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Abstract. In this paper, we investigate the behavior of the vibration modes (eigenvalues) of an
isotropic homogeneous plate as its thickness tends to zero. As lateral boundary conditions,
we consider clamped or free edge. We prove distinct asymptotics for bending and membrane
modes: the smallest bending eigenvalues behave as the square of the thickness whereas the
membrane eigenvalues tend to non-zero limits. Moreover, we prove that all these eigenvalues
have an expansion in power series with respect to the thickness regardless of their multiplicities
or of the multiplicities of the limit in-plane problems.

Introduction

Our aim is the investigation of modal analysis in thin plates as the thickness parameter
e goes to zero: We consider a family of plates €2° with fixed mean surface w indexed by
their (half-)thickness ¢
OF =w x (—¢,8),

and study the eigenmodes of the plate (), that is the eigenvalues A° and the correspond-
ing eigenvectors u° of the linearized elasticity operator associated with the constitutive
material of the plates.

As usual in such a framework, we suppose that the plates are free on their lower and
upper faces w x {Fe}. As conditions on the lateral edge dw x (—¢,¢), we take into
consideration as representative cases of the possible boundary conditions, compare [6], the
hard clamped case and the free edge case. These boundary conditions determine admissible
spaces of displacements V (£2¢) . We thus obtain the eigenvalue problems associated with
the stress-strain bilinear form a®(u,v) = (o(u) : e(v))q- in the spaces V(Q°):

Find A® and non-zero u® € V(Q°), VYo € V(), a°(u,v) = A (u,v)q,

where (-,-)q- denotes the usual L? scalar product in Q° .



Thanks to the Korn inequality ¢f [8], the form «a° is positive symmetric with compact
resolvent. Thus its spectrum is discrete with only accumulation point at infinity and can be
ordered (with the usual repetition convention according to the multiplicity)

0<A <A <A<, I Af = 400,
— 00

In [3], CIARLET & KESAVAN study the case of hard clamped isotropic plates. Their
result shows up the bending dominated behavior of plates at the lowest frequencies. If
A and p are the Lamé coefficients of the plate material, the associated two-dimensional
bending operator L is the biharmonic operator in w

LY = (A +2u)A%, 0.1)
with the homogenized Lamé constant A defined as

2\

A= :
A2

0.2)

The result in [3] is that each Aj tends to %QW, with g, , the eigenvalue of corre-
sponding rank of the Dirichlet problem for the bending operator L" and that the eigen-
vectors tend to the Kirchhoff-Love displacement generated by an associated eigenvector of
LP (after possible extraction of a subsequence in the case of a multiple eigenvalue).

In [14], NAZAROV extends this result to plates with much more general material law
and moreover shows the influence on the three-dimensional spectrum of the associated in-
plane membrane operator L™ which generates O(1) families of eigenvalues, in contrast
to the O(g?) bending family : In the case of an isotropic material with Lamé coefficients
A and p, L™ is the bi-dimensional Lamé operator associated with the Lamé coefficients

\ and 14, that is
m A 0 ~ O .
L —u(o A)+()\+u)(82)dlv. (0.3)

The modal analysis in [14], and also in [17, 16] where a two-terms asymptotics is con-
structed, requires an asymptotic analysis of the eigendisplacements, which has to take into
account the boundary layer in the neighborhood of the lateral boundary. The assumption
(also made in [17, 16, 14]) that the boundary Ow of the mean surface is smooth makes such
an analysis easier: If the mean surface is polygonal, special corner layers appear, see [15].
Thus, in order to simplify our analysis (which is also based on asymptotic expansions), we
assume that w is a smooth domain.

Moreover, we choose to work with the assumption that the plates are made of a homoge-
neous and isotropic material. This assumption has an important consequence: It allows the
splitting of the three-dimensional spectrum in a bending spectrum and a membrane spec-
trum, in correspondence with the two-dimensional bending and membrane operators. We
note that such a splitting is still possible for any monoclinic material with rigidity matrix
constant along the transverse fibers (this is the framework of [4, 5] where the asymptotic
expansion of displacements is proved for clamped plates). Therefore, our present analysis,
at least for laterally clamped plates, extends in a natural way to such materials.
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To summarize, in this paper we propose a further investigation of eigenmodes in two
directions:

(i) Take advantage of the transverse symmetry of plate problems which enable us to
split eigenmodes in bending and membrane eigenmodes (A5, uf) and (A5, us)) .

(ii) Adapt the idea of combined outer and inner expansions to construct asymptotic ex-
pansions at any order for bending and membrane eigenmodes.

The main outcome of our study is that the ¢-th bending eigenvalue of a° has a power
series expansion starting with %QW and that the /-th membrane eigenvalue of a° has a
power series expansion starting with the ¢ -th eigenvalue p,, , of the associated in-plane
membrane operator —L™ . These power series expansions do not converge in general.

We emphasize that we prove this result even in the case when the limit eigenvalues are
multiple: Then it may happen that the corresponding three-dimensional eigenvalues are
multiple too, or that they have the same asymptotic expansion but nevertheless differ with
each other, or that they have distinct expansions with the same first term.

Our result inspires the following comments:

(i) The limits of the eigenvalues of a° are the eigenvalues of the operator

-L™ 0
K(e)::( 0 %Lb) on w.

This operator is the exact counterpart for plates of the Koiter operator for shells.

(ii) If one considers the eigenvalues Aj arranged in non-decreasing order, as is noticed
in [2] one sees in the limit only the bending eigenvalues.

(iii) The eigenvalues of the “Koiter” operator K (¢) do not give a full description of
the spectrum of the three-dimensional operator on €2°: In the limit as ¢ — 0, most
of the three-dimensional eigenvalues go to infinity. The question of organizing them in
coherent families behaving for example in O(e™?) is still open. The authors are glad to
acknowledge discussions with Sergei NAZAROV who indicated earlier formal attempts by
BERDICHEVSKII [1], see the comments in [14].

Our paper is organized as follows: We introduce in section 1 the different eigenvalue
problems in the thin plates €, in the scaled plate 2 = w x (—1,1) and in their mean
surface w. In section 2, before stating our results concerning the /imits of the three-
dimensional eigenmodes with optimal estimates on their convergence, we recall the notion
of quasimode and the classical related results about the spectrum approximation: Thus,
as ¢ — 0, when a limit two-dimensional eigenvalue is multiple, the space of Kirchhoff-
Love displacements generated by the corresponding eigenspace is the limit of a cluster of
three-dimensional eigenspaces.

Sections 3 to 6 are devoted to the construction of three-dimensional quasimodes at any
order O(e*), based on two-dimensional problems, whereas section 7 yields weak conver-
gence results about the three-dimensional problems, in the spirit of [3]. Combining the
results of the previous sections, we obtain in section 8 the complete eigenmode asymp-
totics.

The most original aspects of our approach are the following:



(i) The use of multiple formal series operations in order to transform the initial three-
dimensional eigenvalue problem into a two-dimensional one for a new formal oper-
ator series, c¢f sections 3 and 4.

(ii) The solution of this eigenvalue problem for the two-dimensional formal operator
series by a sequence of nested spectral problems for finite-dimensional self-adjoint
operators, cf section 5.

1 Eigenmodes for plate models in two or three dimensions

We state the three-dimensional eigenmode problem, split it into membrane and bending
problems, and scale it to the fixed reference domain Q2 = w x (—1, 1) . Next we introduce
the two-dimensional membrane and bending operators as they appear in the limitas ¢ — 0
of displacements in thin plates, see [2], [6]: These operators are the models determining
the two-dimensional generators of the limit Kirchhoff-Love displacements.

l.a Linearized elasticity

Let us recall that A and p are the Lamé constants of the constitutive material of our
plates ¢ . To each displacement field w = (u;, ug, ug) is associated the linearized strain
tensor e;;(u) = % (Ju; + dju;) . Hooke’s law yields the stress tensor

o(u) = Ae(u),
where the rigidity matrix A = (A;;x;) of the material is given by:
Aijkt = X030k + (001 + dadj).

As usual, Latin indices are always taken from {1, 2, 3} while the Greek ones «, [ vary
in {1, 2} and we use summation convention. As lateral boundary conditions, we will
consider the hard clamped condition and the free boundary condition, although other com-
binations are possible, cf [6].

To hard clamped plates is associated the space of variations V(€°) given by
V() :={ve H'()*|lv=00nTj:=0wx (—¢, )}
whereas for free plates the space of variations is Vx(92°) = H'(Q°)3 . We agree to denote
by V(0F), either Vp(2¢) or V(0F).

When necessary, we particularize the objects attached to €2° by a 7, e.g. the variables
in Q° are denoted by (&1, Z2,73) = & with Z3 the transverse variable in (—¢,¢), and the
eigenvectors are denoted by u° .

Then the variational formulations of the eigenvalue problems read: Find A® € R and
non-zero @° in V(£2¢) such that

o (@, 9) = N°(@, 9), Ve V), (1.1)



where a° and (-, -) are the bilinear forms
a(u, v) = /Q {Aepp(w)eq(v) + 2pei;(uw)ei;(v) } di
(u, v) = / w; v; dZ.

Korn inequality and the compactness of the embedding V(Q°) — L?(Q°)? yield that
the eigenvalues A® are nonnegative and form a discrete set in R with only accumulation
point at infinity, see [12, 7]. Moreover there exists an associated sequence of eigenfunc-
tions which forms an orthogonal basis in both Hilbert spaces (V (), (a° + 1)"/?) and
L?(QF)3 . In particular for the hard clamped situation the first eigenvalue is positive. For
the case of a free plate A] = 0 is a six-fold eigenvalue with eigenspace spanned by the
rigid motions

1 0 0 e 0 o
o], 1], o], o, | =2 |, | -% . (1.2)
0 0 1 i o 0

1.b Three-dimensional membrane and bending modes

Let S be the transverse symmetry operator defined for u = (uq, us, u3) in L?(2°)
by:

S <f%3 = (U*(%), US@S))) — <5ﬁ3 = (U*(—fﬁ:a), —U3(—f3))), (1.3)
where u, = (uq,uy). The bilinear form «° is invariant by S, that is

y —_— at(Su,v) = a°(u, Sv) 14
u,v € V(E), a®(Swu, Sv) = a*(u,v), (4

and the same holds for the L? scalar product in Q°. From the fact that S? = I we
conclude that V() splits into two invariant subspaces, see [12]. So, we have

V(QF) = V() @ VP(Q) (1.5)

where Su = u forall u € V™(Q°) and Su = —u for all w € VP(Q°). We refer to
V1(0QF) (resp. VP()) as the membrane (resp. bending) space, compare [9].

