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Vertex and edge singularities

For a polyhedral domain Ω and a second order strongly elliptic operator L with

boundary conditions B .

Vertex v ←→ Polar coord. (ρ, ϑ) ∈ R+×G

centered in v .






Singularity Exponents λ ∈ E[v]

Singular Functions Uv,λ = ρλ
Uv,λ(ϑ)

Edge E ∋ e ←→ Cylindrical coord.

(r, θ, z) ∈ R+ × (0, ω)× TeA .







Singularity Exponents λ ∈ E[e]

Singular Functions Ue,λ = rλ
Ue,λ(θ)

X
G
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What are Singularities doing ? They ...

Invalidate usual regularity results.

Prevent regularity consuming proofs.

Stop construction algo. in singular perturbation expansions.
! For (pure)

Mathematicians

Make numerical schemes slow...

...Or wrong.
! For (applied)

Mathematicians

Attract lightnings.

Concentrate stresses.

Grow cracks. Destroy ill­computed structures.

! For Engineers

... and Users.

Change locally (?) physical laws (plasticity) ! For Physicists.
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Regularity Theorem

There holds for all thermal and elasticity pbs (use piecewise – Hs for multi­material)

f ∈ Hσ−1(Ω) =⇒ u ∈ Hσ+1(Ω)

if and only if σ < σ[Ω, L, B]

σ[Ω, L, B] = min
{

min
v vertex

ξv + 1
2

, min
e in edges

ξe

}

with

ξv the least real part > −1
2

of the exponents λ ∈ E[v] .

and

ξe the least real part > 0 of the exponents λ ∈ E[e] .

For regularized Maxwell, the above limits are −3
2

and −1 .
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Example of Electrostatic Potential in Heterogeneous Media

Associated with the bilinear form ( εj is the electric permittivity of material Ωj )

a(u, v) =
∑

j

∫

Ωj

εj grad u · grad v dx, for u, v ∈
◦

H1(Ω).

Optimal Minima for ξe (Regularity H1+ξe for potential and Hξe for electric field) :

Exterior Angle 1 material 2 materials 3 materials 4 materials

≤ π

2
2 1 0 0

Convex 1 1
2

0 0

Any 1
2

1
4

0 0

None ∞ 1
2

1
4

0
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Approximation of Singularities by Finite Element Methods

With a regular and uniform mesh, the convergence rate is bounded by

hσ[Ω,L,B]

With a sufficiently refined mesh, optimal convergence rates are recovered.

With a Boundary Element Method, refined meshes yield very good results, especially

in 2D (1D boundary).
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Approximation of Singularities by Higher Order Methods

By an approximation with degree N polynomials (spectral method or p version of

finite elements), the convergence rate is doubled, compared with the expected rate (cf

Sobolev regularity):

N−2 · σ[Ω,L,B]

The h ­ p version (geometrical refinement) yields theoretical exponential rates for

analytic data.

With mortars, spectral or p version can be coupled with finite elements.
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The Maxwell “bug”

The bilinear form associated with the divergence­regularized formulation is

a(u, v) =

∫

Ω

(
curl u · curl v + div u div v

)
dx.

The variational space for the electric field is the space XN(Ω) :

XN (Ω) =
{
u ∈ L2(Ω)3 ; curl u ∈ L2(Ω)3, div u ∈ L2(Ω), u×n = 0 on ∂Ω

}

The related “regular” space is HN(Ω) := XN(Ω) ∩H1(Ω)3

If Ω is a polyhedron with plane faces

• XN(Ω) = HN(Ω) ⇐⇒ Ω is convex,

• HN(Ω) is a closed subspace of XN(Ω) for its natural norm.

If Ω is a non­convex polyhedron, the problem has two distinct formulations and

two distinct solutions in each variational space HN(Ω) or XN(Ω) . Moreover any

rot­div conform method based on P1 elements converges towards the wrong solution.
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Maxwell and Lamé eigenvalues in a polygon

Eigenvalues of the parameter­dependent problems associated with the form a[s]

s > 0 : a[s](u, v) =

∫

Ω

(
curl u curl v + s div u div v

)
dx.

