Miniworkshop Oberwolfach, 4-9 nov. 2002

Analytical and Numerical Treatment of Singularities in PDE

Edge-Corner interaction inside polyhedral singularities

Monique DAUGE

Institut de Recherche MAthématique de Rennes

http://www.maths.univ-rennes1.fr/~dauge

IRMAR

Domains and Equations

Domain Ω : 3D polyhedral (or with curved faces, conical points, in higher dimensions) Inner Operator L: 2nd order strongly elliptic, scalar or matrix-valued (or ord. 2m), defined via a 1st order form a (usual ingredients: grad, div, curl, strain e). Coefficients of a: constant, or piecewise-constant in a polyhedral domain decomposition Ω_j of Ω (or piecewise-smooth).

Boundary conditions B: Dirichlet or Neumann on each face (of Ω or of Ω_j^{a}) defining a subspace V of H^1 (except for Maxwell)

$$(\mathcal{P}) \hspace{1cm} u \in V, \hspace{1cm} orall v \in V, \hspace{1cm} a(u,v) = \int_\Omega f \, v \; dx$$

i.e.

$$(\mathcal{P})$$

IRMAR

^aCareful! Mixed boundary conditions on a smooth domain are a trap!

Example: Electrostatic Potential in (Heterogeneous) Media

Domain Ω , 3D-polyhedron. $\Omega = \cup_j \Omega_j$, Ω_j 3D-polyhedron.

Each Ω_j is formed by an homogeneous medium: Constant electric permittivity ε_j . Electrostatic potential u solution of the variational problem:

$$(\mathcal{P}) \hspace{1cm} u \in H^1_0(\Omega), \hspace{1cm} orall v \in H^1_0(\Omega), \hspace{1cm} a(u,v) = \int_\Omega f \, v \; dx$$

with the bilinear form a

IRMAR

$$a(u,v) = \sum_j \int_{\Omega_j} arepsilon_j \operatorname{grad} u \cdot \operatorname{grad} v \; dx.$$

Corresponding electrostatic field (solution of Maxwell equations at zero frequency)

$$E = \operatorname{grad} u$$

5

Vertex and edge singularities

For a polyhedron Ω and an operator L with constant coefficients.

With curved faces or variable coefficients, the edge singularities vary along their edge.

How to find Singular Functions

Corner c : Singular Function $U_{{
m c},\lambda}=
ho^{\lambda}\,{}_{U_{{
m c},\lambda}}(artheta)$ in the cone

 $\Gamma_{\mathrm{c}} = \{ \mathbb{R}^3
i x \simeq (
ho, artheta) \in \mathbb{R}_+ imes G_{\mathrm{c}} \}$

Edge $\,{
m e}\,$: Singular Function $\,U_{{
m e},\lambda}=r^{\lambda}\,{}_{U_{{
m e},\lambda}}(heta)\,$ in the sector

 $\Gamma_{ ext{e}} = \{ \mathbb{R}^2
i y \simeq (r, heta) \in \mathbb{R}_+ imes (0, \omega_{ ext{e}}) \}$

Singularities are special solutions of problem (\mathcal{P}) :

With zero right hand sides,

IRMAR

- In infinite cones Γ_{c} (for the corner c) or sectors Γ_{e} (for the edge e),
- Homogeneous in ρ (for corners) or in r (for edges).

The problem of finding the singularities is a spectral problem

- \star in the spherical polygon $G_{
 m c}$ for the corner ${
 m c}$,
- \star in the intervals $(0, \omega_{
 m e})$ for the edge ${
 m e}$.

.../...

Vertex Mellin Symbols

Vertex ${
m c}$ (of Ω or Ω_j). In polar coordinates $(
ho, artheta) \in \mathbb{R}_+ imes G_{
m c}$

 $L = \rho^{-2} \mathcal{L}_{\mathbf{c}}(\vartheta; \rho \partial_{\rho}, \partial_{\vartheta}), \quad \text{ and } \quad B = \rho^{-\deg B} \mathcal{B}_{\mathbf{c}}(\vartheta; \rho \partial_{\rho}, \partial_{\vartheta}).$

Mellin Symbol and associated problem:

IRMAR

$$\begin{split} \mathbb{C} \ni \lambda &\longmapsto \mathcal{L}_{\mathrm{c}}(\vartheta; \lambda, \partial_{\vartheta}) =: \mathcal{L}_{\mathrm{c}}(\lambda) \quad \text{and} \quad \mathbb{C} \ni \lambda &\longmapsto \mathcal{B}_{\mathrm{c}}(\vartheta; \lambda, \partial_{\vartheta}) =: \mathcal{B}_{\mathrm{c}}(\lambda). \\ \\ \mathcal{P}[\mathrm{c}, \lambda] & \left\{ \begin{array}{l} \mathcal{L}_{\mathrm{c}}(\lambda) \, U \ = \ F & \text{in} \ G_{\mathrm{c}}, \\ \\ \mathcal{B}_{\mathrm{c}}(\lambda) \, U \ = \ 0 & \text{on} \ \partial G_{\mathrm{c}}, \end{array} \right. \left[U \right] = \left[\mathcal{N}_{\mathrm{c}} U \right] = 0 \quad \text{on} \ \partial G_{\mathrm{c}, j} \setminus \partial G_{\mathrm{c}} \end{split}$$

The ellipticity of problem (\mathcal{P}) implies the solvability of $\mathcal{P}[\mathbf{c}, \lambda]$ in $H^1(G_{\mathbf{c}})$ except for λ in a discrete set $\Lambda[\mathbf{c}]$. We repeat each $\lambda \in \Lambda[\mathbf{c}]$ according to dim ker $\mathcal{P}[\mathbf{c}, \lambda]$ and denote by $U_{\mathbf{c}, \lambda}$ a basis of ker $\mathcal{P}[\mathbf{c}, \lambda]$.

The singularity exponents λ and the associated base singular functions at c are

 $\lambda \in \Lambda[\mathbf{c}]$ with $\operatorname{Re} \lambda > -rac{1}{2}$ and $U_{\mathbf{c},\lambda} =
ho^{\lambda} U_{\mathbf{c},\lambda}(\vartheta).$

Edge Mellin Symbols

Edge $ext{e}$ (of Ω or of Ω_j). In cylindrical coordinates $(r, heta, z) \in \mathbb{R}_+ imes (0, \omega) imes ext{e}$,

 $L = r^{-2} \mathcal{L}_{e}(\theta; r\partial_{r}, \partial_{\theta}) + r^{-1} \mathcal{L}_{1}(\theta; r\partial_{r}, \partial_{\theta}, \partial_{z}) + \mathcal{L}_{2}(\theta; r\partial_{r}, \partial_{\theta}, \partial_{z}).$

Mellin Symbol and associated problem:

IRMAR

$$\begin{split} \mathbb{C} \ni \lambda &\longmapsto \mathcal{L}_{\mathrm{e}}(\theta; \lambda, \partial_{\theta}) =: \mathcal{L}_{\mathrm{e}}(\lambda) \quad \text{and} \quad \mathbb{C} \ni \lambda &\longmapsto \mathcal{B}_{\mathrm{e}}(\theta; \lambda, \partial_{\theta}) =: \mathcal{B}_{\mathrm{e}}(\lambda). \\ \\ \mathcal{P}[\mathrm{e}, \lambda] & \begin{cases} \mathcal{L}_{\mathrm{e}}(\lambda) \, U \ = \ F & \text{in} \ G_{\mathrm{e}}, \\ \mathcal{B}_{\mathrm{e}}(\lambda) \, U \ = \ 0 & \text{on} \ \partial G_{\mathrm{e}}, \end{cases} \quad [U] = [\mathcal{N}_{\mathrm{e}}U] = 0 \quad \text{on} \ \partial G_{\mathrm{e},j} \setminus \partial G_{\mathrm{e}} \end{split}$$

The ellipticity of problem (\mathcal{P}) implies the solvability of $\mathcal{P}[e, \lambda]$ in $H^1(G_e)$ except for λ in a discrete set $\Lambda[e]$. We repeat each $\lambda \in \Lambda[c]$ according to dim ker $\mathcal{P}[e, \lambda]$ and denote by $U_{e,\lambda}$ a basis of ker $\mathcal{P}[e, \lambda]$.