As a consequence of (1.4), the decomposition
Up =3I +S)u and wu,=1i(I-9Su (1.6)

is orthogonal with respect to both scalar products a® and (-, -). Thus solutions of (1.1)
split in membrane and bending eigenmodes, respectively solutions of

G By) = A (@, By), Yy € VI(QF),
CLE(’EI,%, ’{)b) = Ai('&eb, ’i)b), Yoy, € Vb(QE)
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Let
OgAf]m1 gAfn’Qm <Afn,e§ (1.7a)

be the membrane eigenvalues and
0<Af < Af, <A, <. (1.7b)

be the bending eigenvalues and let

E:, and  Ef, (1.8)
be the corresponding eigenspaces with the convention that if Ay = -+ = Ay, has the
multiplicity v, we have Fy = --- = Ey,,, 1, defining a space of dimension v . We denote
by L5, and Lj the set of such indices ¢, so that we have

P B, =Vv"(@) and P E;, = Vo (). (1.9)
te L, terLs

l.c Scalings

In order to study the behavior of eigenmodes as ¢ — 0 we introduce a fixed reference
configuration € as the image of a dilatation along the vertical axis z3 = ¢! I3, whereas
the in-plane variables (7, Z2) = (x1, z2) are unchanged. Thus we have Q = wx (-1, 1).
For the displacement fields we use the scaling preserving the elastic structure, see [2]

u(z) = u (%), a=1,2, uz(z) = e u3(T). (1.10)
The eigenvalue problems then take the form: Find A € R and non-zero u° in V()
such that

ae)(u®,v) = A€<u6, v>5, VoveV(Q), (1.11)

where V(Q) is the space correponding to V(€2°), and a(e) and (-, -). are the bilinear
forms

a(e)(u, v) = /Q { X () () Fgq(€)(0) + 21 kii5(2) (w) kyj(e) (v) } da
<'u,, 'u>E = /Quava + e 2 ugvs do

with the scaled strain tensor x(e)

1 2

Kap(e)(u) = eap(u),  FKas(e)(u) =€ eas(u), rys(e)(u) = egs(u).

It is then straightforward that (A, @) solves (1.1) if and only if (A, u®) solves (1.11).
Of course the splitting membrane—bending is still valid. We do not need to change the
notations (1.7) for the eigenvalues and we only introduce the spaces of scaled eigenmodes
corresponding to (1.8)

EL and E . (1.12)



1.d Two-dimensional membrane and bending operators

The bilinear form associated with the two-dimensional membrane operator —L™ (0.3)
is defined for ¢ = (1, () and ¢’ = ((],¢%) in H'(w)? by:

a”(¢,¢') = /{5\ €aa(€) €s5(C') + 2p€ap(C) €ap(¢)} daydas, (1.13)

where we recall that the “homogenized” Lamé coefficient A is equal to 22X+ 2p) 7t
The variational spaces V(w) and V3 (w) respectively associated with the clamped and
free boundary conditions are Hj(w)? and H'(w)?. The eigenvalue problem for — L™

reads: Find ¢, € R and non-zero ¢ € V™(w) such that
am(C, C,) = Qm/ Ca C; dzydz, v C’ S Vm(w)‘ (1.14)

The bilinear form associated with the two-dimensional bending operator L is defined
for n and 7' in H*(w) by:

a’(n,n') = / {N0aa(n) Bp5(n') + 210 Dup(n) Dup(n')} daydws,. (1.15)

The variational spaces VP (w) and V{(w) respectively associated with the clamped and
free boundary conditions are H3(w) and H?(w). The eigenvalue problem for LP reads:
Find g, € R and non-zero € V"(w) such that

a’(n,n) = @b/nn’ dridzy, V7' € VP(w). (1.16)

Both forms a™ and a” are nonnegative and symmetric on their variational spaces,
compactly embedded in L?(w)? in the membrane and in L?(w) in the bending case, re-
spectively. Thus the eigenvalues in problems (1.14) and (1.16) are nonnegative real num-
bers:

Let
OSQm,l SQm,Q"'SQm,ZS--- (11721)
be the two-dimensional membrane eigenvalues and
0<opb1<0p2 " <0be<... (1.17b)

be the two-dimensional bending eigenvalues. In order to take into account the multiple
eigenvalues, we define the sets of indices £,, and £;, similarly as above and we let

Vi e Em, Fm[ and Vi e Eb, Fb[ (1.18)
be the corresponding eigenspaces. Thus there holds
P Fur=V"(w) and P R =V (w). (1.19)
LE L L e Ly

To these eigenspaces we associate the spaces of corresponding Kirchhoff-Love dis-
placements:

Km,f = {’LL = (Ca O) ; C S Fm,f}; (12021)
Ko = {u=(—a301m, —x302m,m) ; 1€ For}. (1.20b)



2 Main results

2.a Quasimodes

Our result relies on an asymptotic expansion of displacements (including power series
and boundary layer Ansitze as in [13, 17] and [6]) which will provide the construction of
h -quasimodes with h = O(e") for any integer k, where we define:

Definition 2.1 Let A be an unbounded self-adjoint operator on a Hilbert space H with
domain D(A). For a fixed h > 0, a pair (A,u) € R x D(A) \ {0} is called a h-
quasimode of A if there holds

(A = Mull, < bl .

The interest of such a definition relies on the following fact: if (A, w) isa h -quasimode
of A, then the distance from A to the spectrum of A is less than h, and the distance be-
tween w and certain eigenspaces of A can be estimated, ¢f Lemma 2.2. Thus, we will
construct O(e*) -quasimodes for the problem on ¢ from the eigenmodes of L" and
— L™ on the midsurface w.

In order to state our convergence results and to explain our strategy of proof, we need
to recall the notion of “distance” between two subspaces E' and F' of the same Hilbert
space H , cf [11] p. 264:

— ; H
IE,F) = mAX min Tl : (2.1)

In general this distance is not symmetric. However, if £ and F' are finite dimensional sub-
spaces satisfying 6(E, F) < 1 and 0(F,E) < 1,then dimF = dim F' and §(F, F) =
d(F, E),see KATO [11, Lemma 2.2.1]. In this situation (£, F') is called the gap between
E and F'. Using Definition 2.1 of quasimodes, we can state, see VISHIK & LYUSTERNIK
[18, Lemmas 12 & 13, §9]:

Lemma 2.2 Let A be an unbounded self-adjoint operator on a Hilbert space H with
domain D(A) compactly embedded in H . Let (Ag), _y be the distinct eigenvalues of A
and let Ej, be the corresponding eigenspaces. Let h > 0. If (A, u) is a h-quasimode of
A, then there holds

dist (A, (Ax),oy) < he (2.2)

Let K be the (non-empty) set {k € N ; |A — Ay| < h}. Let M be defined as the

minimum minggg |A — Ag|. Then there holds

h

(5<span{u}, @ Ek> < U (2.3)
ke K



2.b Convergence of eigenmodes

We prove in this paper that the three-dimensional eigenvalues Af , and Aj, have an
infinite power series expansion, and in particular in the limit:

Theorem 2.3 As ¢ — 0, forany { > 1, A}, tends to 0w and there holds the estimate

|A% ¢ — Omy| < Cre. (2.4a)

As € — 0, forany { > 1, A}, tends to %gb,g and there holds the estimate

2
£
[Abe — 3 obe| < Cpe’. (2.4b)

If om¢ is a simple eigenvalue, then the distance §(Ey, ;, Km¢) is O(e) and similarly
for bending modes. The situation is much more complicated in the case of multiple eigen-
values and it is then convenient to introduce clusters, as follows.

Definition 2.4 Let ¢/ € £™ correspond to a multiple membrane eigenvalue p,,, and let
v be its multiplicity. Then for any ¢ we introduce the corresponding cluster

=B kel (<k<(+u) 2.5)
If 0w, is a simple eigenvalue, we agree that Cf , = Ef ,. Similar definitions hold for
bending. -

Our result reads
Theorem 2.5 As ¢ — 0, forany ¢ € L™ there holds

0c (K, Crp) < Cye. (2.6a)
As € — 0, forany ¢ € LP there holds

5-(Kinp, C2y) < Cye (2.6b)
where 0. denotes the gap (2.1) with respect to the norm |ul|_:= \/(u, u)..

2.c  Outline of the strategy of proof

The main part of our paper (sections 3-6) is devoted to the construction of O(g¥) -
quasimodes (for any integer k£ > 0 ) for problem (1.11) starting with Kirchhoff-Love dis-
placements associated with two-dimensional eigenmodes, and including outer and inner
expansion terms (power series and boundary layer series).

As a consequence the two-dimensional spectrum is close to three-dimensional eigenval-
ues. To have a complete picture, we need the converse information, i.e. that all the smallest
three-dimensional eigenvalues are close to the two-dimensional spectrum. Concerning the
bending modes in clamped plates, the answer is brought by CIARLET & KESAVAN’s result
[3], and for the remaining cases (free edge lateral boundary condition or membrane modes)
we prove in section 7 that CIARLET & KESAVAN’s result can be extended by similar tech-
niques of proofs based on weak convergence arguments.

Thus we can conclude in section 8 with precise statements about eigenmode asymp-
totics at any order.



3 Outer expansion formal series for quasimodes

The aim of the four following sections is to construct formal series expansions for
membrane and bending eigenmodes. In this section, we describe membrane and bending
formal series u(c) with coefficients u® in C*°(Q)3 associated with formal eigenvalue
series A(g) = >, e*A;. which solve (in the sense of formal series) the interior equations
and the horizontal boundary conditions included in (1.11).

In the next section, we combine the above formal series with a third one, ¢(¢), which
is a formal series of boundary layer profiles, and find the conditions so that all equations
of (1.11) are solved in the sense of formal series. These conditions amount to new two-
dimensional formal series eigenproblems.

In section 5, we show that these two-dimensional formal series eigenproblems can be
solved and in section 6, we prove that for any £ we can keep a finite number of terms in
the formal series so that to obtain O(e*) -quasimodes.

3.a Formal series

We fix here a few definitions. As said above, we are going to formulate our problems
and exhibit solution operators in formal series algebra. Let us recall that if A(e) is a formal
series with operator coefficients

A(e) =) "4, with A, € L(E, F),
k

with E, F' functional spaces, and if b(¢) and c(¢) are formal series in £ and F

b(e) = Zekbk, VWeE, and c(e) = Zekck, FeF
k k
the equation A(e)b(e) = ¢(¢) means that

k
Vk € N, ZAk_gbe —_
=0

Our solution operators will depend polynomially on the coefficients A; of the eigen-
value formal series A(e) and we need the following notion of degree.

Definition 3.1 Let d € Z be an integer. The linear operator A from E to F is said to
be polynomial in A of degree d if it is equal to a (finite) sum of terms of the form

K
<H Ag’“)A[a] where A, € L(E, F') does not depend on A(e)
k=0

with
a=(ag,...,ag) €N and > (k+ay) <d.
k, ap #0
For d < 0, itis understood that if A is polynomial in A of degree d, it does not depend
on A. n
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3.b The problem without lateral boundary conditions

Integrating by parts (1.11), we find a boundary value problem of second order with one
boundary condition on each of the horizontal sides on I'y = w x {1} and on the lateral
boundary 'y = dw x (—1,1): There holds for any pair of smooth enough functions u
and v in V(Q)

a(e)(u,v) = —(B(e)u, v>Q6 +(T(¢)u, v>F’€, 3.1
where I' is I'; UT'_ in the clamped case and I'y UI'_ U Ty in the free case. The scalar

products (-,-)o. and (-,-)pr. specify on {2 and I' the product (-,-). used in (1.11).

