

S × (−ε, ε) 3 (P, x3) 7→ P + x3 n(P ) ∈ R3, (1.1) 1E1

is a C∞ diffeomorphism onto Ωε . In simpler words, Ωε is the surface S thickened in
its normal direction by the thickness ε . Of course, if S a plane domain, Ωε is a plate.



As material law for the body Ωε , the most standard assumption is to consider the
case of an homogeneous and isotropic material like in the literature quoted below. Such
a material is characterized by its Lamé constants λ and µ , or, alternatively by its Young
modulus E and its Poisson coefficient ν . For a given load f , let u be the displacement
field, solution of the problem (P3D) consisting of the three-dimensional Lamé system on
Ωε with clamped boundary conditions on its lateral boundary. We consider this u as the
“exact” solution and address the question of the approximation of u via the solution z
of a problem (P2D) posed on the mid-surface S .

Many papers deal with this question. Concerning the classical aspects of the deriva-
tion of shell models, let us quote KOITER [20, 21, 22], JOHN [18], NAGHDI [25], NOVO-
ZHILOV [27]. Concerning plates, the derivation of the first two-dimensional model was
done much earlier, see KIRCHHOFF [19].

Most of classical shell models rely on a 3× 3 system of equations on S depending
on ε , which can be written in the form

K(ε) := M + ε2B (1.2) 1E2

where M is the membrane operator on S and B a bending operator. The above authors
all agree about the definition of the membrane operator M . On the contrary, different
expressions for B can be found in the literature. The most natural in a geometrical and
mechanical point of view, is the one given by W. T. KOITER (see [21]) but the question of
determining the best model was very controversial (see in particular [4] and the discussion
in [22, 25]). Without special mention, we always take K(ε) as the Koiter operator.

So the equation in the mid-surface S takes the form K(ε)z = g , with the mean value
g of the load f across each normal fiber to S . When considering laterally clamped
shells, this equation has to be complemented by the Dirichlet boundary condition and de-
fines problem (P2D) . The unique solvability of this problem was proved by BERNADOU

& CIARLET [3]. Let z be the solution of problem (P2D) . Natural questions arise:
Q1 Is z itself a “valid” approximation of u ? In what sense ?
Q2 Is it possible to reconstruct with z only, a three-dimensional displacement U = Uz

which would be an approximation of u in (relative) energy norm?
To the authors’ knowledge, the first question to be addressed was Q2, by KOITER

himself. Indeed, the energy norm seems to be the most natural one and the easiest to deal
with. But, in general, z is not an approximation of u in energy norm, but in weaker
norms, as stated and proved by SANCHEZ-PALENCIA [29] and CIARLET, LODS, MIARA

[6, 8, 7] who gave answers to question Q1. Let us go back to Q2, which is our main point
of interest.

1.B KOITER ESTIMATE

KOITER proposed for Uz a modified Kirchhoff-Love three-dimensional displacement,
which we may write as

Uz := UKLz + Ucmpz, (1.3) 1E3
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where UKLz is the Kirchhoff-Love displacement associated with z and the complemen-
tary term Ucmpz is a transverse displacement quadratic in the normal variable x3 . It is
easy to provide formulas for UKL and Ucmp in the case of plates: In the situation with
zero curvature, we choose as system of coordinates the Cartesian coordinates (x1, x2, x3)
with x1 , x2 (also denoted (xα) ) coordinates in the plane containing S and x3 the co-
ordinate in normal direction. The corresponding components of U are Uα , α = 1, 2 and
U3 , and similarly for the components zα and z3 of z . We have

UKL
α z = zα − x3∂αz3, Ucmp

α z = 0,

UKL
3 z = z3, Ucmp

3 z = −p x3(∂1z1 + ∂2z2) + p
x2
3

2
(∂2

1 + ∂2
2)z3,

(1.4) 1E4

where p = λ(λ + 2µ)−1 . Formulas for general shells are a natural geometrical extension
of these formulas, see (2.19) later.

In his main papers [21, 22], KOITER obtained the following tentative energy estimate:

Eε
3D

[
u− Uz

]
≤ CS

(
ε

R
+

ε2

L2

)
Eε

2D[z], (1.5) EKoit

where Eε
3D is the quadratic energy functional associated with problem (P3D) and Eε

2D is
the quadratic “physical” energy associated with problem (P2D) . Moreover 1/R denotes
the maximum principal curvature of S and L a “wave length” associated with the solu-
tion z . Indeed L is a constant appearing in inverse estimates concerning the membrane
and bending tensors of z , see §2.E later.

It turns out that estimate (1.5) is not true: The error between u and Uz in energy
norm is not bounded by the right-hand side quantity, in general, see the following para-
graph. Nevertheless this same quantity happens to be a bound for the difference between
the three-dimensional energy of Uz and the two-dimensional energy associated with z :
In a first part of this work, we indeed show the following bound for the difference between
the energies of z and Uz :

∣∣Eε
3D[Uz]− Eε

2D[z]
∣∣ ≤ cS

( ε

R
+

ε2

L2

)
Eε

2D[z], (1.6) Eener

where cS is an adimensional constant depending only on S .

1.C THIN PLATE COUNTER-EXAMPLE AND ELLIPTIC SHELL EXAMPLE

A method for the validation of estimate (1.5) is to apply it to families (uε) and (zε)
obtained as solutions of problems (P3D) and (P2D) for each ε ∈ (0, ε0] when the load
f(P, x3) = g(P ) is independent of the transverse variable x3 , with a surface load g
independent of ε . Note that g also coincides with the mean value of f across the
normal fibers to S . Let us stress that, though g is independent of ε , the solution zε

does depend on ε , and that the wave length L may also depend on ε .
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But, in the situation of plates, L does not depend on ε and, of course, 1
R

= 0 .
Two years after the publication of [21, 22], it was already known that estimate (1.5) does
not hold as ε → 0 for plates. We read in [23] “The somewhat depressing conclusion
for most shell problems is, similar to the earlier conclusions of GOL’DENWEIZER, that
no better accuracy of the solutions can be expected than of order ε

L
+ ε

R
, even if the

equations of first-approximation shell theory would permit, in principle, an accuracy of
order ε2

L2 + ε
R

.”
The reason for this is also explained by JOHN [18] in these terms “Concentrating on

the interior we sidestep all kinds of delicate questions, with an attendant gain in certainty
and generality. The information about the interior behavior can be obtained much more
cheaply (in the mathematical sense) than that required for the discussion of boundary
value problems, which form a more “transcendental” stage.”.

The presence of boundary layer terms for thin plates in the vicinity of the lateral
part of the boundary was already pointed out by GOL’DENWEIZER [17] but a multi-scale
asymptotic expansion combining (for plates) inner (boundary layer) and outer (regular)
parts was only available later, see Chapters 15 and 16 in [24] and its bibliographical com-
ments. A more specific form adapted for clamped thin plates is provided by NAZAROV

& ZORIN in [26] and DAUGE & GRUAIS in [10]. From these results we can deduce the
sharp estimates for plates, valid for a “standard” load f(P, x3) = g(P ) , see [11, §12]

Eε
3D

[
uε − Uzε

]
≤ bS ε Eε

2D[zε], as ε → 0. (1.7) 1E5

In (1.7), the factor ε in the bound comes from the contribution of the three-dimensional
boundary layer term along the lateral part of the boundary, and b−1

S has the dimension of
a length – so that bSε is adimensional.

For shells, the complexity of a multi-scale analysis (if possible) is much higher. There
is at least one situation where such an analysis was successfully performed: the case of
clamped elliptic shells. In [14, 15], FAOU proved that

1. The solution z = zε of the Koiter problem (P2D) has a boundary layer in the
vicinity of ∂S with length-scale

√
ε , which yields that the wave length L is also

a O(
√

ε) ,
2. The solution u = uε of the Lamé problem (P3D) has a complete three-scale

asymptotics combining regular terms and boundary layer terms with length-scale√
ε and ε .

Relying on these two results it is possible to prove that estimate (1.7) holds true, and
that it is also sharp. But now, both terms in the sum ε2

L2 + ε
R

are a O(ε) and this proves
that the first Koiter estimate (1.5) is asymptotically valid for clamped elliptic shells.

1.D SUMMARY OF RESULTS

In this paper, we prove universal estimates in the spirit of (1.5) without a priori knowl-
edge of multi-scale expansions for u and z . The result is given in Theorem 2.9. In
comparison with (1.6), our estimate now involves the three following constants:
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a) A global wave length L associated with z similar to the one which Koiter used,

b) A lateral wave length ` for z , allowing to take boundary layer effects into account,

c) A curvature constant r depending on the curvature of S and its derivatives.

Besides these three main quantities, two more lengths D and d attached to the mean
surface S take part in our statement.

Let us briefly describe our result under a simplifying hypothesis.

The constant L typically describes the characteristic length of layers appearing in the
shell. According to the formal result in [28], this wave length can typically be assumed of
size L ≥

√
LSε where LS has the dimension of a length and is uniformly bounded in ε .

Under this assumption, and in the specific case where the loading forces f are constant
along each normal fiber of the shell, our general estimate (2.24) in Theorem 2.9 yields

Eε
3D

[
u− Uz

]
≤ aS

(ε

`
+

ε2

r2
+

ε2

L2

)
Eε

2D[z] (1.8) Eestbis

where aS is an adimensional constant. Note that the difference with Koiter’s original
estimate (1.6) lies in the presence of a boundary term depending on the lateral wave-
length ` . Under the same assumption on L , and as a consequence of the energy estimate
(1.6), we deduce from (1.8) the relative energy estimate for ε small enough:

Eε
3D

[
u− Uz

]
Eε

3D[Uz]
≤ 2aS

(ε

`
+

ε2

r2
+

ε2

L2

)
. (1.9) Erel

In the cases of plates and elliptic shells, the behavior of the three characteristic lengths
L , ` , and r with respect to the thickness ε can be made explicit for families of solutions
corresponding to a standard load f(P, x3) = g(P ) :

• For plates, the two wave-lengths L and ` are O(1) , while r = +∞ .

• For elliptic shells, ` is O(1) , whereas L is O(
√

εR∂) where R∂ is the curvature
radius along the boundary of S .

In both cases our general estimate (1.8) gives back the optimal estimate (1.7).

1.E PLAN

In §2, we introduce the three- and two-dimensional problems, their solutions u and z ,
the different characteristic lengths, the reconstruction operator z 7→ Uz and finally, we
state our results. In §3, we prove a priori estimates for Sobolev norms of z by Sobolev
norms of its membrane and bending strain tensors γ and ρ . This will serve to convert
any norm of z appearing in our estimates in norms of γ and ρ . Using the wave-lengths,
these norms can be compared to the energy of z . In §4, in a preliminary step, we prove
the estimate (1.6) between the three- and two-dimensional energies.
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In §5, we start the proof of the main estimate (1.8) with the introduction of two main
steps: (i) A variational type estimate of the energy scalar product of the difference u−Uz
against all displacements v satisfying the clamped boundary conditions on the lateral
boundary, and (ii) an energy estimate of a correcting displacement ucor constructed so
that Uz + ucor also satisfies the clamped boundary conditions.

Step (i) is performed in §7 with the help of the operator formal series solution devel-
oped in [14] which we recall in §6. Step (ii) is performed in §8 by an explicit construction.
In the last section §9, we show that our estimate (2.24) is optimal for plates, for shallow
shells in the sense of [9] and for elliptic shells. For this, we rely on [10], [2] and [15]
which provide sharp asymptotic expansions in each of these three cases, respectively.

2 STATEMENT OF RESULTS

In this section, we now formulate precisely our assumptions, the definitions of prob-
lems (P3D) and (P2D) and of the different lengths occurring in estimates (1.8) and (1.6),
and we state our main results. We use everywhere the convention of repeated indices for
the contraction of tensors.

