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Abstract. In this paper, we investigate the behavior of the vibration modes (eigenvalues) of an

isotropic homogeneous plate as its thickness tends to zero. As lateral boundary conditions,

we consider clamped or free edge. We prove distinct asymptotics for bending and membrane

modes: the smallest bending eigenvalues behave as the square of the thickness whereas the

membrane eigenvalues tend to non-zero limits. Moreover, we prove that all these eigenvalues

have an expansion in power series with respect to the thickness regardless of their multiplicities

or of the multiplicities of the limit in-plane problems.

Introduction

Our aim is the investigation of modal analysis in thin plates as the thickness parameter

ε goes to zero: We consider a family of plates Ωε with fixed mean surface ω indexed by

their (half-)thickness ε
Ωε = ω × (−ε, ε),

and study the eigenmodes of the plate Ωε , that is the eigenvalues Λε and the correspond-

ing eigenvectors uε of the linearized elasticity operator associated with the constitutive

material of the plates.

As usual in such a framework, we suppose that the plates are free on their lower and

upper faces ω × {−+ε} . As conditions on the lateral edge ∂ω × (−ε, ε) , we take into

consideration as representative cases of the possible boundary conditions, compare [6], the

hard clamped case and the free edge case. These boundary conditions determine admissible

spaces of displacements V(Ωε) . We thus obtain the eigenvalue problems associated with

the stress-strain bilinear form aε(u,v) = 〈σ(u) : e(v)〉Ωε in the spaces V(Ωε) :

Find Λε and non-zero uε ∈ V(Ωε) , ∀v ∈ V(Ωε), aε(u,v) = Λε〈u,v〉Ωε,

where 〈·, ·〉Ωε denotes the usual L2 scalar product in Ωε .



Thanks to the Korn inequality cf [8], the form aε is positive symmetric with compact

resolvent. Thus its spectrum is discrete with only accumulation point at infinity and can be

ordered (with the usual repetition convention according to the multiplicity)

0 ≤ Λε
1 ≤ Λε

2 · · · ≤ Λε
ℓ ≤ . . . , lim

ℓ→∞
Λε

ℓ = +∞.

In [3], CIARLET & KESAVAN study the case of hard clamped isotropic plates. Their

result shows up the bending dominated behavior of plates at the lowest frequencies. If

λ and µ are the Lamé coefficients of the plate material, the associated two-dimensional

bending operator Lb is the biharmonic operator in ω

Lb = (λ̃+ 2µ)∆2, (0.1)

with the homogenized Lamé constant λ̃ defined as

λ̃ =
2λµ

λ+ 2µ
. (0.2)

The result in [3] is that each Λε
ℓ tends to ε2

3
̺b,ℓ , with ̺b,ℓ the eigenvalue of corre-

sponding rank of the Dirichlet problem for the bending operator Lb and that the eigen-

vectors tend to the Kirchhoff-Love displacement generated by an associated eigenvector of

Lb (after possible extraction of a subsequence in the case of a multiple eigenvalue).

In [14], NAZAROV extends this result to plates with much more general material law

and moreover shows the influence on the three-dimensional spectrum of the associated in-

plane membrane operator Lm which generates O(1) families of eigenvalues, in contrast

to the O(ε2) bending family : In the case of an isotropic material with Lamé coefficients

λ and µ , Lm is the bi-dimensional Lamé operator associated with the Lamé coefficients

λ̃ and µ , that is

Lm = µ

(
∆ 0
0 ∆

)
+ (λ̃+ µ)

(
∂1

∂2

)
div . (0.3)

The modal analysis in [14], and also in [17, 16] where a two-terms asymptotics is con-

structed, requires an asymptotic analysis of the eigendisplacements, which has to take into

account the boundary layer in the neighborhood of the lateral boundary. The assumption

(also made in [17, 16, 14]) that the boundary ∂ω of the mean surface is smooth makes such

an analysis easier: If the mean surface is polygonal, special corner layers appear, see [15].

Thus, in order to simplify our analysis (which is also based on asymptotic expansions), we

assume that ω is a smooth domain.

Moreover, we choose to work with the assumption that the plates are made of a homoge-

neous and isotropic material. This assumption has an important consequence: It allows the

splitting of the three-dimensional spectrum in a bending spectrum and a membrane spec-

trum, in correspondence with the two-dimensional bending and membrane operators. We

note that such a splitting is still possible for any monoclinic material with rigidity matrix

constant along the transverse fibers (this is the framework of [4, 5] where the asymptotic

expansion of displacements is proved for clamped plates). Therefore, our present analysis,

at least for laterally clamped plates, extends in a natural way to such materials.
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To summarize, in this paper we propose a further investigation of eigenmodes in two

directions:

(i) Take advantage of the transverse symmetry of plate problems which enable us to

split eigenmodes in bending and membrane eigenmodes (Λε
b,u

ε
b) and (Λε

m,u
ε
m) .

(ii) Adapt the idea of combined outer and inner expansions to construct asymptotic ex-

pansions at any order for bending and membrane eigenmodes.

The main outcome of our study is that the ℓ -th bending eigenvalue of aε has a power

series expansion starting with ε2

3
̺b,ℓ and that the ℓ -th membrane eigenvalue of aε has a

power series expansion starting with the ℓ -th eigenvalue ̺m,ℓ of the associated in-plane

membrane operator −Lm . These power series expansions do not converge in general.

We emphasize that we prove this result even in the case when the limit eigenvalues are

multiple: Then it may happen that the corresponding three-dimensional eigenvalues are

multiple too, or that they have the same asymptotic expansion but nevertheless differ with

each other, or that they have distinct expansions with the same first term.

Our result inspires the following comments:

(i) The limits of the eigenvalues of aε are the eigenvalues of the operator

K(ε) :=

(
−Lm 0

0 ε2

3
Lb

)
on ω .

This operator is the exact counterpart for plates of the Koiter operator for shells.

(ii) If one considers the eigenvalues Λε
ℓ arranged in non-decreasing order, as is noticed

in [2] one sees in the limit only the bending eigenvalues.

(iii) The eigenvalues of the “Koiter” operator K(ε) do not give a full description of

the spectrum of the three-dimensional operator on Ωε : In the limit as ε → 0 , most

of the three-dimensional eigenvalues go to infinity. The question of organizing them in

coherent families behaving for example in O(ε−2) is still open. The authors are glad to

acknowledge discussions with Sergei NAZAROV who indicated earlier formal attempts by

BERDICHEVSKII [1], see the comments in [14].

Our paper is organized as follows: We introduce in section 1 the different eigenvalue

problems in the thin plates Ωε , in the scaled plate Ω = ω × (−1, 1) and in their mean

surface ω . In section 2, before stating our results concerning the limits of the three-

dimensional eigenmodes with optimal estimates on their convergence, we recall the notion

of quasimode and the classical related results about the spectrum approximation: Thus,

as ε → 0 , when a limit two-dimensional eigenvalue is multiple, the space of Kirchhoff-

Love displacements generated by the corresponding eigenspace is the limit of a cluster of

three-dimensional eigenspaces.

Sections 3 to 6 are devoted to the construction of three-dimensional quasimodes at any

order O(εk) , based on two-dimensional problems, whereas section 7 yields weak conver-

gence results about the three-dimensional problems, in the spirit of [3]. Combining the

results of the previous sections, we obtain in section 8 the complete eigenmode asymp-

totics.

The most original aspects of our approach are the following:
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(i) The use of multiple formal series operations in order to transform the initial three-

dimensional eigenvalue problem into a two-dimensional one for a new formal oper-

ator series, cf sections 3 and 4.

(ii) The solution of this eigenvalue problem for the two-dimensional formal operator

series by a sequence of nested spectral problems for finite-dimensional self-adjoint

operators, cf section 5.

1 Eigenmodes for plate models in two or three dimensions

We state the three-dimensional eigenmode problem, split it into membrane and bending

problems, and scale it to the fixed reference domain Ω = ω × (−1, 1) . Next we introduce

the two-dimensional membrane and bending operators as they appear in the limit as ε→ 0
of displacements in thin plates, see [2], [6]: These operators are the models determining

the two-dimensional generators of the limit Kirchhoff-Love displacements.

1.a Linearized elasticity

Let us recall that λ and µ are the Lamé constants of the constitutive material of our

plates Ωε . To each displacement field u = (u1, u2, u3) is associated the linearized strain

tensor eij(u) = 1
2
(∂iuj + ∂jui) . Hooke’s law yields the stress tensor

σ(u) = Ae(u),

where the rigidity matrix A = (Aijkl) of the material is given by:

Aijkl = λ δijδkl + µ(δikδjl + δilδjk).

As usual, Latin indices are always taken from {1, 2, 3} while the Greek ones α , β vary

in {1, 2} and we use summation convention. As lateral boundary conditions, we will

consider the hard clamped condition and the free boundary condition, although other com-

binations are possible, cf [6].

To hard clamped plates is associated the space of variations VD(Ωε) given by

VD(Ωε) :=
{
v ∈ H1(Ωε)3 | v = 0 on Γε

0 := ∂ω × (−ε, ε)
}

whereas for free plates the space of variations is VN(Ωε) = H1(Ωε)3 . We agree to denote

by V(Ωε) , either VD(Ωε) or VN(Ωε) .

When necessary, we particularize the objects attached to Ωε by a ˜ , e.g. the variables

in Ωε are denoted by (x̃1, x̃2, x̃3) = x̃ with x̃3 the transverse variable in (−ε, ε) , and the

eigenvectors are denoted by ũε .

Then the variational formulations of the eigenvalue problems read: Find Λε ∈ R and

non-zero ũε in V(Ωε) such that

aε(ũε, ṽ) = Λε(ũε, ṽ), ∀ ṽ ∈ V(Ωε), (1.1)
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where aε and (· , ·) are the bilinear forms

aε(u, v) :=

∫

Ωε

{
λepp(u)eqq(v) + 2µeij(u)eij(v)

}
dx̃

(u, v) :=

∫

Ωε

ui vi dx̃.

Korn inequality and the compactness of the embedding V(Ωε) →֒ L2(Ωε)3 yield that

the eigenvalues Λε are nonnegative and form a discrete set in R with only accumulation

point at infinity, see [12, 7]. Moreover there exists an associated sequence of eigenfunc-

tions which forms an orthogonal basis in both Hilbert spaces
(
V(Ωε), (aε + 1)1/2

)
and

L2(Ωε)3 . In particular for the hard clamped situation the first eigenvalue is positive. For

the case of a free plate Λε
1 = 0 is a six-fold eigenvalue with eigenspace spanned by the

rigid motions




1
0
0


 ,




0
1
0


 ,




0
0
1


 ,




−x̃3

0
x̃1


 ,




0
−x̃3

x̃2


 ,




x̃2

−x̃1

0


 . (1.2)

1.b Three-dimensional membrane and bending modes

Let S be the transverse symmetry operator defined for u = (u1, u2, u3) in L2(Ωε)
by:

S :
(
x̃3 7→

(
u∗(x̃3), u3(x̃3)

))
7−→

(
x̃3 7→

(
u∗(−x̃3), −u3(−x̃3)

))
, (1.3)

where u∗ = (u1, u2) . The bilinear form aε is invariant by S , that is

∀u,v ∈ V(Ωε),

{
aε(Su,v) = aε(u, Sv)

aε(Su, Sv) = aε(u,v),
(1.4)

and the same holds for the L2 scalar product in Ωε . From the fact that S2 = I we

conclude that V(Ωε) splits into two invariant subspaces, see [12]. So, we have

V(Ωε) = V
m(Ωε) ⊕V

b(Ωε) , (1.5)

where Su = u for all u ∈ V
m(Ωε) and Su = −u for all u ∈ V

b(Ωε) . We refer to

V
m(Ωε) (resp. V

b(Ωε) ) as the membrane (resp. bending) space, compare [9].

As a consequence of (1.4), the decomposition

um = 1
2
(I + S)u and ub = 1

2
(I − S)u (1.6)

is orthogonal with respect to both scalar products aε and (· , ·) . Thus solutions of (1.1)

split in membrane and bending eigenmodes, respectively solutions of

aε(ũε
m, ṽm) = Λε

m(ũε
m, ṽm), ∀ ṽm ∈ V

m(Ωε),

aε(ũε
b, ṽb) = Λε

b(ũ
ε
b, ṽb), ∀ ṽb ∈ V

b(Ωε).
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Let

0 ≤ Λε
m,1 ≤ Λε

m,2 · · · ≤ Λε
m,ℓ ≤ . . . (1.7a)

be the membrane eigenvalues and

0 ≤ Λε
b,1 ≤ Λε

b,2 · · · ≤ Λε
b,ℓ ≤ . . . (1.7b)

be the bending eigenvalues and let

Ẽε
m,ℓ and Ẽε

b,ℓ (1.8)

be the corresponding eigenspaces with the convention that if Λℓ = · · · = Λℓ+ν−1 has the

multiplicity ν , we have Ẽℓ = · · · = Ẽℓ+ν−1 , defining a space of dimension ν . We denote

by Lε
m and Lε

b the set of such indices ℓ , so that we have

⊕

ℓ ∈ Lε
m

Ẽε
m,ℓ = V

m(Ωε) and
⊕

ℓ ∈ Lε
b

Ẽε
b,ℓ = V

b(Ωε). (1.9)

1.c Scalings

In order to study the behavior of eigenmodes as ε → 0 we introduce a fixed reference

configuration Ω as the image of a dilatation along the vertical axis x3 = ε−1 x̃3 , whereas

the in-plane variables (x̃1, x̃2) = (x1, x2) are unchanged. Thus we have Ω = ω×(−1, 1) .

For the displacement fields we use the scaling preserving the elastic structure, see [2]

uε
α(x) = ũε

α(x̃), α = 1, 2, uε
3(x) = ε ũε

3(x̃). (1.10)

The eigenvalue problems then take the form: Find Λε ∈ R and non-zero uε in V(Ω)
such that

a(ε)(uε,v) = Λε
〈
uε,v

〉
ε
, ∀ v ∈ V(Ω), (1.11)

where V(Ω) is the space correponding to V(Ωε) , and a(ε) and 〈· , ·〉ε are the bilinear

forms

a(ε)(u, v) :=

∫

Ω

{
λ κpp(ε)(u) κqq(ε)(v) + 2µ κij(ε)(u) κij(ε)(v)

}
dx

〈
u, v

〉
ε

:=

∫

Ω

uαvα + ε−2 u3v3 dx

with the scaled strain tensor κ(ε)

καβ(ε)(u) = eαβ(u), κα3(ε)(u) = ε−1 eα3(u), κ33(ε)(u) = ε−2 e33(u).