We know that in general, we cannot expect to solve the whole problem by a simple
power series Ansatz, but only the part A(e) of it obtained by dropping the lateral boundary
conditions: let us set

Ae) = (523(6) LT (e) \Fi). (3.2)

Then
A(€) == AO + €2A2,

where the two operators Ay and A, associate to a displacement w in {2 a volume force
in 2 and tractions on the horizontal sides on 'y according to: ( A, denotes the horizontal
Laplacian 01 + 02 and div, is the horizontal divergence)

Ao'u, = <2M (93€a3(u) -+ )\aag’u?, s ()\ -+ 2,[1)(933’&3 X 2/1 6a3(u> }F+ s ()\ + 2,[1/)(931,63 }F+)

Asu = <()\ + 1) 0 diviw, + p Asug , AOsdiviu, +2p 0 e43(u) 5 0 ‘r+ , Adiveu,

)

the first group of arguments being the in-plane volume forces, the second, the transverse
volume force, and similarly for the tractions. In order to have compact formulas, we intro-
duce the embedding operator IT which associates to a vector field f the pair (f;g) with
g the zero tractionon [’y :

1y = <f; O‘Ft)'

Then the formal series formulation of problem (1.11) without lateral boundary conditions
reads

Find formal series \(g) with coefficients A, € R
u(g) with coefficients u* € C*°(Q)3 such that:

A(e)u(e) + e*Ae)Tu(e) = 0. (3.3)

Thus equation (3.3) means that (B(e) +A(e))u(e) = 0 in Q and T(s)u(e) =0 on I'y.

Before giving the whole result, let us comment on the equation of order zero of (3.3):

Ao’u,o =0.
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It is well known that the solutions of this problem are the Kirchhoff-Love displacements.

Thus u° is generated by a displacement 2z = (2% 20) depending only on z, € w,

according to the formula:
u’ = Uk (2°) = (zg(az*) — 23V, 25 (2., zg(:ﬂ*))

with the two-dimensional gradient V, . If ¢ is a in-plane displacement and 7 a function,
the operators
URL(¢) == Uxw(¢,0) and  Ugy(n) := Uxr(0,7)

take values respectively in the membrane and bending subspaces. There holds
UL(¢) = (¢(x.), 0)  and - Ugy(n) = (—a5Van(z.), n(z.)) - (3:4)

In the following, we first prove a general theorem for the formal series solution, then
give particular descriptions for the membrane and bending cases.

3.c Formal series solution algorithms

The solvability of three-dimensional equations (3.3) reveals to reduce to the solvability
of two-dimensional equations: By integrating the equations of (3.3) with respect to the
transverse variable xs; the determination of the three-dimensional unknown formal series
u(e) is reduced to the determination of a new two-dimensional unknown formal series of
Kirchhoff-Love generators z(¢) .

Theorem 3.2 Let Uy be defined as Uxy, and let Uy be the operator zero C>®(w)? —
C>®(Q2)3. Let us denote by Ct)(§2) the space of C>(Q)? -displacements with mean values
zero across each fiber, i.e.

1
uelCpH() <= Vi €w, /_1 u(z,, x3) drs = 0.
There exist for each integer k > 0 :
e a bounded operator Ly : C*(w)* — C*(w)?

® abounded operator Uy2: C®(W)* — Cf) (Q) polynomial in x5,

defining the formal operator series L(c) and U(e) which realize a link between three-
and two-dimensional problems in the following way:

If the formal series A() = >, "\ and z(e) =Y, ¥z solve
(L(e) + Ale))z(e) =0 in w, (3.5)
then the three-dimensional formal series
u(e) :=U(e)z(e) (3.6)

is a solution of the three-dimensional eigenvalue formal problem (3.3) in (2.
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Proof.

a) Clearly for any z° and 2! in C®(w)® the displacements u’ and u!' defined as

u’ = Uy(2°) and u! = Uy(z!) satisfy the equations of (3.3) for £k = 0 and k = 1,
which are simply Aqu’ =0 and Agu'! =0.

b) We are going to prove that there exist operators L, and U, satisfying the conditions
of the Theorem so that there holds the following identity in operator valued formal series
with coefficients in £(C>(w)?,C>(Q)% x C°(T'+)?)

A(2) o U(e) + e2A(e) T o U(£)0 }Fi) = 2100 (L(e) + A(€))A(e)); (BT

In the right hand side the composition with the canonical embedding 7 : C*w)? —
C>(2)? is implied: The operator Il o L(¢) is stricto sensu the operator I1oZ o L(¢) and
takes its values in spaces of functions independent of x3 .

The statement of the Theorem follows immediately from identity (3.7).

To prove (3.7), we are going to show by recurrence that for any £ > 0, we have:

The operators L, are constructed for { = —2,..., k — 2, the operators U, are
constructed for { = 0,...,k so that for any z € C®(W)* andany { = 0,...,k
there holds
-2
AgUpz + AUy 52+ ) Ao U2 = T(Ly 22 + Ar2).). (8)
§=0

With L_o, = L_; = 0, (3.8)is true for £ = 0,1. Let us assume that (3.8) holds for
¢ =k >1 and let us construct Uy, and Ly so that (3.8) holds for { =k + 1.

¢) We first consider the transverse component of equation (3.8). For ¢ = k + 1, the
problem reads, for any 2z € C*°(w)?

(AO('U) + Ap(Uyy2) + ki A1 TIU; 2 — A,g_lnz)3 - (HLk_lz)?)) (3.9)

=0

with still unknown v and (Lj_1z), . The equation has the type
()\ + 2#)633?}3 + Fg(Z) = (Lk,12)3 in Q,
(A+2u1)03v3 + G3(z) = 0 onl .
This boundary value problem is solvable if

/_ F3(z)(v,,3) dog — Gs(2)(74, 1) + G3(2) (24, —1) = 2(Lg—12),(7,)  (3.10)

1

for all x, € w, which yields the definition of (Lj_12),. The unique solution of this
problem with zero mean values across each fiber defines the operators (Uy412), .

d) Next, the in-plane component of equation (3.8) for ¢/ = k£ + 1 reads
k—1

<A0(v) + Ay(Upr2) + Y Apor 11Uz — Ak_lﬂz)a — <HLk_1z> a) G.11)
=0
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with still unknown v, and (Ly-12) . This equation has the type

U330 + (A + p1)Oagvs + Fl(2) = (Lg-12), infQ,
(O30 + Oqusz) = 0 only .

Inserting the equality v3 = (Uy412), , we obtain an equation of the type 1103300+ Fi(2) =
(Lk—1z), with boundary conditions pd;v, + Go(2z) = 0. This boundary value problem
is solvable if

+1
/ Fo(2) (0, 23) dary — Ga(2) (20, 1) + Ga(2) (20, —1) = 2(Ly12)o(z,)  (3.12)

1

for all ., € w, which yields the definition of (Lj_;z),. The unique solution of this
problem with zero mean values across each fiber defines the operators (Ug;12z), . Thus
the recurrence step is proved. Whence identity (3.7). [ |

The operators U, and L, are polynomial in A. We explain this in detail in the next
subsection.

Remark 3.3 If u(e) is a formal series solution of (3.3), then defining z(¢) by

z(e) = %/ u(e) dus,

1

the formal series z(¢) satisfies (3.5) and moreover, u(c) = U(e)z(¢). n

3.d Membrane and bending formal series

Let us now recall that our three-dimensional eigenvalue problem commutes with the
symmetry operator S defined in (1.3), that the displacements w such that Su = u are
the membrane displacements, and those such that Su = —wu are the bending ones. When
restricted to the displacements z independent of x5, the membrane displacements are
those of the form (¢,0) with ¢ any in-plane displacement, whereas the bending displace-
ments are those of the form (0,7) with 7 any function. There holds

U(e)oS=SoU(e), (3.13)

which means that S commutes with all operators Uy . This can be easily proved by re-
currence according to steps ¢) and d) of the proof of Theorem 3.2: The main argument is
the choice of solutions of the Neumann problem in [—1, 1] by the condition of mean value
zero, which preserves the parity.

Thus for any in-plane displacement ¢, the displacement U(e)(¢{,0) has membrane
type, and for any function 7, the displacement U(g)(0,7) has bending type.

Similarly there holds
L(e)o S =SoL(e). (3.14)

For u independenton x3, S is only the symmetry with respect to the plane generated
by the two first components. Hence a consequence of identity (3.14) is that the series L(¢)

14



is block diagonal with respect to the splitting into in-plane and transverse components:

ua= (59 iy )

The solvability of three-dimensional equations (3.3) reveals to reduce to the solvability
of two-dimensional equations based on the membrane operator L™ (plane stress model)
introduced in (0.3) and the bending operator L , defined in (0.1).

The next theorem collects the results for the membrane and bending dimension reduc-
ing process:

Theorem 3.4

(i)  Forany in-plane displacement ¢ € C*(w)?* let U™ (g) be defined as U™ (g) ¢ =
U(e) (¢,0) and L™(¢) be defined as L™(¢) ¢ = (L(¢) (¢,0)),, where Ul(e) and L(e)
are the formal series appearing in Theorem 3.2. Then L' coincides with the membrane
operator L™ of (0.3) and for each integer k, the operators L;' and Uy’ , are polynomial
of degree k — 1 in A. Moreover, for any formal series (&) with coefficients in C*°(w)*
solving

(L™(e) + A(€))¢(e) =0 in w, (3.15)
then the three-dimensional formal series
u(e) := U™ (e)((e) (3.16)

is a membrane solution of the three-dimensional eigenvalue formal problem (3.3) in (2.

(i)  For any function n € C®(w) let UP(c) be defined as UP(e)n = U(e) (0,7).
Let us assume that

2

A=A =0, andset A(e)=: %Ab(a).

Then Lo(0,n) = L1(0,n) =0 and (LQ(O,T]))?) coincides with —3Ln where LP is the
bending operator (0.1). We define the operator valued formal series LP(g) by

2

(L) (0.m), = = S L) m.

Then the operators LY and U} 1o are polynomial in AP of degree k — 1. Moreover, if the
formal series N(e) =37, -, " Ay and () = 3,5 *n* solve

(LP(e) = A*(e))n(e) =0 in w, (3.17)
then the three-dimensional formal series
u(e) := UP(e)n(e) (3.18)

is a bending solution of the three-dimensional eigenvalue formal problem (3.3) in (2.
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Proof.
The equation (3.8) for k& = 2 applied successively to (¢,0) and (0,7n) reduces to

(AU3°¢ + AUC),, = (TTLo(¢,0)),, )

and if Ag =0 to
(AoUyn + AUgn), = (I1Lo(0, 7)), ,

respectively. But computations like those in [6, Lemma 3.2] show that (LO(O, 77))3 =0
and (Lo(¢,0)), = (L™¢), . Obviously, since Uy = 0 there holds L;(¢,0) = 0, and
if Ay = Ay = 0 there holds L,(0,n7) = 0 too, and by a computation we obtain that
(L2(0=77)>3 = —%Lbn-

The assertions concerning the degree are proved by induction.