2.A THE THREE-DIMENSIONAL PROBLEM

In all this work {Ωε}
ε≤ε0

denotes a family of elastic shells defined for ε0 sufficiently
small, made with an isotropic and homogeneous material characterized by its two Lamé
coefficients λ and µ . The mid-surface of the shell is represented by a smooth 2-manifold
S embedded in R3 , compact with non-empty boundary ∂S . We stress that no other
assumption is made on the geometry of the surface S . In particular, its main curvatures
may have different signs, or even be zero, in which case the shell is a plate. The domain
Ωε is then the image of the manifold S × (−ε, ε) by the application :

S × (−ε, ε) 3 (P, x3) 7→ P + x3 n(P ) ∈ R3, (2.1) diffeo

where n is a continuous unit normal field on S . The shell has two faces Γε
± corre-

sponding to S × {±ε} and a lateral boundary Γε
0 corresponding to ∂S × (−ε, ε) . The

boundary conditions applied to the shell are the free traction conditions on the two faces
Γε
± and the clamped conditions on Γε

0 . The space of admissible displacements is then

V (Ωε) =
{
u ∈ H1(Ωε)3 | u = 0 on Γε

0

}
. (2.2) EVO

If u and v are two displacements on Ωε , we define the energy scalar product

aε
3D(u, v) =

∫
Ωε

Aijk` eij(u) ek`(v) dV, (2.3) 2Ea

where dV = dt1dt2dt3 with a system {ti} of Cartesian coordinates in R3 and where

Aijk` = λδijδk` + µ(δikδj` + δi`δjk)
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is the rigidity tensor of the material, with the Kronecker tensor δij . The tensor eij(v) =
1
2
(∂ivj + ∂jvi) is the strain tensor in Cartesian coordinates, where ∂i denotes the deriva-

tive with respect to ti . The associated quadratic three-dimensional energy of a displace-
ment v is then:

Eε
3D[v] := aε

3D(v, v). (2.4) 2E3D

Our “exact solution” u is the displacement solution of the variational problem :

(P3D) Find u ∈ V (Ωε) such that ∀v ∈ V (Ωε), aε
3D(u, v) =

∫
Ωε

f · v dV,

where f ∈ L(Ωε)3 represents the loading force.

2.B NORMAL COORDINATES AND TENSORS

The shell Ωε is diffeomorphic to the manifold S× (−ε, ε) via the application (2.1). Any
local coordinate system (xσ) on S yields a coordinate system (xσ, x3) on S × (−ε, ε)
and thus an atlas on S provides an atlas on Ωε whose local maps are U × (−ε, ε) where
U are the maps of the atlas on S . Such a coordinate system is called normal coordinate
system, and induces a basis for tensor fields on Ωε .

This implies that every tensor on Ωε can be decomposed into several two-dimensional
tensors depending smoothly on x3 and living on S . Typically, any displacement (i.e. a
1 -form on Ωε ) v splits into

(i) a surfacic displacement (vσ) , which means that x3 7→ (vσ(x3)) takes its values in
1 -forms on S .

(ii) a function v3 , in other words x3 7→ v3(x3) takes its values in functions on S .

On the same way, for each fixed x3 , the strain tensor eij splits into: e33 , which is a
function on S , (eσ3) which is a covariant tensor of order 1 on S , and (eαβ) which is a
covariant tensor of order 2 on S . These three surfacic tensors depend smoothly on x3 .

We denote by a = (aαβ) the metric tensor on S induced by the ambient metric in
R3 , and by b = (bαβ) the curvature tensor on S (see e.g. [12, 30]). These tensors
are symmetric covariant tensors of order 2 . Moreover, the metric tensor induces an
isomorphism between covariant and contravariant tensors. For instance, the tensor bα

σ

is defined by bα
σ = aαβbβσ , with the inverse aαβ of the metric tensor. We also denote by

Dα the covariant derivative induced by the Riemannian metric aαβ on S .

Let us recall the definition of the Sobolev norm of a tensor on a manifold. Consider
a covariant tensor field τ of order k on S . In a local coordinate system, we denote by
τα1α2···αk

its components. The norm |τ | of τ at a fixed point P ∈ S is defined as

|τ |2 = τα1α2···αkτα1α2···αk
(2.5) E765

where τα1α2···αk is the contravariant tensor associated with τ using the metric tensor,
as explained above. The expression (2.5) is independent of local coordinate systems.

7



Note that (2.5) makes sense for tensors of any type, as it depends only on the order of
the tensor and not of its representation as covariant or contravariant tensor. We have for
example |b|2 = bαβbαβ = bα

βbβ
α so that can write |b| = |bαβ| = |bβ

α| .
The L2 norm of τ is defined as

|τ |2
0 ; S

:=

∫
S

|τ |2dS.

For n ∈ N , we denote by D[n]τ the tensor of order k + n with components

Dβ1 · · ·Dβnτα1α2···αk

in a local coordinate system. The semi norm of order n of τ is thus

|τ |
n ; S

= |D[n]τ |0 ; S
. (2.6) Esobn

As the surface S is smooth, this expression makes sense on S for all n , and does not
depend on a choice of a local coordinate system. We define similarly the semi-norms
|τ |

n ; ∂S
on the lateral boundary ∂S .

In the following, we denote by Hk(S) the space of 1 -form fields (zσ) such that
|zσ|n ; S

< ∞ for n = 0, . . . , k , and by Hk(S) the corresponding space for functions.

2.C THE TWO-DIMENSIONAL PROBLEM

The Koiter operator on S is defined as K(ε) = M + ε2B where M is the membrane
operator and B the bending operator. Both of them involve the rigidity tensor Mαβσδ

corresponding to the modified Lamé constants λ̃ = 2λµ/(λ + 2µ) and µ :

Mαβσδ =
2λµ

λ + 2µ
aαβaσδ + µ(aασaδβ + aαδaβσ).

Both operators M and B act on spaces of z = (zσ, z3) where (zσ) is a 1 -form on
S and z3 a function on S . The target space contains elements of the form g = (gσ, g3)
where (gσ) is a 1 -form on S and g3 a function on S . Typical spaces for z are
H1 × L2(S) and H1 × H2(S) .

The operator M is the operator associated with the bilinear form aM defined for any
z = (zσ, z3) and η = (ησ, η3) in H1 × L2(S) by

(z, η) 7→ aM(z, η) =

∫
S

Mαβσδ γαβ(z) γσδ(η) dS,

where the membrane strain tensor field

γαβ(z) = 1
2
(Dαzβ + Dβzα)− bαβz3

8



is the change of metric tensor.

The operator B is associated with the bilinear form aB defined for any z and η in
H1 × H2(S) by

(z, η) 7→ aB(z, η) =
1

3

∫
S

Mαβσδ ραβ(z) ρσδ(η) dS

where
ραβ(z) = DαDβz3 − bσ

αbσβz3 + bσ
αDβzσ + Dαbσ

βzσ (2.7) Erho

is the change of curvature tensor.

The two-dimensional energy scalar product is defined for z, η ∈ H1 × H2(S) by

aε
2D(z, η) = aM(z, η) + ε2aB(z, η). (2.8) EKoiter

This bilinear form is associated with the Koiter operator K(ε) = M + ε2B . The physical
quadratic energy associated with a displacement z is defined as:

Eε
2D[z] := 2ε aε

2D(z, z). (2.9) 2E2D

The right-hand side g = (gσ, g3) of the two-dimensional problem (P2D) is defined
on S as

g =
1

2ε

∫ ε

−ε

f(x3) dx3. (2.10) 2Eg

The admissible two-dimensional displacement space is H1
0×H2

0(S) . The two-dimen-
sional problem then writes:

(P2D)
Find z ∈ H1

0 × H2
0(S) such that

∀η ∈ H1
0 × H2

0(S), aε
2D(z, η) =

∫
S

(aαβgαηβ + g3η3) dS.

We define the residual load as

f rem := f − 1

2ε

∫ ε

−ε

f(x3) dx3 (2.11) Eresload

In the sequel, we also use the notation Σ(S) := Γ(T1S) × C∞(S) where Γ(T1S)
denotes the space of smooth 1-form fields on S (see [14] for details). The elements of
Σ(S) are written (zσ, z3) .
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2.D PHYSICAL DIMENSIONS

We recall here the physical dimensions of the different objects present in the problem. In
Table 1 we give the dimensions of the 3D objects. Here, E denotes the Young modulus
of the material. We recall the formulas

E =
µ(3λ + 2µ)

λ + µ
and ν =

λ

2(λ + µ)
,

where ν is the adimensional Poisson coefficient. Conversely

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
.

Physical object Notation Dimension

Displacement u m

Volume force f N.m−3

Energy E3D[u] N.m (Joule)

Deformation rate eij(u) Adimensional

Material coefficients E, λ, µ N.m−2 (Pascal)

Table 1. Physical dimensions of the 3D objects

For surfacic objects, we give the corresponding information in Table 2.

Note that in a local coordinate system on S , a partial derivative has the dimension of
the inverse of a length. The expression of the Christoffel symbols

Γσ
αβ = aσδ(∂αaβδ + ∂βaαδ − ∂δaαβ) (2.12) Echri

then shows that they also have the dimension of the inverse of a length. Thus the dimen-
sion of the covariant derivative is coherent.

2.E WAVE LENGTHS

Before defining wave lengths attached to the solution z of (P2D) , we introduce a se-
quence of characteristic quantities depending on the curvature tensor of S .

Definition 2.1 (i) We set κ0 = 1 and define recursively for j ≥ 1 the numbers κj by:

κ1 = max
P∈S

|b| and κj = sup

(
κj−1, max

P∈S

∣∣D[j−1]b
∣∣1/j

)
for j ≥ 2, (2.13) Edefk
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Physical object Notation Dimension

Displacement z m

Volume force g N.m−3

Energy E2D[z] N.m (Joule)

Curvature bβ
α m−1

Covariant derivative Dα m−1

Change of metric tensor γαβ(z) Adimensional

Change of curvature tensor ραβ(z) m−1

Table 2. Physical dimensions of the 2D objects

where b is the curvature tensor. For any j ≥ 1 , the constants κj have the dimension of
the inverse of a length.

(ii) For any tensor field on S let for all n ∈ N the semi-norm |τ |(b)

n ; S
be defined by

the expression∗ (
|τ |(b)

n ; S

)2

=
n∑

j=0

κ2j
j |τ |

2

n−j ; S
. (2.14) Enormk

In the case of plates, we have κj = 0 for j ≥ 1 , and hence |τ |(b)

n ; S
= |τ |

n ; S
, in

contrast with the case when b 6= 0 .

With the definition (2.13) we have κ1 = 1/R where 1/R is the maximum prin-
cipal curvature of S . As the covariant derivative has the dimension of the inverse of a
length, we see that all the terms in the sum of the right-hand side of (2.14) have the same
dimension.

Definition 2.2 An operator L acting on tensor spaces on S is said to be b -homogeneous
of degree n if it is a linear combination with adimensional coefficients of contractions of
tensors of the form

B1 · · ·Bn

where each Bj is either the covariant derivative Dσ or the curvature tensor bαβ .

∗We could have introduce factorial normalization terms in the definitions (2.13) and (2.6). This could in
principle lead to analytic estimates in the case where S is analytic. In this situation, κj would tend to the
analytic radius of convergence of b when j →∞ .
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Note that the operators z 7→ γαβ(z) and z 7→ ραβ(z) are b -homogeneous of
degree 1 and 2 respectively. Similarly the membrane is b -homogeneous of degree 2 ,
which means that both surfacic and transverse components are b -homogeneous of degree
2 , and the bending operator is b -homogeneous of degree 4 .

This definition is motivated by the following lemma:

Lemma 2.3 Let L be a b -homogeneous operator of degree n acting on tensors τ of
order k , ans let s ∈ N . Then there exists an adimensional constant A such that,

∀τ , |Lτ |(b)

s ; S
≤ A|τ |(b)

s+n ; S
.

Let γ and ρ denote the membrane and bending strain tensors of the solution z of
problem (P2D) . With our notations, we can reformulate Koiter’s definition of the quantity
L in [20, 21] as “the wave length of the deformation pattern of shell theory, defined by
the order of magnitude relations D[1]γ = O(γ/L) and D[1]ρ = O(ρ/L) .”

Without being exactly the same, our definitions retain the idea of inverse inequalities
for the membrane and bending strain tensors γ and ρ .

Definition 2.4 For z ∈ Σ(S) we denote by γ = γαβ(z) and ρ = ραβ(z) the membrane
and bending strain tensors associated with z . We set L0 = 1 and for all k ≥ 1 , we
define the global wave length Lk of z as the largest constant such that there holds, for
j = 1, . . . , k

|γ|
j ; S

≤ L−j
k |γ|

0 ; S
and |ρ|

j ; S
≤ L−j

k |ρ|
0 ; S

. (2.15) 2E2

Note that L1 ≥ L2 ≥ · · · , and that Lk can be equivalently defined by requiring
(2.15) for j = k only. We have, by definition:(

|γ|(b)

n ; S

)2 ≤ |γ|2
0 ; S

∑
j+k=n

L−2k
k κ2j

j and
(
|ρ|(b)

n ; S

)2 ≤ |ρ|2
0 ; S

∑
j+k=n

L−2k
k κ2j

j . (2.16) 2EGR

We now define a similar wave length, now for the norms on the boundary ∂S .