Here curl u = ∂1u2 − ∂2u1 and div u = ∂1u1 + ∂2u2 .

The eigenvalues in XN are

• Either independent of s and = Maxwell eigenv. They coincide with the Neumann

eigenv. of −∆ and the eigenm. are the vector curls of the ∆ Neumann eigenf.

• Or linear dependent on s . They have the form sν with ν the Dirichlet eigenv. of

−∆ and the eigenm. are the gradients of the ∆ Dirichlet eigenf.

The eigenvalues in HN are the Lamé eigenvalues for the Lamé constants µ = 1 and

λ = s− 2 since, for u and v in HN
∫

Ω

(
curl u curl v+s div u div v

)
dx =

∫

Ω

(
2ε(u) : ε(v)+(s−2) div u div v

)
dx

IRMAR
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Evidence of the Maxwell “bug”: symmetric domain, ground states

Computation of eigenvalues in XN and HN associated with a[s] .

Ω is the L – shape polygon: [0, 1]× [0, 1] \ [0.75, 1]× [0.75, 1] .

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

s −→

Eigenvalues in XN (Neumann and

s× Dirichlet) versus s .

Lamé eigenvalues coinciding with

Maxwell eigenv.

Eigenvalues in HN (Lamé eigenv.)

6= eigenv. in XN , versus s .

One out of two Lamé is a Maxwell

eigenv., due to H2 regularity of

even Neumann eigenf.
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Evidence of the Maxwell “bug”: symmetric domain continued

Ω is the L – shape polygon: [0, 1]× [0, 1] \ [0.75, 1]× [0.75, 1] .

2 3 4 5 6 7 8
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

s −→

Eigenvalues in XN (Neumann and

s× Dirichlet) versus s .

Lamé eigenvalues coinciding with

Maxwell eigenv.

Eigenvalues in HN (Lamé eigenv.)

6= eigenv. in XN , versus s .

One out of two Lamé is a Maxwell

eigenv., due to H2 regularity of

odd Dirichlet eigenf.
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Evidence of the Maxwell “bug”: non symmetric domain

Computation of eigenvalues in XN and HN associated with a[s] .

Ω is the L – shaped polygon [0, 1]× [0, 0.87] \ [0.72, 1]× [0.61, 0.87] .

2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

s −→

Eigenvalues in XN (Neumann and

s× Dirichlet) versus s .

Eigenvalues in HN (Lamé eigenv.)

6= eigenv. in XN versus s .

Note the crossing points between

double eigenv. in XN and eigenv.

in HN .
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If corners are curved...

(a) (b)

Ω

Small parameter : ε curvature radius. Opening of the limit angle : ω

Dirichlet problem for ∆ . Solution u = uε in Ω = Ωε .

uε = v0(x)
︸ ︷︷ ︸

(a)

+
∑

p, q ∈ N

p+q ≥ 1

ε
pπ

ω
+q vp,q(x)

︸ ︷︷ ︸

(a)

+
∑

p, q ∈ N

p+q ≥ 1

ε
pπ

ω
+q wp,q

(x

ε

)

︸ ︷︷ ︸

(b)

.

Almost­corners are not better than sharp corners.

Holds true in particular for thin dielectric coating: if the curvature radius is of same

order as the thickness of the coating, impedance boundary conditions cannot work.

IRMAR
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Thin corner plate

(a) (b) (c)

z
y

x

(a) Integration of a Neumann problem

(b) Lateral boundary layer profiles

(c) Corner boundary layer profiles

∑

p, q ∈ N

p+q ≥ 0

ελp+q vp,q
(
x, y,

z

ε

)

︸ ︷︷ ︸

(a)

+
∑

p, q ∈ N

p+q ≥ 1

ελp+q wp,q
(x

ε
, y,

z

ε

)

︸ ︷︷ ︸

(b)

+
∑

p, q ∈ N

p+q ≥ 1

ελp+q kp,q
(x

ε
,
y

ε
,
z

ε

)

︸ ︷︷ ︸

(c)
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