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‘ Vertex and edge singularities I \

For a polyhedral domain {2 and a second order strongly elliptic operator L with
boundary conditions B.

N
E J

0,z) e Ry X (0,w) X TA.
Singularity Exponents \ € E|e]
Singular Functions Usx = 7 Ue,A(0)

Edge £ 5 e «<——— Cylindrical coord.
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/ ‘ What are Singularities doing ? They ... I

Invalidate usual regularity results.

Attract lightnings.

For Engineers
Concentrate stresses.

Prevent regularity consuming proofs. For (pure)
Stop construction algo. in singular perturbation expansions. Mathematicians
Make numerical schemes slow... For (applied)

...Or wrong. Mathematicians

~

/

... and Users.
Grow cracks. Destroy ill-computed structures.
Change locally (?) physical laws (plasticity) For Physicists.
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Regularity Theorem I

There holds for all thermal and elasticity pbs (use piecewise — H® for multi-material)

feH Q) = wueHT(Q)

ifand only if o < o[€), L. B]

U[Q,L,B]:min{ ,  min Ee}

e in edges

with

and
£e the least real part > 0 of the exponents \ € £|e].

For regularized Maxwell, the above limits are — S and —1.
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/ Example of Electrostatic Potential in Heterogeneous Media I

Associated with the bilinear form (<, is the electric permittivity of material €2;)

O
a(u,v) = g / ejgrad u - grad v dz, for u,v € H'(Q).
—~ JQ.
J J

Exterior Angle | 1 material | 2 materials | 3 materials | 4 materials
<3 2 1 0 0
Convex 1 0
Any 7 0 0
None o0 i 0

> <

Optimal Minima for £, (Regularity H %< for potential and H%e for electric field) :

~

/
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Approximation of Singularities by Finite Element Methods

With a regular and uniform mesh, the convergence rate is bounded by

ha[Q,L,B]

With a sufficiently refined mesh, optimal convergence rates are recovered.

With a Boundary Element Method, refined meshes yield very good results, especially

\in 2D (1D boundary). /
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Approximation of Singularities by Higher Order Methods

By an approximation with degree N polynomials (spectral method or pversion of
finite elements), the convergence rate is doubled, compared with the expected rate (cf
Sobolev regularity):

N—2-0[Q,L,B]

The h-pversion (geometrical refinement) yields theoretical exponential rates for
analytic data.

]
\With mortars, spectral or pversion can be coupled with finite elements. /
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/ ‘ The Maxwell ‘“bug” I \

The bilinear form associated with the divergence-regularized formulation is
a(u,v) = / (curlw - curlv + divu divv) dz.
Q

The variational space for the electric field is the space X ({2):

XNn(Q) ={u € L*(Q)°; curlu € L*(Q)?, divu € L*(Q2), uxn =0 on 9N}

The related “regular” space is | Hn (Q2) := Xn(Q2) N H1(Q)3

If (2 is a polyhedron with plane faces
e XN(2) =Hn(R2) <= € isconvex,
o Hny () is aclosed subspace of X n(£2) for its natural norm.

If (2 is a non-convex polyhedron, the problem has two distinct formulations and
two distinct solutions in each variational space H(2) or X (€2). Moreover any
(ot—div conform method based on P; elements converges towards the wrong solutiory

IRMAR
Martin Costabel about Maxwell (1991) 8



/ ‘ Maxwell and Lamé eigenvalues in a polygon I \

Eigenvalues of the parameter-dependent problems associated with the form a[s]

s>0: a[s](u,v) = /(curlu curlv + s divu divo) dez.
Q

Here curlu = 0;us — Osuq and divu = O;uy + Osus.
The eigenvalues in Xy are

e Eitherindependent of s and — Maxwell eigenv. They coincide with the Neumann
eigenv. of —A and the eigenm. are the vector curls of the A Neumann eigentf.

e Or linear dependent on s. They have the form sv with v the Dirichlet eigenv. of
— A and the eigenm. are the gradients of the A Dirichlet eigenf.

The eigenvalues in H ; are the Lamé eigenvalues for the Lamé constants i« = 1 and
A = s — 2 since, for u and v in Hy

/(curlucurlv—l—s divu divv) de :/(Zs(u) :e(v) 4+ (s—2)divudive) de
\Q Q j
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/‘ Evidence of the Maxwell *“bug’: symmetric domain, ground states I\

Computation of eigenvalues in Xy and H; associated with a[s].

(2 is the L - shape polygon: [0,1] x [0,1] \ [0.75,1] x [0.75,1].

25

15

0.5

Eigenvaluesin Xy (Neumann and

Eigenvaluesin H; (Lamé eigenv.)

M s X Dirichlet) versus s.
2 1 Lamé eigenvalues coinciding with
Maxwell eigenv.
_WV ——

—# eigenv. in X, versus s.

One out of two Lamé is a Maxwell
eigenv., due to H? regularity of

!

even Neumann eigentf.

5 6 7 8
S —

Computed with StressCheck™™. Joint work with Martin Costabel (1998) 10



/ Evidence of the Maxwell “bug”: symmetric domain continued I \

Q2 is the L - shape polygon: [0,1] x [0,1] \ [0.75,1] X [0.75,1].

Eigenvaluesin Xy (Neumannand

s X Dirichlet) versus s.

Lameé eigenvalues coinciding with
Maxwell eigenv.

Eigenvaluesin H; (Lamé eigenv.)
—#+ eigenv. in X, versus s.

One out of two Lamé is a Maxwell
eigenv., due to H? regularity of
odd Dirichlet eigenf.

/

Computed with StressCheck™™. Joint work with Martin Costabel (1998) 11
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Evidence of the Maxwell “bug”: non symmetric domain I
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Computation of eigenvalues in Xy and H; associated with a[s].
Q2 is the L - shaped polygon [0, 1] x [0,0.87] \ [0.72,1] X [0.61,0.87].

Eigenvaluesin X ; (Neumannand
s X Dirichlet) versus s.

Eigenvaluesin H; (Lamé eigenv.)
—# eigenv. in Xy versus s.

Note the crossing points between
double eigenv. in X n; and eigenv.
in HN .

~
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Computed with StressCheck™™. Joint work with Martin Costabel (1998)
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If corners are curved... \
A/ \A
(a) (b)

Small parameter : € curvature radius. Opening of the limit angle : w

Dirichlet problem for A. Solution v — u, in {2 = (), .

0y Tv w
ue = v%z)+ Z cota vP9(z) + Z clo T4 wp,q(_) )
P, q €N ' p, g €N R,iz
(a) pt+qg >1 (a) ptq > 1 (b)

Almost-corners are not better than sharp corners.
Holds true in particular for thin dielectric coating: if the curvature radius is of same
Qder as the thickness of the coating, impedance boundary conditions cannot work. /

L
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/ ‘ Thin corner plate I

(a) Integration of a Neumann problem
(b) Lateral boundary layer profiles
(c) Corner boundary Iayer profiles

Z et P (g, y, )+ Z g rta ,wp,q('g'3 )+ Z ere e P (Z,
€

P, q € N . /p,qEN - /p,qEN ~

p+q >0 (a) ptqg > 1 (b) ptqg > 1

IRMAR
—_ En cours... In progress... In Vorbereitung... mit Andreas Réssle und Martin Costabel

/k\/ = = > (c) /