Definition 2.5 With γ and ρ as in Definition 2.4, we define ` as the largest constant
such that there holds

|γ|
0 ; ∂S

≤ `−1/2|γ|
0 ; S

and |ρ|
0 ; ∂S

≤ `−1/2|ρ|
0 ; S

. (2.17a) 2E2t

|γ|
1 ; ∂S

≤ `−3/2|γ|
0 ; S

and |ρ|
1 ; ∂S

≤ `−3/2|ρ|
0 ; S

. (2.17b) 2E2b

Note that the quantity ` has also the dimension of a length.
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2.F SHIFTED DISPLACEMENT AND RECONSTRUCTED DISPLACEMENT

Let u be the displacement solution of (P3D) . We can express this displacement in
the shifted normal coordinates introduced by NAGHDI (see [25]) and commonly used
in classical shell theory. As a matter of fact, computations are easier when considering
the shifted components. The shifter is the tensor µβ

σ (see [25]) defined by

µβ
σ(xα, x3) = δβ

σ − x3b
β
σ(xα),

where δβ
σ is the Kronecker tensor. If v = (vσ, v3) is a displacement, the shifted displace-

ment ṽ = (ṽσ, ṽ3) is defined by the relations

ṽ3 = v3 and ṽσ = (µ−1)β
σvβ,

where (µ−1)β
σ is the inverse of the shifter.

As they will be of constant use, we will denote by (wσ, w3) the shifted components
of the displacement u solution of (P3D) , instead of (ũσ, ũ3) . We denote by w the
corresponding shifted displacement.

Let z = (zσ, z3) be solution of (P2D) . With z , we associate the three-dimensional
shifted displacement Wz defined by the formula

Wz =

{
zσ − x3θσ(z),

z3 − p x3γ
α
α(z) + p

x2
3

2
ρα

α(z),
(2.18) 2EW

where θσ(z) = Dσz3 + bα
σzα and p = λ(λ + 2µ)−1 . To this displacement Wz corre-

sponds the displacement Uz in “unshifted” normal coordinates:

Uz =

{
zσ − x3(Dσz3 + 2bα

σzα) + x2
3 bα

σθα(z),

z3 − p x3γ
α
α(z) + p

x2
3

2
ρα

α(z),
(2.19) 2EU

2.G KORN INEQUALITIES

We now define a length D through Korn inequalities Ωε involving the Young modulus
E and the thickness ε of the shell.

Proposition 2.6 There exists a constant D independent on ε , having the dimension of a
length, such that for all v ∈ V (Ωε) defined in (2.2), we have

‖v‖2

L2(Ωε)
≤ D4E−1ε−2 Eε

3D[v]

‖Dαv‖2

L2(Ωε)
+ ‖∂3v‖2

L2(Ωε)
≤ D2E−1ε−2 Eε

3D[v].
(2.20) Korn3D
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Proof. We make the scaling X3 = ε−1x3 mapping the manifold S × (−ε, ε) to the
manifold Ω := S × (−1, 1) . In Ω , the expression of the deformation tensor eij(ε)(v)
is obtained by changing ∂x3 to ε−1∂X3 . This definition coincides with the one in [8].
Note that the variable X3 and the derivative ∂X3 are adimensional, and that the tensor
eij(ε)(v) is also adimensional.

The lateral boundary Γ0 = ∂S × (−1, 1) is the image of Γε
0 by the scaling. We define

the space V (Ω) as the set of v ∈ H(Ω)3 such that v
∣∣
Γ0

= 0 . On the manifold Ω , the
following inequalities hold (see [8]): For all v ∈ V (Ω) ,

‖v‖
L2(Ω)

≤ C1ε
−1‖eij(ε)(v)‖

L2(Ω)

‖Dαv‖
L2(Ω)

≤ C2ε
−1‖eij(ε)(v)‖

L2(Ω)

(2.21) Ekorn12

The shear deformation tensor is written as the convergent series (see [25, 14]):

eα3(ε)(v) = 1
2
(Dαv3 + ε−1∂X3vα) +

∞∑
k=0

εjXj
3(b

j+1)β
αvβ

where (bj)β
α denotes the product of j -times the curvature tensor b . We thus have

‖∂X3vα‖L2(Ω)
≤ ε‖ei3(ε)(v)‖

L2(Ω)
+ ε

( ∞∑
j=0

εjκj+1
1

)
‖v‖

L2(Ω)
+ ε‖Dαv‖

L2(Ω)
.

Combining this estimate with (2.21), we obtain the existence of C3 , having the dimension
of a length, such that

‖∂X3v‖L2(Ω)
≤ C3‖eij(ε)(v)‖

L2(Ω)
,

which improves the corresponding estimate in [8]. We scale back to Ωε and get the
estimates for the squared norms:

‖v‖2

L2(Ωε)
≤ C4ε

−2‖eij(v)‖2

L2(Ωε)
,

‖Dαv‖2

L2(Ωε)
+ ‖∂3v‖2

L2(Ωε)
≤ C5ε

−2‖eij(v)‖2

L2(Ωε)
.

The constants C4 and C5 have the dimensions m4 and m2 respectively.

Using the relation between λ , µ and the Young modulus E we see that there exist
adimensional constants a and A such that

aE ≤ λ ≤ AE and aE ≤ µ ≤ AE. (2.22) EEmu

As E > 0 , there exists an adimensional constant A1 such that

‖eij(v)‖2

L2(Ωε)
≤ A1E

−1Eε
3D[v].

Denoting by D the length max((A1C4)
1/4, (A1C5)

1/2) , we obtain the result.

14



2.H MAIN ENERGY ESTIMATES

Our first result gives an estimate between the energy of a two-dimensional displacement
z and the three-dimensional energy of the reconstructed displacement Uz :

Theorem 2.7 For all z ∈ (H2∩H1
0)(S)×(H3∩H2

0)(S) , we have the following estimate∣∣Eε
2D[z]− Eε

3D[Uz]
∣∣ ≤ A

( ε

R
+

ε2

L2
1

)
Eε

2D[z], (2.23) 4E1

for an adimensional constant A , where L1 is the first wave length for z defined accord-
ing to Definition 2.4, and R = κ−1

1 according to Definition 2.1.

Our main result gives an estimate between the three-dimensional displacement field
and the reconstructed displacement. Besides the notations defined in the previous sec-
tions, we need one more characteristic length d of the shell S .

Definition 2.8 Let r denote the geodesic distance in S to the boundary ∂S , and let s
be the arc-length along ∂S . We denote by d the maximal width of the tubular neighbor-
hood in which (r, s) ∈ [0, d]× ∂S defines a smooth coordinate system.

It is clear that d has the dimension of a length and that d is proportional to the maximum
radius of curvature of the boundary ∂S viewed as a submanifold of S .

Theorem 2.9 Let u and z be the solutions of (P3D) and (P2D) respectively, and let
Uz be the displacement (2.19). Let L = L4 and ` be defined in Definitions 2.4-2.5,
r = 1/κ5 given by Definition 2.1. Assume that ε ≤ ε0 < min{r, d} and that

sup
ε≤ε0

∣∣∣∣ε` +
ε2

L2

∣∣∣∣ ≤ M < ∞.

Then the following estimate holds:

Eε
3D

[
u− Uz

]
≤ aS

(
BS(ε; z) Eε

2D[z] + D2E−1‖f rem‖2

L2(Ωε)

)
with BS(ε; z) =

ε

`
+

ε2

r2
+

ε2

L2
+

ε4D2

L6
(2.24) Eest

where E is the Young modulus, f rem is the residual load (2.11) and D the constant
appearing in Proposition 2.6. The constant aS is an adimensional constant such that

aS ≤ bS(1 + M3) (2.25) Eadimcst

where bS is an adimensional constant depending only on S .

Our result can be viewed as an a posteriori estimation of the modeling error by means
of the 2D solution. It is universal and does not specify any special dependency (or inde-
pendence) of the loading f with respect to ε . We can possibly deduce from estimate
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(2.24) a convergence result as ε → 0 if we have more information about the behaviour
of the wave length L and ` with respect to ε .

Remark 2.10 Theorem 2.9 does not require more regularity than L2 for the loading
f . However, for the quantity L = L4 to be finite, we need that the mean value g of
f across the shell is more regular. The ellipticity of the Koiter operator with Dirichlet
boundary conditions implies that L4 is finite if g belongs to H3(S)3 .

Remark 2.11 If the loading belongs to H1(Ωε) , owing to the estimate

‖f rem‖2

L2(Ωε)
≤ ASε2‖∇f‖2

L2(Ωε)

with an adimensional constant AS , the contribution of f rem to the bound of Eε
3D

[
u−Uz

]
is of higher order. If g = 0 , the 2D displacement z is also 0 , and we are in a regime of
higher order answers.

3 A PRIORI ESTIMATES

Let z = (zσ, z3) where (zσ) is a 1 -form field on S and z3 a function on S . In
this section we prove estimates for the Sobolev norms of z , first by Sobolev norms of
its strain tensors γ := γ(z) and ρ := ρ(z) and then, with the help of the wave lengths
Lk , by its quadratic energy Eε

2D[z] , cf (2.9).

Lemma 3.1 There exists a positive adimensional constant A such that

∀z ∈ H2 × H1(S), |zσ|2 ; S
≤ A

(
|γ|

1 ; S
+ κ1|z|1 ; S

+ κ2
2|z|0 ; S

)
, (3.1a)

∀z ∈ H1× H2(S), |z3|2 ; S
≤ A

(
|ρ|

0 ; S
+ κ1|z|1 ; S

+ κ2
2|z|0 ; S

)
. (3.1b)

Proof. Let us recall (see e.g. [25, 13]) that we have the following relation for the
commutation of two covariant derivatives: For all zα ,

DαDβzσ −DβDαzσ = Rβασνz
ν (3.2) ERiemann

where the Riemann tensor Rβασν of S is given by

Rβασν = bβνbασ − bανbβσ.

Using this relation, and setting γασ = 1
2
(Dαzσ + Dσzα) , we have

DαDβzσ = Dαγβσ −Dσγαβ + Dβγσα − 1
2
Rβασνz

ν + 1
2
Rσαβνz

ν + 1
2
Rσβανz

ν .

This formula clearly implies that there exists an adimensional constant A such that

|zσ|2 ; S
≤ A

(
|γ|

1 ; S
+ κ2

1|z|0 ; S

)
.
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As γαβ = γαβ − bαβz3 , this finally gives (3.1a).

The estimate (3.1b) is an easy consequence of the expression (2.7) of ραβ .

From the previous estimates, we are going to deduce bounds for |zσ|(b)

n ; S
and |z3|(b)

n ; S

by induction over n . In the remaining part of this section, we use the following notation:
f . g means that there exist an adimensional constant A such that f ≤ Ag . When
f . g and g . f we write f ' g .

Applying the estimates (3.1b) and (3.1a) to Dδz in combination with (3.2) and then
using induction, we find the estimates for any n ≥ 2 :

|zσ|n ; S
. |γ|

n−1 ; S
+

∑
1≤j≤n

κj
j|z|n−j ; S

(3.3a)

|z3|n ; S
. |ρ|

n−2 ; S
+

∑
1≤j≤n

κj
j|z|n−j ; S

. (3.3b)

Combining (3.3a) and (3.3b) for n, n − 1, . . . , 0 we obtain for all n ≥ 2 and all z ∈
Hn × Hn(S)3

|zσ|
(b)

n ; S
. |γ|(b)

n−1 ; S
+

∑
1≤j≤n−2

κj
j|ρ|n−2−j ; S

+ κn−1
n−1|z|1 ; S

+ κn
n|z|0 ; S

(3.4a)

|z3|
(b)

n ; S
. |ρ|(b)

n−2 ; S
+

∑
1≤j≤n−1

κj
j|γ|n−1−j ; S

+ κn−1
n−1|z|1 ; S

+ κn
n|z|0 ; S

. (3.4b)

We can eliminate the terms κn−1
n−1|z|1 ; S

+ κn
n|z|0 ; S

with Poincaré type estimates, see [3].
Indeed, we can prove that for a given n ≥ 1 there exist an adimensional constant An

such that

∀z ∈ H1
0 × H2

0(S), κn|z|1 ; S
+ κ2

n|z|0 ; S
≤ An

(
|ρ|

0 ; S
+ κn|γ|0 ; S

)
. (3.5) Ecoer

Combining this with (3.4a)-(3.4b) we obtain

|zσ|
(b)

n ; S
. |γ|(b)

n−1 ; S
+ κn

∑
0≤j≤n−3

κj
n|ρ|n−3−j ; S

, (3.6a)

|z3|
(b)

n ; S
. |ρ|(b)

n−2 ; S
+ κn

∑
0≤j≤n−2

κj
n|γ|n−2−j ; S

. (3.6b)

Then we use the definition (2.15) of the wave lengths together with (2.16), and deduce
from the previous inequalities that there exists an adimensional constant An such that

|z|(b)

n ; S
≤ A

(
|γ|

0 ; S

∑
j+k=n−1

L−k
n−1κ

j
n + |ρ|

0 ; S

∑
j+k=n−2

L−k
n−1κ

j
n

)
. (3.7) 3E4
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Remark 3.2 The adimensional constants A in (3.7) depend on n and on S via the
Poincaré type estimates (3.5). We can prove that these constants remain bounded in a
family {Sδ} of shallow shells in the sense of [9, 5], see also [1], as δ → 0 .