In the membrane case (i) for £ = 0 we have clearly that L§' and UJ", U, U are
of degree zero in A . Suppose that for ¢ = 0, ..., k, the operators U;* and L}, are of
degree ¢ — 3 in A and fix ¢ € C®(w)?. The equation (3.8) yields, with the fact that
Ur¢ = (¢,0) and U; =0 that
k—1
AU+ AU ¢+ ) Ny TIUE = TI(LR 56, 0). (3.19)
j=2
This equation is of the type
OssU ¢+ F(¢) = (L 1¢,0) in €, ABUERC+G()=0 on Ty,

where the operators G and F' are similar to the operators F' and G used in the proof of
Theorem 3.2. Now, by the recurrence hypothesis, the operators F and G are polynomial

in A of degree

max(k—1—j+1+(j—3)y) =k—2.

j=2
The equation (3.12) shows that L}’ ;| is polynomial of degree k£ — 2, and we have imme-
diately that U}, is also of degree k — 2. Hence the result for the membrane operators.

For the bending case (ii), we can prove the result in the same manner. Note however that
Udn —mn # 0 and the assumption Ay = A; = 0 is the right one in order that the first

non-zero bending operator in L(¢) does not depend on A . [
k (Ug'€); (Ur'€a (Lo
0 0 Ca Ao + (A + 1) Do div
1 0 0 0
2 p1div ¢ P2 O div ¢ (CQA() + C/QA) O div ¢
3 0 0 0
4 ((J3A0 + qu) div ¢ (7"4A0 + TQA)&X div ¢ (C4A% + CQAQ + CZA()A + CZAQ) Op div ¢

Table 1. First rank membrane outer expansion operators.
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Here ¢y, ¢, ¢4, C),... denote real numbers, g3, g3 odd polynomials of degree 3 and
ry, 7 even polynomials of degree 4, compare [6, §3.3], and, ¢f [6, Lemma 3.2]:

pi(z3) = — ﬁ x3, P2(z3) = % (:U§ - %) (3.20)

For the bending operators we have, with the assumption Ag = A; =0

k| (URn)g (U)o Lyn

0 7 —23007 (A + 2u) A%

1 0 0 0

2 | P2 An D3 Adun (e3Aa + c4A) A2y

3 0 0 0

4 | qa A% | (rsAa +1EA2) 0an || (csA3 + chAg + cf A2 A + cfA%) A%y

Table 2. First rank bending outer expansion operators.

Here c3, ¢, c5, cs,... are real numbers, ¢4 is an even polynomial of degree 4 and
s, 15 are odd polynomials of degree 5 and:

Ps(ws) = — 5 (A4 4p)af — (GA + 12p)z3). (3.21)

4 Combined inner and outer expansion formal series

In order to fulfill the lateral boundary conditions on I'g = dw x (—1,1), we have now
to combine the formal series w(e) satisfying the conditions of Theorem 3.4 with formal
series (&) with coefficients in spaces of exponentially decreasing profiles, which yield
the boundary layer terms naturally involved in the solution asymptotics, see [13, 17] and

[6].
4.a Inner expansion formal series

We need local coordinates (7, s) in a plane neighborhood U of the lateral boundary
Ow . Here r denotes the distance to Jw and s the positively oriented arclength on it. The
local basis at each point in dw is given by the unit inner normal 7 and the tangent unit
vector 7. Extending n and 7 into U we arrive at following relations for the normal and
(horizontal) tangential components wu, and ug of any vector field u, = (u1, uo) :

U, = nquy + noy  and  ug = (1 — kr)(nguy — nyug), 4.1)

where K = k(s) is the curvature of Ow at s from inside w. We also use the partial
derivatives (which, of course, commute with each other)

87« = nlal + ngag and 85 = (1 — HT) (n281 — nl(‘?g). (42)

When restricted to the lateral boundary dw , we will also write u,, and 0, instead of wu,
and 0, . Let the stretched distance to Jw be defined by t = r/e.
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The boundary layer Ansatz has then the form

Z efwk (re™ s, z3)

k>0

where t — w"(t,s,x3) is an exponentially decreasing profile as ¢ — +oo. Here s
belongs to the in-plane boundary dw and (¢, x3) to the half-strip X+ =R x (—1,1). In
order to preserve the homogeneity of the elasticity system, we scale the profiles w* back,

that is we set ¢* = w” and % = w§“ . In formal series writing this means

w(e) = W(e)p(e), with
Wo(e., v3) = (#.,0),  Wile,,p3) = (0,43) and Wi =0, Vk > 2.

In this section we are going to exhibit operator valued formal series determining the
Dirichlet or Neumann traces of the in-plane generator formal series ¢(¢) so that the Dirich-
let or Neumann traces on the lateral boundary I'y of u(c) = U(e){(e) (with U standing
for U™ or UP) can be compensated by the corresponding traces of a boundary layer for-
mal series ¢(g) with values in exponentially decreasing function spaces.

To this aim, let $H(XT) be the space of C>°(X") functions ¢, which are smooth up to
any regular point of the boundary of ¥ and are exponentially decreasing as ¢ — oo in
the following sense .

Vi,j, k€N,  t"0i0)p € LA(XT)

with 6 > 0 a fixed number smaller than the smallest exponent arising from the Papkovich-
Fadle eigenfunctions, ¢f [10]. With p the distance to the two corners of ¥, we moreover
prescribe the following behavior at the corners for the elements of $(X1)

@€ LX(XY) and Vi,jeN,i+j#0,  pH19i0jp € L3(XH).

Then we define the corresponding displacement space $(X7) := $(XT)3. Our profile
formal series ¢ () will have its coefficients in C*° (9w, H(ET)) .

4.b Inner expansion problems and matching of lateral boundary conditions

In variables (¢, s,x3) and unknowns ¢ = (¢4, ps, p3) the pair A(e) of the interior
operator and the horizontal boundary operator become

fl(s)(ts, 570,04, 03),

where W () o A(e)(r, 5;0,,05,05) = (Ao(0;) + €2A5(9,)) o W (e) in the neighborhood
U x (—1,1) of Ty. The Taylor expansion at ¢t = 0 of the coefficients of A(c) provides
the operator valued formal series

Al) =) A= (Zk By Y 6’“%)

where the Bi(t,s; 0;,0s,03) are partial differential systems of order 2 in the stretched
domain Ow x 3 whereas the G (¢, s; 0y, 05, 03) are partial differential systems of order
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1 on its horizontal boundaries dw X 7+, where v = RT x {z3 = X1} denotes the
horizontal boundaries of Y% ; all operators have polynomial coefficients in ¢ .

The counterpart of the outer eigenproblem (3.3) is
A(e)p(e) + e*A(e)TIp(e) = 0 4.3)

for the inner expansion formal series, where we use the embedding operator II which
associates now to a vector field f the pair ( 70 ’ 8wa+> .

It is worthwhile to note that the principal parts By and Gy split into 2D-Lamé and 2D-
Laplace operators in variables (¢, x3) with Neumann boundary conditions, respectively:

(Bow): = 1t A 3op + (A + 1) Oy (din,g(%, @3)), (Gop)r = (O30 + Opp3),
(Bow)s = 1 Avzios + (A + 1) 93 (dives (o, 03)),  (Gow)s = (A + 21) D303 + A Dy
and

(Bowp)s = 11 Ar3ps, (Gop)s = 10305 .

Now, it remains to give the equations that should hold in order that ), e*u*(z) +
S efwk(re™!, s, x3) fulfills the lateral boundary conditions on Iy .

Concerning the Dirichlet case, we set
D(e)=e'D_, + Dy, with
D_1(up,us,uz) = (0,0,u3) and  Do(uy, us, uz) = (Up, us, 0).
The Dirichlet boundary condition takes then the form
p(e) ’t:O + D(e)u(e) ’Fo =0. 4.4)
In the case of a free plate, the traction operator 7 (¢) on ¢(e) is obtained like B(e)
from the change of variables x — (¢, s,x3) and has only two terms
T(e)="Ty+¢Th.
The main term 7 is the traction operator associated with B, and reads
(Toso)tyg,s = (>\ 0303 + (A4 20)0ppr , 11(Orps + O301) 5 at@s)-
The counterpart traction N (¢) acting on u(e) has three terms and reads
N(g) =e 'N_;+ Ny +eN; with
N_1(tp, us, ug) = ()\ Osus, 0, 0), No(tn, us, ug) = (0, 0, u(Opus + agun))
N (tn, us, uz) = (Adivewy + 2005w, , p(Osun + Ous + 2k uy) , 0)

where k(s) denotes the curvature of dw . The free boundary condition takes the form

T(e)p(e) ’t:O + N(e)u(e) }Fo = 0. 4.5)
We can write (4.4) and (4.5) in a unified form as
H(e)p(e)|,_, + H(e)ule) }FO =0 (4.6)

with H(e) defined as Id and 7 (¢) in the clamped and free case respectively, and H (¢)
defined as D(g) and N(e) in the clamped and free case respectively.
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4.c General inner expansion formal series

We need the definition of the image counterpart of the space ).
Let A(XT) be the space of triples (1, 1%*) € C>®°(XT) x C*(~+) which satisfy

Vi, i,k €N, POy € LHET) and POyt € L2 (4)
VijeN, gtk € IASY) and VOt € LX(y).
Then we define the corresponding displacement space:
AET) = {T = (y,9") € RE")’}.
According to [6] the operator A, has similar properties in both clamped and free cases.
We recall here what we need and fix some notations, compare [6, section 5].

Proposition 4.1 There exists a four-dimensional space Z of polynomial motions, such
that if W belongs to C™ (&u,R(Z*)) and v belongs to C®(Ty)?, then there exist a
unique ¢ € C* (0w, H(XT)) and a unique Z € C*(0w, Z) such that

Aog(p)+¥ = 0 in 3wx(2+><”y+><’y,),
HO(QO_Z)}t:ojLU}FO = 0

where Hy = 1d in the clamped case, and Hy = Ty in the free case.

Note that, once a basis of Z is fixed, any Z € C*(dw, Z) determines four coefficients
in C*°(Jw) depending on ¥ and v which are the coordinates of Z in this basis. In the
free case, these coefficients can be computed explicitly from ¥ and v, see §4.e. In the
clamped case, the space Z is generated by the four rigid motions (two membrane and two
bending) given in coordinates (¢, s,z3) by:

1 0 0 —XI3
zpt=1[ o0 zpt=1[1 zZy'=10 zy>=|( o
0 0 1 t

In this subsection, we will consider equation (4.3) under the conditions (4.6). The
following result reduces the solution of that problem to a new boundary condition on z(¢) .

