Stuttgart'98

Singularities of Corner Problems

Monique DAUGE

Institut de Recherche MAthématique de Rennes

Gei	nealogy		
Smooth elliptic problems		-	
Agmon - Douglis - Nirenberg		Lions - Mage	nes
Corner problems			
Maz'ya Kondrate'v		Grisvard	
Kondrat'ev - Oleinik		Moussaoui	
Maz'ya - Plamenevskii		Lemrabet	
Nikishkin	Wendl	and	
Nazarov Costa		oel - Stephan	
Maz'ya - Nazarov - Plamenevskii			Rempel - Schulze
	Dauge		
	Nicais	9	
Kozlov	Dauge		
Maz'ya - Rossmann	Costal	oel - Dauge	
Kozlov - Maz'ya Nicais		e - Sändig	Schulze - Schrohe
Kozlov - Maz'ya - Rossmann Costa		bel - Dauge - Nicaise	
me arrow			
Singularit	ies of Corna	r Problems	/
	Smooth elliptic problems Agmon - Douglis - Nirenberg Ma'ya Ma'ya Mada'ya Mada'ya Mada Maarov Maa'ya - Nazarov - Plamenevskii Maa'ya - Nazarov - Plamenevskii Maa'ya - Nazarov - Plamenevskii Maa'ya - Nazarov - Plamenevskii Maa'ya - Maa'ya Maa'ya - Nassmann	Smooth elliptic problems Agmon - Douglis - Nirenberg Maz'ya Maz'ya Kondrate'v Kondrate'v - Oleinik Maz'ya - Plamenevskii Nikishkin Maz'ya - Nazarov - Plamenevskii Maz'ya - Rossmann Kozlov - Maz'ya - Rossmann Kozlov - Maz'ya - Rossmann Kozlov - Maz'ya - Rossmann	Genealogy Smooth elliptic problems Lions - Mage Agmon - Douglis - Nirenberg Lions - Mage Mar'ya Kondrate'v Grisvard Mar'ya Kondrate'v Grisvard Mar'ya - Plamenevskii Lemrabet Nikishkin Wendland Mar'ya - Nazarov Costabel - Stephan Mar'ya - Nazarov - Plamenevskii Dauge Kozlov Dauge - Nicaise Kozlov - Maz'ya Nicaise - Sändig Kozlov - Maz'ya - Rossmann Costabel - Dauge - Nicaise Mar'ya - Rossmann Costabel - Dauge - Nicaise Mar'ya - Rossmann Costabel - Dauge - Nicaise Kozlov - Maz'ya - Rossmann Costabel - Dauge - Nicaise Mar'ya - Mar'ya - Rossmann Costabel - Dauge - Nicaise Mar - Marw Mar'ya - Rossmann Costabel - Dauge - Nicaise

Domains and Equations

Domain Ω : **3D** polyhedral (or with curved faces, conical points, in higher dimensions) Inner Operator L: second order strongly elliptic, scalar or matrix-valued (or ord. 2m), defined via a first order bilinear form a (usual ingredients: grad, div, curl, ε). Coefficients of a: constant, or piecewise-constant in a polyhedral domain decomposition Ω_i of Ω (or piecewise-smooth). Boundary conditions B: Dirichlet or Neumann on each face (of Ω or of Ω_i^{a}) defining a subspace V of H^1 (except for Maxwell) $u \in V, \quad \forall v \in V, \quad \int_{\Omega} a(u,v) \ dx = \int_{\Omega} f v \ dx$ (\mathcal{P}) or $egin{array}{rcl} Lu &= f & ext{in} \ \Omega_j, \ Bu &= 0 & ext{on} \ \partial\Omega \cap \partial\Omega_j, & [u] = [Nu] = 0 & ext{on} \ \partial\Omega_j \setminus \partial\Omega \end{array}$

^aCareful! Mixed boundary conditions on a smooth domain are a trap!