It is then straightforward that (Λ, ũε) solves (1.1) if and only if (Λ,uε) solves (1.11).

Of course the splitting membrane–bending is still valid. We do not need to change the

notations (1.7) for the eigenvalues and we only introduce the spaces of scaled eigenmodes

corresponding to (1.8)

Eε
m,ℓ and Eε

b,ℓ. (1.12)
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1.d Two-dimensional membrane and bending operators

The bilinear form associated with the two-dimensional membrane operator −Lm (0.3)

is defined for ζ = (ζ1, ζ2) and ζ′ = (ζ ′1, ζ
′
2) in H1(ω)2 by:

am(ζ, ζ ′) =

∫

ω

{
λ̃ eαα(ζ) eββ(ζ ′) + 2µ eαβ(ζ) eαβ(ζ ′)

}
dx1dx2, (1.13)

where we recall that the “homogenized” Lamé coefficient λ̃ is equal to 2λµ(λ + 2µ)−1 .

The variational spaces V
m
D(ω) and V

m
N(ω) respectively associated with the clamped and

free boundary conditions are H1
0 (ω)2 and H1(ω)2 . The eigenvalue problem for −Lm

reads: Find ̺m ∈ R and non-zero ζ ∈ V
m(ω) such that

am(ζ, ζ′) = ̺m

∫

ω

ζα ζ
′
α dx1dx2, ∀ ζ ′ ∈ V

m(ω). (1.14)

The bilinear form associated with the two-dimensional bending operator Lb is defined

for η and η′ in H2(ω) by:

ab(η, η′) =

∫

ω

{
λ̃ ∂αα(η) ∂ββ(η′) + 2µ ∂αβ(η) ∂αβ(η′)

}
dx1dx2. (1.15)

The variational spaces V
b
D(ω) and V

b
N(ω) respectively associated with the clamped and

free boundary conditions are H2
0 (ω) and H2(ω) . The eigenvalue problem for Lb reads:

Find ̺b ∈ R and non-zero η ∈ V
b(ω) such that

ab(η, η′) = ̺b

∫

ω

η η′ dx1dx2, ∀ η′ ∈ V
b(ω). (1.16)

Both forms am and ab are nonnegative and symmetric on their variational spaces,

compactly embedded in L2(ω)2 in the membrane and in L2(ω) in the bending case, re-

spectively. Thus the eigenvalues in problems (1.14) and (1.16) are nonnegative real num-

bers:

Let

0 ≤ ̺m,1 ≤ ̺m,2 · · · ≤ ̺m,ℓ ≤ . . . (1.17a)

be the two-dimensional membrane eigenvalues and

0 ≤ ̺b,1 ≤ ̺b,2 · · · ≤ ̺b,ℓ ≤ . . . (1.17b)

be the two-dimensional bending eigenvalues. In order to take into account the multiple

eigenvalues, we define the sets of indices Lm and Lb similarly as above and we let

∀ℓ ∈ Lm, Fm,ℓ and ∀ℓ ∈ Lb, Fb,ℓ (1.18)

be the corresponding eigenspaces. Thus there holds
⊕

ℓ ∈ Lm

Fm,ℓ = V
m(ω) and

⊕

ℓ ∈ Lb

Fb,ℓ = V
b(ω). (1.19)

To these eigenspaces we associate the spaces of corresponding Kirchhoff-Love dis-

placements:

Km,ℓ =
{
u = (ζ, 0) ; ζ ∈ Fm,ℓ

}
, (1.20a)

Kb,ℓ =
{
u = (−x3∂1η,−x3∂2η, η) ; η ∈ Fb,ℓ

}
. (1.20b)
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2 Main results

2.a Quasimodes

Our result relies on an asymptotic expansion of displacements (including power series

and boundary layer Ansätze as in [13, 17] and [6]) which will provide the construction of

h -quasimodes with h = O(εk) for any integer k , where we define:

Definition 2.1 Let A be an unbounded self-adjoint operator on a Hilbert space H with

domain D(A) . For a fixed h > 0 , a pair (Λ,u) ∈ R × D(A) \ {0} is called a h -

quasimode of A if there holds

‖(A− Λ)u‖
H
≤ h‖u‖

H
.

The interest of such a definition relies on the following fact: if (Λ,u) is a h -quasimode

of A , then the distance from Λ to the spectrum of A is less than h , and the distance be-

tween u and certain eigenspaces of A can be estimated, cf Lemma 2.2. Thus, we will

construct O(εk) -quasimodes for the problem on Ωε from the eigenmodes of Lb and

−Lm on the midsurface ω .

In order to state our convergence results and to explain our strategy of proof, we need

to recall the notion of “distance” between two subspaces E and F of the same Hilbert

space H , cf [11] p. 264:

δ(E,F ) = max
u∈E

min
v∈F

‖u− v‖
H

‖u‖
H

. (2.1)

In general this distance is not symmetric. However, if E and F are finite dimensional sub-

spaces satisfying δ(E,F ) < 1 and δ(F,E) < 1 , then dimE = dimF and δ(E,F ) =
δ(F,E) , see KATO [11, Lemma 2.2.1]. In this situation δ(E,F ) is called the gap between

E and F . Using Definition 2.1 of quasimodes, we can state, see VISHIK & LYUSTERNIK

[18, Lemmas 12 & 13, §9]:

Lemma 2.2 Let A be an unbounded self-adjoint operator on a Hilbert space H with

domain D(A) compactly embedded in H . Let (Λk)k∈N
be the distinct eigenvalues of A

and let Ek be the corresponding eigenspaces. Let h > 0 . If (Λ,u) is a h -quasimode of

A , then there holds

dist
(
Λ, (Λk)k∈N

)
≤ h. (2.2)

Let K be the (non-empty) set {k ∈ N ; |Λ − Λk| ≤ h} . Let M be defined as the

minimum mink 6∈K |Λ − Λk| . Then there holds

δ
(
span{u},

⊕

k ∈ K

Ek

)
≤

h

M
. (2.3)
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2.b Convergence of eigenmodes

We prove in this paper that the three-dimensional eigenvalues Λε
m,ℓ and Λε

b,ℓ have an

infinite power series expansion, and in particular in the limit:

Theorem 2.3 As ε → 0 , for any ℓ ≥ 1 , Λε
m,ℓ tends to ̺m,ℓ and there holds the estimate

|Λε
m,ℓ − ̺m,ℓ| ≤ Cℓ ε. (2.4a)

As ε → 0 , for any ℓ ≥ 1 , Λε
b,ℓ tends to ε2

3
̺b,ℓ and there holds the estimate

|Λε
b,ℓ −

ε2

3
̺b,ℓ| ≤ Cℓ ε

3. (2.4b)

If ̺m,ℓ is a simple eigenvalue, then the distance δ(Eε
m,ℓ, Km,ℓ) is O(ε) and similarly

for bending modes. The situation is much more complicated in the case of multiple eigen-

values and it is then convenient to introduce clusters, as follows.

Definition 2.4 Let ℓ ∈ Lm correspond to a multiple membrane eigenvalue ̺m,ℓ and let

ν be its multiplicity. Then for any ε we introduce the corresponding cluster

Cε
m,ℓ =

⊕ {
Eε

m,k ; k ∈ Lε
m, ℓ ≤ k < ℓ+ ν

}
. (2.5)

If ̺m,ℓ is a simple eigenvalue, we agree that Cε
m,ℓ = Eε

m,ℓ . Similar definitions hold for

bending.

Our result reads

Theorem 2.5 As ε→ 0 , for any ℓ ∈ Lm there holds

δε(Km,ℓ, C
ε
m,ℓ) ≤ Cℓ ε. (2.6a)

As ε → 0 , for any ℓ ∈ Lb there holds

δε(Kb,ℓ, C
ε
b,ℓ) ≤ Cℓ ε , (2.6b)

where δε denotes the gap (2.1) with respect to the norm ‖u‖
ε
:=

√
〈u,u〉ε .

2.c Outline of the strategy of proof

The main part of our paper (sections 3-6) is devoted to the construction of O(εk) -

quasimodes (for any integer k > 0 ) for problem (1.11) starting with Kirchhoff-Love dis-

placements associated with two-dimensional eigenmodes, and including outer and inner

expansion terms (power series and boundary layer series).

As a consequence the two-dimensional spectrum is close to three-dimensional eigenval-

ues. To have a complete picture, we need the converse information, i.e. that all the smallest

three-dimensional eigenvalues are close to the two-dimensional spectrum. Concerning the

bending modes in clamped plates, the answer is brought by CIARLET & KESAVAN’s result

[3], and for the remaining cases (free edge lateral boundary condition or membrane modes)

we prove in section 7 that CIARLET & KESAVAN’s result can be extended by similar tech-

niques of proofs based on weak convergence arguments.

Thus we can conclude in section 8 with precise statements about eigenmode asymp-

totics at any order.
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3 Outer expansion formal series for quasimodes

The aim of the four following sections is to construct formal series expansions for

membrane and bending eigenmodes. In this section, we describe membrane and bending

formal series u(ε) with coefficients uk in C∞(Ω)3 associated with formal eigenvalue

series Λ(ε) =
∑

k ε
kΛk which solve (in the sense of formal series) the interior equations

and the horizontal boundary conditions included in (1.11).

In the next section, we combine the above formal series with a third one, ϕ(ε) , which

is a formal series of boundary layer profiles, and find the conditions so that all equations

of (1.11) are solved in the sense of formal series. These conditions amount to new two-

dimensional formal series eigenproblems.

In section 5, we show that these two-dimensional formal series eigenproblems can be

solved and in section 6, we prove that for any k we can keep a finite number of terms in

the formal series so that to obtain O(εk) -quasimodes.

3.a Formal series

We fix here a few definitions. As said above, we are going to formulate our problems

and exhibit solution operators in formal series algebra. Let us recall that if A(ε) is a formal

series with operator coefficients

A(ε) =
∑

k

εkAk with Ak ∈ L(E,F ),

with E , F functional spaces, and if b(ε) and c(ε) are formal series in E and F

b(ε) =
∑

k

εkbk, bk ∈ E, and c(ε) =
∑

k

εkck, ck ∈ F,

the equation A(ε)b(ε) = c(ε) means that

∀k ∈ N,
k∑

ℓ=0

Ak−ℓb
ℓ = ck.

Our solution operators will depend polynomially on the coefficients Λk of the eigen-

value formal series Λ(ε) and we need the following notion of degree.

Definition 3.1 Let d ∈ Z be an integer. The linear operator A from E to F is said to

be polynomial in Λ of degree d if it is equal to a (finite) sum of terms of the form

( K∏

k=0

Λαk

k

)
A[α] where A[α] ∈ L(E,F ) does not depend on Λ(ε)

with

α = (α0, . . . , αK) ∈ N
K+1 and

∑

k, αk 6= 0

(k + αk) ≤ d.

For d ≤ 0 , it is understood that if A is polynomial in Λ of degree d , it does not depend

on Λ .
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3.b The problem without lateral boundary conditions

Integrating by parts (1.11), we find a boundary value problem of second order with one

boundary condition on each of the horizontal sides on Γ
−
+ = ω × {−+1} and on the lateral

boundary Γ0 = ∂ω × (−1, 1) : There holds for any pair of smooth enough functions u

and v in V(Ω)

a(ε)(u,v) = −
〈
B(ε)u, v

〉
Ω,ε

+
〈
T (ε)u, v

〉
Γ,ε
, (3.1)

where Γ is Γ+ ∪ Γ− in the clamped case and Γ+ ∪ Γ− ∪ Γ0 in the free case. The scalar

products 〈·, ·〉Ω,ε and 〈·, ·〉Γ,ε specify on Ω and Γ the product 〈·, ·〉ε used in (1.11).

We know that in general, we cannot expect to solve the whole problem by a simple

power series Ansatz, but only the part A(ε) of it obtained by dropping the lateral boundary

conditions: let us set

A(ε) =
(
ε2B(ε) ; ε T (ε)

∣∣
Γ
−
+

)
. (3.2)

Then

A(ε) = A0 + ε2A2,

where the two operators A0 and A2 associate to a displacement u in Ω a volume force

in Ω and tractions on the horizontal sides on Γ
−
+ according to: ( ∆∗ denotes the horizontal

Laplacian ∂11 + ∂22 and div∗ is the horizontal divergence)

A0u =
(
2µ ∂3eα3(u) + λ ∂α3u3 , (λ+ 2µ)∂33u3 ; 2µ eα3(u)

∣∣
Γ
−
+
, (λ+ 2µ)∂3u3

∣∣
Γ
−
+

)

A2u =
(
(λ+ µ)∂α div∗u∗ + µ∆∗uα , λ ∂3 div∗u∗ + 2µ ∂γeγ3(u) ; 0

∣∣
Γ
−
+
, λ div∗u∗

∣∣
Γ
−
+

)

the first group of arguments being the in-plane volume forces, the second, the transverse

volume force, and similarly for the tractions. In order to have compact formulas, we intro-

duce the embedding operator Π which associates to a vector field f the pair (f ; g) with

g the zero traction on Γ
−
+ :

Πf =
(
f ; 0

∣∣
Γ
−
+

)
.

Then the formal series formulation of problem (1.11) without lateral boundary conditions

reads

Find formal series Λ(ε) with coefficients Λk ∈ R

u(ε) with coefficients uk ∈ C∞(Ω)3 such that:

A(ε)u(ε) + ε2Λ(ε)Πu(ε) = 0. (3.3)

Thus equation (3.3) means that
(
B(ε)+Λ(ε)

)
u(ε) = 0 in Ω and T (ε)u(ε) = 0 on Γ

−
+ .

Before giving the whole result, let us comment on the equation of order zero of (3.3):

A0u
0 = 0.

11



It is well known that the solutions of this problem are the Kirchhoff-Love displacements.