Using relations (2.22) we find immediately that Eε
2D[z] ' Eε(|γ|2

0 ; S
+ ε2|ρ|2

0 ; S
) .

Hence
|γ|2

0 ; S
. AE−1ε−1Eε

2D[z] and |ρ|2
0 ; S

. AE−1ε−3Eε
2D[z]. (3.8) 3E13

Estimate (3.7) combined with (3.8) yields the following energy estimates for any two-
dimensional displacement z satisfying the conditions of the clamped boundary:

Theorem 3.3 For any n ≥ 2 , there exists an adimensional constant A > 0 so that for
any z ∈ H1

0 × H2
0(S) satisfying γ ∈ Hn−1(S) and ρ ∈ Hn−2(S) , there holds for any

ε > 0 : (
|z|(b)

n ; S

)2 ≤ AE−1

ε3

( ∑
i,j,k∈Gn

ε2iκ2j
n

L2k
n−1

)
Eε

2D[z] , (3.9) 3E14

where E is the Young modulus, κn the n -th constant estimating the curvature, Ln−1 is
the global wave length of z , cf Definitions 2.1 and 2.4, and where

Gn = {(i, j, k) ∈ N3 | i ∈ {0, 1}, j + k = i + n− 2 }. (3.10) EGn

4 ENERGY OF THE RECONSTRUCTED DISPLACEMENT

In this section, we prove Theorem 2.7. The proof is organized in three steps.

Proof of Theorem 2.7. STEP 1. The proof is easier when using the shifted displacement
Wz , see (2.18), corresponding to the reconstructed displacement Uz . For any three-
dimensional displacement u , we recall that Eε

3D[u] denotes its quadratic energy, cf (2.4).
If w is the shifted displacement associated with u we denote the corresponding energy
by Ẽε

3D[w] which is defined so that Ẽε
3D[w] = Eε

3D[u] . Hence we have

Ẽε
3D[w] =

∫
Ωε

Aijk`ẽij(w)ẽk`(w) dV, (4.1) EEtilde

where the modified strain tensor ẽij(w) is defined so that ẽij(w) = eij(u) . In normal
coordinates we have the following expressions for the tensor ẽij(w) , see [14]:

ẽ3
3(w) = ∂x3w3, (4.2a)

ẽ3
β(w) = 1

2

(
∂x3wβ − x3b

α
β∂x3wα + θβ(w)

)
, (4.2b)

ẽα
β(w) = γα

β (w) +
∞∑

n=1

xn
3 (bn)α

δ γδ
β(w) +

∞∑
n=1

nxn
3 (bn−1)α

δ Λδ ·
·β(w), (4.2c)

where θβ(z) = Dβz3 + bα
βzα and Λαβ(z) = 1

2
(bσ

αDσzβ − bσ
βDαzσ) .
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Using the definition of the rigidity tensor, we obtain

Ẽε
3D[w] =

∫
Ωε

[
(λ + 2µ)ẽ3

3(w)ẽ3
3(w) + 2λẽ3

3(w)ẽα
α(w) + λẽα

α(w)ẽβ
β(w)

+ 4µaαβ(x3)ẽ
3
α(w)ẽ3

β(w) + 2µẽβ
α(w)ẽα

β(w)
]
dV, (4.3) E3D

where aαβ(x3) = aσν(µ−1(x3))
α
σ(µ−1(x3))

β
ν is the inverse of the metric tensor of the

surface at the level x3 in the shell, see [25, 14]. The inverse (µ−1(x3))
α
σ of the shifter

can be expanded as

(µ−1(x3))
α
σ =

∞∑
k=0

xk
3(b

k)α
σ .

Moreover, in a given normal coordinate system (xσ, x3) on S×(−ε, ε) , the Riemannian
volume dV can be written dV = | det aαβ(x3)|1/2dxσ dx3 , where aαβ(x3) is the inverse
tensor of aαβ(x3) defined above. With the definition of the shifter, we hence can write

dV =
| det aαβ(x3)|1/2

| det aαβ(0)|1/2
dS dx3 = (1 + h(x3)) dS dx3 (4.4) ERvol

where h(x3) is a convergent power series in x3 , provided that |x3| < R , such that
h(0) = 0 , and with adimensional function coefficients globally defined on S . This
implies in particular that

|h(x3)| ≤ A
ε

R
(4.5) Eh

uniformly in Ωε , and for an adimensional constant A .

Thus, we reduce the proof to showing that
∣∣Ẽε

3D[Wz] − Eε
2D[z]

∣∣ is bounded by the right
hand side (2.23). We note that Eε

2D[z] is associated with the material law of Lamé coef-
ficients 2µp and µ (we recall that p = λ(λ + 2µ)−1 ) and writes

Eε
2D[z] = 2ε

∫
S

[
2µpγα

α(z)γβ
β (z) + 2µγβ

α(z)γα
β (z)

]
dS

+
2

3
ε3

∫
S

[
2µpρα

α(z)ρβ
β(z) + 2µρβ

α(z)ρα
β(z)

]
dS. (4.6) E2D

STEP 2. We are going to calculate each term forming Eε
3D[Wz] with the help of the

splitting of Wz into the sum of a displacement of Kirchhoff-Love type WKLz and of a
complementary term Wcmpz which is a transverse quadratic displacement, cf (1.4):

WKLz =

{
zσ − x3θσ(z),

z3,
and Wcmpz =

{
0,

−x3pγ
α
α(z) +

x2
3

2
pρα

α(z).
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Lemma 4.1 With the minimal principal radius of curvature R = κ−1
1 , we have:

ẽ3
i (W

KLz) = 0 for i = σ, 3 (4.7a)

ẽα
σ(WKLz) = γα

σ (z)− x3

(
ρα

σ(z)− 2bα
δ γδ

σ(z)
)

+
∞∑

n=1

x1+n
3 (PKL

n )α
σ(z), (4.7b)

and

ẽ3
3(W

cmpz) = −pγα
α(z) + px3ρ

α
α(z), (4.8a)

2ẽ3
σ(Wcmpz) = −x3pDσγ

α
α(z) +

x2
3

2
pDσρ

α
α(z), (4.8b)

ẽα
σ(Wcmpz) = x3pb

α
σγδ

δ (z) +
∞∑

n=1

x1+n
3 (P cmp

n )α
σ(z), (4.8c)

where the tensors (PKL
n )(z) and (P cmp

n )(z) satisfy the estimates, for all n ≥ 1 ,

|(PKL
n )(z)|

0 ; S
+ |(P cmp

n )(z)|
0 ; S

≤ An

Rn

(
|ρ(z)|

0 ; S
+

1

R
|γ(z)|

0 ; S

)
, (4.9) Epq

for an adimensional constant A .

Equation (4.7a) justifies the denomination of WKLz after Kirchhoff-Love.

Proof. It is clear that ẽ3
3(W

KLz) = ∂x3z3 = 0 . Using equality (4.2b), we calculate

2ẽ3
σ(WKLz) = −θσ(z) + x3b

α
σθα(z) + θσ(z)− x3b

α
σθα(z) = 0,

which yields (4.7a).

The equation (4.8a) is clear. The expression (4.2b) of the operator ẽ3
σ(w) yields (4.8b).

To obtain (4.7b) we first note that

Λαβ(WKLz) = Λαβ(z)− x3

2
(bσ

αDσθβ(z)− bσ
βDαθσ(z))

and hence as Dσθβ(z) = ρ(z) + bν
σbνβz3 − bν

σDβzν we have

|Λαβ(WKLz)|
0 ; S

≤ 1

R
|zσ|1 ; S

+
x3

R
|ρ(z)|

0 ; S
+

x3

R2
|zσ|1 ; S

+
x3

R3
|z3|0 ; S

With expression (4.2c) we compute that

ẽα
σ(WKLz) = γα

σ (z) + x3b
α
δ γδ

σ(z) + x3Λ
α ·
· σ(z)− x3ρ

α
σ(z) +

∞∑
n=1

x1+n
3 (PKL

n )α
σ(z),

where ραβ = 1
2
(Dαθβ + Dβθα) and where the tensors (PKL

n )(z) satisfy the estimate

|(PKL
n )(z)|

0 ; S
≤ An

Rn

(
|ρ(z)|

0 ; S
+

1

R
|z|

1 ; S
+

1

R2
|z|

0 ; S

)
.
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But we have
ρα

β − Λα ·
·β = ρα

β − bα
σγσ

β .

Moreover, using (3.5) with n = 1 , we have that for all z ∈ H1
0 × H2

0(S) ,

1

R
|z|

1 ; S
+

1

R2
|z|

0 ; S
≤ A1

(
|ρ(z)|

0 ; S
+

1

R
|γ(z)|

0 ; S

)
.

Therefore we get (4.7b). The proof of (4.8c) is similar.

STEP 3. Gathering the previous results and setting (Pn)(z) = (PKL
n )(z) + (P cmp

n )(z) ,
we find that

ẽ3
3(Wz) = −pγα

α(z) + px3ρ
α
α(z),

ẽ3
σ(Wz) = −x3

2
pDσγ

α
α(z) +

x2
3

4
pDσρ

α
α(z),

ẽα
σ(Wz) = γα

σ (z)− x3

(
ρα

σ(z)− pbα
σγδ

δ (z)− 2bα
δ γδ

σ(z)
)

+
∑∞

n=1 x1+n
3 (Pn)α

σ(z)

where (Pn)(z) satisfies the estimate (4.9).

We compute now the different contributions in the integral (4.3). The previous computa-
tions yield a convergent series expansion of each term in powers of x3 . Therefore each
contribution in the integral (4.3) has also a convergent series expansion in powers of x3 .
When integrating with respect to x3 from −ε to ε , the odd powers of x3 have no
contribution. Based on this remark we immediately obtain, first:∫

Ωε

(λ + 2µ)ẽ3
3(Wz)ẽ3

3(Wz) dV = 2ε(λ + 2µ)p2

∫
S

γα
α(z)γβ

β (z) dS

+
2ε3

3
(λ + 2µ)p2

∫
S

ρα
α(z)ρβ

β(z) dS + Q0(ε, z)

where the term Q0(ε, z) is due to the function h is (4.4) and thus satisfies, using (3.8)

|Q0(ε, z)| ≤ A
ε

R
Eε

2D[z].

Then:∫
Ωε

2λẽ3
3(Wz)ẽα

α(Wz) dV = −4ελp

∫
S

[
γα

α(z)γβ
β (z) +

ε2

3
ρα

α(z)ρβ
β(z)

]
dS + Q1(ε, z)

where

Q1(ε, z) =

∫
Ωε

(
2x2

3λpρα
α(z)

(
pbν

νγ
δ
δ (z) + 2bν

δγ
δ
ν(z)

)
− 2λx2

3pγ
α
α(z)(P1)

ν
ν(z) + 2λx4

3pρ
α
α(z)(P2)

ν
ν(z) + h.o.t.

)
dV.
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Hence using (4.9) and (4.5) we see that Q1(ε, z) satisfies:

|Q1(ε, z)| ≤ AE
(ε2

R
|γ|2

0 ; S
+

ε4

R
|ρ|2

0 ; S
+

ε3

R
|γ|

0 ; S
|ρ|

0 ; S

)
,

where we used the fact that εR−1 < 1 . As we have

ε3

R
|γ|

0 ; S
|ρ|

0 ; S
≤ A

(ε2

R
|γ|2

0 ; S
+

ε4

R
|ρ|2

0 ; S

)
we get using (3.8)

|Q1(ε, z)| ≤ A
ε

R
Eε

2D[z].

Similarly we compute that:∫
Ωε

λẽα
α(Wz)ẽβ

β(Wz) dV = 2ελ

∫
S

[
γα

α(z)γβ
β (z) +

ε2

3
ρα

α(z)ρβ
β(z)

]
dS + Q2(ε, z)

where, again, we have
|Q2(ε, z)| ≤ A

ε

R
Eε

2D[z].

We also have ∫
Ωε

4µaαβ(x3)ẽ
3
α(Wz)ẽ3

β(Wz) dV = Q3(ε, z),

with:
|Q3(ε, z)| ≤ AE

(
ε3|γ|2

1 ; S
+ ε5|ρ|2

1 ; S

)
and thus using the definition (2.15) of L1 and the estimates (3.8),

|Q3(ε, z)| ≤ AE
ε2

L2
1

Eε
2D[z].

Finally, we have:∫
Ωε

2µẽα
β(Wz)ẽβ

α(Wz) dV = 4εµ

∫
S

[
γα

β (z)γβ
α(z) +

ε2

3
ρα

β(z)ρβ
α(z)

]
dS + Q4(ε, z)

where, again:
|Q4(ε, z)| ≤ A

ε

R
Eε

2D[z].