Theorem 4.2 Let §_1 be the operator zero C*(w)?> — C® (0w, Z) in the free case, and
d_1 be the operator C*(w)* — C®(0w, Z) defined by § 1z = (23‘8w)Z%1 in the
clamped plate. There exist for each k > 0

e a unique operator ¥y, : C*(w)* — C>*(dw, H(XT)),
e a unique operator 8y : C*(w)* — C* (0w, Z),

defining operator formal series ®(c) = 3, "®y, and 8(c) = Y, _, "8y such that:
If the formal series z(e) satisfies d(c)z(e) = 0, then p(c) = P(e)z(e) is a formal

series solution of the problem (4.3) under the boundary conditions

H(e)p(e) ‘t:O + H(e)U(e)z(¢e) }FO =0. 4.7)
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Proof. We are going to prove the existence of formal operator series ®(¢) = > 1 eld,
and d(e) = >, £°9; satisfying the relation

{ A(e)®(e) + (52/\(5)(1)(5); 0 ’&uxvi) =0,
H(e)(®(e) — 8(e)) |,_, + H(e)U(e)], =0.

T'o

(4.8)

1

The first relation corresponds to the power £~ and reads

{ ‘AOCI)*l + (O; 0 ‘wa'yt) - O’
Ho(®o1 —6-1)|,_, + H-1Up

With ®_; the operator zero and the definitions of d_; given in the theorem, the above
identity holds.

0.

}Fo -

Let £ > 0, and suppose that the operators ®, and &, are constructed for ¢ = —1,... k
so that the relations corresponding to the powers ¢ in (4.8) hold for ¢ = —1,... k.

Note that in both free and clamped cases, we have H | # 0 and Hy = 0 for k£ > 2,
and Hy = 0 for k > 2. Consider for any fixed z € C*(w)? the problem of finding
solution of:

k41 E—1
Bop + Y Be®roiez + ) A®pagz = 0 in XV,
=1 =0
k41
Gop + ngq)kJrleZ =0 on i,
=1
L (HO"/) + Hl(q)k: - (5I<:)Z> }t:O + (HflUk:JrQZ + HOUkJrlz + HlUkz) }Fo = 0.

Proposition 4.1 shows that there exists a unique solution ¥ = ¢ —Z to the above problem.
Setting ®r. 12 := ¢ and d;12 := Z we obtain the relation at the rank k£ + 1 in (4.8).

Therefore, if z(¢) is a formal series satisfying d(¢)z(e) = 0, the identity (4.8) shows that
the equations (4.3) and (4.7) hold. [ ]

In the next subsection, we study the first terms of the formal series ®(¢) and d(¢)
according to the boundary condition imposed, and also to the type of the displacement
(membrane or bending).

4.d Clamped case

Let us investigate the first non-zero terms in d(¢) and ®(e). Let us recall that §_;z
is equal to (23 ‘ aw) Z 15’1 . In order to determine the next operators ®, and §,, we have to
consider the problem for all z (remind that U; = 0):

BOCI)()Z = 0 in E+,
QO(%z = 0 on v+,
((I)O — (50)Z }tzo + DQU()Z }Fo =0
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with DoUpz = (2, — 23V.23,0) . Hence, we conclude that
8oz = (2 L%)Zghl + (2 L%)Zgﬁ + (Onzs ’aw)Z%Q

and that &5 = 0. So the boundary layer term only starts with the operator @ .

More generally, for any £ > 1, we can write that
81z = (07'2) Z" + (6,2) Zp2 + (07" 2) ZD' + (6.7°2) Z™.

Now, the condition §(g)z(g) = 0 is equivalent to 6™ (g)z(¢) = 0 and 6™J(g)z(e) =0,
J = 1,2, in the membrane and bending cases respectively. Thus the solvability of problem
(4.3) under boundary conditions (4.4) is guaranteed by a condition of the form

Y(e)z(e) = 0,

where ~(e) is a formal operator valued series with continuous coefficients from C*(w)?
into C*°(Ow)* . Then as a consequence of Theorem 4.2, we obtain:

Theorem 4.3

(1) Let v™(g) = Y 50" YR be defined for any in-plane displacement ¢ € C*®(w)?
by vi¢ = (01, 67%)(¢,0) € C®(0w)?. We also set ()¢ = ®(e) (¢,0). Here
®(e) and 6(c) are the formal series appearing in Theorem 4.2. Then ®§ = 0 and ~{
coincides with the Dirichlet traces of the membrane operator L™ :

’781C = (Cm Cs) ’&u

and for each integer k, the operators O} and ~}' are polynomial of degree k—2 in A.
Moreover, for any formal series (g) with coefficients in C*°(w)? solving

Y™ (e)¢(e) =0 in dw, 4.9)

then the three-dimensional formal series p(c) := ®™(¢)((e) is a membrane solution of
the three-dimensional eigenvalue formal problem (4.3) in Ow x X" with the Dirichlet
condition

() |,y + DEOU™(E)EE) |, = 0.

(i)  Let vP(e) = > k>0 ek~y? be defined for any function n € C*(w) by vin =
(6p11,62°)(0,m) € C®(0w)? and set ¥°(c)n = (<) (0,m). Then ®F = 0 and ~}
coincides with the Dirichlet traces of the bending operator LP :

Yo = (n,0.m) |,

and if Ao = Ay = 0, for each integer k the operators ®° and ~} are polynomial of
degree k — 2 in A®. Moreover, for any formal series 1(c) with coefficients in C*°(w)
solving

~P(En(e) =0 in dw, (4.10)

then the three-dimensional formal series p(g) = ®°(e)n(e) is a bending solution of
the three-dimensional eigenvalue formal problem (4.3) in 0w x X" with the Dirichlet
condition

@(e)],_o + DEU(e)n(e) |, = 0.
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Remark 4.4 By the same computations as in [6, §6], we obtain that ~}'¢ is defined as
(¢™div¢,0)|,, and that 4%y = (0,c°An) |, with ¢™ and ¢® non-zero constants only
depending on the Lamé coefficients A and . [ |

4.e Free case

In this case, a basis of Z is given by the four displacements

t 0 —2t$3
zyt=1 0 Zyt=| t zZy = 0
D 0 2 + 6tpy
—3t2x3 + 6]53
and Z2° = 0 :
t3 + 6ty

where the polynomials p;, p; and p; are defined in (3.20) and (3.21). Moreover, if
U = (,17) € C°(0w, R(XT)) and v € C®(T)?, then the element Z € Z given by
Proposition 4.1 writes

m, m,1 m, m,2 b, b,1 b, b,2

with, see [6, Propositions 5.6 & 5.12]:

1

5m,1 = / \I/t dtdl’g - / (Qﬂ;— - ¢;) dt +/ (%7 dZL’3,
=+ R+ -1

1 1
o2 — 2_ (/ \I/S dtd.ng — / (w: — ws_> dt +/ Vs d[Bg)
B \Js+ R+ -1

1

ol = / (—x3\11t + t“DS) dtdes + / (thr +y =ty — w;)) dt — / T3v; dzs,
s+ R+

-1

4.11)

and

1
(Sb’2 = / \113 dtdxg — / (w;)r — Qﬂg) dt + / V3 d.ng.
3+ R+ -1
(4.12)

In the following, we investigate the first non-zero terms in (¢) and ®(¢). Remind that
in the free case d_; = 0. We now study separately the membrane and bending cases.

(i) MEMBRANE CASE. Recall that the Neumann traces of the membrane operator L™ are
¢ = Adiv¢ 4 2u0nCa,

(4.13)
Tsmc = :u(aan + anCs + QKCS)‘

As in the clamped case, we define for all & the operators ®;* and §}' by the equations
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for ¢ € C>®(w)?. We have for all k£ >0

SP¢ = (671020 + (67%¢) 2>,

For k = 0, the operators satisfy for all ¢ the equation (remind U; = 0)
Bo®y'¢ = 0 in Xt
GoP5'¢ = 0 on i,
To(Pg — 05)¢ ],y + NoUG¢ |, = 0
As there holds NoyUJ*¢ = 0, we obtain 7' =0 and d,' = 0. For k£ = 1, we then have

Be#P¢ = 0 in 7,
Go®'¢ = 0 on s,
T = 37)C g+ (NAUPC+ NUFQ), = 0

A computation shows that in coordinates (¢, s, z3) ,
From (4.11), we deduce immediately that

ot =2T) and O = LT

S

Moreover, we can check that @' = 0. Consequently, Theorem 4.2 yields the following
result:

Theorem 4.5 Let v™(c) = > ;- ek be defined for any in-plane displacement ¢ &
C=(@)? by ¢ = (L0, 1oy 2)¢. Then ®F = O =0 and ~§ coincides with the
Neumann traces of the membrane operator L™ :

vo¢ = (T, TC) |,

and for each integer k, the operators O} and ~}' are polynomial of degree k—1 in A.
Moreover, for any formal series (g) with coefficients in C*°(w)? solving

Y™ (e)¢(e) =0 in Ow, (4.14)

then the three-dimensional formal series p(c) := ®™(e)((e) is a membrane solution of
the three-dimensional eigenvalue formal problem (4.3) in 0w x ¥ with the Neumann
condition

T(€)p(e)]_y + NEU™(E)C(E) |y, = 0.
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(ii) BENDING CASE. As usual, we suppose Ay = A; = 0. Recall that the Neumann
traces of the bending operator L" are

M,n = S\An+2,uam7],

. (4.15)
N = (A4 21)0,An + 2u04(0y, + £)Osn.

We define for all & the operators ®? and 62 by the equations
@i = (0,1) and &y = (0, 7)
for n € C>°(w). We have for all k£ > 0

8¢ = (010 ZR + (6,2¢) 2.

As in the membrane case, using the fact that NOU('fn = 0, we have that (IJB =0 and
o> = 0. For k = 1, we have to consider the problem for all 7

By®n = 0
Go®tn = 0 on
To(9} = 80,y + (N U+ M), = 0

in X,

A computation shows that
N_ Uy + N\UPn = (—z3Myn, —x320(0, + £)0sm, 0),
whence, with (4.12) we deduce
ot = M, and % = 0.

Moreover we have ®} = (0, ®? ,0) with, see [6, Section 10], &P . = ¢ (I, + £)Ds7
where ¢ is the solution of the Neumann problem in the half-strip ¥ with data 0 on
7z and 2z3 on dw. The function ¢ is exponentially decreasing and there holds, see
[6, Lemma 5.7],

o 2
/0 ey (B, 3) dtdzs = —3 (4.16)

At this stage, we still do not have the first non-zero term of the formal series §>2(e) .
It remains now to compute the term 5'23 2 For k =2, we have the equations for all 7

Boq’gn = —qu)}fn in Xt
Go®on = —Gi®ty  on s,
To(®8 — 85)n|,_y + T(D2 — 8)n],_, + NoUbn]|,, = 0.