IRMAR

Vertex Mellin Symbols

Vertex v (of Ω or Ω_j). In polar coordinates $(\rho, \vartheta) \in \mathbb{R}_+ imes G$ of center v, $L = \rho^{-2} \mathcal{L}(\vartheta; \rho \partial_{\rho}, \partial_{\vartheta}), \quad \text{and} \quad B = \rho^{-\deg B} \mathcal{B}(\vartheta; \rho \partial_{\rho}, \partial_{\vartheta}).$ **Mellin Symbol :** $\mathbb{C} \ni \lambda \ \longmapsto \ \mathcal{L}(\vartheta; \lambda, \partial_{\vartheta}) =: \mathcal{L}(\lambda) \quad \text{ and } \quad \mathbb{C} \ni \lambda \ \longmapsto \ \mathcal{B}(\vartheta; \lambda, \partial_{\vartheta}) =: \mathcal{B}(\lambda).$ The coerciveness of problem (\mathcal{P}) implies the solvability of $\mathcal{P}[\mathbf{v},\lambda] egin{array}{cccc} \mathcal{L}(\lambda)\, & u &= F & ext{in}\,G, \ \mathcal{B}(\lambda)\, & u &= 0 & ext{on}\,\partial G, & [u] = [\mathcal{N} u] = 0 & ext{on}\,\partial G_j \setminus \partial G \end{array}$ in $H^1(G)$ except for λ in a discrete set $\mathcal{E}[\mathbf{v}]$: for $\lambda \in \mathcal{E}[\mathbf{v}]$, the kernel of $\mathcal{P}[\mathbf{v},\lambda]$ is "generically" one-dimensional, generated by $U_{\mathbf{v},\boldsymbol{\lambda}}$. The singularity exponents λ and the singular functions $U_{{f v},\lambda}$ associated with ${f v}$ are $\lambda \in \mathcal{E}[\mathbf{v}], \text{ with } \operatorname{Re} \lambda > -rac{1}{2} \text{ and } U_{\mathbf{v},\lambda} =
ho^{\lambda} U_{\mathbf{v},\lambda}(\vartheta).$ IRMAR Singularities of Corner Problems

Edge Mellin Symbols

Edge $E \ni e$ (of Ω or of Ω_j). In cylindrical coordinates $(r, \theta, z) \in \mathbb{R}_+ \times (0, \omega) \times T_e A$ of center e,

 $L = r^{-2} \mathcal{L}(\theta; r \partial_r, \partial_\theta) + r^{-1} \mathcal{L}_1(\theta; r \partial_r, \partial_\theta, \partial_z) + \mathcal{L}_2(\theta; r \partial_r, \partial_\theta, \partial_z).$

Mellin Symbol :

IRMAR

 $\mathbb{C} \ni \lambda \longmapsto \mathcal{L}(\theta; \lambda, \partial_{\theta}) =: \mathcal{L}(\lambda) \quad \text{ and } \quad \mathbb{C} \ni \lambda \longmapsto \mathcal{B}(\theta; \lambda, \partial_{\theta}) =: \mathcal{B}(\lambda).$

The corresponding problem $\mathcal{P}[e, \lambda]$ is uniquely solvable in $H^1(0, \omega)$ except for λ in a discret set $\mathcal{E}[e]$: for $\lambda \in \mathcal{E}[e]$, the kernel of $\mathcal{P}[e, \lambda]$ is "generically" one-dimensional, generated by $U_{e,\lambda}$.

The singularity exponents λ and the singular functions $U_{{
m e},\lambda}$ associated with ${
m e}$ are

 $\lambda \in \mathcal{E}[\mathrm{e}], \hspace{0.2cm} ext{with} \hspace{0.2cm} \operatorname{Re} \lambda > 0 \hspace{0.2cm} ext{and} \hspace{0.2cm} U_{\mathrm{e},\lambda} = r^{\lambda} \, {}_{U_{\mathrm{e},\lambda}}(heta).$

Singularities of Corner Problems

Regularity Theorem

There holds (use piecewise – H^s for transmission problems)

$$f\in H^{\sigma-1}(\Omega) \implies u\in H^{\sigma+1}(\Omega)$$

if and only if $\,\sigma < \sigma[\Omega,L,B]\,$

$$\sigma[\Omega,L,B] = \min\left\{\min_{\mathrm{v \ vertex}} \xi_{\mathrm{v}} + rac{1}{2} \ , \min_{\mathrm{e \ in \ edges}} \xi_{\mathrm{e}}
ight\}$$

with

$$\xi_{\mathbf{v}}$$
 , the least real part $>-rac{1}{2}$ of the exponents $\lambda\in\mathcal{E}[\mathbf{v}]$.

and

IRMAR

 $\xi_{ ext{e}}$ the least real part > 0 of the exponents $\lambda \in \mathcal{E}[ext{e}]$.

<u>**Remark**</u> : for L^p Sobolev spaces, we have

$$\sigma^{(\mathrm{p})} = \min\left\{\min_{\mathrm{v \ vertex}} \xi_{\mathrm{v}} + rac{3}{\mathrm{p}} - 1
ight., \min_{\mathrm{e \ in \ edges}} \xi_{\mathrm{e}} + rac{2}{\mathrm{p}} - 1
ight\}$$

First Example : Electrostatic Potential

Associated with the bilinear form ($arepsilon_j$ is the electric permittivity of material Ω_j)

$$a(u,v) = \sum_j \int_{\Omega_j} arepsilon_j \operatorname{grad} u \cdot \operatorname{grad} v \; dx, \quad ext{ for } u,v \in \overset{\circ}{H}{}^1(\Omega).$$

Optimal Minima for $\,\xi_{
m e}\,$:

IRMAR

Exterior Angle	1 material	2 materials	3 materials	4 materials
$\leq \frac{\pi}{2}$	2	1	0	0
Convex	1	$\frac{1}{2}$	0	0
Any	$\frac{1}{2}$	$\frac{1}{4}$	0	0
None	∞	$\frac{1}{2}$	$\frac{1}{4}$	0
-				

Joint work with Martin Costabel & Serge Nicaise

Joint work with Martin Costabel & Yvon Lafranche

Expansion Theorem

Let $u_{{
m v},\lambda}$ be a localization of $U_{{
m v},\lambda}$ and $u_{{
m e},\lambda}$ be a localization of $U_{{
m e},\lambda}$.