The singularity exponents λ and the associated base singular functions along e are

 $\lambda \in \Lambda[\mathrm{e}]$ with $\operatorname{Re} \lambda > 0$ and $U_{\mathrm{e},\lambda} = r^{\lambda} U_{\mathrm{e},\lambda}(\theta).$

Singular Functions of the Laplace operator

When $\,\Omega\,$ has a constant coefficient $\,arepsilon\,$.

Edge ${
m e}$ with opening $\omega_{
m e} ~ \{G_{
m e}=(0,\omega_{
m e})\}$

 $\begin{cases} \text{Singularity Exponents} \quad \lambda \in \Lambda[\mathbf{e}] = \left\{ \frac{\ell \pi}{\omega_{\mathbf{e}}} \mid \ell \in \mathbb{N} \right\} \\ \text{Singular Functions} \quad U_{\mathbf{e},\lambda} = r^{\lambda} \sin(\lambda \theta). \end{cases}$

Corner c with solid angle G_c .

IRMAR

Eigenpairs of the Laplace-Beltrami Dirichlet problem on G_{c} : $\{\mu_{\ell}, U_{\ell}(\vartheta)\}$

Singularity Exponents
$$\lambda \in \Lambda[c] = \left\{ -\frac{1}{2} + \sqrt{\mu_{\ell} + \frac{1}{4}} \mid \ell \in \mathbb{N} \right\}$$
Singular Functions $U_{c,\lambda} = \rho^{\lambda_{\ell}} U_{\ell}(\vartheta).$

Edge regularity of electrostatic potential in heterogeneous media

Optimal Minima for $\,\xi_{ m e}$

IRMAR

(Regularity $H^{1+\xi_{\mathrm{e}}}$ for potential and $H^{\xi_{\mathrm{e}}}$ for electric field) :

Exterior Angle	1 material	2 materials	3 materials	4 materials
$\leq \frac{\pi}{2}$	2	1	0	0
Convex	1	$\frac{1}{2}$	0	0
Any	$\frac{1}{2}$	$\frac{1}{4}$	0	0
None	∞	$\frac{1}{2}$	$\frac{1}{4}$	0
÷		-		

Expansion Theorem: first layer of singularities

 $\text{For } \sigma > \sigma[\Omega, a] \text{ with } \sigma < \boxed{1 + \sigma[\Omega, a]} \text{ and a smooth RHS } f \in H^\infty_\star(\Omega)$

$$u \ - \ \Big(\sum_{\mathrm{c \ corner}} \chi_{\mathrm{c}} u_{\mathrm{c}} + \sum_{\mathrm{e \ edge}} \chi_{\mathrm{e}} u_{\mathrm{e}} \,\Big) \ \in \ H^{\sigma+1}_{\star}(\Omega),$$

with the cut-off $\chi_{
m c}=\chi_{
m c}(
ho)$ and $\chi_{
m e}=\chi_{
m e}(r/
ho)$. The corner and edge contributions are:

$$u_{\mathrm{c}} = \sum_{\substack{\lambda \in \Lambda[\mathrm{c}] \ -1/2 < \lambda < \sigma - 1/2}} \gamma_{\mathrm{c},\lambda} U_{\mathrm{c},\lambda} \quad ext{ and } \quad u_{\mathrm{e}} = \sum_{\substack{\lambda \in \Lambda[\mathrm{e}] \ 0 < \lambda < \sigma}} \gamma_{\mathrm{e},\lambda}(z) U_{\mathrm{e},\lambda}$$

where

IRMAR

- $\gamma_{\mathbf{c}, \lambda} \in \mathbb{R}$ are the vertex coefficients
- $e \ni z \mapsto \gamma_{e,\lambda}$ are the edge coefficients along e. They are $\mathcal{C}^{\infty}(e)$ (inside e).