According to (4.12), only the third components are necessary to compute (5]20 . We have,
see [6, Equation (4.2)], that (7})3 = 0, and with the expression of B;, [6, Equation
(4.6)], and Y, we have (B1®Pn), = (A + 1)050,P} ;n. Similarly, with the expression
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of Gy, [6, Equation (4.10)], we have (G;®{7), = A9,®} 1. Finally, we have the formula
(NoUSn), = p(pa + 14)9,An, and using (4.12) and (4.16), we find that

2

550 = —=Non.
2 M 3 n

As consequence of Theorem 4.2, we have

Theorem 4.6 Ler v°(c) = 3, . "y} be defined for any function n € C>(w) by ~vpn =
%(5,‘31&1, —5}3;32)7]. Then ®F = 0 and ~g coincides with the Neumann traces of the
bending operator LP :

Yon = (M1, Nan) | .,
and if Ao = Ay = 0, for each integer k the operators ®° and ~} are polynomial of
degree k — 1 in A®. Moreover, for any formal series 1(c) with coefficients in C*°(w)
solving

Y(En(e) =0 in dw, (4.17)

then the three-dimensional formal series p(g) = ®°(e)n(e) is a bending solution of
the three-dimensional eigenvalue formal problem (4.3) in Ow x X" with the Neumann
condition

T(e)p(e) | + NEU (E)ne) |, = 0.

5 Solution of the in-plane eigenvalue problems

Collecting the results in Theorems 3.4 and 4.3 - 4.5, we obtain that in the membrane
case, if the formal series {(¢) and A(e) solve

(L™(e) + A(e)¢(e) =

Y"(E)¢(e) =

then the formal series u(e) := U™(e)¢(¢) and () := P™(e){(e) solve the three-
dimensional eigen-problems (3.3) and (4.3) respectively, moreover the sum of their traces
on the lateral boundary solve (4.6). We will prove in §6 that, provided (5.1) holds, the

partial sums of series U™ (¢)¢(e) and ®™(¢)¢(e) yield three-dimensional O(g¥) -quasi-
modes. We have similar statements for the bending case if the formal series 7(¢) and

AP(g) solve
{ (LP(e) = AP(e))n(e) = 0 in w,
YP(e)n(e) = 0 on Jw.

0 in w,
(5.1)
0 on Ow,

(5.2)

Thus the three-dimensional formal series eigenproblems, including inner and outer
parts, reduce to two-dimensional formal series eigenproblems.
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S5.a Change of unknowns

By a simple change of unknowns we are going to replace the formal series ¢ (e) or
n(e) in problems (5.1) or (5.2) by new formal series {(g) or 7(¢) which will have to
satisfy the homogeneous boundary conditions associated with operators L™ or LP.

Theorem 5.1 Let ~(e) be any formal series defined by Theorems 4.3, 4.5 and 4.6. Then
there exists an invertible formal series C(e) = Y., .,e"Cy where Cy = 1d and Cy, is
continuous : C®(w)P — C®(wW)? with p =1 and 2 in the bending and membrane case
respectively, such that

Yo 0 Cle) =(e).

Proof. We only have to prove the existence of the operators Cj, satisfying ~v,0Cy =, .
We can obviously take Cy = Id. For k£ > 1, it suffices to set C = Ry o 7, , where Ry

is a lifting operator corresponding to the trace operator -, , that is a continuous operator
C>®(0w)? — C>(w)P such that v, 0 Ry = 1d. n

By composition with C~1(g) the inverse formal series to C'(¢) we obtain:

Corollary 5.2 In both clamped and free plate cases, we have:

(1)  With the change of unknowns Z’(e) := C(e)¢(e), problem (5.1) is equivalent to
the system

(5.3)

{(im(gHA(g))&(g) = 0 in w,
yué(e) = 0 on Jw,

where L™ (g) is a formal series with coefficients L C®(@)2 — C™(@)? of degree (—1
in A, and such that Lj' = L™ .

(ii)  With the change of unknowns 1(c) := C(e)n(e), problem (5.2) is equivalent to
the problem
LP(e) — AP(£))ii(e) = 0 in w,
(7(0) ~ A%(@))ie) o
Yoi(e) = 0 on  Qw,

where L"(¢) is a formal series with coefficients LY : C®(@) — C®(@) of degree ( — 1
in A", and such that LY = LP.
5.b Solution of the plane formal series eigenproblems

In this subsection, we solve the equations (5.3) and (5.4). We first investigate the mem-
brane case. The bending case will be very similar.

Theorem 5.3 Let Ay be an eigenvalue of the operator —L™ with boundary condition
Y5 and let Fy be the corresponding eigenspace. There exist an integer d < dim Fy and
a splitting of Fy into d subspaces F°. :

Fy = @Zzl .

such that forall ¢ =1,...,d, there exist
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e aformal series N*(g) with real coefficients such that A = Ao,

e a formal series V() with coefficients V%, : Ft, — C>()?
with the following property: Forall ¢, € F. , the formal series (:%(6) =9'(e)¢,, solves
problem (5.3) with A(e) = A(e).

Proof. Let us first note that the formal series () = 3=, "¢* and A(e) = 3, %Ay,
satisfy the equation (5.3) if and only if for each k£ > 0

k
Y5 =0 and (L™ + Ag)CF == (Lo + Ag)CH (5.5)
(=1

For k = 0, this equation reads (L™ + A) ¢% = 0. Since A, is an eigenvalue of —L™,
the equation is solvable and Z’O can be chosen at this stage as any element ¢ in Fj.

For k =1 we thus take any C(l) € F, and consider the problem of finding ¢ such that

{ (L™ +00)¢ = (L} +A)¢  in w, 56
¥5'¢ = 0 on OJw.
This problem is solvable if the right-hand side is orthogonal to Fj . Defining 91, by
M Fy—F V¢ peF, (M, p)=(L"¢ ), (5.7)
this orthogonality condition reads
(M + A1)¢o = 0. (5.8)

But 901, is symmetric, as will be proved later on. Hence for any eigenvalue A; of 9y
we can take C(l) as any element ¢ of the corresponding eigenspace ). Then (5.6) is
solvable and admits as solution any element ¢!, of the form ¢§ +6i¢3, where ¢ is any
elementin Fy and 6} : Fy — Jy (with J, the orthogonal complement of Fy in C*(w)?)
the solution operator in .J; of problem (5.6).

Thus we have (partly) proved the two first steps of the following lemma:

Lemma 5.4 Set F| = C*(w)?, Fy as in Theorem 5.3 and J the orthogonal comple-
ment of Fy in F_, for the scalar product of L*(w)?. We take Ay as in Theorem 5.3.
There exist for all 1 > 1

e areal \; and orthogonal subspaces F; and J;, such that F; & J; = F;_1,
e forany j > i, operators 05 B — g,

allowing for any fixed n > 0, the construction of solutions of the equations (5.5) for k €
{0,...,n} in the following way: Choosing any functions C?H e Fy for t =0,...,n,

we construct successively the functions Cf for k=mn,...,0 by
k
Vi=—1... k=1, ¢=¢CH+ > 0, (5.9)
J=t+2
Thus the functions c(il, ...,C", depend linearly on the generating functions g+1 e

¢ via a lower triangular (n + 1) x (n + 1) matrix operator O™ :
(€% ¢ty) =0 (¢ G
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Then the functions 5”" = C’il for k=0,...,n satisfy the first n + 1 equations of (5.5).
Moreover for any n > 0, A,, is an eigenvalue and F,, the associated eigenspace of the

symmetric operator I, : F,,_1 — F,_1 defined by
VC/‘:banfla <mnCa¢>:<MnC>1/)>> (510)

where (-,-) is the L? scalar product on C*(w)?* and the operator M, is such that the

following identity holds for any ¢, € F; ({=0,...,n—1)

n n

ST+ AT =3 (Mo + MG, 5.11)

=1 =1
where the functions (c(ll, cee Cﬁ]l)T are given by O"~ 1(Cn Lr-ce) CQ)T

Proof of Lemma 5.4.
a) We will prove the existence of A;, F;, M; and Qlj by induction.

For n € N, the induction hypothesis is that A;, F;, M; are constructed for : = 0,...,n
and operators ¢/ for i = 0,...,n — 1 and j = i + 1,...,n (thus operators ©° for
¢ =0,...,n) such that the assertions of the lemma are satisfied.

For n = 0, the hypothesis is satisfied clearly by setting M, = L™ .
Suppose now it holds for n > 0.

Let us take n+1 generating functions {}*' € F;, £ =0,...,n,andlet (¢°,,.. .,Cﬁl)T
be defined as ©" (CZ“, cee g“) . The assumption yields that the first n + 1 equations

of (5.5) are satisfied with é’k = ¢ 1 - In order to construct solutions for the equation of
(5.5) corresponding to kK = n + 1, we have to solve the problem of finding A, ,; in R

and ¢ satisfying
n+1

(L™ +Ao)¢ = =D (LY + )¢,

=1
with the boundary condition v,¢ = 0 on Jw . Note thatfor / = 1,...,n+1 the operators
L} only depend on Ay, ..., A,_; and are well defined at this recursion step. We are going
to solve this problem via new conditions on the generating functions ¢ ntl

Thanks to formula (5.9) for £k =n:

+1 +1 +1
VE:—l,...,n—l, = ?_i_l“‘zem_lcﬂ +92—|—1CZ ’
j=0+2
we can see that

O (¢ G = e (G G OpenT),
where Op is a linear operator. Thus formula (5.11) yields that

n n

(LR +A)CT T =) (M + A+ Op(¢th,

(=1 /=1
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where Op is another linear operator. Therefore there exists a new operator M, ; such
that the previous problem takes the form

(Lm + Ao)C = - ;(Mz + Az) ?-il - (Mn+1 + An+1)CZ+1 n w, (5.12)
Y& = 0 B on Jw.

We then define the operator 901, : F,, — F,, by the formula (5.10). Now, problem (5.12)

is solvable if the right-hand side is orthogonal to Fj .

By taking the scalar product of the right-hand side of (5.12) with any element 1) in F},,
we have to obtain zero since F,, C Fy. As C’Zfll belongs to Fy_;, it is in the domain of
the operator M, + A,. Thus forany [ =1,...,n

<(Mz +A) ¢ > = <(9ﬁz + A > = < L (M + Ae)¢> =0,
since 1) belongs to F,, C F, with F} the kernel of (Dﬁg + Ag). Therefore a necessary
condition for the solvability of problem (5.12) is the condition (9ﬁn+1 + An+1) ¢ =0.

We postpone the proof of the symmetry of the operator 901, to part b) of this demonstra-
tion. We then have the existence of an eigenvalue A, ; and of its associated eigenspace
Foy CF,.

We hence can solve step by step the equations obtained by projections on F,, 1, ..., Fj
of the equation of problem (5.12). We first take (/17 € F,;; and set ¢*' = {1} . Then
for any CZ+2 e I, , we take

1 2 1 2
Ghi=a oG,

where 671 F, ., — J, is the solution operator ) — ¢ of the problem

¢eJ, suchthat Vep € F, <(zmn +A)C ¢> - —<(an+1 + An)n ¢>.
Note that this problem is solvable since, as 17 € F}, 1, for any 1 € F}, there holds

<(Mn+1 + Api1)m ¢> = <(9ﬁn+1 + Api1)m T/)> = 0.