Thus u0 is generated by a displacement z0 = (z0
∗, z

0
3) depending only on x∗ ∈ ω ,

according to the formula:

u0 = UKL(z0) =
(
z0
∗(x∗) − x3∇∗z

0
3(x∗), z

0
3(x∗)

)

with the two-dimensional gradient ∇∗ . If ζ is a in-plane displacement and η a function,

the operators

Um
KL(ζ) := UKL(ζ, 0) and Ub

KL(η) := UKL(0, η)

take values respectively in the membrane and bending subspaces. There holds

Um
KL(ζ) =

(
ζ(x∗), 0

)
and Ub

KL(η) =
(
−x3∇∗η(x∗), η(x∗)

)
. (3.4)

In the following, we first prove a general theorem for the formal series solution, then

give particular descriptions for the membrane and bending cases.

3.c Formal series solution algorithms

The solvability of three-dimensional equations (3.3) reveals to reduce to the solvability

of two-dimensional equations: By integrating the equations of (3.3) with respect to the

transverse variable x3 the determination of the three-dimensional unknown formal series

u(ε) is reduced to the determination of a new two-dimensional unknown formal series of

Kirchhoff-Love generators z(ε) .

Theorem 3.2 Let U0 be defined as UKL and let U1 be the operator zero C∞(ω)3 →
C∞(Ω)3 . Let us denote by C∞

(0)(Ω) the space of C∞(Ω)3 -displacements with mean values

zero across each fiber, i.e.

u ∈ C∞
(0)(Ω) ⇐⇒ ∀x∗ ∈ ω,

∫ 1

−1

u(x∗, x3) dx3 = 0.

There exist for each integer k ≥ 0 :

• a bounded operator Lk : C∞(ω)3 → C∞(ω)3 ,

• a bounded operator Uk+2 : C∞(ω)3 → C∞
(0)(Ω) polynomial in x3 ,

defining the formal operator series L(ε) and U(ε) which realize a link between three-

and two-dimensional problems in the following way:

If the formal series Λ(ε) =
∑

k ε
kΛk and z(ε) =

∑
k ε

kzk solve

(
L(ε) + Λ(ε)

)
z(ε) = 0 in ω , (3.5)

then the three-dimensional formal series

u(ε) := U(ε)z(ε) (3.6)

is a solution of the three-dimensional eigenvalue formal problem (3.3) in Ω .
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Proof.

a) Clearly for any z0 and z1 in C∞(ω)3 the displacements u0 and u1 defined as

u0 = U0(z
0) and u1 = U0(z

1) satisfy the equations of (3.3) for k = 0 and k = 1 ,

which are simply A0u
0 = 0 and A0u

1 = 0 .

b) We are going to prove that there exist operators Lℓ and Uℓ satisfying the conditions

of the Theorem so that there holds the following identity in operator valued formal series

with coefficients in L
(
C∞(ω)3, C∞(Ω)3 × C∞(Γ

−
+)3

)

A(ε) ◦ U(ε) + ε2Λ(ε) Π ◦ U(ε)0
∣∣
Γ
−
+

)
= ε2 Π ◦

(
L(ε) + Λ(ε)

)
.Λ(ε)

)
; (3.7)

In the right hand side the composition with the canonical embedding I : C∞(ω)3 →֒
C∞(Ω)3 is implied: The operator Π ◦ L(ε) is stricto sensu the operator Π ◦ I ◦L(ε) and

takes its values in spaces of functions independent of x3 .

The statement of the Theorem follows immediately from identity (3.7).

To prove (3.7), we are going to show by recurrence that for any k ≥ 0 , we have:

The operators Lℓ are constructed for ℓ = −2, . . . , k − 2 , the operators Uℓ are

constructed for ℓ = 0, . . . , k so that for any z ∈ C∞(ω)3 and any ℓ = 0, . . . , k
there holds

A0Uℓz + A2Uℓ−2z +

ℓ−2∑

j=0

Λℓ−2−jΠUjz = Π
(
Lℓ−2z + Λℓ−2z

)
.
)
. (3.8)

With L−2 = L−1 = 0 , (3.8) is true for k = 0, 1 . Let us assume that (3.8) holds for

ℓ = k ≥ 1 and let us construct Uk+1 and Lk+1 so that (3.8) holds for ℓ = k + 1 .

c) We first consider the transverse component of equation (3.8). For ℓ = k + 1 , the

problem reads, for any z ∈ C∞(ω)3

(
A0(v) + A2(Uk−1z) +

k−1∑

j=0

Λk−1−jΠUjz − Λk−1Πz
)

3
=

(
ΠLk−1z

)
3

)
(3.9)

with still unknown v and (Lk−1z)
3

. The equation has the type
{

(λ+ 2µ)∂33v3 + F3(z) = (Lk−1z)
3

in Ω,

(λ+ 2µ)∂3v3 +G3(z) = 0 on Γ
−
+ .

This boundary value problem is solvable if
∫ +1

−1

F3(z)(x∗, x3) dx3 −G3(z)(x∗, 1) +G3(z)(x∗,−1) = 2(Lk−1z)
3
(x∗) (3.10)

for all x∗ ∈ ω , which yields the definition of (Lk−1z)
3

. The unique solution of this

problem with zero mean values across each fiber defines the operators (Uk+1z)
3

.

d) Next, the in-plane component of equation (3.8) for ℓ = k + 1 reads

(
A0(v) + A2(Uk−1z) +

k−1∑

j=0

Λk−1−jΠUjz − Λk−1Πz
)

α
=

(
ΠLk−1z

)

α

)
(3.11)
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with still unknown vα and
(
Lk−1z

)
α

. This equation has the type
{
µ∂33vα + (λ+ µ)∂α3v3 + F ′

α(z) = (Lk−1z)α in Ω,

µ(∂3vα + ∂αv3) = 0 on Γ
−
+ .

Inserting the equality v3 = (Uk+1z)
3

, we obtain an equation of the type µ∂33vα+Fα(z) =
(Lk−1z)α with boundary conditions µ∂3vα + Gα(z) = 0 . This boundary value problem

is solvable if
∫ +1

−1

Fα(z)(x∗, x3) dx3 −Gα(z)(x∗, 1) +Gα(z)(x∗,−1) = 2(Lk−1z)α(x∗) (3.12)

for all x∗ ∈ ω , which yields the definition of (Lk−1z)α . The unique solution of this

problem with zero mean values across each fiber defines the operators (Uk+1z)α . Thus

the recurrence step is proved. Whence identity (3.7).

The operators Uℓ and Lℓ are polynomial in Λ . We explain this in detail in the next

subsection.

Remark 3.3 If u(ε) is a formal series solution of (3.3), then defining z(ε) by

z(ε) =
1

2

∫ 1

−1

u(ε) dx3,

the formal series z(ε) satisfies (3.5) and moreover, u(ε) = U(ε)z(ε) .

3.d Membrane and bending formal series

Let us now recall that our three-dimensional eigenvalue problem commutes with the

symmetry operator S defined in (1.3), that the displacements u such that Su = u are

the membrane displacements, and those such that Su = −u are the bending ones. When

restricted to the displacements z independent of x3 , the membrane displacements are

those of the form (ζ, 0) with ζ any in-plane displacement, whereas the bending displace-

ments are those of the form (0, η) with η any function. There holds

U(ε) ◦ S = S ◦ U(ε), (3.13)

which means that S commutes with all operators Uk . This can be easily proved by re-

currence according to steps c) and d) of the proof of Theorem 3.2: The main argument is

the choice of solutions of the Neumann problem in [−1, 1] by the condition of mean value

zero, which preserves the parity.

Thus for any in-plane displacement ζ , the displacement U(ε)(ζ, 0) has membrane

type, and for any function η , the displacement U(ε)(0, η) has bending type.

Similarly there holds

L(ε) ◦ S = S ◦ L(ε). (3.14)

For u independent on x3 , S is only the symmetry with respect to the plane generated

by the two first components. Hence a consequence of identity (3.14) is that the series L(ε)
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is block diagonal with respect to the splitting into in-plane and transverse components:

L(ε) =

(
Lm,m(ε) 0

0 Lb,b(ε)

)
.

The solvability of three-dimensional equations (3.3) reveals to reduce to the solvability

of two-dimensional equations based on the membrane operator Lm (plane stress model)

introduced in (0.3) and the bending operator Lb , defined in (0.1).

The next theorem collects the results for the membrane and bending dimension reduc-

ing process:

Theorem 3.4

(i) For any in-plane displacement ζ ∈ C∞(ω)2 let Um(ε) be defined as Um(ε) ζ =
U(ε) (ζ, 0) and Lm(ε) be defined as Lm(ε) ζ =

(
L(ε) (ζ, 0)

)
∗

, where U(ε) and L(ε)
are the formal series appearing in Theorem 3.2. Then Lm

0 coincides with the membrane

operator Lm of (0.3) and for each integer k , the operators Lm
k and Um

k+2 are polynomial

of degree k − 1 in Λ . Moreover, for any formal series ζ(ε) with coefficients in C∞(ω)2

solving (
Lm(ε) + Λ(ε)

)
ζ(ε) = 0 in ω , (3.15)

then the three-dimensional formal series

u(ε) := Um(ε)ζ(ε) (3.16)

is a membrane solution of the three-dimensional eigenvalue formal problem (3.3) in Ω .

(ii) For any function η ∈ C∞(ω) let Ub(ε) be defined as Ub(ε) η = U(ε) (0, η) .

Let us assume that

Λ0 = Λ1 = 0, and set Λ(ε) =:
ε2

3
Λb(ε).

Then L0(0, η) = L1(0, η) = 0 and
(
L2(0, η)

)
3

coincides with −1
3
Lbη where Lb is the

bending operator (0.1). We define the operator valued formal series Lb(ε) by

(
L(ε) (0, η)

)
3

=: −
ε2

3
Lb(ε) η.

Then the operators Lb
k and Ub

k+2 are polynomial in Λb of degree k−1 . Moreover, if the

formal series Λ(ε) =
∑

k≥2 ε
kΛk and η(ε) =

∑
k≥0 ε

kηk solve

(
Lb(ε) − Λb(ε)

)
η(ε) = 0 in ω , (3.17)

then the three-dimensional formal series

u(ε) := Ub(ε)η(ε) (3.18)

is a bending solution of the three-dimensional eigenvalue formal problem (3.3) in Ω .
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Proof.

The equation (3.8) for k = 2 applied successively to (ζ, 0) and (0, η) reduces to

(
A0U

m
2 ζ + A2U

m
0 ζ

)
α

=
(
ΠL0(ζ, 0)

)
α

)

and if Λ0 = 0 to (
A0U

b
2 η + A2U

b
0 η

)
3

=
(
ΠL0(0, η)

)
3
,

respectively. But computations like those in [6, Lemma 3.2] show that
(
L0(0, η)

)
3

= 0

and
(
L0(ζ, 0)

)
α

=
(
Lmζ

)
α

. Obviously, since U1 = 0 there holds L1(ζ, 0) = 0 , and

if Λ0 = Λ1 = 0 there holds L1(0, η) = 0 too, and by a computation we obtain that(
L2(0, η)

)
3

= −1
3
Lbη .

The assertions concerning the degree are proved by induction.

In the membrane case (i) for k = 0 we have clearly that Lm
0 and Um

0 , Um
1 , Um

2 are

of degree zero in Λ . Suppose that for ℓ = 0, . . . , k , the operators Um
ℓ and Lm

ℓ−2 are of

degree ℓ − 3 in Λ and fix ζ ∈ C∞(ω)2 . The equation (3.8) yields, with the fact that

Um
0 ζ = (ζ, 0) and U1 = 0 that

A0U
m
k+1ζ + A2U

m
k−1ζ +

k−1∑

j=2

Λk−1−jΠU
m
j ζ = Π

(
Lm

k−2ζ, 0
)
. (3.19)

This equation is of the type

∂33U
m
k+1ζ + F̃ (ζ) =

(
Lm

k−1ζ, 0
)

in Ω, ∂3U
m
k+1ζ + G̃(ζ) = 0 on Γ

−
+ ,

where the operators G̃ and F̃ are similar to the operators F and G used in the proof of

Theorem 3.2. Now, by the recurrence hypothesis, the operators F̃ and G̃ are polynomial

in Λ of degree
k−2
max
j=2

(
k − 1 − j + 1 + (j − 3)+

)
= k − 2.

The equation (3.12) shows that Lm
k−1 is polynomial of degree k − 2 , and we have imme-

diately that Um
k+1 is also of degree k − 2 . Hence the result for the membrane operators.

For the bending case (ii), we can prove the result in the same manner. Note however that

Ub
0 η − η 6= 0 and the assumption Λ0 = Λ1 = 0 is the right one in order that the first

non-zero bending operator in L(ε) does not depend on Λ .

k (Um

k
ζ)

3
(Um

k
ζ)α (Lm

k
ζ)α

0 0 ζα µ∆ζα + (λ̃ + µ) ∂α div ζ

1 0 0 0

2 p̄1 div ζ p̄2 ∂α div ζ (c2Λ0 + c′
2
∆) ∂α div ζ

3 0 0 0

4 (q3Λ0 + q′
3
∆)div ζ (r4Λ0 + r′

4
∆)∂α div ζ (c4Λ

2
0
+ c′

4
Λ2 + c′′

4
Λ0∆ + c′′

4
∆2) ∂α div ζ

Table 1. First rank membrane outer expansion operators.
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Here c2 , c′2 , c4 , c′4 ,... denote real numbers, q3 , q′3 odd polynomials of degree 3 and

r4 , r′4 even polynomials of degree 4 , compare [6, §3.3], and, cf [6, Lemma 3.2]:

p̄1(x3) = − λ̃
2µ
x3, p̄2(x3) = λ̃

4µ

(
x2

3 −
1
3

)
. (3.20)

For the bending operators we have, with the assumption Λ0 = Λ1 = 0 :

k (Ub

k
η)

3
(Ub

k
η)

α
Lb

k
η

0 η −x3∂αη (λ̃ + 2µ)∆2η

1 0 0 0

2 p̄2 ∆η p̄3 ∆∂αη (c3Λ2 + c′
3
∆)∆2η

3 0 0 0

4 q4 ∆2η (r5Λ2 + r′
5
∆2) ∂αη (c5Λ

2
2

+ c′
5
Λ4 + c′′

5
Λ2∆ + c′′

5
∆2)∆2η

Table 2. First rank bending outer expansion operators.