Note: This expansion is valid if the inverses of Mellin symbols have poles of degree 1 in the exponents of singularities. If there exist poles with degree ≥ 2 , other singular functions with logarithmic terms $\rho^{\lambda} \log^{k} \rho$ or $r^{\lambda} \log^{k} r$ appear.

$$\begin{split} & \textbf{Expansion Theorem: more layers of singularities} \\ & \textbf{For } \sigma \geq \underline{1 + \sigma[\Omega, a]} \text{ and a smooth RHS } f \in H^{\infty}_{\star}(\Omega) \\ & u - \Big(\sum_{c \text{ corner}} \chi_c u_c + \sum_{e \text{ edge}} \chi_e u_e\Big) \in H^{\sigma+1}_{\star}(\Omega), \\ & \textbf{with the corner and edge contributions:} \\ & u_c = \sum_{\substack{\lambda \in \Lambda[c] \\ -1/2 < \lambda < \sigma - 1/2}} \gamma_{c,\lambda} U_{c,\lambda} \quad \text{and} \quad u_e = \sum_{\substack{\lambda \in \Lambda[e] \\ 0 < \lambda + p < \sigma}} \sum_{\substack{p \in \mathbb{N}_0 \\ 0 < \lambda + p < \sigma}} d_z^p \gamma_{e,\lambda}(z) U_{e,\lambda}^p \\ & \textbf{where} \\ & \bullet \ \gamma_{c,\lambda} \in \mathbb{C} \text{ are the vertex coefficients (with more terms)}} \end{split}$$

• ${
m e}
i z \mapsto \gamma_{{
m e},\lambda}$ are the edge coefficients along ${
m e}$ (with more terms)

IRMAR

• For
$$p=0$$
, $U_{\mathrm{e},\lambda}^0=U_{\mathrm{e},\lambda}$.
For $p\geq 1$, the new singularities $U_{\mathrm{e},\lambda}^p$ have the form $U_{\mathrm{e},\lambda}^p=r^{\lambda+p}\, {}_{\mathrm{e},\lambda}^p(heta)$.

We have

$$u - \left(\sum_{c \text{ corner}} \chi_c u_c + \sum_{e \text{ edge}} \chi_e u_e\right) \in H_{\star}^{\sigma+1}(\Omega),$$
with the corner and edge contributions:

$$u_c = \sum_{\substack{\lambda \in \Lambda[c] \\ -1/2 < \lambda < \sigma - 1/2}} \gamma_{c,\lambda} U_{c,\lambda} \text{ and } u_e = \sum_{\substack{\nu \in \Lambda[e] \\ 0 < \nu + p < \sigma}} \sum_{\substack{\nu \in \Lambda[e] \\ 0 < \nu + p < \sigma}} d_z^p \gamma_{e,\nu}^{(\sigma)}(z) U_{e,\nu}^p$$
For the edge $e = \{z \in (z_1, z_2)\}$, the edge coefficients satisfy

$$\left[\frac{\delta^{\alpha - \sigma}(z) d_z^{\alpha} \gamma_{e,\nu}^{(\sigma)} \in L^2(e), \quad \forall \alpha \in \mathbb{N}_0}{\psi + p < \sigma}\right]$$
where $\delta = (z - z_1)(z_2 - z)$ is \simeq the distance to the endpoints of e .
When σ increases, the corner coefficients are only more numerous.
When σ increases, the edge coefficients $\gamma_{e,\nu}^{(\sigma)}$ are more and more flat.

Vertex – Edge interaction: stress intensity functions
We have

$$u = \left(\sum_{c \text{ corner}} \chi_c \tilde{u}_c + \sum_{e \text{ edge}} \chi_e \tilde{u}_e\right) \in H_{\star}^{\sigma+1}(\Omega),$$
with the corner and edge contributions:

$$\tilde{u}_c = \sum_{\substack{\lambda \in \Lambda[c] \\ -1/2 < \lambda < \sigma - 1/2}} \gamma_{c,\lambda} \tilde{U}_{c,\lambda}^{(\sigma)} \text{ and } \tilde{u}_e = \sum_{\substack{\nu \in \Lambda[e] \\ 0 < \nu + p < \sigma}} \sum_{\substack{\nu \in \Lambda[e] \\ 0 < \nu + p < \sigma}} d_z^p \tilde{\gamma}_{e,\nu}(z) U_{e,\nu}^p$$
For the edge $e = \{z \in (z_1, z_2)\}$, the edge coefficients satisfy

$$\delta^{\alpha}(z) d_z^{\alpha} \tilde{\gamma}_{e,\nu} \in L^2(e), \quad \forall \alpha \in \mathbb{N}_0$$
where $\delta = (z - z_1)(z_2 - z)$ is \simeq the distance to the endpoints of e .
When σ increases, the corner functions are more and more flat.
The edge coefficients (stress intensity functions) $\tilde{\gamma}_{e,\nu}$ are more numerous.