Similarly for any ¢} € F,,with [=n—1,...,0, we take
n+1
?jll _ ?+2+ Z 9% C?+27
j=0+1

where the operators 0?“ are successively constructed according to:

The operator 05 : F; — J; for i = j —1,...,0 is the solution operator 1 — ¢ of the
problem of finding ¢ € J; such that forall ¥ € F;,_;

j—1

(O 8¢ ¢) = —((O+ M) ¢) = 3 ((Me+ At ., ).

(=i+1
Then the new (¥ :=¢* | for k=0,...,n+1 where

(S Ml (e N G o

satisfy the first n + 2 equations of (5.5).
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b) Let us prove now the symmetry of the operator 1, ,; which is the only thing which
remains to be shown in the induction step of part a). We have to show that

VCEFTH v’l/)GFna <Mn+167¢>:<C7Mn+1’l/)>‘ (513)
We are going to prove that (5.13) is indeed a consequence of the symmetry of the three-

dimensional bilinear form «a(e) appearing in (1.11).

Let us introduce the finite formal series
n
I
k=0

which is well-defined at the induction step n. We fix an arbitrary ¢ € F,, and by the

induction hypothesis the operator ©" is known. Let us define
n

(€hrns€) = 07(G0-000) T and G =Y

=0
¢"(e) is a finite formal series depending only on ¢ .
Let us now consider the formal series U™ (¢) defined as the formal series constructed in
Theorem 3.4 corresponding to the formal eigenvalue series A = Ap,. Let us denote by

U™(¢) the compound formal series U™(g) o C~1(¢) where C(g) is the lifting formal
series of Theorem 5.1 and define

n+3
U (€) = Z sum .
=0

Coming back to problem (3.3), we can see that there holds
Ae) o Up (2) (C)(2)) + e2Apmy(e) o Ut (2) (S () U (<) ’u)

_ entd (Mnﬂc, 0:0 }F+) + Oty
Next, we introduce the formal series ®™ (&) which is given in Theorem 4.2 corresponding
to the formal series A = Ay, and U™ = U, . Setting dm () = d™(e) o C~1(e) and
n+4
g) = Z el
=1
we define the three-dimensional displacement

u(€) = (Tgy(e) + x(r) W()®p(e) ) E(e),
where y is a cut-off function with y = 1 in the vicinity of Jw leading to a well defined
sum. For any v € [}, we define u(t)) in the same way.

We come back to the framework of the initial problem (1.11) by an integration by parts,
cf formulas (3.1) and (3.2). We see that by construction we have u(¢) = 0 on T’y in the
clamped case and T'(s)u(¢) = O(¢"*?) on T in the free case and the same holds for
u(1p) . Now, for ¢ and ¢ in F,, we obtain that

—a(e)(w(C), u(¥h)) + Am(e)(u(Q), u(¥)), = "' (MpaC, ¥)+ O(e"?)
e"(¢, My 9p) + O(e"?)

which yields the symmetry of the operator 9, . |
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End of the proof of Theorem 5.3.

To each sequence of nested spaces Fy D ... D F,, D ... constructed in Lemma 5.4 is
associated a minimal integer ny > 0 and a limit space F,, such that for all n > ny,
F, = F , because the dimensions of the spaces F; form a decreasing sequence of non-
negative integers. This implies that the operators «95 are zero for ¢+ > ny + 1.

The relation (5.9) shows that for fixed n, if (O}, )i+l denotes the first column of the
matrix ©", we have

(O, et )T =emo (14,604, 67)

As the operator O™ is lower triangular, the above equality can be written as
k
Out =05, + Z Op,obnt, , for k<n+1.
=2

Henceif n+2—k > ng+ 1, we have @Zjl = 271 , thus for any £ € N these operators
donotdependon n if n >ng+ k.

Let us then define
Vk>0, 9p:=0;,,; withn=ny+k.
In particular, we have 9y = Id. Now if ¢, belongs to F,,, we can define the sequence
N5k— (=0, ¢

Let us fix k£ € N. Choosing n = ng + k£ and setting
¢"Ml=¢, and ¢}7'=0 for¢=0,....,n—1,

n

we have ¢, = O} | (""" by definition and thus ¢, = ¢f for £ =0, ..., k. Therefore

(&07 . ‘7&k7cli-|l—17 e '7CEI>T = @n(cz-i—laoa . *70>T*

This yields that the sequence (Z’f) , satisfies the relation (5.5) up to order %, with A the
formal series defined in Lemma 5.4.

To complete the proof of the theorem, it remains to note that the limit spaces Fl, of all
possible chains of spaces <F”)n generate the whole space F{: This is a consequence
of the fact that at each step of the construction, we choose one of the eigenspaces of a
symmetric operator and that eigenspaces generate the whole domain of the operator.  m

For the bending case, we can prove the following theorem, by a standard adaptation of
Theorem 5.3:

Theorem 5.5 Let Ab be an eigenvalue of the operator LP with boundary condition ~3
and let Fy be the corresponding eigenspace. There exists a splitting of Fy into a finite
number d of subspaces F', the direct sum of which generates Iy, such that for all
{=1,...,d, there exist

e aformal series A>'(¢) with real coefficients such that AJ* = A,

e a formal series V() with coefficients V%, : Ft, — C> (D),
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with the following property: For all 1., € F*, the formal series 71*(c) = 9*(¢)n. solves
problem (5.4) with AP(¢) = AP(¢).

6 Construction of quasimodes

Now we are going to show by means of error estimates that the formal operator series
constructed in sections 3-5 yield O(e*) -quasimodes for problem (1.11) at any order k >
0.

Thus let us denote by 2(e) the underlying operator corresponding to the variational
formulation (1.11) of the eigenvalue problem. In formulas (3.1) and (3.2), B(e) is the
interior partial differential operator associated with () and 7'(¢) is the traction on I’
associated with () . We note that the domain of 2(¢) is

D((e)) = {u e V(Q) | Ble)u € L*(Q) and T(s)u}F =0}.

We recall that || - || denotes the norm associated with the scalar product (-,-). in
(1.11): ) ) )
lull = Nl + e usll . -
Theorem 6.1

) Let 0., be an eigenvalue of the membrane operator —L™ and let  be an
associated eigenvector which belongs to one of the limit subspaces I constructed in
Theorem 5.3. Thus let (A(e), C(e)) be the eigenpair formal series for problem (5.3) such

that Ny = o0,, and &'0 = (. Then forall N > 0, with
N
An(e) =D " Ay, 6.1)
k=0

there exists a function ul’ (¢) such that
i (e) = Uk (O], < Ce UL, (62)

and the pair (An(e) ul’ (¢)) is a membrane O(eNT1) -quasimode of U(e), that is it

satisfies the following estimate with a constant C' independent of &

1(A(e) = Ai(e)uldI ()] < Ce¥Hul]|_ (6.3)

m

(ii)  Let oy, be an eigenvalue of the bending operator L" and let 1 be an associated
eigenvector which belongs to one of the limit subspaces F,, appearing in Theorem 5.5.
Thus let (A(s), 77(5)) be the eigenpair formal series associated with problem (5.4) such
that A\g = Ay =0, Ay = %Qb and 7° = n. Then for all N > 0, with AN defined in

(6.1), there exists a function uLN] (€) such that
[ () = Uk (), < Ce UL (), (64)
and the pair (Anj(e), u][om (€)) is a bending O(eN 1) -quasimode of U(e).
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Proof. Let () be the formal series C~(¢){(g). Let us now consider the formal
outer series U™ (¢)¢(e) constructed in Theorem 3.4 and the formal inner series ™ ()¢ (¢)
constructed in Theorems 4.3 & 4.5. For any integer k > 0 let us denote by [U™(¢)¢(¢)] A
the term of order £ in U™(g){(¢) and similarly for ®™. Then we define the three-
dimensional displacement S}*(¢) as

S (€)(@) = [U™(e)¢(e)] () + x(n) [W (€)™ (e)¢(e)] , (re ™, 5, 3). (6.5)

This displacement depends linearly on ¢ € F,, and we note that S{*({) is simply the
membrane Kirchhoff-Love displacement U (¢) = (¢,0). Then we introduce the main

part of our quasimode as
N+5

up =Y FSR(Q). (6.6)
k=0

We note that for £ < ey with £y small enough, there holds
N
enllCll o) < g Il < Ol g,

with positive constants ¢y and Cy independent from ¢ . Here the L?-norm of ¢ can be
used as well as any other Sobolev norm because ¢ is an eigenvector. By construction we
have

(B() + M) + N Ay ul, v) < eVl o]l .
This implies
N N
(B(e) + Apy)ug vy, < C¥ g™ _lv]| -
(V]

Moreover we have u([)N} € V(Q) because in the hard clamped case u; * =0 on I'y. But

in general, ugN] does not belong to the domain of 2((¢) because T(e)u([)N} is not zero.

Let g(e) be the trace such that
N
T(e)ul . =e""gle).

g*(5)||L2(F) and 5*2||g3(5)||L2(F) are bounded independently of ¢. Let

By construction,
w € V() be the solution of the problem
Vo € V(Q)a a(e)(w, ’U) + <w> ,U>Q75 = _<g(€)a v)ng‘
Thanks to Korn inequality on €2, there holds the estimate
2 2 —
el 0y + N0l < C (192 ooy + 2195 ooy )10l 1 gy -
Therefore |w]|,  is bounded independently of . Let us define

[N] (V]

u™ =uy + N,

Now T'(£)u™ =0 on T and u™ belongs to the domain of 2(¢) . Moreover
((Be) + M), ), < Mg, o],
and with the fact that Hu([)M |.<C |V |, for & small enough, we conclude that

((B(e) + M) ul™, w)_ < CeM M ulM [l -
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Whence estimate (6.3).

The estimate (6.2) is then a simple consequence of the structure of the first terms in w!V :
As already mentioned, S§(¢) = Uy (¢). Moreover, S}*(¢) is the sum of a membrane
Kirchhoff-Love displacement U (¢') and of a boundary layer term which has no trans-
verse component.

The proof for the bending case is similar. [ |

7 The limits of three-dimensional eigenpairs

combined with the result of [3] according to which the ¢ -th scaled three-dimensional
eigenvalue 572Ai,£ tends to the two-dimensional eigenvalue % obe as € — 0, the result
of Theorem 6.1 will yield the optimal estimates stated in Theorems 2.3 and 2.5. In the
following, we recall and adapt the proof in [3] to our situation, particularly for the bend-
ing case with free boundary condition and for the membrane case with clamped or free
boundary conditions.

7.a Bending eigenvalues

Theorem 7.1 Let Cy > 0 be a fixed bound. With the arrangement (1.7b) of the three-
dimensional bending eigenvalues Af ,, for any > 1 let & be the set of € > 0 such
that 5_2/\%,6 < Cy. If zero belongs to the closure of &, there exists a function Cy(g) > 0
tending to zero as € — O such that the following estimate holds

Ve €&, min e A5, — 300.0| < Cile), (7.1)

where the oy, ¢ are the arrangement (1.17b) of the eigenvalues of L".