Here c3 , c′3 , c5 , c′5 ,... are real numbers, q4 is an even polynomial of degree 4 and

r5 , r′5 are odd polynomials of degree 5 and:

p̄3(x3) = − 1
12µ

(
(λ̃+ 4µ)x3

3 − (5λ̃+ 12µ)x3

)
. (3.21)

4 Combined inner and outer expansion formal series

In order to fulfill the lateral boundary conditions on Γ0 = ∂ω × (−1, 1) , we have now

to combine the formal series u(ε) satisfying the conditions of Theorem 3.4 with formal

series ϕ(ε) with coefficients in spaces of exponentially decreasing profiles, which yield

the boundary layer terms naturally involved in the solution asymptotics, see [13, 17] and

[6].

4.a Inner expansion formal series

We need local coordinates (r, s) in a plane neighborhood U of the lateral boundary

∂ω . Here r denotes the distance to ∂ω and s the positively oriented arclength on it. The

local basis at each point in ∂ω is given by the unit inner normal n and the tangent unit

vector τ . Extending n and τ into U we arrive at following relations for the normal and

(horizontal) tangential components ur and us of any vector field u∗ = (u1, u2) :

ur = n1u1 + n2u2 and us = (1 − κr)(n2u1 − n1u2), (4.1)

where κ = κ(s) is the curvature of ∂ω at s from inside ω . We also use the partial

derivatives (which, of course, commute with each other)

∂r = n1∂1 + n2∂2 and ∂s = (1 − κr)(n2∂1 − n1∂2). (4.2)

When restricted to the lateral boundary ∂ω , we will also write un and ∂n instead of ur

and ∂r . Let the stretched distance to ∂ω be defined by t = r/ε .
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The boundary layer Ansatz has then the form

∑

k≥0

εkwk(rε−1, s, x3)

where t 7→ wk(t, s, x3) is an exponentially decreasing profile as t → +∞ . Here s
belongs to the in-plane boundary ∂ω and (t, x3) to the half-strip Σ+ = R

+ × (−1, 1) . In

order to preserve the homogeneity of the elasticity system, we scale the profiles wk back,

that is we set ϕk
∗ = wk

∗ and ϕk
3 = wk+1

3 . In formal series writing this means

w(ε) = W (ε)ϕ(ε), with

W0(ϕ∗, ϕ3) = (ϕ∗, 0), W1(ϕ∗, ϕ3) = (0, ϕ3) and Wk = 0, ∀k ≥ 2.

In this section we are going to exhibit operator valued formal series determining the

Dirichlet or Neumann traces of the in-plane generator formal series ζ(ε) so that the Dirich-

let or Neumann traces on the lateral boundary Γ0 of u(ε) = U(ε)ζ(ε) (with U standing

for Um or Ub ) can be compensated by the corresponding traces of a boundary layer for-

mal series ϕ(ε) with values in exponentially decreasing function spaces.

To this aim, let H(Σ+) be the space of C∞(Σ+) functions ϕ , which are smooth up to

any regular point of the boundary of Σ+ and are exponentially decreasing as t → ∞ in

the following sense

∀i, j, k ∈ N, eδt tk ∂i
t∂

j
3ϕ ∈ L2(Σ+)

with δ > 0 a fixed number smaller than the smallest exponent arising from the Papkovich-

Fadle eigenfunctions, cf [10]. With ρ the distance to the two corners of Σ+ , we moreover

prescribe the following behavior at the corners for the elements of H(Σ+)

ϕ ∈ L2(Σ+) and ∀i, j ∈ N, i+ j 6= 0, ρi+j−1 ∂i
t∂

j
3ϕ ∈ L2(Σ+).

Then we define the corresponding displacement space H(Σ+) := H(Σ+)3 . Our profile

formal series ϕ(ε) will have its coefficients in C∞
(
∂ω,H(Σ+)

)
.

4.b Inner expansion problems and matching of lateral boundary conditions

In variables (t, s, x3) and unknowns ϕ = (ϕt, ϕs, ϕ3) the pair A(ε) of the interior

operator and the horizontal boundary operator become

Ã(ε)(tε, s ; ε−1∂t, ∂s, ∂3),

where W (ε) ◦ Ã(ε)(r, s; ∂r, ∂s, ∂3) =
(
A0(∂x) + ε2A2(∂x)

)
◦W (ε) in the neighborhood

U × (−1, 1) of Γ0 . The Taylor expansion at t = 0 of the coefficients of Ã(ε) provides

the operator valued formal series

A(ε) =
∑

k
εkAk =

(∑
k
εkBk ;

∑
k
εkGk

)

where the Bk(t, s ; ∂t, ∂s, ∂3) are partial differential systems of order 2 in the stretched

domain ∂ω × Σ+ whereas the Gk(t, s ; ∂t, ∂s, ∂3) are partial differential systems of order
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1 on its horizontal boundaries ∂ω × γ
−
+ , where γ

−
+ = R

+ × {x3 = −+1} denotes the

horizontal boundaries of Σ+ ; all operators have polynomial coefficients in t .

The counterpart of the outer eigenproblem (3.3) is

A(ε)ϕ(ε) + ε2Λ(ε)Πϕ(ε) = 0 (4.3)

for the inner expansion formal series, where we use the embedding operator Π which

associates now to a vector field f the pair
(
f ; 0

∣∣
∂ω×γ

−
+

)
.

It is worthwhile to note that the principal parts B0 and G0 split into 2D-Lamé and 2D-

Laplace operators in variables (t, x3) with Neumann boundary conditions, respectively:

(B0ϕ)t = µ∆t,3ϕt + (λ+ µ) ∂t

(
divt,3(ϕt, ϕ3)

)
, (G0ϕ)t = µ(∂3ϕt + ∂tϕ3),

(B0ϕ)3 = µ∆t,3ϕ3 + (λ+ µ) ∂3

(
divt,3(ϕt, ϕ3)

)
, (G0ϕ)3 = (λ+ 2µ)∂3ϕ3 + λ ∂tϕt

and

(B0ϕ)s = µ∆t,3ϕs, (G0ϕ)s = µ∂3ϕs .

Now, it remains to give the equations that should hold in order that
∑

k ε
kuk(x) +∑

k ε
kwk(rε−1, s, x3) fulfills the lateral boundary conditions on Γ0 .

Concerning the Dirichlet case, we set

D(ε) = ε−1D−1 +D0, with

D−1(un, us, u3) = (0, 0, u3) and D0(un, us, u3) = (un, us, 0).

The Dirichlet boundary condition takes then the form

ϕ(ε)
∣∣
t=0

+D(ε)u(ε)
∣∣
Γ0

= 0. (4.4)

In the case of a free plate, the traction operator T (ε) on ϕ(ε) is obtained like B(ε)
from the change of variables x 7→ (t, s, x3) and has only two terms

T (ε) = T0 + εT1.

The main term T0 is the traction operator associated with B0 and reads
(
T0ϕ

)
t,3,s

=
(
λ ∂3ϕ3 + (λ+ 2µ)∂tϕt , µ(∂tϕ3 + ∂3ϕt) , µ ∂tϕs

)
.

The counterpart traction N(ε) acting on u(ε) has three terms and reads

N(ε) = ε−1N−1 +N0 + εN1 with

N−1(un, us, u3) =
(
λ ∂3u3 , 0 , 0

)
, N0(un, us, u3) =

(
0 , 0 , µ(∂nu3 + ∂3un)

)

N1(un, us, u3) =
(
λ div∗ u∗ + 2µ ∂nun , µ(∂sun + ∂nus + 2κ us) , 0

)
,

where κ(s) denotes the curvature of ∂ω . The free boundary condition takes the form

T (ε)ϕ(ε)
∣∣
t=0

+N(ε)u(ε)
∣∣
Γ0

= 0. (4.5)

We can write (4.4) and (4.5) in a unified form as

H(ε)ϕ(ε)
∣∣
t=0

+H(ε)u(ε)
∣∣
Γ0

= 0 (4.6)

with H(ε) defined as Id and T (ε) in the clamped and free case respectively, and H(ε)
defined as D(ε) and N(ε) in the clamped and free case respectively.
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4.c General inner expansion formal series

We need the definition of the image counterpart of the space H .

Let K(Σ+) be the space of triples (ψ, ψ−
+) ∈ C∞(Σ+) × C∞(γ

−
+) which satisfy

∀i, j, k ∈ N, eδt tk ∂i
t∂

j
3ψ ∈ L2(Σ+) and eδt tk ∂i

tψ
−
+

∈ L2(γ
−
+)

and

∀i, j ∈ N, ρi+j+1 ∂i
t∂

j
3ψ ∈ L2(Σ+) and ρi+j+1/2 ∂i

tψ
−
+

∈ L2(γ
−
+).

Then we define the corresponding displacement space:

K(Σ+) :=
{
Ψ = (ψ,ψ−

+

) ∈ K(Σ+)3
}
.

According to [6] the operator A0 has similar properties in both clamped and free cases.

We recall here what we need and fix some notations, compare [6, section 5].

Proposition 4.1 There exists a four-dimensional space Z of polynomial motions, such

that if Ψ belongs to C∞
(
∂ω,K(Σ+)

)
and v belongs to C∞(Γ0)

3 , then there exist a

unique ϕ ∈ C∞
(
∂ω,H(Σ+)

)
and a unique Z ∈ C∞(∂ω,Z) such that

{
A0(ϕ) + Ψ = 0 in ∂ω ×

(
Σ+ × γ+ × γ−

)
,

H0(ϕ−Z)
∣∣
t=0

+ v
∣∣
Γ0

= 0,

where H0 = Id in the clamped case, and H0 = T0 in the free case.

Note that, once a basis of Z is fixed, any Z ∈ C∞(∂ω,Z) determines four coefficients

in C∞(∂ω) depending on Ψ and v which are the coordinates of Z in this basis. In the

free case, these coefficients can be computed explicitly from Ψ and v , see §4.e. In the

clamped case, the space Z is generated by the four rigid motions (two membrane and two

bending) given in coordinates (t, s, x3) by:

Z
m,1
D =




1
0
0


 Z

m,2
D =




0
1
0


 Z

b,1
D =




0
0
1


 Z

b,2
D =




−x3

0
t


 .

In this subsection, we will consider equation (4.3) under the conditions (4.6). The

following result reduces the solution of that problem to a new boundary condition on z(ε) .

Theorem 4.2 Let δ−1 be the operator zero C∞(ω)3 → C∞(∂ω,Z) in the free case, and

δ−1 be the operator C∞(ω)3 → C∞(∂ω,Z) defined by δ−1z =
(
z3

∣∣
∂ω

)
Z

b,1
D in the

clamped plate. There exist for each k ≥ 0

• a unique operator Φk : C∞(ω)3 → C∞
(
∂ω,H(Σ+)

)
,

• a unique operator δk : C∞(ω)3 → C∞(∂ω,Z) ,

defining operator formal series Φ(ε) =
∑

k≥0 ε
kΦk and δ(ε) =

∑
k≥−1 ε

kδk such that:

If the formal series z(ε) satisfies δ(ε)z(ε) = 0 , then ϕ(ε) = Φ(ε)z(ε) is a formal

series solution of the problem (4.3) under the boundary conditions

H(ε)ϕ(ε)
∣∣
t=0

+H(ε)U(ε)z(ε)
∣∣
Γ0

= 0. (4.7)
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Proof. We are going to prove the existence of formal operator series Φ(ε) =
∑

ℓ≥−1 ε
ℓΦℓ

and δ(ε) =
∑

ℓ≥−1 ε
ℓδℓ satisfying the relation

{
A(ε)Φ(ε) +

(
ε2Λ(ε)Φ(ε); 0

∣∣
∂ω×γ

−
+

)
= 0,

H(ε)
(
Φ(ε) − δ(ε)

)∣∣
t=0

+H(ε)U(ε)
∣∣
Γ0

= 0.
(4.8)

The first relation corresponds to the power ε−1 and reads
{

A0Φ−1 +
(
0; 0

∣∣
∂ω×γ

−
+

)
= 0,

H0

(
Φ−1 − δ−1

)∣∣
t=0

+H−1U0

∣∣
Γ0

= 0.

With Φ−1 the operator zero and the definitions of δ−1 given in the theorem, the above

identity holds.

Let k ≥ 0 , and suppose that the operators Φℓ and δℓ are constructed for ℓ = −1, . . . , k
so that the relations corresponding to the powers εℓ in (4.8) hold for ℓ = −1, . . . , k .

Note that in both free and clamped cases, we have H−1 6= 0 and Hk = 0 for k ≥ 2 ,

and Hk = 0 for k ≥ 2 . Consider for any fixed z ∈ C∞(ω)3 the problem of finding ψ

solution of:



B0ψ +
k+1∑

ℓ=1

BℓΦk+1−ℓz +
k−1∑

ℓ=0

ΛℓΦk−1−ℓz = 0 in Σ+,

G0ψ +
k+1∑

ℓ=1

GℓΦk+1−ℓz = 0 on γ
−
+,

(
H0ψ + H1(Φk − δk)z

)∣∣
t=0

+
(
H−1Uk+2z +H0Uk+1z +H1Ukz

)∣∣
Γ0

= 0.

Proposition 4.1 shows that there exists a unique solution ψ = ϕ−Z to the above problem.

Setting Φk+1z := ϕ and δk+1z := Z we obtain the relation at the rank k + 1 in (4.8).

Therefore, if z(ε) is a formal series satisfying δ(ε)z(ε) = 0 , the identity (4.8) shows that

the equations (4.3) and (4.7) hold.

In the next subsection, we study the first terms of the formal series Φ(ε) and δ(ε)
according to the boundary condition imposed, and also to the type of the displacement

(membrane or bending).

4.d Clamped case

Let us investigate the first non-zero terms in δ(ε) and Φ(ε) . Let us recall that δ−1z

is equal to
(
z3

∣∣
∂ω

)
Z

b,1
D . In order to determine the next operators Φ0 and δ0 , we have to

consider the problem for all z (remind that U1 = 0 ):





B0Φ0z = 0 in Σ+,

G0Φ0z = 0 on γ
−
+,

(Φ0 − δ0)z
∣∣
t=0

+D0U0z
∣∣
Γ0

= 0
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with D0U0z = (z∗ − x3∇∗z3, 0) . Hence, we conclude that

δ0z =
(
zn

∣∣
∂ω

)
Z

m,1
D +

(
zs

∣∣
∂ω

)
Z

m,2
D +

(
∂nz3

∣∣
∂ω

)
Z

b,2
D

and that Φ0 = 0 . So the boundary layer term only starts with the operator Φ1 .