Finally, using the relation: λ− 2λp + p2(λ + 2µ) = 2µp , we find that

Ẽε
3D[Wz] = 2ε

∫
S

[
2µpγα

α(z)γβ
β (z) + 2µγβ

α(z)γα
β (z)

]
dS

+
2ε3

3

∫
S

[
2µpρα

α(z)ρβ
β(z) + 2µρβ

α(z)ρα
β(z)

]
dS + Q(ε, z) (4.10) 4E9
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where Q(ε, z) is the sum
∑4

`=1 Q`(ε, z) , and thus

|Q(ε, z)| ≤ A
( ε

R
+

ε2

L2
1

)
Eε

2D[z].

But, compared with (4.6), the right-hand side of (4.10) writes Eε
2D[z] + Q(ε, z) . Hence

we have
Ẽε

3D[Wz]− Eε
2D[z] = Q(ε, z),

and this yields the result.

Remark 4.2 The part Ucmpz has a significant energy. If we evaluate the energy of UKLz
instead of the full Uz , we obtain the plain strain energy 2εbε

2D(z, z) of z defined below
instead of the plain stress energy 2εaε

2D(z, z) : Recall that, cf (2.8) aε
2D(z, z) is equal to∫

S

λ̃γα
α(z)γβ

β (z) + 2µγβ
α(z)γα

β (z) dS +
ε2

3

∫
S

λ̃ρα
α(z)ρβ

β(z) + 2µρβ
α(z)ρα

β(z) dS,

and let us define bε
2D(z, z) as∫

S

λγα
α(z)γβ

β (z) + 2µγβ
α(z)γα

β (z) dS +
ε2

3

∫
S

λρα
α(z)ρβ

β(z) + 2µρβ
α(z)ρα

β(z) dS.

Using the previous computations, we can show that∣∣Eε
3D[UKLz]− 2εbε

2D(z, z)
∣∣ ≤ AE

(ε2

R
|γ|2

0 ; S
+

ε4

R
|ρ|2

0 ; S

)
.

5 OUTLINE OF THE PROOF OF THE MAIN ESTIMATE

To prove (2.24), we have to take lateral Dirichlet boundary conditions on Γε
0 into

account. As Uz does not satisfy these boundary conditions in general, we will add a
correction term ucor to it so that Uz + ucor is zero on Γε

0 .

The plan of the proof of (2.24) originates from the following

Theorem 5.1 Let u be solution of problem (P3D) , z the solution of problem (P2D)
and ucor constructed so that Uz + ucor ∈ V (Ωε) . If we have the estimates

∀v ∈ V (Ωε) aε
3D(u− Uz, v) ≤ B

1/2
1 Eε

3D[v]1/2, (5.1) 5E4

and
Eε

3D[ucor] ≤ B2, (5.2) 5E5

then there holds
Eε

3D[u− Uz] ≤
(
B

1/2
1 + 2B

1/2
2

)2
. (5.3) 5E6
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Proof. Let unew = Uz + ucor ∈ V (Ωε) . Since u− Uz = (u− unew) + ucor , we start
from the triangle inequality

Eε
3D[u− Uz]1/2 ≤ Eε

3D[u− unew]1/2 + Eε
3D[ucor]1/2. (5.4) 5E7

The last term of the rhs is bounded by B
1/2
2 . As for the first one we write

Eε
3D[u− unew] = aε

3D(u− unew, u− unew)

= aε
3D(u− Uz, u− unew) + aε

3D(ucor, u− unew).

Since u− unew belongs to V (Ωε) , we may use (5.1) and obtain:

Eε
3D[u− unew] ≤

(
B

1/2
1 + Eε

3D[ucor]1/2
)
Eε

3D[u− unew]1/2,

whence, using (5.2) again

Eε
3D[u− unew]1/2 ≤ B

1/2
1 + B

1/2
2 .

With (5.4) this gives the estimate (5.3).

Thus, to obtain (2.24), it is sufficient to prove estimates (5.1)-(5.2) with B1 , B2 .
AS(ε, z, f rem) with

AS(ε, z, f rem) = BS(ε; z) Eε
2D[z] + D2E−1‖f rem‖2

L2(Ωε)
, (5.5) Eest2

where BS(ε; z) is defined in (2.24). In §7, we do this for B1 and in §8 we construct the
correction term ucor and prove that B2 . AS(ε, z, f rem) .

6 FORMAL SERIES REDUCTION

We had rather to work with the shifted displacement w associated with u , cf. §2.f.
The 3D displacement w satisfies for all v ∈ V (Ωε)∫

Ωε

Aijk`ẽij(w) ek`(v) dV =

∫
Ωε

f · v dV, (6.1) Pbw

with the shifted strains ẽij(w) defined in (4.2a)-(4.2c). Integrating by part in (6.1), we
find that the shifted displacement w is solution of the boundary value problem

Lw = f in Ωε

Tw = 0 on Γε
±

w = 0 on Γε
0 ,

(6.2) 5E0

where the coefficients of the operators L and T express in terms of the normal coordinate
x3 , the covariant derivative Dα and the curvature tensor bαβ , see [14]. The operator L
is of degree 2 , while T is of degree 1 .
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6.A SCALING IN THE 3D BOUNDARY VALUE PROBLEM

The formal series approach of [14, 13] relies on the scaling X3 = ε−1x3 which trans-
forms problem (6.2) into a problem posed on a domain independent of ε , with operators
which are power series of ε . This allows a formal series reduction of the 3D problem.

The scaling x3 7→ X3 = ε−1x3 is one-to-one from the shell Ωε onto the manifold
Ω := S × (−1, 1) and we denote by Γ± its upper and lower faces S ×{±1} and by Γ0

its lateral boundary ∂S × (−1, 1) . Likewise V (Ω) denotes the space of v ∈ H1(Ω)3

which satisfies the Dirichlet boundary condition v
∣∣
Γ0

= 0 .

In the following, we denote by u the displacement u viewed on the manifold Ω .
In a local coordinate system (xα) on S , this means that u(xα, X3) = u(xα, x3) for
X3 = ε−1x3 . Similarly, w and f correspond to the shifted displacement w and the
loading forces f . To denote the displacements Uz and Wz on Ω , we use the notations
U(ε)z and W(ε)z so that we have with (2.18)

W(ε)z =

{
zσ − εX3θσ(z),

z3 − εX3p γα
α(z) + ε2 X2

3

2
p ρα

α(z),
(6.3) 2EWeps

and a similar formula for U(ε)z .

In the same way, we define the three dimensional energy on Ω by the formula

E3D(ε)[u] = Eε
3D[u]

involving the scaled strain tensor eij(ε)(u) = eij(u) , and associated with the bilinear
form a3D(ε)( · , · ) on V (Ω) . In particular, we will often use the relation, for v ∈
H1(Ω) ,

‖eij(ε)(v)‖2

L2(Ω)
' ε−1E−1E3D(ε)[v]. (6.4) EEe

Note that with these notations, Korn inequalities (2.20) read, for v ∈ V (Ω) ,

‖v‖2

L2(Ω)
≤ D4E−1ε−3 E3D(ε)[v]

‖Dαv‖2

L2(Ω)
≤ D2E−1ε−3 E3D(ε)[v]

‖∂X3v‖
2

L2(Ω)
≤ D2E−1ε−1 E3D(ε)[v]

(6.5) Korn3Deps

The scaled displacement u ∈ V (Ω) is solution of the variational problem

∀v ∈ V (Ω), a3D(ε)(u, v) = ε〈f , v〉L2(Ω). (6.6) ipart

The 3D interior operator L(xα, x3; Dα, ∂3) in problem (6.2) is transformed into the
operator L(ε)

L(ε)(xα, X3; Dα, ∂X3) := L(xα, εX3; Dα, ε−1∂X3),
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and similarly for the boundary operators T(xα, x3; Dα, ∂3) and T(ε) . Note that on the
manifold Ω , the variable X3 and the partial derivative ∂X3 are adimensional. The oper-
ators L(ε) and T(ε) expand in power series of ε :

L(ε) = ε−2

∞∑
k=0

εkLk and T(ε) = ε−1

∞∑
k=0

εkTk, (6.7) ELTk

where Lk and Tk are intrinsic operators in Ω which are polynomial in X3 and in ∂X3

with coefficients b -homogeneous operators of degree k , see [14, Thm. 3.3].

So problem (6.2) is equivalent to the problem
L(ε)w = f in Ω

T(ε)w = 0 on Γ±

w = 0 on Γ0 .

(6.8) 5E0bis

Moreover there holds for all v ∈ V (Ω) and all u∗ ∈ H1(Ω)3

a3D(ε)(u∗, v) = − ε
〈
L(ε)w∗, v

〉
L2(Ω)

− ε
〈
T(ε)w∗, v

〉
L2(Γ±)

. (6.9) 6E7

Here, w∗ is the scaled shifted displacement corresponding to u∗ i.e.

u∗3 = w∗
3 and u∗σ = (δβ

σ − εX3b
β
σ)w∗

β. (6.10) Eshif

For instance (6.9) holds with u∗ = U(ε)z and w∗ = W(ε)z .

6.B SOLUTION OF TRANSVERSE PROBLEMS

The treatment of the first two equations of (6.8) can be performed by solving Neumann
problems in X3 and introducing suitable compatibility conditions. This can be done in
a fully exact way without approximation using the formalismus of formal Laurent series
and formal power series, as follows.

With expansions (6.7) we associate the formal Laurent series

L(X) =
∑
k≥−2

Lk+2Xk and T(X) =
∑
k≥−1

Tk+1Xk.

The three-dimensional formal series system {L(X), T(X)} can be reduced to a two di-
mensional one, cf. [14, Thm. 4.1]:

Theorem 6.1 There exist two unique formal power series V(X) =
∑

k≥0 VkXk and
A(X) =

∑
k≥0 AkXk satisfying the following three conditions:

1. The coefficients Vk are reconstruction operators acting from Σ(S) with values in
C∞(I, Σ(S)) , and such that for all z ∈ Σ(S)

V0z = z and ∀k ≥ 1, Vkz = 0 on S,
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2. The coefficients Ak are 2D operators acting from Σ(S) into itself,

3. There holds the formal series equation{
L(X) V(X) = −I ◦ A(X) in Ω

T(X) V(X) = 0 on Γ±.
(6.11) Efso

Here, the operator I is the natural embedding operator from Σ(S) to the space
C∞(I, Σ(S)) and the product between two formal series is the standard Cauchy
product.

Thus the equation (6.11) means that there holds

L0 V0 = 0, L0 V1 + L1 V0 = 0,
∑

j+k=i

Lj Vk = −I ◦ Ai−2, i ≥ 2 (6.12a)∑
j+k=i

Tj Vk = 0, i ≥ 0. (6.12b)

Following the proof of [14, Thm. 4.1], we can see that the term Vk of the formal series
V(X) is polynomial in X3 and b -homogeneous of degree k . We have

V1
σz = −X3θσ(z), V1

3z = −p X3γ
α
α(z)

and

V2
σz =

X2
3

2
pDσγ

α
α(z), V2

3z = p
X2

3

2

(
ρα

α(z)− pbα
αγβ

β (z)− 2bβ
αγα

β (z)
)

as first terms. Actually, the reconstruction operator W(ε) : z → W(ε)z in (6.3) coin-
cides with V0 + εV1 + ε2(V2 − v2) where v2 is a residual part of the operator V2 .

The term Ak of the formal series A(X) is a b -homogeneous operator of degree
k + 2 . The zero-th order term A0 coincides with the membrane operator M , A1 is zero,
so that A(ε) = M + ε2A2 + · · · . Moreover, adapting the proof of [14, Prop. 4.5] we
obtain the following estimate for the difference A2 − B where B is the Koiter bending
operator: If z and η ∈ Σ(S) and η satisfies the boundary condition η

∣∣
∂S

= 0 ,∣∣∣〈(A2 − B)z, η
〉

L2(S)

∣∣∣ . E
(
|γ(z)|

2 ; S
|γ(η)|

0 ; S
+ κ2

2|z|
(b)

1 ; S
|γ(η)|

0 ; S

+κ1|z3|2 ; S
|γ(η)|

0 ; S
+ κ1|γ(z)|

1 ; S
|η|(b)

1 ; S
+ κ2

2|γ(z)|
0 ; S

|η|(b)

1 ; S

)
, (6.13) E1

where the constants κj , j = 1, 2 are defined in (2.13).
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7 INNER ESTIMATE

In this section, we prove the following result:

Proposition 7.1 With the definitions of Section 2, let κ = κ5 , r = 1/κ and L = L4 .
For v ∈ V (Ω) , we have the estimate

a3D(ε)(u− U(ε)z, v) . B
1/2
1 E3D(ε)[v]1/2

where
B1 = D2E−1ε‖f rem‖2

L2(Ω)
+ B1

S(ε; z)Eε
2D[z], (7.1) EB1

where f rem = f − g and

B1
S(ε; z) =

(
1 +

D4

r4

)( ∑
F

ε2k

L2ir2j
+

ε4D2

L6
+

ε6D2

L8

)
(7.2) BS1

where F is the finite set {(i, j, k) ∈ N3 | i + j = k, k ∈ {1, 2, 3, 4}} .