IRMAR

Vertex – Edge interaction: expansion of corner singularities

Case $\sigma < \sigma[\Omega,a]+1$. In the corner contribution

IRMAR

$$u_{\mathrm{c}} \ = \sum_{\substack{\lambda \in \Lambda[\mathrm{c}] \ -1/2 < \lambda < \sigma - 1/2}} \gamma_{\mathrm{c},\lambda} U_{\mathrm{c},\lambda}(x) \ = \sum_{\substack{\lambda \in \Lambda[\mathrm{c}] \ -1/2 < \lambda < \sigma - 1/2}} \left[egin{array}{c} \gamma_{\mathrm{c},\lambda} \,
ho^{\lambda} \end{array}
ight] u_{\mathrm{c},\lambda} igg(rac{x}{
ho} igg)$$

the angular function $U_{c,\lambda}$ has singularities at the corners of G_c (\leftrightarrow edges $\overline{e} \ni c$):

$$U_{\mathbf{c},\lambda}\left(\frac{x}{\rho}\right) \ - \ \sum_{\overline{\mathbf{e}} \ \ni \ \mathbf{c}} \ \sum_{\substack{\nu \in \Lambda[\mathbf{e}] \\ \mathbf{0} < \nu < \sigma}} \left[a_{\mathbf{e},\nu}^{\mathbf{c},\lambda} \right] U_{\mathbf{e},\nu}\left(\frac{r}{\rho},\theta\right) = \widetilde{U}_{\mathbf{c},\lambda}^{(\sigma)} \ \in \ H_{\star}^{\sigma+1}(G_{\mathbf{c}}).$$

Note that $U_{e,\nu}(\frac{r}{\rho},\theta) = \rho^{-\nu} U_{e,\nu}(r,\theta)$. Expansion of the corner singularities

$$u_{c} - \sum_{\substack{\lambda \in \Lambda[c] \\ -1/2 < \lambda < \sigma - 1/2}} \sum_{\overline{e} \ni c} \sum_{\substack{\nu \in \Lambda[e] \\ 0 < \nu < \sigma}} \gamma_{c,\lambda} \rho^{\lambda} a_{e,\nu}^{c,\lambda} \rho^{-\nu} U_{e,\nu}(r,\theta) = \widetilde{u}_{c}.$$

Are Stress Intensity Functions bounded ?

The interesting SIF are those associated with the first edge exponent $\,
u_1$.

The SIF $\widetilde{\gamma}_{e,\nu}$ is bounded iff $\lambda_1 \geq \nu_1$ with λ_1 the first corner exponent.

• Example of Laplace Dirichlet.

Fichera corner: $\lambda_1\simeq 0.45418$ and $u_1=\pi/(3\pi/2)=2/3$.

Screen problem: $\Gamma_{\mathbf{c}} = \mathbb{R}^3 \setminus S_{\omega}$ (S_{ω} plane sector of opening ω).

 $u_1 = 1/2 \text{ and } \lambda_1 = \lambda_1(\omega) \text{ where } \lambda_1 \text{ is increasing}$

 $\lambda_1(0)=0 \hspace{0.2cm} ext{and} \hspace{0.2cm} \lambda_1(2\pi)=1 \hspace{0.2cm} (ext{and} ext{ also } \hspace{0.2cm} \lambda_1(\pi)=1/2).$

• Maxwell (electric).

IRMAR

Same difference $\lambda_1 - \nu_1$ than for Laplace-Dirichlet, since the first electric singularities are the gradients of the Laplace-Dirichlet singularities:

 $E_{\mathrm{c},\lambda} =
abla_{x,y,z} U_{\mathrm{c},\lambda+1}^{\Delta,\mathrm{Dir}}$ and $E_{\mathrm{e},\lambda} =
abla_{x,y} U_{\mathrm{e},\lambda+1}^{\Delta,\mathrm{Dir}}.$