More generally, for any k ≥ 1 , we can write that

δkz = (δm,1
k z)Zm,1

D + (δm,2
k z)Zm,2

D + (δb,1
k z)Zb,1

D + (δb,2
k z)Zb,2

D .

Now, the condition δ(ε)z(ε) = 0 is equivalent to δm,j(ε)z(ε) = 0 and δb,j(ε)z(ε) = 0 ,

j = 1, 2 , in the membrane and bending cases respectively. Thus the solvability of problem

(4.3) under boundary conditions (4.4) is guaranteed by a condition of the form

γ(ε)z(ε) = 0,

where γ(ε) is a formal operator valued series with continuous coefficients from C∞(ω)3

into C∞(∂ω)4 . Then as a consequence of Theorem 4.2, we obtain:

Theorem 4.3

(i) Let γm(ε) =
∑

k≥0 ε
kγm

k be defined for any in-plane displacement ζ ∈ C∞(ω)2

by γm
k ζ =

(
δm,1
k , δm,2

k

)
(ζ, 0) ∈ C∞(∂ω)2 . We also set Φm(ε) ζ = Φ(ε) (ζ, 0) . Here

Φ(ε) and δ(ε) are the formal series appearing in Theorem 4.2. Then Φm
0 = 0 and γm

0

coincides with the Dirichlet traces of the membrane operator Lm :

γm
0 ζ =

(
ζn, ζs

)∣∣
∂ω

and for each integer k , the operators Φm
k and γm

k are polynomial of degree k− 2 in Λ .

Moreover, for any formal series ζ(ε) with coefficients in C∞(ω)2 solving

γm(ε)ζ(ε) = 0 in ∂ω , (4.9)

then the three-dimensional formal series ϕ(ε) := Φm(ε)ζ(ε) is a membrane solution of

the three-dimensional eigenvalue formal problem (4.3) in ∂ω × Σ+ with the Dirichlet

condition

ϕ(ε)
∣∣
t=0

+D(ε)Um(ε)ζ(ε)
∣∣
Γ0

= 0.

(ii) Let γb(ε) =
∑

k≥0 ε
kγb

k be defined for any function η ∈ C∞(ω) by γb
kη =(

δb,1
k−1, δ

b,2
k

)
(0, η) ∈ C∞(∂ω)2 and set Φb(ε) η = Φ(ε) (0, η) . Then Φb

0 = 0 and γb
0

coincides with the Dirichlet traces of the bending operator Lb :

γm
0 η =

(
η, ∂nη

)∣∣
∂ω

and if Λ0 = Λ1 = 0 , for each integer k the operators Φb
k and γb

k are polynomial of

degree k − 2 in Λb . Moreover, for any formal series η(ε) with coefficients in C∞(ω)
solving

γb(ε)η(ε) = 0 in ∂ω , (4.10)

then the three-dimensional formal series ϕ(ε) := Φb(ε)η(ε) is a bending solution of

the three-dimensional eigenvalue formal problem (4.3) in ∂ω × Σ+ with the Dirichlet

condition

ϕ(ε)
∣∣
t=0

+D(ε)Ub(ε)η(ε)
∣∣
Γ0

= 0.
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Remark 4.4 By the same computations as in [6, §6], we obtain that γm
1 ζ is defined as

(cm div ζ, 0)
∣∣
∂ω

and that γb
1η = (0, cb∆η)

∣∣
∂ω

with cm and cb non-zero constants only

depending on the Lamé coefficients λ and µ .

4.e Free case

In this case, a basis of Z is given by the four displacements

Z
m,1
N =




t
0
p̄1


 Z

m,2
N =




0
t
0


 Z

b,1
N =




−2tx3

0
t2 + 6tp̄2




and Z
b,2
N =




−3t2x3 + 6p̄3

0
t3 + 6tp̄2


 ,

where the polynomials p̄1 , p̄2 and p̄3 are defined in (3.20) and (3.21). Moreover, if

Ψ = (ψ,ψ−
+

) ∈ C∞
(
∂ω,K(Σ+)

)
and v ∈ C∞(Γ0)

3 , then the element Z ∈ Z given by

Proposition 4.1 writes

Z = δm,1Z
m,1
N + δm,2Z

m,2
N + δb,1Z

b,1
N + δb,2Z

b,2
N

with, see [6, Propositions 5.6 & 5.12]:

δm,1 =

∫

Σ+

Ψt dtdx3 −

∫

R+

(
ψ+

t − ψ−
t

)
dt+

∫ 1

−1

vt dx3,

δm,2 =
1

2µ

(∫

Σ+

Ψs dtdx3 −

∫

R+

(
ψ+

s − ψ−
s

)
dt+

∫ 1

−1

vs dx3

) (4.11)

and

δb,1 =

∫

Σ+

(
−x3Ψt + tΨ3

)
dtdx3 +

∫

R+

(
ψ+

t + ψ−
t − t(ψ+

3 − ψ−
3 )

)
dt−

∫ 1

−1

x3vt dx3,

δb,2 =

∫

Σ+

Ψ3 dtdx3 −

∫

R+

(
ψ+

3 − ψ−
3

)
dt+

∫ 1

−1

v3 dx3.

(4.12)

In the following, we investigate the first non-zero terms in δ(ε) and Φ(ε) . Remind that

in the free case δ−1 = 0 . We now study separately the membrane and bending cases.

(i) MEMBRANE CASE. Recall that the Neumann traces of the membrane operator Lm are

Tm
n ζ = λ̃ div ζ + 2µ∂nζn,

Tm
s ζ = µ(∂sζn + ∂nζs + 2κζs).

(4.13)

As in the clamped case, we define for all k the operators Φm
k and δm

k by the equations

Φm
k ζ = Φk(ζ, 0) and δm

k ζ = δk(ζ, 0)
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for ζ ∈ C∞(ω)2 . We have for all k ≥ 0

δm
k ζ = (δm,1

k ζ)Zm,1
N + (δm,2

k ζ)Zm,2
N .

For k = 0 , the operators satisfy for all ζ the equation (remind U1 = 0 )





B0Φ
m
0 ζ = 0 in Σ+,

G0Φ
m
0 ζ = 0 on γ

−
+,

T0(Φ
m
0 − δm

0 )ζ
∣∣
t=0

+N0U
m
0 ζ

∣∣
Γ0

= 0.

As there holds N0U
m
0 ζ = 0 , we obtain Φm

0 = 0 and δm
0 = 0 . For k = 1 , we then have






B0Φ
m
1 ζ = 0 in Σ+,

G0Φ
m
1 ζ = 0 on γ

−
+,

T0(Φ
m
1 − δm

1 )ζ
∣∣
t=0

+ (N−1U
m
2 ζ +N1U

m
0 ζ)

∣∣
Γ0

= 0.

A computation shows that in coordinates (t, s, x3) ,

N−1U
m
2 ζ +N1U

m
0 ζ =

(
Tm

n ζ , T
m
s ζ , 0 ).

From (4.11), we deduce immediately that

δm,1
1 = 2Tm

n and δm,2
1 = 1

µ
Tm

s .

Moreover, we can check that Φm
1 = 0 . Consequently, Theorem 4.2 yields the following

result:

Theorem 4.5 Let γm(ε) =
∑

k≥0 ε
kγm

k be defined for any in-plane displacement ζ ∈

C∞(ω)2 by γm
k ζ =

(
1
2
δm,1
k+1 , µδ

m,2
k+1

)
ζ . Then Φm

0 = Φm
1 = 0 and γm

0 coincides with the

Neumann traces of the membrane operator Lm :

γm
0 ζ =

(
Tm

n ζ, T
m
s ζ

)∣∣
∂ω

and for each integer k , the operators Φm
k and γm

k are polynomial of degree k− 1 in Λ .

Moreover, for any formal series ζ(ε) with coefficients in C∞(ω)2 solving

γm(ε)ζ(ε) = 0 in ∂ω , (4.14)

then the three-dimensional formal series ϕ(ε) := Φm(ε)ζ(ε) is a membrane solution of

the three-dimensional eigenvalue formal problem (4.3) in ∂ω × Σ+ with the Neumann

condition

T (ε)ϕ(ε)
∣∣
t=0

+N(ε)Um(ε)ζ(ε)
∣∣
Γ0

= 0.
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(ii) BENDING CASE. As usual, we suppose Λ0 = Λ1 = 0 . Recall that the Neumann

traces of the bending operator Lb are

Mnη = λ̃∆η + 2µ∂nnη,

Nnη = (λ̃+ 2µ)∂n∆η + 2µ∂s(∂n + κ)∂sη.
(4.15)

We define for all k the operators Φb
k and δb

k by the equations

Φb
kη = Φk(0, η) and δb

kη = δk(0, η)

for η ∈ C∞(ω) . We have for all k ≥ 0

δb
kζ = (δb,1

k ζ)Zb,1
N + (δb,2

k ζ)Zb,2
N .

As in the membrane case, using the fact that N0U
b
0 η = 0 , we have that Φb

0 = 0 and

δb
0 = 0 . For k = 1 , we have to consider the problem for all η





B0Φ
b
1η = 0 in Σ+,

G0Φ
b
1η = 0 on γ

−
+,

T0(Φ
b
1 − δ

b
1)η

∣∣
t=0

+ (N−1U
b
2 η +N1U

b
0 η)

∣∣
Γ0

= 0.

A computation shows that

N−1U
b
2 η +N1U

b
0 η =

(
−x3Mnη , −x32µ(∂n + κ)∂sη , 0

)
,

whence, with (4.12) we deduce

δb,1
1 = 2

3
Mn and δb,2

1 = 0.

Moreover we have Φb
1 = (0,Φb

1,s, 0) with, see [6, Section 10], Φb
1,sη = ϕ

Neu
(∂n + κ)∂sη

where ϕ
Neu

is the solution of the Neumann problem in the half-strip Σ+ with data 0 on

γ
−
+ and 2x3 on ∂ω . The function ϕ

Neu
is exponentially decreasing and there holds, see

[6, Lemma 5.7], ∫ ∞

0

ϕ
Neu

(t, x3) dtdx3 = −
2

3
. (4.16)

At this stage, we still do not have the first non-zero term of the formal series δb,2(ε) .

It remains now to compute the term δb,2
2 . For k = 2 , we have the equations for all η






B0Φ
b
2η = −B1Φ

b
1η in Σ+,

G0Φ
b
2η = −G1Φ

b
1η on γ

−
+,

T0(Φ
b
2 − δ

b
2)η

∣∣
t=0

+ T1(Φ
b
1 − δ

b
1)η

∣∣
t=0

+N0U
b
2 η

∣∣
Γ0

= 0.

According to (4.12), only the third components are necessary to compute δb,2
2 η . We have,

see [6, Equation (4.2)], that (T1)3
= 0 , and with the expression of B1 , [6, Equation

(4.6)], and Φb
1 , we have (B1Φ

b
1η)3

= (λ + µ)∂3∂sΦ
b
1,sη . Similarly, with the expression
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of G1 , [6, Equation (4.10)], we have (G1Φ
b
1η)3

= λ∂sΦ
b
1,sη . Finally, we have the formula

(N0U
b
2 η)3

= µ(p̄2 + p̄′3)∂n∆η , and using (4.12) and (4.16) , we find that

δb,2
2 η = −

2

3
Nnη.

As consequence of Theorem 4.2, we have

Theorem 4.6 Let γb(ε) =
∑

k≥0 ε
kγb

k be defined for any function η ∈ C∞(ω) by γb
kη =

3
2

(
δb,1
k+1 , −δ

b,2
k+2

)
η . Then Φb

0 = 0 and γb
0 coincides with the Neumann traces of the

bending operator Lb :

γb
0η =

(
Mnη,Nnη

)∣∣
∂ω

and if Λ0 = Λ1 = 0 , for each integer k the operators Φb
k and γb

k are polynomial of

degree k − 1 in Λb . Moreover, for any formal series η(ε) with coefficients in C∞(ω)
solving

γb(ε)η(ε) = 0 in ∂ω , (4.17)

then the three-dimensional formal series ϕ(ε) := Φb(ε)η(ε) is a bending solution of

the three-dimensional eigenvalue formal problem (4.3) in ∂ω × Σ+ with the Neumann

condition

T (ε)ϕ(ε)
∣∣
t=0

+N(ε)Ub(ε)η(ε)
∣∣
Γ0

= 0.

5 Solution of the in-plane eigenvalue problems

Collecting the results in Theorems 3.4 and 4.3 - 4.5, we obtain that in the membrane

case, if the formal series ζ(ε) and Λ(ε) solve

{ (
Lm(ε) + Λ(ε)

)
ζ(ε) = 0 in ω,

γm(ε)ζ(ε) = 0 on ∂ω,
(5.1)

then the formal series u(ε) := Um(ε)ζ(ε) and ϕ(ε) := Φm(ε)ζ(ε) solve the three-

dimensional eigen-problems (3.3) and (4.3) respectively, moreover the sum of their traces

on the lateral boundary solve (4.6). We will prove in §6 that, provided (5.1) holds, the

partial sums of series Um(ε)ζ(ε) and Φm(ε)ζ(ε) yield three-dimensional O(εk) -quasi-

modes. We have similar statements for the bending case if the formal series η(ε) and

Λb(ε) solve { (
Lb(ε) − Λb(ε)

)
η(ε) = 0 in ω,

γb(ε)η(ε) = 0 on ∂ω.
(5.2)

Thus the three-dimensional formal series eigenproblems, including inner and outer

parts, reduce to two-dimensional formal series eigenproblems.
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5.a Change of unknowns

By a simple change of unknowns we are going to replace the formal series ζ(ε) or

η(ε) in problems (5.1) or (5.2) by new formal series ζ̆(ε) or η̆(ε) which will have to

satisfy the homogeneous boundary conditions associated with operators Lm or Lb .

Theorem 5.1 Let γ(ε) be any formal series defined by Theorems 4.3, 4.5 and 4.6. Then

there exists an invertible formal series C(ε) =
∑

k≥0 ε
kCk where C0 = Id and Ck is

continuous : C∞(ω)p → C∞(ω)p with p = 1 and 2 in the bending and membrane case

respectively, such that

γ0 ◦ C(ε) = γ(ε).