Scaling back to Ωε , the previous result implies that for v ∈ V (Ωε) , we have

aε
3D(u− Uz, v) . B

1/2
1 Eε

3D[v]1/2

where B1 is given by (7.1). Note that we have ε‖f rem‖2

L2(Ω)
= ‖f rem‖2

L2(Ωε)
.

Before starting the proof of the proposition, let us prove that B1 in (7.1) satisfies
B1 . AS(ε, z, f rem) given by (5.5) and (2.24) under the hypothesis ε < r and ε2/L2 ≤
M of Theorem 2.9.

First, the ratio D/r is an adimensional constant depending on S only. Hence,

B1
S(ε; z) .

∑
F

ε2k

L2ir2j
+

ε4D2

L6
+

ε6D2

L8
.

Now it is clear that under the hypothesis ε2/L2 ≤ M we have∑
F

ε2k

L2ir2j
.

(
ε2

r2
+

ε2

L2

)
(1 + M3) and

ε6D2

L8
≤ M

ε4D2

L6

and this proves that B1 . AS(ε, z, f rem) with an adimensional constant satisfying (2.25).
The leading idea of the proof of Proposition 7.1 is to replace U(ε)z with a more

precise reconstructed displacement Uasy(ε)z : Working in shifted displacement, we define
the new reconstruction operator Wasy(ε) as the first five terms of the formal series V(X)
introduced in Theorem 6.1:

Wasy(ε) = V0 + εV1 + ε2V2 + ε3V3 + ε4V4. (7.3) 5E1

To this operator corresponds the operator Uasy(ε) as in (6.10).
We first prove the following lemma:
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Lemma 7.2 For v ∈ V (Ω) , we have the estimate

a3D(ε)(u− Uasy(ε)z, v) . B
1/2
1 E3D(ε)[v]1/2

where Uasy(ε)z is given in shifted components by the displacement Wasy(ε)z defined in
(7.3) and B1 by (7.1).

Remark 7.3 Owing to the fact that ε < r ≤ R , together with (4.5), we will always
assume that ε is sufficiently small, so that |h(x3)| ≤ 1/2 . Hence, the volume form dV
is equivalent (up to constant) to the form dS dx3 . We will make a constant use of this
relation in the sequel.

Proof of Lemma 7.2. Let v ∈ V (Ω) . We split a3D(ε)(u−Uasy(ε)z, v) into two terms.
Since u is solution of (P3D) , eq. (6.6) yields

a3D(ε)(u, v) = ε〈f , v〉L2(Ω).

For the second term, using (6.9) we obtain

a3D(ε)(Uasy(ε)z, v) = −ε
〈
L(ε)Wasy(ε)z, v

〉
L2(Ω)

− ε
〈
T(ε)Wasy(ε)z, v

〉
L2(Γ±)

.

By definition of Wasy(ε) , and using (6.12a), we find

−L(ε)Wasy(ε) = M + ε2A2+

+ ε3(L1V4 + L2V3 + L3V2 + L4V1 + L5V0) + ε4
∑

0≤i≤4

Li(ε)Vi, (7.4) E6

where the operators Li(ε) are given by the convergent power series

Li(ε) =
∞∑

k=0

εkLk+6−i (7.5) Eps

and define operators of order 2 in Dα . The convergence of these series rely on the
uniform estimates for all n ≥ 3 (see [14, Thm. 3.3])

‖Lnv‖
L2(Ω)

. n E
(
κn−2

1 ‖D[2]v‖L2(Ω)
+ κn−1

2 ‖D[1]v‖L2(Ω)
+ κn

2‖v‖L2(Ω)

+ κn−1
1 ‖∂X3D[1]vα‖L2(Ω)

+ κn
1‖∂X3v‖L2(Ω)

)
. (7.6) EestL

Similarly, using (6.12b), we find

−T(ε)Wasy(ε) = ε4
∑

0≤i≤4

Ti(ε)Vi

where Ti(ε) are of order 1 in Dσ and 0 in ε and depend of the operators Tk of (6.7).
These series are given as convergent operators series, owing to estimates similar to (7.6).
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Since z is solution of (P2D) , we have

Mz + ε2A2z = g + ε2(A2 − B)z.

Putting all together, we find

a3D(ε)(u− Uasy(ε)z, v) = ε 〈f − g, v〉L2(Ω) (7.7a)

+ ε3〈 (A2 − B)z, v〉L2(Ω) (7.7b)

+ ε4〈 L1V4z + L2V3z, v〉L2(Ω) (7.7c)

+ ε4〈 L3V2z + L4V1z + L5V0z, v〉L2(Ω) (7.7d)

+ ε5
∑

1≤i≤4

[〈
Li(ε)Viz, v

〉
L2(Ω)

+
〈
Ti(ε)Viz, v

〉
L2(Γ±)

]
. (7.7e)

The proof of Lemma 7.2 consists in estimating each term in the above right hand side:
Term (7.7a) in Sublemma 7.3.1, term (7.7b) in Sublemma 7.3.2, terms (7.7c) in Sublemma
7.3.3, and the remaining terms (7.7d) and (7.7e) in the end of this proof of Lemma 7.2.

Sublemma 7.3.1 For v ∈ V (Ω) , we have the estimate:

ε〈f − g, v〉L2(Ω) . DE−1/2ε‖f rem‖
L2(Ω)

E3D(ε)[v]1/2. (7.8) Efg

Proof of Sublemma 7.3.1. Let G be the mean value operator

Gv =
1

2

∫ 1

−1

v(X3)dX3

With (2.10), we obtain g = Gf and we compute∣∣ε〈f − g, v〉L2(Ω)

∣∣ =
∣∣ε〈f − Gf , v − Gv〉L2(Ω)

∣∣ ≤ ε‖f − g‖
L2(Ω)

‖v − Gv‖
L2(Ω)

.

Using the Bramble-Hilbert Lemma on (−1, 1) , together with the fact that X3 is an
adimensional variable, we get, taking advantage of Remark 7.3,

‖v − Gv‖2

L2(Ω)
. ‖∂X3v‖

2

L2(Ω)
.

Combining this with Korn inequality (6.5) we finally find

‖v − Gv‖
L2(Ω)

. DE−1/2ε−1/2E3D(ε)[v]1/2.

We conclude using f rem = f − g .

Sublemma 7.3.2 For v ∈ V (Ω) , we have the estimate:∣∣∣ε3
〈
(A2 − B)z, v

〉
L2(Ω)

∣∣∣ . B1
S(ε; z)1/2Eε

2D[z]1/2E3D(ε)[v]1/2, (7.9)

where B1
S(ε; z) is given by (7.2).
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Proof of Sublemma 7.3.2. Using (6.13), we have for a 3D displacement v satisfying
the homogeneous lateral boundary condition∣∣∣〈(A2 − B)z, v

〉
L2(Ω)

∣∣∣ . E
(
|γ(z)|

2 ; S
+ κ2

2|z|
(b)

1 ; S
+ κ1|z3|2 ; S

)
‖γ(v)‖

L2(Ω)

+ E
(
κ1|γ(z)|

1 ; S
+ κ2

2|γ(z)|
0 ; S

)(
‖Dαv‖

L2(Ω)
+ κ1‖v‖L2(Ω)

)
. (7.10) E78

But for any v we have in non-shifted components (see (4.2c) and [14, Prop. 3.2])

γαβ(v) = eαβ(ε)(v)− εX3

(
cαβv3 + vδDαbδ

β).

Thus we have
‖γ(v)‖

L2(Ω)
. ‖eαβ(ε)(v)‖

L2(Ω)
+ εκ2

2‖v‖L2(Ω)
. (7.11) E79

Combining (7.11) with Korn inequalities (6.5) in (7.10) we find∣∣∣〈(A2 − B)z, v
〉

L2(Ω)

∣∣∣ . ε−3/2E1/2E3D(ε)[v]1/2
{

ε
(
|γ(z)|

2 ; S
+ κ2

2|z|
(b)

1 ; S
+ κ1|z3|2 ; S

)
(1 + D2κ2

2)

+
(
κ1|γ(z)|

1 ; S
+ κ2

2|γ(z)|
0 ; S

)
(D + κ1D

2)
}

.

Using (3.5) and the definition 2.4 of the wavelength Ln we find using (6.4)∣∣∣〈(A2 − B)z, v
〉

L2(Ω)

∣∣∣ . ε−3/2E1/2E3D(ε)[v]1/2
{

ε
(
(L−2

2 + κ2
2)|γ(z)|

0 ; S
+ κ2|ρ(z)|

0 ; S

)
(1 + D2κ2

2)

+ (κ1L
−1
1 + κ2

2)|γ(z)|
0 ; S

(D + κ1D
2)

}
Using (3.8) we find∣∣∣ε3

〈
(A2 − B)z, v

〉
L2(Ω)

∣∣∣ . aS(ε, z)Eε
2D[z]1/2E3D(ε)[v]1/2

where

aS(ε, z) = ε
(
εL−2

2 + εκ2
2 + κ2

)
(1 + D2κ2

2) + ε(κ1L
−1
1 + κ2

2)(D + κ1D
2).

Using the definition of r = 1/κ5 and L = L4 we can take

aS(ε, z) =
(
1 +

D2

r2

)( ε

L
+

ε2

L2
+

ε

r
+

ε2

r2

)
and we get the result.

Sublemma 7.3.3 For v ∈ V (Ω) , we have the estimates∣∣∣ε4
〈
L1V4z, v

〉
L2(Ω)

∣∣∣ +
∣∣∣ε4

〈
L2V3z, v

〉
L2(Ω)

∣∣∣ . B1
S(ε; z)1/2Eε

2D[z]1/2E3D(ε)[v]1/2,

where B1
S(ε; z) is given by (7.2).
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Proof of Sublemma 7.3.3. The operators V3 and V4 are polynomials in X3 with 2D
operator coefficients. These operators are b -homogeneous operators of degree 3 and 4
respectively. If A is a 2D operator acting form Σ(S) into itself, it can be viewed as a
block 2× 2 matrix

A =

(
Aσα Aσ3

A3α A33

)
and the inequality

deg A ≤
(

a∗∗ a∗3
a3∗ a33

)
means that deg Aσα ≤ a∗∗ , etc..., where deg means the order as partial differential
operator. With these notations, we have (see [14, Prop. 4.2]) that

deg V3 ≤
(

2 3
3 2

)
and deg V4 ≤

(
4 3
3 4

)
(7.12) 7Edeg

(i) Using the expression of the operator L1 (see [14, Thm. 3.3]),

L1
σ(w) = −µbα

α∂X3wσ + (λ + µ)Dσ∂X3w3 −X3µbα
σ∂2

X3
wα,

L1
3(w) = −µbα

α∂X3w3 + (λ + µ)γα
α(∂X3w),

and the identity γα
α(u) = Dαuα − bα

αu3 , we find〈
L1V4z, v

〉
L2(Ω)

=

∫
Ω

(
− µbα

α∂X3V
4
σz + (λ + µ)Dσ∂X3V

4
3z −X3µbα

σ∂2
X3

V4
αz

)
vσdV

+

∫
Ω

(
− (λ + 2µ)bα

α∂X3V
4
3z + (λ + µ)Dα∂X3V

4
αz

)
v3 dV.

Using the fact that v
∣∣
Γ0

= 0 we can integrate by parts with respect to the surfacic deriva-
tive Dσ , and we obtain (we omit dV ) :〈

L1V4z, v
〉

L2(Ω)
= −

∫
Ω

(µbα
α∂X3V

4
σz+X3µbα

σ∂2
X3

V4
αz) vσ−

∫
Ω

(λ+µ)(∂X3V
4
3z) Dσv

σ

−
∫

Ω

(λ + 2µ)(∂X3V
4
3z) bα

αv3 −
∫

Ω

(λ + µ)(∂X3V
4
αz) Dαv3

and hence〈
L1V4z, v

〉
L2(Ω)

= −
∫

Ω

(µbα
α∂X3V

4
σz + X3µbα

σ∂2
X3

V4
αz) vσ −

∫
Ω

µ(∂X3V
4
3z) bα

αv3

−
∫

Ω

(λ + µ)(∂X3V
4
3z) γσ

σ (v)−
∫

Ω

(λ + µ)(∂X3V
4
αz) Dαv3.
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The operator V 4
3 is b -homogeneous of degree 4 , and of orders of derivative 3 in zσ

and 4 in z3 . By integration by parts using the boundary condition on v , we obtain∣∣∣∣∫
Ω

µ(∂X3V
4
3z)bα

αv3

∣∣∣∣ . E
( 3∑

j=0

κ4−j
4 |z|

j ; S

)
κ1‖v3‖L2(Ω)

+ Eκ1|z3|3 ; S
‖Dαv3‖L2(Ω)

. E
( 3∑

j=0

κ4−j
4 |z|

j ; S

)(
‖Dαv3‖L2(Ω)

+ κ4‖v3‖L2(Ω)

)
.