For $\,\sigma[\Omega,L,B]<\sigma<1+\sigma[\Omega,L,B]$, there holds in a "sub-generic" way

$$egin{aligned} & u - \Big(\sum_{ ext{v vertex}, \ \lambda \in \mathcal{E}[ext{v}] \ -1/2 < \operatorname{Re} \lambda < \sigma - 1/2} & \sum_{ ext{e in edges}, \ \lambda \in \mathcal{E}[ext{e}] \ 0 < \operatorname{Re} \lambda < \sigma} & \mathcal{K}\{c_{ ext{e},\lambda}\}\,u_{ ext{e},\lambda}\Big) \ \in \ H^{\sigma+1}(\Omega), \end{aligned}$$

where

IRMAR

- $c_{\mathbf{v}, \lambda} \in \mathbb{C}$ are the vertex coefficients
- $E
 i {
 m e} \mapsto c_{{
 m e},\lambda}$ are the edge coefficients on E
- \mathcal{K} is a smoothing operator (inside Ω).

"Sub-generic" assumption: $\forall e$, the λ are neither integer nor multiple.

Vertex – Edge interaction: the singular functions

The edge coefficients $c_{{
m e},\mu}$ belong to the weighted Sobolev space ${\cal H}^{\sigma-{
m Re}\,\mu}_{-\sigma}(E)$ with

$$\mathcal{H}^s_\gamma(E) = \left\{ c \in \mathcal{D}'(E) \; ; \; \delta^{\gamma + lpha} \, d^lpha c \in L^2(E), \; lpha \leq s
ight\}$$

where δ is the distance to the endpoints of E (if vertex $\mathbf{v} \in \overline{E}$ then $\delta \simeq \rho$ near \mathbf{v}). Splitting only along the edges yields new edge coefficients $\tilde{c}_{\mathrm{e},\mu} \in \mathcal{H}_0^{\sigma-\mathrm{Re}\,\mu}(E)$. The vertex singular functions are $\rho^{\lambda} U_{\mathbf{v},\lambda}(\vartheta)$ and each $U_{\mathbf{v},\lambda}$ has singularities at the corners of G (corresponding to an $\mathbf{e} \in E$ for any edge $E \ni \mathbf{v}$):

$$U_{\mathbf{v},\lambda} = \sum_{E \ni \mathbf{v}} \sum_{\substack{\mu \in \mathcal{E}[\mathbf{e}] \\ 0 < \operatorname{Re} \mu < \sigma}} a_{\mathbf{e},\mu}^{\mathbf{v},\lambda} u_{\mathbf{e},\mu} \in H^{\sigma+1}(G).$$

Expansion of the edge coefficients

IRMAR

$$\tilde{c}_{\mathrm{e},\mu} - \sum_{\substack{\lambda \in \mathcal{E}[\mathrm{v}] \\ -1/2 < \operatorname{Re} \lambda < \sigma - 1/2}} a_{\mathrm{e},\mu}^{\mathrm{v},\lambda} \rho^{\lambda} = c_{\mathrm{e},\mu}$$

Stable Singularities

In presence of curved edges or variable coefficients, $U_{e,\lambda}$ depends on $e \in E$. If for $e_0 \in E$ and $\lambda_0 \in \mathcal{E}[e]$, the inverse $\lambda \longmapsto \mathcal{P}[e, \lambda]^{-1}$ has a <u>double</u> pole (branching), there exists <u>two</u> associated singularities $r^{\lambda_0} U_{e_0,\lambda_0}(\theta)$ and $r^{\lambda_0} \left(\log r \ U_{e_0,\lambda_0}(\theta) + V_{e_0,\lambda_0}(\theta)\right)$. For $e \neq e_0$ there exists <u>two</u> singularities $U_1(e) = U_{e,\lambda_1}$ and $U_2(e) = U_{e,\lambda_2}$ for which $\lambda_1(e) \rightarrow \lambda_0$ and $\lambda_2(e) \rightarrow \lambda_0$ as $e \rightarrow e_0$. Similar if $\lambda_0 \in \mathbb{N}$: logarithmic singularity in e_0 and $U_1(e)$ close to a polynomial $U_2(e)$ if $e \neq e_0$ (crossing). We set $\lambda_2(e) \equiv \lambda_0$.

Stable Singularities: by sum and divided difference

IRMAR

 $\widetilde{U}_1({
m e}) = U_1({
m e}) + U_2({
m e}) \quad ext{ and } \quad \widetilde{U}_2({
m e}) = rac{U_1({
m e}) - U_2({
m e})}{\lambda_1({
m e}) - \lambda_2({
m e})}\,.$