Proof. We only have to prove the existence of the operators Ck satisfying γ0 ◦Ck = γk .

We can obviously take C0 = Id . For k ≥ 1 , it suffices to set Ck = R0 ◦ γk , where R0

is a lifting operator corresponding to the trace operator γ0 , that is a continuous operator

C∞(∂ω)2 → C∞(ω)p such that γ0 ◦R0 = Id .

By composition with C−1(ε) the inverse formal series to C(ε) we obtain:

Corollary 5.2 In both clamped and free plate cases, we have:

(i) With the change of unknowns ζ̆(ε) := C(ε)ζ(ε) , problem (5.1) is equivalent to

the system { (
L̆m(ε) + Λ(ε)

)
ζ̆(ε) = 0 in ω,

γm
0 ζ̆(ε) = 0 on ∂ω,

(5.3)

where L̆m(ε) is a formal series with coefficients L̆m
ℓ : C∞(ω)2 → C∞(ω)2 of degree ℓ−1

in Λ , and such that L̆m
0 = Lm .

(ii) With the change of unknowns η̆(ε) := C(ε)η(ε) , problem (5.2) is equivalent to

the problem { (
L̆b(ε) − Λb(ε)

)
η̆(ε) = 0 in ω,

γb
0 η̆(ε) = 0 on ∂ω,

(5.4)

where L̆b(ε) is a formal series with coefficients L̆b
ℓ : C∞(ω) → C∞(ω) of degree ℓ − 1

in Λb , and such that L̆b
0 = Lb .

5.b Solution of the plane formal series eigenproblems

In this subsection, we solve the equations (5.3) and (5.4). We first investigate the mem-

brane case. The bending case will be very similar.

Theorem 5.3 Let Λ0 be an eigenvalue of the operator −Lm with boundary condition

γm
0 and let F0 be the corresponding eigenspace. There exist an integer d ≤ dimF0 and

a splitting of F0 into d subspaces F ℓ
∞ :

F0 =
⊕d

ℓ=1
F ℓ
∞

such that for all ℓ = 1, . . . , d , there exist
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• a formal series Λℓ(ε) with real coefficients such that Λℓ
0 = Λ0 ,

• a formal series ϑℓ(ε) with coefficients ϑℓ
k : F ℓ

∞ → C∞(ω)2

with the following property: For all ζ∞ ∈ F ℓ
∞ , the formal series ζ̆ℓ(ε) = ϑℓ(ε)ζ∞ solves

problem (5.3) with Λ(ε) = Λℓ(ε) .

Proof. Let us first note that the formal series ζ̆(ε) =
∑

k≥0 ε
kζ̆k and Λ(ε) =

∑
k≥0 ε

kΛk

satisfy the equation (5.3) if and only if for each k ≥ 0

γm
0 ζ̆

k = 0 and
(
Lm + Λ0

)
ζ̆k = −

k∑

ℓ=1

(
L̆ℓ + Λℓ

)
ζ̆k−ℓ. (5.5)

For k = 0 , this equation reads
(
Lm + Λ0

)
ζ̆0 = 0 . Since Λ0 is an eigenvalue of −Lm ,

the equation is solvable and ζ̆0 can be chosen at this stage as any element ζ1
0 in F0 .

For k = 1 we thus take any ζ1
0 ∈ F0 and consider the problem of finding ζ such that

{
(L̆m + Λ0)ζ = −(L̆m

1 + Λ1)ζ
1
0 in ω,

γm
0 ζ = 0 on ∂ω.

(5.6)

This problem is solvable if the right-hand side is orthogonal to F0 . Defining M1 by

M1 : F0 → F0 ∀ ζ, ψ ∈ F0, 〈M1 ζ , ψ 〉 = 〈 L̆m
1 ζ , ψ 〉, (5.7)

this orthogonality condition reads

(M1 + Λ1)ζ
1
0 = 0. (5.8)

But M1 is symmetric, as will be proved later on. Hence for any eigenvalue Λ1 of M1

we can take ζ1
0 as any element ζ2

1 of the corresponding eigenspace F1 . Then (5.6) is

solvable and admits as solution any element ζ1
−1 of the form ζ2

0 + θ1
0ζ

2
1 , where ζ2

0 is any

element in F0 and θ1
0 : F1 → J0 (with J0 the orthogonal complement of F0 in C∞(ω)2 )

the solution operator in J0 of problem (5.6).

Thus we have (partly) proved the two first steps of the following lemma:

Lemma 5.4 Set F−1 = C∞(ω)2 , F0 as in Theorem 5.3 and J0 the orthogonal comple-

ment of F0 in F−1 for the scalar product of L2(ω)2 . We take Λ0 as in Theorem 5.3.

There exist for all i ≥ 1

• a real Λi and orthogonal subspaces Fi and Ji , such that Fi ⊕ Ji = Fi−1 ,

• for any j > i , operators θj
i : Fj → Ji ,

allowing for any fixed n ≥ 0 , the construction of solutions of the equations (5.5) for k ∈
{0, . . . , n} in the following way: Choosing any functions ζn+1

ℓ ∈ Fℓ for ℓ = 0, . . . , n ,

we construct successively the functions ζk
ℓ for k = n, . . . , 0 by

∀ ℓ = −1, . . . , k − 1 , ζk
ℓ = ζk+1

ℓ+1 +

k∑

j=ℓ+2

θj
ℓ+1 ζ

k+1
j . (5.9)

Thus the functions ζ0
−1, . . . , ζ

n
−1 depend linearly on the generating functions ζn+1

0 , . . . ,

ζn+1
n via a lower triangular (n + 1) × (n+ 1) matrix operator Θn :

(
ζ0
−1, . . . , ζ

n
−1

)⊤
= Θn

(
ζn+1

n , . . . , ζn+1
0

)⊤
.
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Then the functions ζ̆k := ζk
−1 for k = 0, . . . , n satisfy the first n + 1 equations of (5.5).

Moreover for any n ≥ 0 , Λn is an eigenvalue and Fn the associated eigenspace of the

symmetric operator Mn : Fn−1 → Fn−1 defined by

∀ ζ,ψ ∈ Fn−1, 〈Mn ζ , ψ 〉 = 〈Mn ζ , ψ 〉 , (5.10)

where 〈·, ·〉 is the L2 scalar product on C∞(ω)2 and the operator Mn is such that the

following identity holds for any ζn
ℓ ∈ Fℓ ( ℓ = 0, . . . , n− 1 )

n∑

ℓ=1

(
L̆m

ℓ + Λℓ

)
ζn−ℓ
−1 =

n∑

ℓ=1

(
Mℓ + Λℓ

)
ζn

ℓ−1, (5.11)

where the functions
(
ζ0
−1, . . . , ζ

n−1
−1

)⊤
are given by Θn−1

(
ζn

n−1, . . . , ζ
n
0

)⊤
.

Proof of Lemma 5.4.

a) We will prove the existence of Λi , Fi , Mi and θj
i by induction.

For n ∈ N , the induction hypothesis is that Λi , Fi , Mi are constructed for i = 0, . . . , n
and operators θj

i for i = 0, . . . , n − 1 and j = i + 1, . . . , n (thus operators Θℓ for

ℓ = 0, . . . , n ) such that the assertions of the lemma are satisfied.

For n = 0 , the hypothesis is satisfied clearly by setting M0 = Lm .

Suppose now it holds for n ≥ 0 .

Let us take n+1 generating functions ζn+1
ℓ ∈ Fℓ , ℓ = 0, . . . , n , and let

(
ζ0
−1, . . . , ζ

n
−1

)⊤

be defined as Θn
(
ζn+1

n , . . . , ζn+1
0

)⊤
. The assumption yields that the first n+ 1 equations

of (5.5) are satisfied with ζ̆k := ζk
−1 . In order to construct solutions for the equation of

(5.5) corresponding to k = n + 1 , we have to solve the problem of finding Λn+1 in R

and ζ satisfying

(
Lm + Λ0

)
ζ = −

n+1∑

ℓ=1

(
L̆m

ℓ + Λℓ

)
ζn+1−ℓ
−1 ,

with the boundary condition γ0ζ = 0 on ∂ω . Note that for ℓ = 1, . . . , n+1 the operators

L̆m
ℓ only depend on Λ0, . . . ,Λn−1 and are well defined at this recursion step. We are going

to solve this problem via new conditions on the generating functions ζn+1
ℓ .

Thanks to formula (5.9) for k = n :

∀ ℓ = −1, . . . , n− 1 , ζn
ℓ = ζn+1

ℓ+1 +

n−1∑

j=ℓ+2

θj
ℓ+1 ζ

n+1
j + θn

ℓ+1 ζ
n+1
n ,

we can see that

Θn
(
ζn+1

n , . . . , ζn+1
0

)⊤
= Θn−1

(
ζn+1

n−1, . . . , ζ
n+1
0

)⊤
+ Op(ζn+1

n ) ,

where Op is a linear operator. Thus formula (5.11) yields that
n∑

ℓ=1

(
L̆m

ℓ + Λℓ

)
ζn+1−ℓ
−1 =

n∑

ℓ=1

(
Mℓ + Λℓ

)
ζn+1

ℓ−1 + Op(ζn+1
n ),
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where Op is another linear operator. Therefore there exists a new operator Mn+1 such

that the previous problem takes the form




(
Lm + Λ0

)
ζ = −

n∑

ℓ=1

(
Mℓ + Λℓ

)
ζn+1

ℓ−1 −
(
Mn+1 + Λn+1

)
ζn+1

n in ω,

γ0ζ = 0 on ∂ω.

(5.12)

We then define the operator Mn+1 : Fn → Fn by the formula (5.10). Now, problem (5.12)

is solvable if the right-hand side is orthogonal to F0 .

By taking the scalar product of the right-hand side of (5.12) with any element ψ in Fn ,

we have to obtain zero since Fn ⊂ F0 . As ζn+1
ℓ−1 belongs to Fℓ−1 , it is in the domain of

the operator Mℓ + Λℓ . Thus for any l = 1, . . . , n〈(
Mℓ + Λℓ

)
ζn+1

ℓ−1 , ψ
〉

=
〈(

Mℓ + Λℓ

)
ζn+1

ℓ−1 , ψ
〉

=
〈
ζn+1

ℓ−1 ,
(
Mℓ + Λℓ

)
ψ

〉
= 0,

since ψ belongs to Fn ⊂ Fℓ with Fℓ the kernel of
(
Mℓ + Λℓ

)
. Therefore a necessary

condition for the solvability of problem (5.12) is the condition
(
Mn+1 + Λn+1

)
ζ0

n = 0 .

We postpone the proof of the symmetry of the operator Mn+1 to part b) of this demonstra-

tion. We then have the existence of an eigenvalue Λn+1 and of its associated eigenspace

Fn+1 ⊂ Fn .

We hence can solve step by step the equations obtained by projections on Fn−1 , . . . , F0

of the equation of problem (5.12). We first take ζn+2
n+1 ∈ Fn+1 and set ζn+1

n = ζn+2
n+1 . Then

for any ζn+2
n ∈ Fn , we take

ζn+1
n−1 = ζn+2

n + θn+1
n ζn+2

n+1 ,

where θn+1
n : Fn+1 → Jn is the solution operator η 7→ ζ of the problem

ζ ∈ Jn such that ∀ψ ∈ Fn :
〈(

Mn + Λn

)
ζ , ψ

〉
= −

〈(
Mn+1 + Λn+1

)
η , ψ

〉
.

Note that this problem is solvable since, as η ∈ Fn+1 , for any ψ ∈ Fn there holds〈(
Mn+1 + Λn+1

)
η , ψ

〉
=

〈(
Mn+1 + Λn+1

)
η , ψ

〉
= 0.

Similarly for any ζn+2
ℓ ∈ Fℓ , with l = n− 1, . . . , 0 , we take

ζn+1
ℓ−1 = ζn+2

ℓ +
n+1∑

j=ℓ+1

θj
ℓ ζ

n+2
j ,

where the operators θn+1
ℓ are successively constructed according to:

The operator θj
i : Fj → Ji for i = j − 1, . . . , 0 is the solution operator η 7→ ζ of the

problem of finding ζ ∈ Ji such that for all ψ ∈ Fi−1

〈(
Mi + Λi

)
ζ , ψ

〉
= −

〈(
Mj + Λj

)
η , ψ

〉
−

j−1∑

ℓ=i+1

〈(
Mℓ + Λℓ

)
θj

ℓη , ψ
〉
.

Then the new ζ̆k := ζk
−1 for k = 0, . . . , n+ 1 where
(
ζ0
−1, . . . , ζ

n+1
−1

)⊤
= Θn+1

(
ζn+2

n+1, . . . , ζ
n+2
0

)⊤

satisfy the first n + 2 equations of (5.5).
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b) Let us prove now the symmetry of the operator Mn+1 which is the only thing which

remains to be shown in the induction step of part a). We have to show that

∀ ζ ∈ Fn, ∀ψ ∈ Fn, 〈Mn+1 ζ , ψ 〉 = 〈 ζ , Mn+1ψ 〉 . (5.13)

We are going to prove that (5.13) is indeed a consequence of the symmetry of the three-

dimensional bilinear form a(ε) appearing in (1.11).

Let us introduce the finite formal series

Λ[n](ε) =
n∑

k=0

εkΛk

which is well-defined at the induction step n . We fix an arbitrary ζ ∈ Fn and by the

induction hypothesis the operator Θn is known. Let us define

(
ζ0
−1, . . . , ζ

n
−1

)⊤
= Θn

(
ζ, 0 . . . , 0

)⊤
and ζ̆[n](ε) =

n∑

ℓ=0

εℓζℓ
−1 .

ζ̆ [n](ε) is a finite formal series depending only on ζ .

Let us now consider the formal series Um(ε) defined as the formal series constructed in

Theorem 3.4 corresponding to the formal eigenvalue series Λ = Λ[n] . Let us denote by

Ŭm(ε) the compound formal series Um(ε) ◦ C−1(ε) where C(ε) is the lifting formal

series of Theorem 5.1 and define

Ŭm
[n](ε) =

n+3∑

ℓ=0

εℓŬm
ℓ .