As the operator V 4
α is b -homogeneous of degree 4 , and of orders of derivative 3 in z3

and 4 in zα , we obtain∣∣∣〈L1V4z, v
〉

L2(Ω)

∣∣∣ . E
(
|zα|4 ; S

+
3∑

j=0

κ4−j
4 |z|

j ; S

)(
‖Dαv‖

L2(Ω)
+ κ4‖v‖L2(Ω)

)
+ E

(
|z3|4 ; S

+
3∑

j=0

κ4−j
4 |z|

j ; S

)
‖γαβ(v)‖

L2(Ω)
. (7.13) E241

Using (7.11), the Korn inequalities (6.5) and inequality (3.8) we find∣∣∣〈L1V4z, v
〉

L2(Ω)

∣∣∣ . ε−3/2E1/2
(
|zα|4 ; S

+
3∑

j=0

κ4−j
4 |z|

j ; S

)(
D + D2κ4

)
E3D(ε)[v]1/2

+ ε−1/2E1/2
(
|z3|4 ; S

+
3∑

j=0

κ4−j
4 |z|

j ; S

)
E3D(ε)[v]1/2. (7.14) E242

Recall that κ = κ5 and L = L4 . Here, because of asymmetry between surfacic and
transverse components, we do not use estimates (3.9): We obtain sharper estimates using
directly (3.6a) and (3.6b),

|zα|4 ; S
+

3∑
j=0

κ4−j
4 |z|

j ; S
.

3∑
j=0

κ3−j|γ(z)|
j ; S

+
1∑

j=0

κ2−j|ρ(z)|
j ; S

. ε−3/2E−1/2
(
ε

3∑
j=0

κ3−jL−j +
1∑

j=0

κ2−jL−j
)
Eε

2D[z]1/2

Similarly, we have

|z3|4 ; S
+

3∑
j=0

κ4−j
4 |z|

j ; S
.

2∑
j=0

κ2−j|ρ(z)|
j ; S

+
2∑

j=0

κ3−j|γ(z)|
j ; S

. ε−3/2E−1/2
( 2∑

j=0

κ2−jL−j + ε

2∑
j=0

κ3−jL−j
)
Eε

2D[z]1/2.
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Combining these estimates with (7.14) we find∣∣∣〈ε4L1V4z, v
〉

L2(Ω)

∣∣∣ . bS(z, ε)Eε
2D[z]1/2E3D(ε)[v]1/2

with

bS(z, ε) = ε
(
D + D2κ

)(
εL−3 + ε

2∑
j=0

κ3−jL−j +
1∑

j=0

κ2−jL−j
)

+ ε2
( 2∑

j=0

κ2−jL−j + ε

2∑
j=0

κ3−jL−j
)

and we check that

bS(z, ε) .
ε2

L3

(
D +

D2

r

)
+

(
1 +

D2

r2

)( ∑
i+j=k
k∈{1,2}

εk

riLj

)

and hence bS(z, ε) . B1
S(z; ε)1/2 . Note that we only need the introduction of κ4 and

L3 to obtain this estimate.

(ii) Similarly, using the degrees (7.12) of V3 and the expression of L2 cf. [14, Prop. 3.3]

L2
σ(w) = −µX3c

α
α∂X3wσ + µX3b

α
αbβ

σ∂X3wβ − µbα
αDσw3 − µbβ

βbα
σwα + λDσγ

α
α(w)

+ 2µDαγα
σ (w),

L2
3(w) = −µX3c

α
α∂X3w3 + (λ + µ)bβ

αγα
β

(
∂X3(X3w)

)
+ µbβ

αγα
β (w) + µDαθα(w),

we have after integration by parts that〈
L2V3z, v

〉
L2(Ω)

= −
∫

Ω

(µX3c
α
α∂X3V

3
σz − µX3b

α
αbβ

σ∂X3V
3
βz + µbβ

βbα
σV3

αz)vσ dV

+

∫
Ω

(µbα
αV3

3z − λγα
α(V3z))Dσv

σ dV −
∫

Ω

2µγα
σ (V3z)Dαvσ dV

−
∫

Ω

(λ + 2µ)(cα
α∂3(X3V

3
3z)v3 dV −

∫
Ω

(
(λ + µ)∂X3(X3V

3
αz)

)
(Dβbα

βv3) dV

−
∫

Ω

(µV3
αz)(Dβbα

βv3) dV −
∫

Ω

µθα(V3z)(Dαv3) dV.

Using the relation
ταβDαwβ = τβ

αγα
β (w) + τβ

α bα
βw3

valid for any symmetric tensor ταβ , and using integration by parts, we find the same
estimate as in (7.13) which yields the result.

End of proof of Lemma 7.2. We now prove that the remaining terms (7.7d) and (7.7e) in
equation (7.7) can be estimated by terms of the form

B1
S(ε; z)1/2Eε

3D[z]1/2E3D(ε)[v]
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where the expression of the bound B1
S is given by (7.2).

Using [14, Thm. 3.3], we can prove like for the estimates (7.6) the following uniform
bound for all n ≥ 3 , w ∈ H1(Ω)3 and v ∈ V (Ω) :∣∣〈Lnw, v〉L2(Ω)

∣∣ . nE κn−2
2

(
‖Dαv‖

L2(Ω)
+ κ2‖v‖L2(Ω)

)
×(

‖Dαw‖
L2(Ω)

+ κ2‖w‖L2(Ω)
+ ‖∂X3Dαw‖

L2(Ω)
+ κ2‖∂X3w‖L2(Ω)

)
.

Recall that for all n ≥ 0 the operators Vn are b -homogeneous of degree n . Hence the
uniform estimates for all n ≥ 3 and all i ∈ {0, 1, 2, 3, 4}∣∣〈LnViz, v〉L2(Ω)

∣∣
. nEκn−2

2

(
‖Dαv‖

L2(Ω)
+ κ2‖v‖L2(Ω)

)
(|z|(b)

i+1 ; S
+ κ2|z|

(b)

i ; S
)

. nE1/2ε−3/2κn−2
2 (D + D2κ2)E3D(ε)[v]1/2 · (|z|(b)

i+1 ; S
+ κ2|z|

(b)

i ; S
),

(7.15) ELbn

using Korn inequalities (6.5).

This estimate yields immediately that∣∣∣ε4
〈
L3V2z + L4V1z + L5V0z, v

〉
L2(Ω)

∣∣∣
. ε5/2E1/2κ2(D + D2κ2)

( ∑
i+j=3

κi
2|z|

(b)

j ; S

)
E3D(ε)[v]1/2,

and using the a priori estimate (3.9) we get∣∣∣ε4
〈
L3V2z + L4V1z + L5V0z, v

〉
L2(Ω)

∣∣∣
. ε(Dκ + D2κ2)

( ∑
i,j,k∈G3

εkκiL−j
)
Eε

2D[z]1/2E3D(ε)[v]1/2,

where G3 is given by the formula (3.10).

But the constant in the right-hand side can be written(D

r
+

D2

r2

)( ∑
i+j=k+1
k∈{0,1}

εk+1

riLj

)
. B1

S(ε; z)1/2

after a change of index k 7→ k − 1 in the sum. This yields the result. Note we only need
κ3 and L2 to obtain this bound .
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The operators Li in the term (7.7e) are the power series (7.5) of the operators Lk . Using
(7.15) and the fact that ε ≤ r , we derive that

∣∣∣ε5
〈 4∑

i=0

Li(ε)Viz, v
〉

L2(Ω)

∣∣∣
. ε7/2E1/2D(1 + Dκ2)E3D(ε)[v]1/2 ·

4∑
i=0

(|z|(b)

i+1 ; S
+ κ2|z|

(b)

i ; S
)

Owing to (3.9) for n = 5 , this shows that∣∣∣ε5
〈 4∑

i=0

Li(ε)Viz, v
〉

L2(Ω)

∣∣∣ . ε2D(1 + Dκ3)
( ∑

i,j,k∈G5

εkκiL−j
)
Eε

2D[z]1/2E3D(ε)[v]1/2.

But the constant in the right hand side is smaller than(
1 +

D

r

) ∑
i+j=k+1
k∈{2,3}

εkD

riLj
.

(
1 +

D

r

)(ε2D

L3
+

ε3D

L4

)
+

(D

r
+

D2

r2

) ∑
i+j=k
k∈{2,3}

εk

riLj

after separating in the sum the terms where i = 0 and those for i ≥ 1 . This term is
dominated by B1

S(ε; z)1/2 . Note that we only need κ5 and L4 to obtain this bound. The
estimate for the traction terms involving the operators Ti(ε) can be done similarly, and
this proves the lemma.

We can now prove the main result of this section.

Proof of Proposition 7.1. Using Lemma 7.2 we have

a3D(ε)(u− U(ε)z, v) = a3D(ε)(u− Uasy(εz, v) + a3D(ε)(U(ε)z − Uasy(ε)z, v)

.
(
B

1/2
1 + E3D(ε)[U(ε)z − Uasy(ε)z]1/2

)
E3D(ε)[v]1/2.

Thus the proposition is proved provided we show E3D(ε)[U(ε)z − Uasy(ε)z] . B1 , or
equivalently using the shifted energy (4.1) scaled on Ω ,

Ẽ3D(ε)[W(ε)z −Wasy(ε)z] . B1.

By definition, we have

Wasy(ε)z = W(ε)z + ε2v2z + ε3V3z + ε4V4z (7.16) En1

where

v2z =


X2

3

2
pDσγ

α
α(z),

X2
3

2

(
− p2bα

αγβ
β (z)− 2pbβ

αγα
β (z)

)
.

(7.17) Evv2

We now successively estimate the energy of the three terms v2z , V3z and V4z .
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Using (4.3) scaled on the manifold Ω and owing to Remark 7.3, we have for all
v ∈ H1(Ω)

Ẽ3D(ε)[v] . εE
(
‖ẽα

β(ε)(v)‖2

L2(Ω)
+ ‖ẽ3

β(ε)(v)‖2

L2(Ω)
+ ‖ẽ3

3(ε)(v)‖2

L2(Ω)

)
where ẽi

j(ε) is the deformation tensor (4.2a)-(4.2c) scaled on Ω .

(i) Using (4.2a)-(4.2c) and (7.17), we obtain

‖ẽ3
3(ε)(v

2z)‖2

L2(Ω)
. ε−2κ2

1|γ|
2

0 ; S
,

‖ẽ3
σ(ε)(v2z)‖2

L2(Ω)
. (ε−2 + κ2

1)|γ|
2

1 ; S
+ κ4

2|γ|
2

0 ; S

‖ẽα
β(ε)(v2z)‖2

L2(Ω)
.

(
|γ|(b)

2 ; S

)2
,

provided that ε is sufficiently small ( ε < κ−1
1 = R ) to ensure the convergence of the

series in (4.2c). Hence we have

Ẽ3D(ε)[v2z] . E
(
ε|γ|2

2 ; S
+ (ε−1 + εκ2

1)|γ|
2

1 ; S
+ (ε−1κ2

1 + εκ4
2)|γ|

2

0 ; S

)
Multiplying by ε4 and using (3.8), we find

Ẽ3D(ε)[ε2v2z] .
(
ε4L−4 + (ε2 + ε4κ2)L−2 + ε2κ2 + ε4κ4

)
Eε

2D[z] (7.18) Ev2

with L = L4 and κ = κ5 , and thus we have

Ẽ3D(ε)[ε2v2z] . B1
S(ε; z)Eε

2D[z]

where B1
S(ε; z) is given in (7.2).

(ii) We recall that the operator V3 is b -homogeneous of order 3 and that we have the
bound (7.12) for the orders of the derivatives of V3 . We deduce that

‖ẽ3
3(ε)(V

3z)‖2

L2(Ω)
. ε−2

(
|zα|3 ; S

+
2∑

j=0

κ3−j
3 |z|

j ; S

)2

‖ẽ3
α(ε)(V3z)‖2

L2(Ω)
. ε−2

(
|z3|3 ; S

+
2∑

j=0

κ3−j
3 |z|

j ; S

)2

+
(
|zα|4 ; S

+
3∑

j=0

κ4−j
4 |z|

j ; S

)2

‖ẽα
β(ε)(V3z)‖2

L2(Ω)
.

(
|z3|4 ; S

+
3∑

j=0

κ4−j
4 |z|

j ; S

)2

.