Proof. We just give the main arguments of the proof. Let ¢ > 1 be fixed such that zero
belongs to the closure of & and set A° = ¢ Af ,. Since for ¢ € &, A® is bounded by
Cy there exists a sequence {e,} C & which tends to zero such that A" tends to a limit
A as n — oo. In the following, we will denote by ¢ such a subsequence of &, .

Let u(e) € V(Q2) be an eigenvector of Af , such that

||U3(6)||L2(Q) =1

The displacement w(c) has the bending parities and, in the free case, is orthogonal to the
rigid motions. Moreover, u(e) verifies by definition:

Yo € V(Q), ae)(u(e),v) = A" (u(e), 'u>6. (7.2)

As u(e) satisfies homogeneous boundary conditions on the lateral boundary of 2 in the
clamped case or is orthogonal to the rigid motions in the free case, Korn inequality yields
that

)l o s < C (el s + 183 o)

where C' is independent of ¢. Therefore we deduce that

||'U,(8)||H1(Q)3 < C||U3(€)HL2(Q) = 07
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Hence, there exists u’ € V() such that after taking subsequences, u(e) tends to u’

weakly in H'(2)? and strongly in L?(Q2)?. Thus we deduce that
HugHL2(Q)3 =1 (7.3)

and that in the free case, u’ is orthogonal to the rigid motions. Moreover u" has the
bending parities.

Now using the method of [3] we take different test functions in (7.2) to deduce information
about u’ by passing to the limit. Letting v = (0,v3) in (7.2) gives d3ud = 0 in ,
hence w3 can be identified with a function n € H'(w). In the clamped case we have
n =0 on Ow, and in the free case 7 is orthogonal to the bending rigid motions. Taking
v = (V4,0) in (7.2) yields that e,3(u’) = 0 in  and thus u is a bending Kirchhoff-
Love displacement: we have u? = —239,n and u) = n € H*(w) (and Hj(w) in the
clamped case).

Moreover, we have for ¢ € &, that

e 4| O5us(e) e ale)(ule), u(e)) < Cy,

2
226
where ' and (5 are constants independent of . Hence, after extracting a new subse-
quence, there exists y33 € L*(€) such that e 203u3(c) — 33 weakly in L?. Taking
v = (0, c%v3) as test function in (7.2) gives that

—7)\ e (uo)—x A
A2 TN Y2

Now if 7' € H*(w) (and HZ(w) in the clamped case) and if we take v = (—x30,7,7')
as test function in (7.2), we find that

2 -
3 / <)\An AN 4 20apn (%gn’) dz = 2A / nn'de.

Hence, as 7 is orthogonal to the bending rigid motions and n # 0 because of (7.3), we
have that A = %Qb,f/ for gl 2 1.

As 5_2/\%,3 < 5_2/\%,5, if £ < /(" wehave £, C & if £ < ¢’ . Moreover, the weak limits 7
and 7’ issued from orthogonal three-dimensional eigenvector sequences u(c) and u/(¢)
are orthogonal to each other, too. Thus taking by diagonal process the same subsequence
for all ¢, we can conclude that e ?Af, — sobe with ¢ > (. Hence, we proved the
theorem for a subset £ C &, whose closure contains zero. But reproducing the same
arguments for & \ &, and using the uniqueness of the limit of min>, \5‘2/\%[ - %Qbﬂ ,
we show that the theorem holds for the whole set &, . [ ]

X33 = An.

7.b Membrane eigenvalues

Theorem 7.2 Let Cy > 0 be a fixed bound. With the arrangement (1.7a) of the three-

dimensional membrane eigenvalues A ,, for any £ > 1 let & be the set of € > 0 such

that A, , < Cy. If zero belongs to the closure of &, there exists a function Cy(g) > 0
tending to zero as € — O such that the following estimate holds

Ve € gg, Ig/lilel ‘Afn,é — Qm,g/| < Cg(&), (74)
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where the o, ¢ are the arrangement (1.17a) of the eigenvalues of —L™ .

Proof. The proof is similar as in the bending case: Let ¢ > 1 be fixed and u(c) a
membrane eigenvector associated with A7 ,, such that |lu(e)||_ = 1. We prove in the
same way as before that u(e) converges to a limit u® weakly in H'(Q)? and strongly in
L?*(Q2)3, where u® € V(Q) is of the type u’ = (¢,0) with ¢ € H'(w)?. In the clamped
case, ¢ € H}(w) and in the free case ¢ is orthogonal to the membrane rigid motions.
Moreover, as us(e) is odd in x3 we have

_ 2 _ 2
a(e)(u(e), u(e)) > Ce [ Osus(e) ) = O lus(e)ll o

hence 5_2Hu3(5)]|i2(m — 0 as € — 0 in & . Thus, we deduce that 2[|C]|i2(w) =1,
therefore ¢ # 0.

Now, analogous computations as in the bending case show that

A
e 205us(e) — —meaa(o weakly in LQ(Q).

We then deduce similarly that Afn,e tends to oy, with ¢/ > 1, and conclude in the same
way as for Theorem 7.1. |

8 Conclusions

8.a Eigenvalues

Applying Theorem 6.1 at the level N = 0, we obtain that for any fixed integer ¢ and
for any £ > 0, there exists an integer ¢(e) such that the following estimate holds for
membrane eigenvalues:

| O, — Afn,@(s)‘ < Ce.

Moreover, if the multiplicity of oy, is equal to v, then there exist v independent O(e) -
quasimodes for the three-dimensional problem (1.11). Therefore in the above estimate
{(g) > ¢ holds.

Conversely, Theorem 7.2 yields that for any fixed integer ¢ and for any ¢ > 0 in the set
Er , there exists an integer ¢'(¢) > ¢ such that the following estimate holds for membrane
eigenvalues:
‘Afn,é - Qm,g/(e)‘ —0 as e—0.

Therefore ¢(¢) = ¢ and we have proved Theorem 2.3 for membrane eigenvalues. Con-
cerning bending eigenvalues, we apply Theorem 6.1 at the level N = 2 and conclude
similarly. Thus Theorem 2.3 is proved.

As a consequence of Theorem 6.1 at any level N > 0 and of Theorem 2.3, we ob-
tain the following asymptotic expansions for the three-dimensional membrane and bending
eigenvalues:

Theorem 8.1 For any integer { > 1, the three-dimensional eigenvalues A5, , and Aj,
have infinite power series asymptotic expansions as € — (

AL o~ ZekAmg;k and Ay, ~ ZEkAb,e;k (8.1)

k>0 k>0
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with A .0 = Omye and Ay g0 = App1 =0, Apyo = %Qw, in the following sense: For
any N € N there holds

N N
‘Afn,f - ngAm,E;k‘ + ‘Ai,é - Zék/\b,é;k‘ S 06N+1 .
k=0 k=0

8.b Eigendisplacements

Let us investigate membrane eigendisplacements. For this let us fix ¢ € L£,, and let
v be the multiplicity of gy, . According to Theorem 5.3 the two-dimensional membrane
eigenspace Fy,, splits into the direct sum of subspaces FL for d = 1,...,d. With
Theorem 6.1 at the level N = 0, we can associate with each element ¢ ina F ;lo a three-
dimensional displacement u!%[¢](¢) defined as the field uld) (¢) satisfying estimate (6.2)
in Theorem 6.1 and such that (om ¢, ul”[¢](¢)) isa O(e) -quasimode of A(e) .

The other three-dimensional eigenvalues A ; with j & {¢,(+1,... {+v—1},being

separated from the cluster corresponding to ¢ (i.e. with j € {¢,¢/+1,... /+v—1})by
a distance independent from ¢ , we deduce from Lemma 2.2 that

(55<span{u[0][C](5) |CeFl, d=1,...,d} ,C;x) <ce,

where Ofn,e is the cluster space (2.5). With estimate (6.2), we obtain Theorem 2.5 for
membrane eigenvectors. The proof for bending eigenvectors is similar, taking account of
the fact that the clusters of eigenvalues are O(e?) separated.

Let us keep ¢ € L,, fixed. To each subspace F2 of F},, corresponds a different
power series expansion Y e*A¢ of a three-dimensional membrane eigenvalue. There ex-
ists NV large enough so that all polynomials >, .y €"A¢ for d = 1,...,d are distinct
from each other and there exists £, small enough so that the functions & — Y, - e°Af
do not cross each other on (0, ¢g) . Thus it is possible to renumber them so that on (0, &)

Yoo << ) e AL
0<k<N 0<k<N
According to this renumbering we introduce a new unified notation for the subspaces ¢
of F,: with v, the dimension of F%

o ._ 1 0 N Y/ 00 . d
ml " Foo? Fm,€+u1 . Foo? cee Fm,€+y1+...+ug71 T Foo?

and
L2 = U {l+uv,....0+v1+ ...+ 1}
LELm

Thus to each j € L£5° corresponds a power series expansion Y, -, e"A,, ;. which is
in fact the same as the series appearing in the expansion (8.1) of the three-dimensional
eigenvalue A7 ;. Moreover with each ¢ in the space [}y is associated the three-
dimensional eigendisplacement expansion

D Sre) (8.2)

k>0

with SP*(¢) defined in (6.5). Our final result follows.
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Theorem 8.2 Ler j € LY and let v;° be the asymptotic multiplicity dim F7°;. For
g9 > 0 small enough, there are only two possibilities:

(i) For any € < gq the multiplicity of A, ; is equal to v;° . Then for any two-dimensional

eigenvectors ¢ € F.°, the series (8.2) is the asymptotic expansion of a three-dimensional
eigenvector u[C|(¢), which means that for any ¢ > 0 there exists an eigenvector u[](¢)
such that for all N € N there holds

ui¢le) = > €SP < CeN TR, - (8.3)

0<E<N

(ii) For any € < go the multiplicity of A, ; is < v;°. Then there exist v° independent

m’j
in-plane eigenvectors ¢ € F°; such that the series (8.2) are the asymptotic expansion of
a three-dimensional eigenvector u[{]() in the sense (8.3).

Similar statements hold for bending eigenmodes.

Proof. Possibilities (i) and (ii) cover any situation since the eigenvalues of the three-
dimensional problem depend analytically on ¢ .

By construction of the spaces F°; there exists Jy € N such that for any J > J; and any
i # 7 we have the lower bound, witha ¢ > 0

J J

§ : k § : k Jo+1
‘ S Am,i;k_ 3 Am,j;k‘ Z ce 0,
k=0 k=0

Then Lemma 2.2 combined with Theorem 6.1 yields that forany ¢ € F°>°. and any J > Jj

m7j
the field ul/1[¢](e) belonging to a three-dimensional O(/*!) -quasimode as defined in
Theorem 6.1, satisfies

0z (span{um [€l(e) } ,E;J) <cel™,
in situation (i), and
- <span{u[J][C](5)} , @ Efm) < cel=P,
J<i<jvse
in situation (ii). Choosing J = N + J, for any fixed N, we can evaluate explicitly the
norm || - || of the difference ul/l[¢](e) — Y0 <<y ¥ Si*(C) , whence the result. n
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