Coming back to problem (3.3), we can see that there holds

A(ε) ◦ Ŭm
[n](ε)

(
ζ̆ [n](ε)

)
+ ε2Λ[n](ε) Π ◦ Ŭm

[n](ε)
(
ζ̆ [n](ε)

)
Ŭm

[n](ε)
∣∣
Γ
−
+

)

= εn+3
(
Mn+1ζ, 0 ; 0

∣∣
Γ
−
+

)
+ O(εn+4) .

Next, we introduce the formal series Φm(ε) which is given in Theorem 4.2 corresponding

to the formal series Λ = Λ[n] and Um = Um
[n] . Setting Φ̆m(ε) = Φm(ε) ◦ C−1(ε) and

Φ̆m
[n](ε) =

n+4∑

ℓ=1

εℓΦ̆m
ℓ

we define the three-dimensional displacement

u(ζ) =
(
Ŭm

[n](ε) + χ(r)W (ε)Φ̆m
[n](ε)

)
ζ̆ [n](ε),

where χ is a cut-off function with χ ≡ 1 in the vicinity of ∂ω leading to a well defined

sum. For any ψ ∈ Fn we define u(ψ) in the same way.

We come back to the framework of the initial problem (1.11) by an integration by parts,

cf formulas (3.1) and (3.2). We see that by construction we have u(ζ) = 0 on Γ0 in the

clamped case and T (ε)u(ζ) = O(εn+2) on Γ0 in the free case and the same holds for

u(ψ) . Now, for ζ and ψ in Fn we obtain that

−a(ε)
(
u(ζ),u(ψ)

)
+ Λ[n](ε)

〈
u(ζ),u(ψ)

〉
ε

= εn+1 〈Mn+1 ζ , ψ 〉 + O(εn+2)

= εn+1 〈 ζ , Mn+1ψ 〉 + O(εn+2)

which yields the symmetry of the operator Mn+1 .
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End of the proof of Theorem 5.3.

To each sequence of nested spaces F0 ⊃ . . . ⊃ Fn ⊃ . . . constructed in Lemma 5.4 is

associated a minimal integer n0 ≥ 0 and a limit space F∞ such that for all n ≥ n0 ,

Fn = F∞ , because the dimensions of the spaces Fi form a decreasing sequence of non-

negative integers. This implies that the operators θj
i are zero for i ≥ n0 + 1 .

The relation (5.9) shows that for fixed n , if ( Θn
i,1 )n+1

i=1 denotes the first column of the

matrix Θn , we have

( Θn+1
1,1 , . . . ,Θ

n+1
1,n+1 )⊤ = Θn ◦

(
Id, θn+1

n , . . . , θn+1
1

)⊤
.

As the operator Θn is lower triangular, the above equality can be written as

Θn+1
k,1 = Θn

k,1 +

k∑

ℓ=2

Θn
k,ℓ ◦ θ

n+1
n+2−ℓ for k ≤ n + 1 .

Hence if n+ 2− k ≥ n0 + 1 , we have Θn+1
k,1 = Θn

k,1 , thus for any k ∈ N these operators

do not depend on n if n ≥ n0 + k .

Let us then define

∀ k ≥ 0, ϑk := Θn
k−1,1 with n = n0 + k .

In particular, we have ϑ0 = Id . Now if ζ∞ belongs to F∞ , we can define the sequence

N ∋ k 7−→ ζ̆k := ϑk ζ∞.

Let us fix k ∈ N . Choosing n = n0 + k and setting

ζn+1
n = ζ∞ and ζn+1

ℓ = 0 for ℓ = 0, . . . , n− 1 ,

we have ζℓ
−1 = Θn

ℓ−1,1ζ
n+1
n by definition and thus ζℓ

−1 = ζ̆ℓ for ℓ = 0, . . . , k . Therefore

(
ζ̆0, . . . , ζ̆k, ζk+1

−1 , . . . , ζ
n
−1

)⊤
= Θn

(
ζn+1

n , 0, . . . , 0
)⊤
.

This yields that the sequence
(
ζ̆ℓ

)
ℓ

satisfies the relation (5.5) up to order k , with Λ the

formal series defined in Lemma 5.4.

To complete the proof of the theorem, it remains to note that the limit spaces F∞ of all

possible chains of spaces
(
Fn

)
n

generate the whole space F0 : This is a consequence

of the fact that at each step of the construction, we choose one of the eigenspaces of a

symmetric operator and that eigenspaces generate the whole domain of the operator.

For the bending case, we can prove the following theorem, by a standard adaptation of

Theorem 5.3:

Theorem 5.5 Let Λb
0 be an eigenvalue of the operator Lb with boundary condition γb

0

and let F0 be the corresponding eigenspace. There exists a splitting of F0 into a finite

number d of subspaces F ℓ
∞ , the direct sum of which generates F0 , such that for all

ℓ = 1, . . . , d , there exist

• a formal series Λb,ℓ(ε) with real coefficients such that Λb,ℓ
0 = Λb

0 ,

• a formal series ϑℓ(ε) with coefficients ϑℓ
k : F ℓ

∞ → C∞(ω) ,
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with the following property: For all η∞ ∈ F ℓ
∞ , the formal series η̆ℓ(ε) = ϑℓ(ε)η∞ solves

problem (5.4) with Λb(ε) = Λb,ℓ(ε) .

6 Construction of quasimodes

Now we are going to show by means of error estimates that the formal operator series

constructed in sections 3-5 yield O(εk) -quasimodes for problem (1.11) at any order k ≥
0 .

Thus let us denote by A(ε) the underlying operator corresponding to the variational

formulation (1.11) of the eigenvalue problem. In formulas (3.1) and (3.2), B(ε) is the

interior partial differential operator associated with A(ε) and T (ε) is the traction on Γ
associated with A(ε) . We note that the domain of A(ε) is

D
(
A(ε)

)
=

{
u ∈ V(Ω) | B(ε)u ∈ L2(Ω) and T (ε)u

∣∣
Γ

= 0
}
.

We recall that ‖ · ‖
ε

denotes the norm associated with the scalar product 〈·, ·〉ε in

(1.11):

‖u‖
2

ε
= ‖u∗‖

2

L2
+ ε−2‖u3‖

2

L2
.

Theorem 6.1

(i) Let ̺m be an eigenvalue of the membrane operator −Lm and let ζ be an

associated eigenvector which belongs to one of the limit subspaces F∞ constructed in

Theorem 5.3. Thus let
(
Λ(ε), ζ̆(ε)

)
be the eigenpair formal series for problem (5.3) such

that Λ0 = ̺m and ζ̆0 = ζ . Then for all N ≥ 0 , with

Λ[N ](ε) =
N∑

k=0

εkΛk , (6.1)

there exists a function u
[N ]
m (ε) such that

‖u[N ]
m (ε) − Um

KL(ζ)‖
ε
≤ C ε ‖Um

KL(ζ)‖
ε

(6.2)

and the pair
(
Λ[N ](ε) , u

[N ]
m (ε)

)
is a membrane O(εN+1) -quasimode of A(ε) , that is it

satisfies the following estimate with a constant C independent of ε

‖
(
A(ε) − Λ[N ](ε)

)
u[N ]

m (ε)‖
ε
≤ C εN+1‖u[N ]

m ‖
ε
. (6.3)

(ii) Let ̺b be an eigenvalue of the bending operator Lb and let η be an associated

eigenvector which belongs to one of the limit subspaces F∞ appearing in Theorem 5.5.

Thus let
(
Λ(ε), η̆(ε)

)
be the eigenpair formal series associated with problem (5.4) such

that Λ0 = Λ1 = 0 , Λ2 = 1
3
̺b and η̆0 = η . Then for all N ≥ 0 , with Λ[N ] defined in

(6.1), there exists a function u
[N ]
b (ε) such that

‖u
[N ]
b (ε) − Ub

KL(η)‖
ε
≤ C ε ‖Ub

KL(η)‖
ε

(6.4)

and the pair
(
Λ[N ](ε) , u

[N ]
b (ε)

)
is a bending O(εN+1) -quasimode of A(ε) .
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Proof. Let ζ(ε) be the formal series C−1(ε)ζ̆(ε) . Let us now consider the formal

outer series Um(ε)ζ(ε) constructed in Theorem 3.4 and the formal inner series Φm(ε)ζ(ε)
constructed in Theorems 4.3 & 4.5. For any integer k ≥ 0 let us denote by

[
Um(ε)ζ(ε)

]
k

the term of order k in Um(ε)ζ(ε) and similarly for Φm . Then we define the three-

dimensional displacement Sm
k (ζ) as

Sm
k (ζ)(x) :=

[
Um(ε)ζ(ε)

]
k
(x) + χ(r)

[
W (ε)Φm(ε)ζ(ε)

]
k
(rε−1, s, x3). (6.5)

This displacement depends linearly on ζ ∈ F∞ and we note that Sm
0 (ζ) is simply the

membrane Kirchhoff-Love displacement Um
KL(ζ) = (ζ, 0) . Then we introduce the main

part of our quasimode as

u
[N ]
0 =

N+5∑

k=0

εk Sm
k (ζ). (6.6)

We note that for ε ≤ εN with εN small enough, there holds

cN‖ζ‖L2(ω)
≤ ‖u

[N ]
0 ‖

ε
≤ CN‖ζ‖L2(ω)

with positive constants cN and CN independent from ε . Here the L2 -norm of ζ can be

used as well as any other Sobolev norm because ζ is an eigenvector. By construction we

have 〈(
B(ε) + Λ[N ]

)
u

[N ]
0 + εN+1ΛN+1u

[N ]
0 , v

〉
ε
≤ CεN+1‖u

[N ]
0 ‖

ε
‖v‖

ε
.

This implies 〈(
B(ε) + Λ[N ]

)
u

[N ]
0 , v

〉
ε
≤ CεN+1‖u

[N ]
0 ‖

ε
‖v‖

ε
.

Moreover we have u
[N ]
0 ∈ V(Ω) because in the hard clamped case u

[N ]
0 = 0 on Γ0 . But

in general, u
[N ]
0 does not belong to the domain of A(ε) because T (ε)u

[N ]
0 is not zero.

Let g(ε) be the trace such that

T (ε)u
[N ]
0

∣∣
Γ

= εN+1g(ε).

By construction, ‖g∗(ε)‖L2(Γ)
and ε−2‖g3(ε)‖L2(Γ)

are bounded independently of ε . Let

w ∈ V(Ω) be the solution of the problem

∀v ∈ V(Ω), a(ε)(w, v) + 〈w, v〉
Ω,ε

= −〈g(ε), v〉
Γ,ε
.

Thanks to Korn inequality on Ω , there holds the estimate

‖w‖
2

H1(Ω)
+ ‖w‖

2

Ω,ε
≤ C

(
‖g∗(ε)‖L2(Γ)

+ ε−2‖g3(ε)‖L2(Γ)

)
‖w‖

H1(Ω)
.

Therefore ‖w‖
Ω,ε

is bounded independently of ε . Let us define

u[N ] = u
[N ]
0 + εN+1w.

Now T (ε)u[N ] = 0 on Γ and u[N ] belongs to the domain of A(ε) . Moreover
〈(
B(ε) + Λ[N ]

)
εN+1w, v

〉
ε
≤ CεN+1‖u

[N ]
0 ‖

ε
‖v‖

ε
,

and with the fact that ‖u
[N ]
0 ‖

ε
≤ C‖u[N ]‖

ε
for ε small enough, we conclude that

〈(
B(ε) + Λ[N ]

)
u[N ], v

〉
ε
≤ CεN+1‖u[N ]‖

ε
‖v‖

ε
.
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Whence estimate (6.3).

The estimate (6.2) is then a simple consequence of the structure of the first terms in u[N ] :

As already mentioned, Sm
0 (ζ) = Um

KL(ζ) . Moreover, Sm
1 (ζ) is the sum of a membrane

Kirchhoff-Love displacement Um
KL(ζ1) and of a boundary layer term which has no trans-

verse component.

The proof for the bending case is similar.

7 The limits of three-dimensional eigenpairs

combined with the result of [3] according to which the ℓ -th scaled three-dimensional

eigenvalue ε−2Λε
b,ℓ tends to the two-dimensional eigenvalue 1

3
̺b,ℓ as ε → 0 , the result

of Theorem 6.1 will yield the optimal estimates stated in Theorems 2.3 and 2.5. In the

following, we recall and adapt the proof in [3] to our situation, particularly for the bend-

ing case with free boundary condition and for the membrane case with clamped or free

boundary conditions.

7.a Bending eigenvalues

Theorem 7.1 Let C0 > 0 be a fixed bound. With the arrangement (1.7b) of the three-

dimensional bending eigenvalues Λε
b,ℓ , for any ℓ ≥ 1 let Eℓ be the set of ε > 0 such

that ε−2Λε
b,ℓ ≤ C0 . If zero belongs to the closure of Eℓ , there exists a function Cℓ(ε) > 0

tending to zero as ε → 0 such that the following estimate holds

∀ε ∈ Eℓ, min
ℓ′≥ℓ

|ε−2Λε
b,ℓ −

1
3
̺b,ℓ′ | ≤ Cℓ(ε), (7.1)

where the ̺b,ℓ′ are the arrangement (1.17b) of the eigenvalues of Lb .

Proof. We just give the main arguments of the proof. Let ℓ ≥ 1 be fixed such that zero

belongs to the closure of Eℓ and set Λε = ε−2Λε
b,ℓ . Since for ε ∈ Eℓ , Λε is bounded by

C0 there exists a sequence {εn} ⊂ Eℓ which tends to zero such that Λεn tends to a limit

Λ as n→ ∞ . In the following, we will denote by ε such a subsequence of Eℓ .

Let u(ε) ∈ V(Ω) be an eigenvector of Λε
b,ℓ such that

‖u3(ε)‖L2(Ω)
= 1.