Hence we have

Ẽ3D(ε)[V3z] . Eε−1
( 3∑

j=0

κ3−j
3 |z|

j ; S

)2

+ Eε
( 4∑

j=0

κ4−j
4 |z|

j ; S

)2

.
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Multiplying by ε6 and using (3.9) we find

Ẽ3D(ε)[ε3V3z] .
( ∑

i,j,k∈G3

ε2k+2κ2i
3

L2j
2

+
∑

i,j,k∈G4

ε2k+4κ2i
4

L2j
3

)
Eε

2D[z],

where for all n , Gn = {(i, j, k) ∈ N3 | k ∈ {0, 1}, i + j = k + n − 2 } . We can write
the previous equation as

Ẽ3D(ε)[ε3V3z] .
( ∑

i,j,k∈G

ε2kκ2i

L2j

)
Eε

2D[z],

where G = {(i, j, k) ∈ N3 | k ∈ {1, 2, 3}, i + j = k } . This shows that

Ẽε
3D[ε3V3z] . B1

S(ε; z)Eε
2D[z]

where B1
S(ε; z) is given in (7.2).

(iii) On the same way, we easily find :

Ẽ3D(ε)[V4z] . Eε−1
( 4∑

j=0

κ4−j
4 |z|

j ; S

)2

+ Eε
( 5∑

j=0

κ5−j
5 |z|

j ; S

)2

,

whence the result after multiplying by ε8 and using (3.9). Note that we used κ5 and L4

to obtain this result.

8 ESTIMATE FOR THE CORRECTOR TERM

The goal of this section is to construct a displacement ucor satisfying the equation
(5.2) with B2 . BS(ε, z, f rem) , and such that Uz + ucor ∈ V (Ωε) . In shifted displace-
ments, this amounts to construct wcor such that Wz + wcor satisfies lateral Dirichlet
conditions and satisfying the same estimates

We recall from Definition 2.8 that r is the geodesic distance to ∂S in S , s the
arc-length along ∂S , and d defines the tubular neighborhood (r, s) ∈ [0, d]× ∂S .

We introduce the adimensional variable T = r/ε . Let χ(T ) be an adimensional C∞

cut-off function defined on [0,∞) satisfying χ(T ) ≡ 1 for T ∈ [0, 1
2
] and χ(T ) ≡ 0

for all T ≥ 1 .

Consider now the displacement Wz as defined in (2.18). As z satisfies the boundary
conditions z

∣∣
∂S

= 0 and ∂rz3

∣∣
∂S

= 0 we have that Wαz
∣∣
Γε

0
= 0 and

W3z
∣∣
Γε

0
= −px3γ

α
α

∣∣
∂S

+ p
x2

3

2
ρα

α

∣∣
∂S
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We thus set

wcor
α = 0 and wcor

3 = χ(ε−1r)
(
− px3γ

α
α

∣∣
∂S

+ p
x2

3

2
ρα

α

∣∣
∂S

)
. (8.1) Ewcor

Note that this term is non zero only in the region where r ≤ ε . By definition, we have
that w + wcor ∈ V (Ωε) . It remains to estimate the energy of wcor .

Proposition 8.1 Let wcor defined by the equation (8.1), then we have the estimate

Ẽε
3D[wcor] . Eε2

(
|γ|2

0 ; ∂S
+ ε2|ρ|2

0 ; ∂S

)(
1 +

ε2

R2

)
+ Eε4

(
|γ|2

1 ; ∂S
+ ε2|ρ|2

1 ; ∂S

)
(8.2)

where R = κ−1
1 .

Using the definitions of ` and the fact that ε < R , this estimate proves that

Ẽε
3D[wcor] . B̆S(ε; z)Eε

2D[z]

where

B̆S(ε; z) =
ε

`

(
1 +

ε2

`2

)
and this yields (2.24) provided that ε/` ≤ M .

Proof of Proposition 8.1. Using the fact that only the transverse component of wcor is
non zero, we have using (4.2a)-(4.2c) that

Ẽε
3D[wcor] . E‖∂3w

cor
3 ‖2

L2(Ωε)
+ E‖Dσw

cor
3 ‖2

L2(Ωε)
+ E

1

R2
‖wcor

3 ‖2

L2(Ωε)
.

Let us recall that in the coordinate system (r, s) in a tubular neighborhood of ∂S , the
metric satisfies arr(r, s) = 1 , ars(r, s) = 0 , and ass(0, s) = 1 . This implies that
the Riemannian volume (4.4) on the tubular neighbourhood {r ∈ (0, d), s ∈ ∂S, x3 ∈
(−ε, ε)} can be written

dV = dr ds dx3(1 + j(r, s, x3))

where j(r, s, x3) is an adimensional convergent power series in r and x3 provided r <
d and |x3| < R , satisfying j(0, s, 0) = 0 and with function coefficients defined on ∂S .
For r ∈ (0, ε) , s ∈ ∂S and x3 ∈ (−ε, ε) , we can always assume for instance that

|1 + j(r, s, x3)| ≤ 3/2 .

Let us decompose wcor
3 = Φz + Ψz where

Φz = −px3γ
α
α

∣∣
∂S

χ(ε−1r) and Ψz = p
x2

3

2
ρα

α

∣∣
∂S

χ(ε−1r).
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We see that

‖Φz‖2

L2(Ωε)
= p4ε4

∫ 1

−1

∫
∂S

∫ 1

0

X2
3χ(εT )2

(
γα

α(z)
∣∣
∂S

)2|1 + j(εT, s, εX3)| dT ds dX3.

This implies immediately
‖Φz‖2

L2(Ωε)
. ε4|γ|2

0 ; ∂S
.

The same calculation with Ψ yields

‖wcor
3 ‖2

L2(Ωε)
. ε4|γ|2

0 ; ∂S
+ ε6|ρ|2

0 ; ∂S
.

Similarly, we easily see that

‖∂3w
cor
3 ‖2

L2(Ωε)
. ε2|γ|2

0 ; ∂S
+ ε4|ρ|2

0 ; ∂S
.

Note that with the change of coordinate (r, s, x3) 7→ (T, s, X3) , the term ‖Dσw
cor
3 ‖2

L2(Ωε)

has to be understood as (see formula (4.3))∫
Ωε

aαβ(x3)(Dαwcor
3 )(Dβwcor

3 ) dV.

As ε ≤ ε0 < d , we can assume that the metric on S in coordinates (r, s) is O(ε/d)
close to the identity. So, for r ∈ (0, ε) , s ∈ ∂S and x3 ∈ (−ε, ε) with ε < min(R, d) ,
this yields

‖Dσw
cor
3 ‖2

L2(Ωε)
.

∫ ε

0

∫
∂S

∫ ε

−ε

(
(∂rw

cor
3 )2 + (∂sw

cor
3 )2

)
dr ds dx3.

But we have
∂sΦz = −px3(∂sγ

α
α)

∣∣
∂S

χ(ε−1r)

and
∂rΦz = −ε−1px3γ

α
α

∣∣
∂S

(∂T χ)(ε−1r)

where here ∂T χ is an adimensional function with support in T ∈ (0, 1) . This shows that

‖DσΦz‖2

L2(Ωε)
. ε2|γ|2

0 ; ∂S
+ ε4|γ|2

1 ; ∂S
,

and similarly
‖DσΨz‖2

L2(Ωε)
. ε4|ρ|2

0 ; ∂S
+ ε6|ρ|2

1 ; ∂S
.

Collecting together the previous estimates yields the result.

9 CONCLUSION: OPTIMALITY OF THE MAIN ESTIMATE

To conclude our paper, we apply estimate (2.24) to families (uε) and (zε) of so-
lutions of problems (P3D) and (P2D) for each ε ∈ (0, ε0] for a smooth fixed load f
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independent of the transverse variable x3 . Thus f has the form

f(xα, x3) = g(xα), ∀xα ∈ S, ∀x3 ∈ [−ε0, ε0],

with a smooth surface load g independent of ε . Hence for all ε ∈ (0, ε0] , g is the mean
value (2.10) of f across the shell Ωε . We investigate separately the cases of plates and
elliptic shells, and provide a generalization to shallow shells.

9.A PLATES

A family of plates (Ωε) is defined by its mean surface S which is a domain of R2 . Thus
the normal coordinates (xα, x3) are globally defined by a Cartesian coordinate system.
Hence, the metric is the flat metric and the curvature vanishes on S . Consequently, we
have κj = 0 for all j ≥ 1 , thus r = ∞ . Moreover the membrane and change of
curvature tensor reduce to

γαβ(z) = 1
2
(∂αzβ + ∂βzα) and ραβ(z) = ∂αβz3.

This shows that the Koiter operator decouples into the restrictions M∗ and B3 of the
membrane and bending operators acting on the surfacic and transverse components z∗
and z3 respectively:

K(ε) =

(
M∗ 0
0 ε2B3

)
.

Thus the solution of the problem (P2D) is given by

zε = (zM, 0) + ε−2(0, zB)

where the membrane and bending parts zM ∈ H1
0(S) and zB ∈ H2

0(S) solve the equa-
tions M∗zM = g∗ and B3zB = g3 . Hence the wave lengths L and ` associated with zε

are in fact independent on ε .
Estimate (2.24) with f rem = 0 then yields

Eε
3D

[
uε − Uzε

]
≤ bS(g) ε Eε

2D[zε] (9.1) Eestplates

where bS(g) has the dimension of the inverse of a length.
In [11], it is shown that the displacement uε admits a complete two scale asymptotic

expansion in powers of ε . This expansion includes regular terms bounded independently
of ε , and boundary layer term exponentially decreasing with respect to r/ε where r
is the distance to ∂S . Relying on this result, we can prove that the following optimal
estimates holds true, see [11, § 12.2]:

b′S(g) ε Eε
3D[uε] ≤ Eε

3D

[
uε − Uzε

]
≤ bS(g) ε Eε

3D[uε] (9.2a)

a′S(g) Eε
2D[zε] ≤ Eε

3D[uε] ≤ aS(g) Eε
2D[zε], (9.2b)

where bS(g) , b′S(g) have the dimension of the inverse of a length and aS(g) , a′S(g) are
adimensional. In relation with the generic non-cancellation of the traces of γα

α = divzM

or ρα
α = ∆zB , the constant b′S(g) is generically non-zero. This shows how (9.1) is

optimal in the case of plates.
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9.B ELLIPTIC SHELLS

In the case of elliptic shells, the curvature tensor bαβ satisfies an estimate of the form
bαβξαξβ ≥ cξαξα for all vector field ξα on S and for a uniform constant c independent
on ξ . This implies that the constant r is a positive number.

Using the result in [15], it is possible to estimate the behaviour of the constants L
and ` with ε . In [15], it is shown that zε admit a multi-scale asymptotic expansion

zε ' ζ0 + ε1/2(Z1/2 + ζ1/2) + ε(Z1 + ζ1) · · ·

in powers of ε1/2 , where the regular terms ζk/2 are uniformly bounded in ε , and where
the terms Zk/2 are boundary layer terms. These terms are sums of functions that are
tensor products of smooth functions of s ∈ ∂S and exponentially decreasing functions
with respect to the variable r

√
bss/

√
ε where bss is the (non zero) curvature along the

boundary ∂S (see equation (1.12) in [15]). This shows that L ' (εR∂)
1/2 where R∂

denote the maximum of curvature radius along the boundary ∂S , and that ` is a positive
constant independent of ε . Hence, estimate (2.24) with f rem = 0 yields as before

Eε
3D

[
uε − Uzε

]
≤ bS(g) ε Eε

2D[zε].

As in the case of plates, this estimate turns to be optimal, see Theorem 1.4 in [15].

9.C SHALLOW SHELLS

Shallow shells in the sense of [9] are shells for which the mean surface S = Sε depend on
ε in such a way that the curvature tensor is of order Bε where B has now the dimension
m−2 . The limit surface S0 is a domain of R2 . The constant r is hence of order (Bε)−1 .
Denote by (xε

α, xε
3) normal coordinates to Sε , for ε ∈ [0, ε0] .

We define a regular family of loads f ε on Ωε in the following way. For a fixed
smooth surface load G given in a neighborhood of S0 in R2 , we define the field F by
F (x0

α, x0
3) = G(x0

α) . Then we set

f ε = F
∣∣
Ωε and gε =

1

2ε

∫ ε

−ε

f ε(xε
3) dxε

3,

and f ε is the load in problem (P3D) on Ωε , while gε is the right hand side of problem
(P2D) on Sε .

In this situation, the Koiter model can be seen as an operator which couples the mem-
brane and bending operators for plates through low order terms, and it can be shown
that zε admits a complete asymptotic expansion in powers of ε with regular terms only.
Hence, the constant ` and L are independent of ε , and estimate (2.24) yields an estimate
similar to (9.1).

In [2], it has been shown that the three dimensional displacement uε admits a com-
plete asymptotic expansion in powers of ε with regular bounded terms and boundary
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layer terms exponentially decreasing in r/ε . Using this result, it can again be shown that
estimates of the form (9.2) hold true in the case of shallow shells. This shows that (2.24)
is optimal in this case.
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