

Vertex and edge singularities

For a polyhedral domain Ω and a second order strongly elliptic operator L with boundary conditions B.

Regularity Theorem

There holds for all thermal and elasticity pbs (use piecewise – H^s for multi-material)

$$f\in H^{\sigma-1}(\Omega) \implies u\in H^{\sigma+1}(\Omega)$$

if and only if $\sigma < \sigma[\Omega, L, B]$

$$\sigma[\Omega,L,B] = \min\left\{\min_{\mathrm{v \ vertex}} \xi_{\mathrm{v}} + rac{1}{2}
ight., \min_{\mathrm{e \ in \ edges}} \xi_{\mathrm{e}}
ight\}$$

with

$$\xi_{\mathrm{v}}~~$$
 the least real part $>-rac{1}{2}~$ of the exponents $\lambda\in\mathcal{E}[\mathrm{v}]$.

and

IRMAR

 $\xi_{\mathrm{e}} \;\;$ the least real part $> 0 \;$ of the exponents $\lambda \in \mathcal{E}[\mathrm{e}]$.

For regularized Maxwell, the above limits are $-\frac{3}{2}$ and -1.

Problems of Corner Singularities

Example of Electrostatic Potential in Heterogeneous Media

Associated with the bilinear form (ε_j is the electric permittivity of material Ω_j)

$$a(u,v) = \sum_j \int_{\Omega_j} arepsilon_j \operatorname{grad} u \cdot \operatorname{grad} v \; dx, \quad ext{ for } u,v \in \overset{\circ}{H}{}^1(\Omega).$$

Optimal Minima for $\xi_{
m e}$ (Regularity $H^{1+\xi_{
m e}}$ for potential and $H^{\xi_{
m e}}$ for electric field) :

Exterior Angle	1 material	2 materials	3 materials	4 materials
$\leq \frac{\pi}{2}$	2	1	0	0
Convex	1	$\frac{1}{2}$	0	0
Any	$\frac{1}{2}$	$\frac{1}{4}$	0	0
None	∞	$\frac{1}{2}$	$\frac{1}{4}$	0
-				

Joint work with Martin Costabel & Serge Nicaise about Maxwell transmission (1998)

IRMAR

Approximation of Singularities by Higher Order Methods

By an approximation with degree N polynomials (spectral method or p version of finite elements), the convergence rate is <u>doubled</u>, compared with the expected rate (cf Sobolev regularity):

 $N^{-2\,\cdot\,\sigma[\Omega,L,B]}$

The h - p version (geometrical refinement) yields theoretical exponential rates for analytic data.

With $\underline{mortars}$, spectral or p version can be coupled with finite elements.

IRMAR

Problems of Corner Singularities

The Maxwell "bug"

The bilinear form associated with the divergence-regularized formulation is

$$a(u,v) = \int_{\Omega} (\operatorname{curl} u \cdot \operatorname{curl} v + \operatorname{div} u \, \operatorname{div} v) \, \mathrm{d}x.$$

The variational space for the electric field is the space $X_N(\Omega)$:

$$X_N(\Omega) = ig\{ u \in L^2(\Omega)^3 \ ; \ \operatorname{curl} u \in L^2(\Omega)^3, \ \operatorname{div} u \in L^2(\Omega), \ u imes n = 0 \ \ ext{on} \ \partial \Omega ig\}$$

The related "regular" space is

$$H_N(\Omega):=X_N(\Omega)\cap H^1(\Omega)^3$$

If $\,\Omega\,$ is a polyhedron with plane faces

- $X_N(\Omega) = H_N(\Omega) \iff \Omega$ is convex,
- $H_N(\Omega)$ is a closed subspace of $X_N(\Omega)$ for its natural norm.

If Ω is a non-convex polyhedron, the problem has <u>*two distinct*</u> formulations and <u>*two distinct*</u> solutions in each variational space $H_N(\Omega)$ or $X_N(\Omega)$. Moreover any *rot-div conform* method based on \mathbb{P}_1 elements converges towards the wrong solution.

IRMAR

Maxwell and Lamé eigenvalues in a polygon

Eigenvalues of the parameter-dependent problems associated with the form a[s]

$$s>0 \hspace{0.1cm}:\hspace{0.1cm} a[s](u,v) \hspace{0.1cm}=\hspace{0.1cm} \int_{\Omega} igl({
m curl}\, u \hspace{0.1cm} {
m curl}\, v+s \hspace{0.1cm} {
m div}\, u \hspace{0.1cm} {
m div}\, v igr) \, {
m d}x.$$

Here $\operatorname{curl} u = \partial_1 u_2 - \partial_2 u_1$ and $\operatorname{div} u = \partial_1 u_1 + \partial_2 u_2$.

The eigenvalues in X_N are

IRMAR

- Either <u>independent</u> of s and = Maxwell eigenv. They coincide with the Neumann eigenv. of $-\Delta$ and the eigenm. are the vector curls of the Δ Neumann eigenf.
- Or *linear dependent* on s. They have the form $s\nu$ with ν the Dirichlet eigenv. of $-\Delta$ and the eigenm. are the gradients of the Δ Dirichlet eigenf.

The eigenvalues in H_N are the Lamé eigenvalues for the Lamé constants $\mu=1$ and $\lambda=s-2$ since, for u and v in H_N

$$\int_{\Omega} (\operatorname{curl} u \operatorname{curl} v + s \operatorname{div} u \operatorname{div} v) \, \mathrm{d}x = \int_{\Omega} (2\varepsilon(u) : \varepsilon(v) + (s-2) \operatorname{div} u \operatorname{div} v) \, \mathrm{d}x$$

Evidence of the Maxwell "bug": symmetric domain, ground states

Computation of eigenvalues in X_N and H_N associated with a[s].

 Ω is the L – shape polygon: $[0,1] imes [0,1] \setminus [0.75,1] imes [0.75,1]$.

Eigenvalues in X_N (Neumann and $s \times$ Dirichlet) versus s. Lamé eigenvalues coinciding with Maxwell eigenv.

Eigenvalues in H_N (Lamé eigenv.) \neq eigenv. in X_N , versus s.

One out of two Lamé is a Maxwell eigenv., due to H^2 regularity of even Neumann eigenf.

Computed with StressCheckTM. Joint work with Martin Costabel (1998)

Evidence of the Maxwell "bug": symmetric domain continued

 Ω is the L – shape polygon: $[0,1] imes [0,1] \setminus [0.75,1] imes [0.75,1]$.

Eigenvalues in X_N (Neumann and $s \times$ Dirichlet) versus s. Lamé eigenvalues coinciding with Maxwell eigenv.

Eigenvalues in H_N (Lamé eigenv.) \neq eigenv. in X_N , versus s.

One out of two Lamé is a Maxwell eigenv., due to H^2 regularity of odd Dirichlet eigenf.

Computed with StressCheckTM. Joint work with Martin Costabel (1998)

Evidence of the Maxwell "bug": non symmetric domain

Computation of eigenvalues in X_N and H_N associated with a[s].

 Ω is the L-shaped polygon $[0,1] \times [0,0.87] \setminus [0.72,1] \times [0.61,0.87]$.

Eigenvalues in X_N (Neumann and $s \times$ Dirichlet) versus s.

Eigenvalues in H_N (Lamé eigenv.) \neq eigenv. in X_N versus s.

Note the crossing points between double eigenv. in X_N and eigenv. in H_N .

Computed with StressCheckTM. Joint work with Martin Costabel (1998)