The displacement u(ε) has the bending parities and, in the free case, is orthogonal to the

rigid motions. Moreover, u(ε) verifies by definition:

∀v ∈ V(Ω), a(ε)
(
u(ε),v

)
= Λε ε2

〈
u(ε) , v

〉
ε
. (7.2)

As u(ε) satisfies homogeneous boundary conditions on the lateral boundary of Ω in the

clamped case or is orthogonal to the rigid motions in the free case, Korn inequality yields

that

‖u(ε)‖
H1(Ω)3

≤ C
(
ε‖u∗(ε)‖L2(Ω)2

+ ‖u3(ε)‖L2(Ω)

)
,

where C is independent of ε . Therefore we deduce that

‖u(ε)‖
H1(Ω)3

≤ C‖u3(ε)‖L2(Ω)
= C,
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Hence, there exists u0 ∈ V(Ω) such that after taking subsequences, u(ε) tends to u0

weakly in H1(Ω)3 and strongly in L2(Ω)3 . Thus we deduce that

‖u0
3‖L2(Ω)3

= 1 (7.3)

and that in the free case, u0 is orthogonal to the rigid motions. Moreover u0 has the

bending parities.

Now using the method of [3] we take different test functions in (7.2) to deduce information

about u0 by passing to the limit. Letting v = (0, v3) in (7.2) gives ∂3u
0
3 = 0 in Ω ,

hence u3 can be identified with a function η ∈ H1(ω) . In the clamped case we have

η = 0 on ∂ω , and in the free case η is orthogonal to the bending rigid motions. Taking

v = (vα, 0) in (7.2) yields that eα3(u
0) = 0 in Ω and thus u0 is a bending Kirchhoff-

Love displacement: we have u0
α = −x3∂αη and u0

3 = η ∈ H2(ω) (and H2
0 (ω) in the

clamped case).

Moreover, we have for ε ∈ Eℓ that

ε−4‖∂3u3(ε)‖
2

L2(Ω)
≤ C1 a(ε)

(
u(ε),u(ε)

)
≤ C2,

where C1 and C2 are constants independent of ε . Hence, after extracting a new subse-

quence, there exists χ33 ∈ L2(Ω) such that ε−2∂3u3(ε) → χ33 weakly in L2 . Taking

v = (0, ε2v3) as test function in (7.2) gives that

χ33 = −
λ

λ+ 2µ
eαα(u0) = x3

λ

λ+ 2µ
∆η.

Now if η′ ∈ H2(ω) (and H2
0(ω) in the clamped case) and if we take v = (−x3∂αη

′, η′)
as test function in (7.2), we find that

2

3

∫

ω

(
λ̃∆η∆η′ + 2µ∂αβη ∂αβη

′
)
dx = 2Λ

∫

ω

η η′dx.

Hence, as η is orthogonal to the bending rigid motions and η 6= 0 because of (7.3), we

have that Λ = 1
3
̺b,ℓ′ for ℓ′ ≥ 1 .

As ε−2Λε
b,ℓ ≤ ε−2Λε

b,ℓ′ if ℓ ≤ ℓ′ we have Eℓ′ ⊂ Eℓ if ℓ ≤ ℓ′ . Moreover, the weak limits η
and η′ issued from orthogonal three-dimensional eigenvector sequences u(ε) and u′(ε)
are orthogonal to each other, too. Thus taking by diagonal process the same subsequence

for all ℓ , we can conclude that ε−2Λε
b,ℓ → 1

3
̺b,ℓ′ with ℓ′ ≥ ℓ . Hence, we proved the

theorem for a subset E ′
ℓ ⊂ Eℓ whose closure contains zero. But reproducing the same

arguments for Eℓ \ E
′
ℓ and using the uniqueness of the limit of minℓ′≥ℓ |ε

−2Λε
b,ℓ −

1
3
̺b,ℓ′ | ,

we show that the theorem holds for the whole set Eℓ .

7.b Membrane eigenvalues

Theorem 7.2 Let C0 > 0 be a fixed bound. With the arrangement (1.7a) of the three-

dimensional membrane eigenvalues Λε
m,ℓ , for any ℓ ≥ 1 let Eℓ be the set of ε > 0 such

that Λε
m,ℓ ≤ C0 . If zero belongs to the closure of Eℓ , there exists a function Cℓ(ε) > 0

tending to zero as ε → 0 such that the following estimate holds

∀ε ∈ Eℓ, min
ℓ′≥ℓ

|Λε
m,ℓ − ̺m,ℓ′| ≤ Cℓ(ε), (7.4)
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where the ̺m,ℓ′ are the arrangement (1.17a) of the eigenvalues of −Lm .

Proof. The proof is similar as in the bending case: Let ℓ ≥ 1 be fixed and u(ε) a

membrane eigenvector associated with Λε
m,ℓ , such that ‖u(ε)‖

ε
= 1 . We prove in the

same way as before that u(ε) converges to a limit u0 weakly in H1(Ω)3 and strongly in

L2(Ω)3 , where u0 ∈ V(Ω) is of the type u0 = (ζ, 0) with ζ ∈ H1(ω)2 . In the clamped

case, ζ ∈ H1
0 (ω) and in the free case ζ is orthogonal to the membrane rigid motions.

Moreover, as u3(ε) is odd in x3 we have

a(ε)
(
u(ε),u(ε)

)
≥ Cε−4‖∂3u3(ε)‖

2

L2(Ω)
≥ Cε−4‖u3(ε)‖

2

L2(Ω)
,

hence ε−2‖u3(ε)‖
2

L2(Ω)
→ 0 as ε → 0 in Eℓ . Thus, we deduce that 2‖ζ‖

2

L2(ω)
= 1 ,

therefore ζ 6= 0 .

Now, analogous computations as in the bending case show that

ε−2∂3u3(ε) → −
λ

λ+ 2µ
eαα(ζ) weakly in L2(Ω).

We then deduce similarly that Λε
m,ℓ tends to ̺m,ℓ′ with ℓ′ ≥ 1 , and conclude in the same

way as for Theorem 7.1.

8 Conclusions

8.a Eigenvalues

Applying Theorem 6.1 at the level N = 0 , we obtain that for any fixed integer ℓ and

for any ε > 0 , there exists an integer ℓ(ε) such that the following estimate holds for

membrane eigenvalues: ∣∣̺m,ℓ − Λε
m,ℓ(ε)

∣∣ ≤ Cε.

Moreover, if the multiplicity of ̺m,ℓ is equal to ν , then there exist ν independent O(ε) -

quasimodes for the three-dimensional problem (1.11). Therefore in the above estimate

ℓ(ε) ≥ ℓ holds.

Conversely, Theorem 7.2 yields that for any fixed integer ℓ and for any ε > 0 in the set

Eℓ , there exists an integer ℓ′(ε) ≥ ℓ such that the following estimate holds for membrane

eigenvalues: ∣∣Λε
m,ℓ − ̺m,ℓ′(ε)

∣∣ → 0 as ε → 0.

Therefore ℓ(ε) = ℓ and we have proved Theorem 2.3 for membrane eigenvalues. Con-

cerning bending eigenvalues, we apply Theorem 6.1 at the level N = 2 and conclude

similarly. Thus Theorem 2.3 is proved.

As a consequence of Theorem 6.1 at any level N ≥ 0 and of Theorem 2.3, we ob-

tain the following asymptotic expansions for the three-dimensional membrane and bending

eigenvalues:

Theorem 8.1 For any integer ℓ ≥ 1 , the three-dimensional eigenvalues Λε
m,ℓ and Λε

b,ℓ

have infinite power series asymptotic expansions as ε → 0

Λε
m,ℓ ∼

∑

k≥0

εkΛm,ℓ ; k and Λε
b,ℓ ∼

∑

k≥0

εkΛb,ℓ ; k (8.1)
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with Λm,ℓ ; 0 = ̺m,ℓ and Λb,ℓ ; 0 = Λb,ℓ ; 1 = 0 , Λb,ℓ ; 2 = 1
3
̺b,ℓ , in the following sense: For

any N ∈ N there holds

∣∣Λε
m,ℓ −

N∑

k=0

εkΛm,ℓ ; k

∣∣ +
∣∣Λε

b,ℓ −

N∑

k=0

εkΛb,ℓ ; k

∣∣ ≤ C εN+1 .

8.b Eigendisplacements

Let us investigate membrane eigendisplacements. For this let us fix ℓ ∈ Lm and let

ν be the multiplicity of ̺m,ℓ . According to Theorem 5.3 the two-dimensional membrane

eigenspace Fm,ℓ splits into the direct sum of subspaces F d
∞ for d = 1, . . . , d̄ . With

Theorem 6.1 at the level N = 0 , we can associate with each element ζ in a F d
∞ a three-

dimensional displacement u[0][ζ](ε) defined as the field u
[0]
m (ε) satisfying estimate (6.2)

in Theorem 6.1 and such that
(
̺m,ℓ,u

[0][ζ](ε)
)

is a O(ε) -quasimode of A(ε) .

The other three-dimensional eigenvalues Λε
m,j with j 6∈ {ℓ, ℓ+1, . . . , ℓ+ν−1} , being

separated from the cluster corresponding to ℓ (i.e. with j ∈ {ℓ, ℓ+ 1, . . . , ℓ+ ν − 1} ) by

a distance independent from ε , we deduce from Lemma 2.2 that

δε

(
span

{
u[0][ζ](ε) | ζ ∈ F d

∞, d = 1, . . . , d̄
}
, Cε

m,ℓ

)
≤ c ε,

where Cε
m,ℓ is the cluster space (2.5). With estimate (6.2), we obtain Theorem 2.5 for

membrane eigenvectors. The proof for bending eigenvectors is similar, taking account of

the fact that the clusters of eigenvalues are O(ε2) separated.

Let us keep ℓ ∈ Lm fixed. To each subspace F d
∞ of Fm,ℓ corresponds a different

power series expansion
∑
εkΛd

k of a three-dimensional membrane eigenvalue. There ex-

ists N large enough so that all polynomials
∑

0≤k≤N ε
kΛd

k for d = 1, . . . , d̄ are distinct

from each other and there exists ε0 small enough so that the functions ε 7→
∑

0≤k≤N ε
kΛd

k

do not cross each other on (0, ε0) . Thus it is possible to renumber them so that on (0, ε0)
∑

0≤k≤N

εkΛ1
k < . . . <

∑

0≤k≤N

εkΛd̄
k.

According to this renumbering we introduce a new unified notation for the subspaces F d
∞

of Fm,ℓ : with νd the dimension of F d
∞

F∞
m,ℓ := F 1

∞, F∞
m,ℓ+ν1

:= F 2
∞, . . . F∞

m,ℓ+ν1+...+νd̄−1
:= F d̄

∞,

and

L∞
m :=

⋃

ℓ∈Lm

{ℓ, ℓ+ ν1, . . . , ℓ+ ν1 + . . .+ νd̄−1}.

Thus to each j ∈ L∞
m corresponds a power series expansion

∑
k≥0 ε

kΛm,j ; k which is

in fact the same as the series appearing in the expansion (8.1) of the three-dimensional

eigenvalue Λε
m,j . Moreover with each ζ in the space F∞

m,j is associated the three-

dimensional eigendisplacement expansion
∑

k≥0

εk Sm
k (ζ) (8.2)

with Sm
k (ζ) defined in (6.5). Our final result follows.
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Theorem 8.2 Let j ∈ L∞
m and let ν∞j be the asymptotic multiplicity dimF∞

m,j . For

ε0 > 0 small enough, there are only two possibilities:

(i) For any ε < ε0 the multiplicity of Λε
m,j is equal to ν∞j . Then for any two-dimensional

eigenvectors ζ ∈ F∞
m,j the series (8.2) is the asymptotic expansion of a three-dimensional

eigenvector u[ζ](ε) , which means that for any ε > 0 there exists an eigenvector u[ζ](ε)
such that for all N ∈ N there holds

‖u[ζ](ε) −
∑

0≤k≤N

εk Sm
k (ζ)‖

ε
≤ C εN ‖Um

KL(ζ)‖
ε
. (8.3)

(ii) For any ε < ε0 the multiplicity of Λε
m,j is < ν∞j . Then there exist ν∞j independent

in-plane eigenvectors ζ ∈ F∞
m,j such that the series (8.2) are the asymptotic expansion of

a three-dimensional eigenvector u[ζ](ε) in the sense (8.3).

Similar statements hold for bending eigenmodes.

Proof. Possibilities (i) and (ii) cover any situation since the eigenvalues of the three-

dimensional problem depend analytically on ε .

By construction of the spaces F∞
m,i there exists J0 ∈ N such that for any J > J0 and any

i 6= j we have the lower bound, with a c > 0 :

∣∣
J∑

k=0

εkΛm,i ; k −

J∑

k=0

εkΛm,j ; k

∣∣ ≥ c εJ0+1.

Then Lemma 2.2 combined with Theorem 6.1 yields that for any ζ ∈ F∞
m,j and any J > J0

the field u[J ][ζ](ε) belonging to a three-dimensional O(εJ+1) -quasimode as defined in

Theorem 6.1, satisfies

δε

(
span

{
u[J ][ζ](ε)

}
, Eε

m,j

)
≤ c εJ−J0,

in situation (i), and

δε

(
span

{
u[J ][ζ](ε)

}
,

⊕

j≤i<j+ν∞

j

Eε
m,i

)
≤ c εJ−J0,

in situation (ii). Choosing J = N + J0 for any fixed N , we can evaluate explicitly the

norm ‖ · ‖
ε

of the difference u[J ][ζ](ε) −
∑

0≤k≤N ε
k Sm

k (ζ) , whence the result.
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Monographien, Band 83. Akademie Verlag, Berlin 1991.

[14] S. A. NAZAROV. Ob asimptotike spektra zadaqi teorii uprugosti dl�

tonkoi plastiny (On the spectrum asymptotics in the elasticity theory for thin

plates). 1998.

[15] S. A. NAZAROV. The spatial structure of the stress field in the neighbourhood of the

corner point of a thin plate. J. Appl. Maths Mechs 55 (4) (1991) 523–530.

[16] S. A. NAZAROV. Two-term asymptotics of solutions of spectral problems with sin-

gular perturbation. Math. USSR Sbornik 69 (2) (1991) 307–340.

[17] S. A. NAZAROV, I. S. ZORIN. Edge effect in the bending of a thin three-dimensional

plate. Prikl. Matem. Mekhan. 53 (4) (1989) 642–650. English translation J. Appl.

Maths. Mechs. (1989) 500–507.

[18] M. I. VISHIK, L. A. LYUSTERNIK. Regular degeneration and boundary layers for

linear differential equtions with small parameter. Amer. Math. Soc. Transl. (2) 20

(1962) 239–364.

40



Authors’ addresses

Monique DAUGE, Erwan FAOU :
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